
PERFORMANCE AND COMPLEXITY ANALYSES OF

H.264/AVC CABAC ENTROPY CODER

Ho Boon Leng

(B.Eng (Hons),NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND

COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48630122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 i

ACKNOWLEDGEMENTS

I would like to dedicate this thesis to my family, especially my parents. The

journey to obtain the master degree has been tough and I am extremely grateful for

their understanding and constant support.

I would also like to express my gratitude to my supervisor, Dr Le Minh Thinh

for his patience, guidance, and advice in my research. He has provided constructive

suggestions and recommendations for my research work.

I would also like to express my sincere thanks to my colleagues, Tian Xiaohua

and Sun Xiaoxin for all the helps they have given me throughout my research work

 Last but not least, I would like to express my utmost appreciations to my good

friends, Ong Boon Kar and Cheong Kiat Fah for always having been there for me.

 ii

TABLE OF CONTENTS

Acknowledgements...i

Table of Contents...ii

List of Tables ..iv

List of Figures ..vii

List of Figures ..vii

List of Symbols ...ix

Abstract ..x

Chapter 1 Introduction..1

1.1 Research Work...2

1.2 Motivation..2

1.3 Thesis Contributions ..4

1.4 Thesis Organization ...4

Chapter 2 Background ..6

2.1 Entropy coder...6

2.2 Overview of CABAC...6

2.3 Encoder Control ...10

2.4 Complexity Analysis Methodologies...11

2.5 Existing Works...15

2.6 Conclusion ...17

Chapter 3 Performance Analyses of Entropy Coding Schemes19

3.1 Introduction..19

3.2 Performance Metrics..20

3.3 Implementation ..20

 iii

3.4 Test Bench Definitions ..21

3.5 Performance Analyses ...23

3.6 Conclusion ...28

Chapter 4 Complexity Analyses ...30

4.1 Introduction..30

4.2 Complexity Metric Definitions ..31

4.3 Computational Complexity..31

4.4 Data Transfer Complexity..40

4.5 Memory Usage...49

4.6 Functional Sub-blocks and ISA classes Analyses51

4.7 Performance-Complexity Co-evaluation of CABAC55

4.8 Conclusions..58

Chapter 5 RDO for Mode Decision..61

5.1 Predictive Coding Modes...61

5.2 Fast RDO ...69

5.2 Conclusion ...75

Chapter 6 Conclusions..77

6.1 Findings..77

6.2 Suggestions / Recommendations ...81

Bibliography ..84

Appendices...88

A1: Instruction Set Architecture Class ...88

A2: ISA Classification for CIF Foreman ..89

A3: Pin Tools Program Codes ..95

 iv

LIST OF TABLES

Table 3-1: Test sequences and their motion content classification..............................21

Table 3-2: Encoder configuration cases...22

Table 3-3: Percentage Bit-rate Savings Due to CABAC...23

Table 3-4: Percentage Bit-rate Savings by RDO ...24

Table 3-5: Overall bit-rate savings in percentage ..26

Table 3-6a: ∆ Y-PSNR due to CABAC in a non-RDO encoder at different constant

bit-rates..28

Table 4-1: Percentage increase in computational complexity of the entropy coder due

to CABAC...32

Table 4-2: Computational complexity of CABAC entropy coder in a non-RDO

encoder and a RDO encoder ...33

Table 4-3: Computational complexities of entropy coder in different combinations of

entropy coding schemes and configurations for non-RDO and RDO

encoders ..35

Table 4-4: Computational complexities of the non-RDO encoder and the RDO

encoder using different combinations of entropy coding schemes and

configurations..36

Table 4-5: Percentage increase in computational complexity of the RDO encoder due

to CABAC...38

Table 4-6: Percentage reduction in computational complexity of the video decoder

due to CABAC..39

Table 4-7: Percentage increase in data transfer complexity of the entropy coder due to

CABAC...40

 v

Table 4-8: Data transfer complexity of CABAC entropy coder in a non-RDO encoder

and an RDO encoder ...42

Table 4-9: Data transfer complexities of entropy coder in different combinations of

entropy coding schemes and configurations for non-RDO and RDO

encoders ..43

Table 4-10: Data transfer complexities of the non-RDO encoder and the RDO encoder

using different combinations of entropy coding schemes and configurations

...45

Table 4-11: Percentage increase in the data transfer complexity of the RDO encoder

due to CABAC..46

Table 4-12: Reduction in average memory access by the RDO encoder per GOP due

to 16KB L1 data cache..48

Table 4-13: Percentage reduction in data transfer complexity of the video decoder due

to CABAC...49

Table 4-14: Performance-complexity table ...56

Table 5-1: Performance degradation and complexity reduction in the RDO encoder

due to disabling Intra 4x4 directional modes for Main profile configuration

with CABAC...64

Table 5-2: Bit-rate savings by CABAC for the RDO encoder and the suboptimal-RDO

encoder ..68

Table 5-3: Ordering of prediction modes for the fast-RDO encoder...........................70

Table 5-4a: Percentage bit-rate savings due to fast-RDO encoder71

Table 5-5: Percentage change in computational complexity of the video encoder due

to fast-RDO in comparison to a non-RDO encoder74

 vi

Table 5-6: Percentage increase in data transfer complexity of the video encoder due to

fast-RDO in comparison to a non-RDO encoder ..75

Table 6-1: Real-time computational and memory requirements of CABAC entropy

coder..77

 vii

LIST OF FIGURES

Figure 2.1: CABAC entropy coder block diagram ..7

Figure 4.1: Instruction set architecture of entropy instruction executed by the CABAC

entropy coder...50

Figure 4.2: Functional sub-blocks diagram of the CABAC entropy coder52

Figure 4.3: Percentage breakdown of entropy coding computation based on functional

sub-blocks of CABAC entropy coder in a RDO encoder with Main profile

configuration ...53

Figure 4.4: Percentage of ISA classes for the executed entropy instructions in a RDO

encoder ..54

Figure 5.1: Percentage of prediction modes used in encoding QCIF and CIF

sequences ..62

Figure 5.2: Partitioning of entropy instructions based on predictive coding modes in

the RDO encoder...63

Figure 5.3: Percentage increments in computational complexity of the RDO encoder

and the suboptimal-RDO encoder due to the use of CABAC for (a) QCIF

sequences (b) CIF sequences ..66

Figure 5.4: Percentage increments in data transfer complexity of the RDO encoder

and the suboptimal-RDO encoder due to the use of CABAC for (a) QCIF

sequences (b) CIF sequences ..67

Figure 5.5: Computational complexity of the fast-RDO encoder and the non-RDO

encoder for test sequence Akiyo ..72

Figure 5.6: Computational complexity of the fast-RDO encoder and the non-RDO

encoder for test sequence Mother & Daughter ...73

 viii

Figure 5.7: Computational complexity of the fast-RDO encoder and the non-RDO

encoder for test sequence Silent ..73

Figure 5.8: Computational complexity of the fast-RDO encoder and the non-RDO

encoder for test sequence Paris...74

 ix

LIST OF SYMBOLS

B&CM Binarization & Context Modeling

CABAC Context Adaptive Binary Arithmetic Coding

CAVLC Context Adaptive Variable Length Coding

CIF Common Intermediate Format

FMS Finite Machine State

GOP Group of Pictures

IS Interval Subdivision

ISA Instruction Set Architecture

LPS Least Probable Symbol

MPEG Moving Picture Expert Group

MPS Most Probable Symbol

NRDSE Non-residual Data Syntax Element

QCIF Quarter Common Intermediate Format

RDO Rate Distortion Optimization

RDSE Residual Data Syntax Element

Y-PSNR Luma Peak Signal-to-Noise Ratio

 x

ABSTRACT

 Context Adaptive Binary Arithmetic Coding (CABAC) is one of the entropy

coding schemes defined in H.264/AVC. In this work, the coding efficiency, the

computational and memory requirements of CABAC are comprehensively assessed

for the different type of video encoders. The main contributions of the thesis are the

reported findings from the performance and complexity analyses. These findings

assist implementers in deciding when to use CABAC for a cost-effective realization

of the video codec that meets their system’s computational and memory resources.

Bottlenecks in CABAC have also been identified and recommendations on possible

complexity reductions have been proposed to system designers and software

developers.

CABAC is more complex than Context Adaptive Variable Length Coding

(CAVLC), and is dominated by data transfer in comparison to arithmetic and logic

operations. However, it is found that the use of CABAC is only resource expensive

when Rate-Distortion Optimization (RDO) is employed. For a RDO encoder, CABAC

hardware accelerator will be needed if the real-time requirement is met. Alternatively,

the use of suboptimal RDO techniques can reduce the computational and memory

requirements of CABAC on the video encoder, making it less expensive to use

CABAC in comparison to CAVLC.

 1

CHAPTER 1 INTRODUCTION

Over the past decade, digital video compression technology has evolved

tremendously, which made possible many application scenarios from video storage to

video broadcast and streaming over Internet and telecommunication networks. The

aim of video compression is to represent the video data with the lowest bit-rate at a

specified level of reproduction fidelity, or to represent the video data at the highest

reproduction fidelity with a given bit-rate.

H.264/AVC [1] is the latest international video compression standard. In

comparison to the previous video compression standards such as MPEG-4 [2] and

H.263 [3], it provides higher coding performance and better error resilience through

the use of improved or new coding tools at different stages of the video coding. For

the entropy coding stage, H.264/AVC offers two new schemes for coding its

macroblock-level syntax elements: Context Adaptive Variable Length Coding

(CAVLC) and Context Adaptive Binary Arithmetic Coding (CABAC). Both entropy

coding schemes achieve better coding efficiency than their predecessors in the earlier

standards as they employed context-conditional probability estimates. Comparatively,

CABAC performs better than CAVLC in terms of coding efficiency as it encodes data

with non-integer length codeword, and it adjusts its context-conditional probability

estimates to adapt to the non-stationary source statistics. However, the higher coding

efficiency of CABAC comes at the expense of increased complexity in the entropy

coder. This is one of the reasons why the developer team of H.264/AVC excludes

CABAC from the Baseline profile [5].

 2

1.1 Research Work

In this work, comprehensive performance and complexity analyses of CABAC

at both the entropy coder level and the video encoder/decoder levels will be

conducted using software verification model. Both variable bit-rate video encoder and

constant bit-rate video encoder will be considered. For the performance analyses,

percentage bit-rate savings and changes in peak signal-to-noise ratio of the video

luminance component (Y-PSNR) will be used. As for the complexity analyses,

computational complexity, data transfer complexity and memory usage will be

assessed. The goals of the analyses are:

(a) To present the computational and memory requirements of CABAC

(b) To identify “scenarios” where the use of CABAC is more cost-effective

based on a co-evaluation of the system’s coding efficiency and complexity

performance across different configurations and encoder types.

(c) To identify the possible bottlenecks in the CABAC entropy coder and to

make possible recommendations / suggestions on complexity reduction of

CABAC to system designers or software developers.

1.2 Motivation

The CABAC tool is not supported in the Baseline profile of H.264/AVC. As

such, it is commonly believed that using CABAC is computationally expensive for a

video encoder. However, no work has been done on evaluating the complexity

requirements of using CABAC except in [4], which gives a brief assessment of the

effect of using CABAC on the video encoder’s data transfer complexity. (More

 3

details on the related works that have been carried out for H.264/AVC are given in

Chapter 2.)

In [4], the additional memory requirement of using CABAC over CALVC

from the perspective of the video encoder is briefly reported, and this result has been

referenced by many literatures (due to the lack of works done in this area). However,

the complexity evaluation of CABAC given in their work is far from being complete,

as it performs a tool-by-tool add-on analysis, and CABAC is only considered for one

specific encoder configuration. Moreover, it also failed to include any complexity

analyses of using CABAC at the decoder.

There are also some drawbacks in evaluating the complexity increment of

using CABAC over CAVLC from the perspective of the video encoder. The results

can be misleading as these complexity figures also depend on the choices of coding

tools used in the video encoder. This makes comparison of such figures across

different configurations less meaningful. Besides, analyzing the complexity

performance of CABAC from the perspective of the video encoder will be more of

interest to implementers, who wish to achieve a cost-effective realization of the video

codec. However, it may be less relevant for system designers of CABAC as the

complexity figures do not reflect the true requirements of the entropy coder. Rather,

they will be more interested in the complexity performance of CABAC from the

perspective of the entropy coder.

As such, these provide the motivation for comprehensive analyses on the

performance and complexity of CABAC at two levels: top-level video encoder and

the entropy coder level. It is believed that analyses at the entropy coder level will be

useful to system designers or software developers in understanding the CABAC

 4

system properties, to gauge its implementation cost and for optimizing it design

implementation.

1.3 Thesis Contributions

The thesis contributions have been four-fold:

(a) provided inputs - findings from co-evaluation of performance-

complexity analyses of CABAC - that can assist implementer in

deciding whether to use CABAC in the video encoder,

(b) identified possible bottlenecks in CABAC and suggests

recommendations on complexity reduction to system designer and

software developers,

(c) identified when the use of CABAC hardware accelerator may not be

necessarily helpful in the video encoder, and

(d) developed a set of profiler tools based on Pin [13] for measuring

instruction-level complexity and memory access frequency of any

functional coding block of H.264/AVC that can also be used on other

video codec.

1.4 Thesis Organization

The contents in this thesis are organized as follows. In Chapter 2, an overview

of Context Adaptive Binary Arithmetic Coding (CABAC), a review of the complexity

analysis methodologies that have been used for video multimedia system, and a

literature review of existing works will be given. In Chapter 3, the performance of the

CABAC, benchmarked against CAVLC is given for the different video configurations

 5

so as to explore the inter-tool dependencies. In Chapter 4, the complexity analyses of

using CABAC at both the entropy coder level and the video encoder/decoder levels

are given. Related research work on rate-distortion optimization (RDO) extending

from the complexity analyses of CABAC are given in Chapter 5. Finally, conclusions

are given in Chapter 6.

 6

CHAPTER 2 BACKGROUND

In this chapter, the role of the entropy coder is discussed and an overview of

CABAC is given. This is followed by presenting the different encoder controls that

can be used in the video encoder. Lastly, a review of the complexity analysis

methodologies that have been used for video multimedia system, and a literature

review of existing works will be given.

2.1 Entropy coder

The entropy coder may serve up to two roles in a H.264/AVC video encoder.

The primary role of the entropy coder is to generate the compressed bitstream of the

video file for transmission or storage. For video encoders that optimize its mode

decision using rate-distortion optimization (RDO), its entropy coder performs an

additional role during the mode selection stage. The entropy coder computes the bit-

rates needed by each candidate prediction mode. The computed rate of information is

then used to guide the mode selection. Further details are given in sub-section 2.3.2.

2.2 Overview of CABAC

Context Adaptive Binary Arithmetic Coding (CABAC) [5] is one of the

entropy coding schemes in H.264/AVC, and is only supported in the Main profile.

Fig. 2.1 shows the block diagram for encoding and decoding a single syntax element

in CABAC.

 7

Figure 2.1: CABAC entropy coder block diagram

The encoding/decoding process using CABAC comprises of three stages:

binarization, context modeling, and binary arithmetic coding.

2.2.1 Binarization

The binarization stage maps all non-binary syntax elements into a binary

sequence known as bin-string using four basic binarization schemes: Unary (U),

Truncated Unary (TU), kth order Exp-Golomb (EGK) and Fixed Length (FL). The

only exception where these binarization schemes are not used is when encoding the

macroblock type and the sub-macroblock type syntax elements. For these syntax

elements, unstructured binary trees are used instead of binarization.

B
its

tre
am

syntax
element

syntax
element

Binarizer
Context
Modeler

Regular
Arithmetic

Coding
Engine

Bypass
Arithmetic

Coding Engine

Context
Modeler

Bypass
Arithmetic

Decoding Engine

De-binarizer

Encoder

Decoder

Regular
Arithmetic
Decoding

Engine

 8

2.2.2 Context Modeling

Each bin in a bin string is encoded in either normal mode or bypass mode

depending on the semantic of the syntax. For a bypass bin, the context modeling stage

is skipped because a fixed probability model is always used. On the other hand, each

normal bin selects a probability model based on its context from a specified set of

probability models in the context modeling stage. In total, 398 probability models are

used for all syntax elements.

There are four types of context. The type of context used by each normal bin

for selecting the best probability model depends on the syntax element that is

encoded. The first type of context considers the related bin values in its neighboring

macroblocks or sub-blocks. The second type considers the values of the prior coded

bins of the bin-string. These two types of contexts are only used for non-residual data

syntax elements (NRDSE). The last two types of context are only used for residual

data syntax elements (RDSE). One of them considers the position of the syntax

element in the scanning path of the macroblock while the other evaluates a count of

non-zero encoded levels with respect to a given threshold level.

2.2.3 Arithmetic Coding

In the binary arithmetic coding (BAC) stage, the bins are arithmetic coded.

Binary arithmetic coding is based on the principle of recursive sub-division of an

interval length as follows:

 EPE LPSLPS ⋅= (2-1)

 LPSMPS EEE −= (2-2)

 LPSLPS EELL −+= (2-3)

 LLMPS = (2-4)

 9

where E denotes the current interval length, L denotes the current lower bound of E,

PLPS denotes the probability of least probable symbol (LPS) from the selected

probability model. ELPS and EMPS denote the new lengths of the partitioned intervals

corresponding to LPS and the most probable symbol (MPS). LLPS and LMPS denote the

corresponding lower bounds of the partitioned intervals. For each bin, the current

interval is first partition into two as given in Eqn. 2-1 to Eqn. 2-4. The bin value is

then encoded by selecting the newly partitioned length that corresponds to the bin

value (either LPS or MPS) as the new current interval. E and L are also referred as the

coding states of the arithmetic coder.

 In H.264/AVC, the multiplication operation of interval subdivision in Eqn. 2-1

is replaced by using finite state machine (FSM) with a look-up table of pre-computed

intervals as follows:

]ˆ][ˆ[EPRangeTableE LPSLPS = (2-5)

The FSM consists of 64 probability states, LPSP̂ and 4 interval states, Ê . For the

normal bins, the selected conditional probability model is updated with the new

statistic after the bin value is encoded.

2.2.4 Renormalization

 To prevent underflow, H.264/AVC performs a renormalization operation

when the current interval length, E falls below a specified interval length after coding

a bin. This is a recursive operation which resizes the interval length through scaling

until the current interval exceeds the specified interval length. The codeword is output

on the fly each time bits are available after the scaling operation.

 10

2.3 Encoder Control

The encoder control refers to the strategy used by the encoder in selecting the

optimal prediction mode to encode each macroblock. In H.264/AVC, the encoder can

select from up to 11 prediction modes: 2 Intra prediction modes and 9 Inter prediction

mode, including SKIP and DIRECT modes to encode a macroblock. Note that the

encoder control is a non-normative part of the H.264/AVC standard. Several encoder

controls have been proposed and are reviewed below.

2.3.1 Non-RDO encoder

For a non-RDO encoder, either the sum of absolute difference (SAD) or the

sum of absolute transform difference (SATD) can be used as the selection criteria.

The optimal prediction mode selected to encode the macroblock corresponds to the

prediction mode that minimizes the macroblock residual signal, i.e. the minimum

SAD or SATD value.

2.3.2 RDO encoder

For a RDO encoder, a rate-distortion cost function is used as the selection

criteria for the optimal mode and is given as

 RDJ λ+= (2-6)

where J is the rate-distortion cost, D the distortion measure, λ the Lagrange

multiplier, and R the bit-rate. The optimal prediction mode used to encode the

macroblock corresponds to the prediction mode that yields the least rate-distortion

cost. Note that to obtain the bit-rate, entropy coding has to be performed for each

candidature mode. This significantly increases the amount of entropy coding

performed in the video encoder.

 11

2.3.3. Fast-RDO encoder

The fast-RDO encoder employs the fast RDO algorithm proposed in [23].

Similar to the RDO encoder, it uses the rate-distortion cost function in Eqn. 2-4 as the

selection criteria. However, it does not perform an “exhaustive” search through all

candidate prediction modes. Rather, it terminates the search process once the rate-

distortion cost of a candidate prediction mode lies within a threshold - a value derived

from the rate-distortion cost of the co-located macroblock in the previous encoded

frame. The current candidate prediction mode whose rate-distortion cost lies within

the threshold is selected as the optimal prediction mode, and the remaining prediction

modes are bypassed. If none of the prediction modes meets the early termination

criteria, the prediction mode with the least rate-distortion cost is then selected as the

optimal prediction mode.

2.4 Complexity Analysis Methodologies

In this section, a review of the known complexity analysis methodologies is

given. Complexity analyses are often carried out using verification models software

(in the case of video standards) such as the Verification Model (VM) and the Joint

Model (JM) reference software implementations for MPEG-4 and H.264/AVC,

respectively. These are un-optimized reference implementations but are sufficient for

analyzing the critical blocks in the algorithm for optimization and discovering the

bottlenecks. On the other hand, optimized source codes are needed or preferred for

complexity evaluation when performing hardware / software partitioning as in [6] or

when comparing the performance-complexity between video codec as in [7].

 12

2.4.1 Static Code Analysis

Static code analysis is one way of evaluating the computational complexity of

an algorithm, a program or a system. Such analysis requires the availability of the

high-level language source code such as the C codes of the Joint Model (JM)

reference software of H.264/AVC. The methods based on such analysis includes

counting the number of lines-of-code (LOC), counting the number of arithmetic and

logical operations, determining the time complexity of the algorithms, and

determining the lower or upper bound running time of the program by explicit or

implicit enumeration of program paths [8]. Such analyses measure the algorithm’s

efficiency but do not take into considerations the different input data statistics. In

order to obtain an accurate static analysis, restricted programming style such as

absence of recursion, dynamic data structure and bounded loop are needed so that the

maximal time spent in any part of the program can be calculated.

2.4.2 Run-time Computational Complexity Analysis

For run-time complexity analysis, profiling data are collected when the

program executes at run time on a given specific architecture. The advantage of run-

time complexity analysis is that input data dependency is also included. One method

of run-time computational complexity analysis is to measure the execution time of the

program using ANSI C clock function [9]. An alternative is to measure the execution

time of the program in terms of clock cycles using tools like Intel VTune - an

automated performance analyzer, or PAPI - a tool that allows access to the

performance hardware counters of the processor for measuring clock cycle [10].

Function-level information can also be collected for coarse complexity

evaluation using profilers such as Visual Studio Environment Profiling Tool or Gprof

 13

[11]. These profiling tools provide information on function call frequency and the

total execution time spent by each function in the program. This information allows

identifying the critical functions for optimization and help partial redesign of the

program to reduce the number of function calls to costly functions.

On a finer granularity, instruction level profiling can be carried out to provide

the number and the type of processor instructions that are executed by the program at

run-time. This can be used for performance tuning of program and to achieve more

accurate complexity evaluation. However, the profiling data gathered is dependent on

the hardware platform and the optimization level of the compiler. Unfortunately, there

are few tools assisting this level of profiling. In [12], a simulator and profiler tool set

based on SimpleScalar framework [22] was developed to measure the instruction

level complexity. In our work, a set of profiler tools using Pin was developed to

measure the instruction level complexity of the video codec [13].

2.4.3 Data Transfer and Storage Complexity Analysis

 Data transfer and storage operations are other areas where complexity of the

program can be evaluated. Such analyses are essential for data-dominant applications

such as video multimedia applications where it has been shown that the amount of

data transfer and storage operations are at least of the same order of magnitude as the

amount of arithmetic operations [14]. For such application, data transfer and storage

will have a dominant impact on the efficiency of the system realization.

 Data transfer and storage complexity analyses have been performed for a

MPEG 4 (natural) video decoder in [14] and H.264/AVC encoder/decoder in [4] using

ATOMIUM [21], an automated tool. This tool measures the memory access

frequency (the total number of data transfers from and to memory per second) and the

 14

peak memory usage (the maximum amount of memory that is allocated by the source

code) of the running program. Such analysis allows identifying memory related

hotspots in the program, and optimization of the storage bandwidth and the storage

size. However, the drawback of this tool is that it uses a “flat memory architectural

mode”, and does not consider other memory hierarchy such as one or more levels of

caches.

2.4.4 Platform Dependent /Independent Analysis

Generally, two types of complexity analyses can be performed: platform

dependent complexity analysis and platform independent complexity analysis. The

complexity evaluation using automated tools like VTune and Pin are platform

dependent, specifically for general purpose CISC processor such as Pentium III and

PentiumIV.

Platform independent analysis is generally preferred compared to platform

dependent analysis as the target architecture on which the system will be realized is

most likely different from that used to compile and run the reference implementation.

Tools such as ATOMIUM and SIT [15] are developed with such a goal: to measure

the complexity of a specific implementation of an algorithm independent from the

architecture that is used to run the reference implementation. Besides these tools, a

complexity evaluation methodology for video applications that is platform

independent is also proposed in [16]. In its methodology, the platform-independent

complexity metric used is the execution frequencies of core tasks executed in the

program and is combined with the platform-dependent complexity data (e.g. the

execution time of each core task on different processing platforms) for deriving the

system complexity on various platforms. However, this approach requires

 15

implementation cost measures for each single core task on different hardware

platform to be available in the first place before the system complexity can be

calculated. A similar platform-independent complexity evaluation methodology is

also given in [17]. The difference lies in that for its platform-independent complexity

data, it counts both the frequencies of the core tasks and the number of platform-

independent operations performed by each core task. The platform-dependent data is a

mapping table that identifies the number and types of execution subunits in each

hardware platform that are capable of performing basic operations in parallel. As

such, this methodology removes the needs for obtaining the implementation cost

measure of each core task for the different platform but leads to a lower bound of the

complexity measure, which is 2 - 3 factors lower than the actual complexity.

2.5 Existing Works

In most works, the complexity analyses of H.264/AVC are performed on

general-purpose processor platforms. In [9], the complexity of H.26L (a designation

of H.264 in the early stage of development) decoder is evaluated using two

implementations and benchmark against a highly optimized H.263+ decoder. One of

the implementations is a non-optimized TML-8 reference version, and the other is a

highly optimized version. In their work, the execution time (measured using the ANSI

C clock function) is used as the complexity metric. The complexity of CABAC which

falls into the high complexity profile of H.26L was not evaluated.

In [17], the complexity of the H.264/AVC baseline profile decoder is analyzed

using a theoretical approach. This approach allows the computational complexity of

the decoder to be derived for various hardware platforms, thereby allowing classes of

candidate platforms that are suitable for the actual implementation to be identified

 16

easily. The number of computational operations is used as the complexity metric in

their work. The theoretical approach is as follows: for each sub-function, its

complexity is estimated using the number of basic computational operations it

performs on a chosen hardware platform and its call frequency. The number of basic

computational operations it performed on each hardware platform varies depending

on the number of execution subunits available in each hardware platform. These

execution subunits allow basic operations such as ADD32, MUL16, OR, AND, Load

and Store to be performed in parallel. The draw-back of theoretical complexity

analysis is that overhead operations such as loop overhead, flow control and boundary

condition handling are not included. The run-time complexity of the decoder running

on an Intel Pentium III platform is also measured using Intel VTune, an automated

performance analyzer tool. Compared to the measured complexity by VTune, the

estimated complexity of the H.26L decoder using the theoretical approach for the

same platform is some factor lower, giving a lower-bound of the actual computational

complexity of the decoder. The complexity of CABAC is not evaluated in their work

as it does not fall into the baseline profile.

In [18], the performance and complexity of H.26L video encoder are given

and are benchmark against the H.263+ video encoder. The complexity analysis is

carried out at two levels: the application level and the kernel (or function) level. At

the application level, the execution time (measured using the ANSI C clock function)

is used as the complexity metric, whereas at the kernel level, the number of clock

cycles (measured using Intel VTune) is used as the complexity metric.

In [4], the performance and complexity of H.264/AVC video encoder/decoder

are reported. Unlike earlier works which focus on computational complexity, this

work focused on data transfer and storage requirements. Such an approach proved to

 17

be mandatory for efficient implementation of video systems due to the data

dominance of multimedia applications [19][20]. To provide the support framework

for automated analysis of H.264/AVC using the JM reference implementation, the C-

in-C-out ATOMIUM Analysis environment has been developed. It consists of a set of

kernels that provide functionalities for data transfer and storage analysis. In this work,

all the coding tools have been used, including the use of B-frame, CABAC and multi-

reference frame that were not evaluated in other works. Furthermore, the complexity

analysis in this work explores the inter-dependencies between the coding tools and

their impact on the trade-off between coding efficiency and complexity. This is unlike

earlier works where the coding tool under evaluation is tested independently by

comparing the performance and complexity of a basic configuration with the use of

the evaluated tool to the same configuration without it.

In [12], the instruction level complexities of the H.264/AVC video

encoder/decoder are measured using a simulator and profiler tool set based on the

SimpleScalar framework. Similar to [4], the complexity analysis is carried out on a

tool-by-tool basis using the JM reference implementation. However, it addressed the

instruction level complexity in terms of arithmetic, logic, shift and control operations

that were not covered in [4]. It also proposed a complexity-quality-bit-rate

performance metric for examining the relative performance among all configurations

used for the design space exploration.

2.6 Conclusion

In this chapter, an overview of the main functional blocks of CABAC, and a

review of the encoder controls of the video encoders have been given. This is

followed by a discussion on the known methodologies used in evaluating complexity

 18

and the existing works that have been carried out for complexity evaluation of

H.264/AVC. In the next chapter, the performance of CABAC, benchmarked against

CAVLC for different video encoder configurations will be presented.

 19

CHAPTER 3 PERFORMANCE ANALYSES OF

ENTROPY CODING SCHEMES

3.1 Introduction

The use of new entropy coding schemes in H.264/AVC: CABAC and CAVLC

is one of the reasons for its higher coding efficiency compared to earlier video

standards. Both schemes adapt to the source statistics allowing bit-rates that are closer

to the source entropy to be achieved. Comparatively, CABAC outperforms CAVLC

in achieving higher compression.

The CABAC scheme has been reviewed in the earlier chapter. CAVLC, on the

other hand is an entropy coding scheme based on variable length coding (VLC) using

Exp-Golomb code and a set of predefined VLC tables. It has been reported that

CABAC reduces the bit-rate up to 16% in [5] and a lower 10% in [4]. In our work, we

shall validate the performance of CABAC benchmark against CAVLC using diverse

range of test sequences and different combinations of coding tools.

In particular, we analyze the performance of CABAC in a H.264/AVC video

encoder that does not employed rate-distortion optimization (RDO). This has yet to be

reported in any work. Furthermore, we compared the coding performance between a

non-RDO encoder and an RDO encoder. The reason being the use of non-normative

RDO technique has a direct influence on the workload in the entropy coding stage of

the video encoder. A co-evaluation of the performance-complexity of the entropy

coding scheme will also be given in the next chapter. Lastly, the performance of

CABAC in a constant bit-rate video encoder is also considered, using the rate-control

mechanism in the JM reference software.

 20

3.2 Performance Metrics

The performance metrics used are the bit-rate savings and the peak signal-to-

noise ratio of the luminance component (Y-PSNR). The assumption made here is that

similar Y-PSNR values yields approximately the same subjective spatial video

quality. The chrominance components (U and V) are not used as comparison metrics

because the human visual system is less sensitive to chrominance components, which

will have small effects on the perceived video quality.

3.3 Implementation

Performance analyses and complexity analyses of CABAC (which will be

given in the next chapter) are both conducted using JM reference software version

9.5.

All testings were carried out on an IA32 architecture using Intel Pentium III

933 MHz processor with 512 SD-RAM in a standard Linux/C environment. The on-

chip L1 data and instruction caches each have a size of 16 KB, whereas the L2 caches

each have a size of 512 KB. The video encoder and decoder were compiled using

GNU GCC compiler with -O2 optimization option. Note that this level of

optimization does not include optimization for space-speed tradeoff such as loop

unrolling and function in-lining.

 21

3.4 Test Bench Definitions

A set of fifteen QCIF and CIF video sequences have been used for the testing

as given in Table 3-1. These sequences have been categorized based on the amount of

motion content in them. The table also lists the bit-rates of the sequences encoded

using configuration C2 with CABAC for a non-RDO encoder (as given in Table 3-2).

Table 3-1: Test sequences and their motion content classification

Sequence QCIF CIF Motion Contents QCIF Bit-rates

(kbps)
CIF Bit-rates

(kbps)
Akiyo X X Low 80 214

Mother & Daughter X X Low 89 248

Container X X Low 112 407

Carphone X Moderate 223

Foreman X X Moderate 224 780

Soccer X High 1264

Stefan X High 1302

Coastguard X X High 289 1336

Walk X X High 439 1379

The classification of the video sequences is carried out by subjective

evaluation. The low-motion contents test sequences have been shaded in grey,

moderate-motion content test sequences in white, and high-motion contents test

sequences in black. These denotations will be used throughout this work.

Sequences Akiyo, Mother & Daughter and Container are used to represent

low-motion sequences while Coastguard, Foreman and Walk contain varying degrees

of camera motion. The set of CIF sequences also includes two sport sequences:

Soccer and Stefan, that are representative of broadcast video content with high object

motions. One is a soccer game and the other is a tennis game. Most of these sequences

 22

have identical video content in their counterpart video format, which will be used to

study the effect of picture size. All sequences comprise of 300 frames.

A large number of configurations have been used in the testing. A selected set

that are representatives of these configurations are shown in Table 3-2.

Table 3-2: Encoder configuration cases

 C1 C2 C3 C4 C5 C6 C7 C8

Intra 4x4 1 1 1 1 1 1 1 1

Intra 16x16 1 1 1 1 1 1 1 1
Inter modes
16x16/16x8/8x16/8x8 1 1 4 4 4 4 4 4

Sub-partition modes
8x4/4x8/4x4 0 0 0 0 3 3 3 3

Reference frame 1 1 1 5 5 5 5 5

Search Range 8 16 16 16 16 16 32 16

Hadamard 0 0 0 0 0 1 1 1

FSBMME 0 0 0 0 0 0 0 1

B frame 0 0 1 1 1 1 1 1

Slice per frame 1 1 1 1 1 1 1 1

These configurations have been ordered from C1 to C8 so that more complex

coding tools are turned on progressively. This includes the use of higher number of

reference frames, larger search ranges, smaller block sizes for motion estimation,

Hadamard transform and full-search block-matching motion estimation (FSBMME).

With no consideration to the entropy coding schemes, configurations C1 and C2

belong to the Baseline profile, whereas the remaining configurations belong to the

Main profile. In this work, a GOP is defined as 10 frames, with only the first frame

being an Intra (I) frame. All subsequent frames in the GOP are Inter frames. Each

frame contains only one slice. For configurations C1 and C2, no B frames are used in

the GOP. For the remaining configurations, each P frame is followed by a B frame (in

encoding order).

 23

3.5 Performance Analyses

3.5.1 Percentage bit-rate savings by CABAC

The use of CABAC advocates a reduction in bit-rate needed to encode a

sequence at the same video quality. Table 3-3 gives the bit-rate savings by CABAC,

benchmarked against CAVLC for some configurations using both non-RDO and RDO

video encoders. The savings obtained in the remaining configurations are similar, and

hence not shown.

Table 3-3: Percentage Bit-rate Savings Due to CABAC

 Non-RDO encoder RDO encoder

QCIF Sequences C2 C4 C6 C8 C2 C4 C6 C8

Akiyo 3.9 4.2 4.3 4.3 4.7 4.8 4.6 4.6

Mother & Daughter 3.8 3.7 3.8 3.8 4.7 4.3 4.1 4.1

Container 4.3 4.5 4.8 4.8 4.5 4.9 4.4 4.4

Carphone 3.3 4.6 4.8 4.8 3.5 3.0 3.5 3.6

Foreman 4.8 5.3 5.4 5.3 4.9 4.4 4.7 4.7

Coastguard 7.5 8.7 8.8 8.9 6.8 7.3 7.2 7.0

Walk 4.2 6.1 6.5 6.9 4.7 4.9 5.7 5.8

CIF Sequences

Akiyo 6.5 5.8 5.9 5.9 6.0 5.9 5.8 5.8

Mother & Daughter 6.9 5.7 5.8 5.8 7.4 7.1 6.8 6.8

Container 5.4 6.2 6.4 6.4 6.0 6.7 6.0 6.1

Foreman 7.2 7.4 7.2 7.0 6.5 6.2 6.6 6.7

Soccer 6.3 7.0 6.9 6.8 7.1 7.8 7.6 7.2

Stefan 6.3 7.3 7.8 8.3 6.4 7.7 7.3 7.4

Coastguard 8.7 9.2 9.6 9.6 7.5 8.1 8.3 8.7

Walk 5.8 7.5 7.9 8.1 6.7 7.2 7.4 7.5

Bit-rate savings between 3-9% for QCIF sequences and 5-10% for CIF

sequences have been obtained for all configurations. The effect of CABAC on the

coding performance is additive as the bit-rate savings obtained for the same sequence

is consistence across the configurations. In addition, the bit-rate savings obtained

from the non-RDO video encoder is similar to that from the RDO video encoder for

 24

the same sequence. This implied low correlation exists between CABAC and the use

of other coding tools, and between CABAC and RDO.

Other less significant observations includes the followings: bit-rate savings

obtained for low-motion content sequences are generally smaller than that of high-

motion content sequences, especially when more complex coding tools are used. It is

also observed that for identical video content, higher bit-rate saving is obtained for the

CIF sequences compared to the QCIF sequences. This indicates that bit-rate saving

increases with higher level of motion contents or the use of larger picture size.

3.5.2 Percentage bit-rate savings by RDO

The RDO technique minimizes the bit-rate budget needed by the video

encoder to encode a sequence for a given video quality. Table 3-4 summarizes the bit-

rate savings obtained for a RDO encoder compared to that of a non-RDO encoder.

Table 3-4: Percentage Bit-rate Savings by RDO

 C2 C4 C6 C8

QCIF Sequences CAVLC CABAC CAVLC CABAC CAVLC CABAC CAVLC CABAC

Akiyo 4.2 4.9 2.7 3.3 1.5 1.8 1.2 1.4

Mother & Daughter 6.3 7.3 4.9 5.5 4.5 4.8 4.0 4.3

Container 10.5 10.7 4.6 3.7 2.5 2.0 1.9 2.3

Carphone 6.5 6.6 7.8 7.1 8.1 6.9 8.9 8.5

Foreman 7.7 7.9 7.8 8.2 8.2 7.5 7.9 8.3

Coastguard 8.2 7.5 6.4 5.6 5.9 4.3 6.3 6.9

Walk 4.2 4.7 6.6 7.3 7.7 6.9 8.1 6.9

CIF Sequences

Akiyo 8.4 7.9 4.7 4.1 3.5 3.4 3.5 3.3

Mother & Daughter 8.1 8.6 5.8 6.7 5.7 6.7 6.2 6.8

Container 7.1 7.7 3.5 2.1 2.6 2.2 2.3 2.8

Foreman 11.3 10.6 7.4 8.1 8.3 7.8 8.2 8.5

Soccer 7.4 7.4 7.1 6.7 7.6 7.1 7.2 7.4

Stefan 9.5 10.3 9.9 9.5 10.1 9.7 10.2 9.7

Coastguard 5.8 4.5 6.3 7.1 8.6 7.3 8.8 9.0

Walk 6.7 7.6 8.4 8.5 8.8 8.3 8.8 8.2

 25

From 1-11% of bit-rate can be saved when using RDO in the video encoder

for selecting the optimal coding modes. Its performance is minimally affected by the

entropy coding scheme used. This is shown by the small variation in bit-rate saving

between its use with CAVLC and its use with CABAC. This again implies a low

dependency between RDO and the entropy coding schemes.

Other less significant observations include the followings: inter-dependencies

between RDO and the other coding tools do exist as shown by the variation in bit-rate

savings across the configurations for the same sequence. However, it is difficult to

establish the exact dependency between them. What can be deduced from the data is

that for low-motion content sequences, lower bit-rate savings are obtained for more

complex configurations. This means that the use of RDO for bit-rate reduction

becomes less effective when more complex coding tools are used in the video

encoder. For complex configurations such as C6-C8, the saving in bit-rates by RDO

for low-motion content sequences is much smaller than that for high-motion content

sequences. This indicates that RDO achieves better performance for high-motion

content sequences.

3.5.3 Overall bit-rate saving using Baseline and Main profile configurations

For an overview, the joint performance of coding tools in improving the

coding efficiency is given here. Table 3-5 summarizes the bit-rate savings obtained

for different combinations of entropy coding schemes with a Baseline (configuration

C2) configuration and a Main profile (configuration C6 where most complex coding

tools have been turned on) configuration in a non-RDO encoder and a RDO encoder.

The bit-rates obtained with the collective use of the Baseline configuration with

 26

CAVLC in a non-RDO encoder is listed and is used as a reference by which bit-rates

of other coding combinations are expressed as percentage increments.

Table 3-5: Overall bit-rate savings in percentage

Non-RDO encoder RDO encoder
Baseline (C2) Main (C6) Baseline (C2) Main (C6) QCIF Sequences

Bit-rate for
Baseline@

CAVLC
(kbps) CAVLC CABAC CAVLC CABAC CAVLC CABAC CAVLC CABAC

Akiyo 80 - 3.9 6.2 10.2 4.2 8.7 7.6 11.8
Mother & Daughter 89 - 3.8 7.1 10.7 6.3 10.8 11.3 14.9
Container 112 - 4.3 12.9 17.1 10.5 14.5 15.1 18.8
Carphone 224 - 3.3 11.8 16.1 6.5 9.7 19.0 21.8
Foreman 225 - 4.8 14.4 19.0 7.7 12.3 21.4 25.1
Coastguard 288 - 7.5 13.2 20.9 8.2 14.4 18.4 24.3
Walk 438 - 4.1 17.2 22.6 4.2 8.6 23.6 27.9
CIF Sequences
Akiyo 214 - 6.5 8.6 14.0 8.4 13.9 11.8 16.9
Mother & Daughter 247 - 6.9 7.3 12.7 8.1 14.9 12.6 18.6
Container 406 - 5.4 8.0 13.8 7.1 12.7 10.3 15.7
Foreman 780 - 7.2 22.5 28.1 11.3 17.0 28.9 33.7
Soccer 1,047 - 6.3 18.8 25.1 7.4 13.3 25.0 30.5
Stefan 1,325 - 7.5 19.6 26.5 9.5 14.7 28.6 34.8
Coastguard 1,335 - 8.7 11.2 19.6 5.8 12.8 18.7 25.5
Walk 1,369 - 5.8 19.8 26.2 6.7 12.9 26.9 32.3

For the discussion in this sub-section, all bit-rate saving are made with respect

to bit-rates obtained for CAVLC with the Baseline configuration in a non-RDO

encoder.

The use of CABAC and Main profile configuration achieves a 10-28% bit-rate

savings with a non-RDO encoder and a higher 12-35% bit-rate savings with an RDO

encoder (but at the expense of higher encoder complexity, which will be given in the

next chapter). The data shows that RDO improves the bit-rate savings for all encoder

configurations but is found to be generally less effective for low-motion content

sequences than high-motion content sequences.

 27

Comparatively, smaller improvements in bit-rate saving by the use of Main

profile configuration are obtained for low-motion content sequences than high-motion

content sequences. This indicates that the use of Main profile configuration achieves

better performance for high-motion content sequences.

For the Baseline profile configuration, the use of CAVLC in a RDO encoder

outperforms that of CABAC in a non-RDO encoder for almost all sequences.

However, with the Main profile configuration, the same observation is obtained for

only some sequences. For the other sequences, the use of CABAC in a non-RDO

encoder achieves better results than CAVLC in a RDO encoder. This shows that the

use of more coding tools overshadow the combined effect of CAVLC and RDO.

3.5.4 Effect of CABAC on Y-PSNR at Constant Bit-Rates

In this sub-section, the effect of using CABAC in improving the coding

performance at constant bit-rate is studied. The performance metric used is the Y-

PSNR. Tables 3-6a and 3-6b list the increases in Y-PSNR due to CABAC when using

the Main profile configuration C6 in a non-RDO encoder as well as an RDO encoder

across different constant bit-rates. All Y-PSNR improvements are made with respect

to the Y-PSNR values obtained for CAVLC with Main profile configuration in a non-

RDO encoder at the specified constant bit-rates.

 28

Table 3-6a: ∆ Y-PSNR due to CABAC in a non-RDO encoder at different
constant bit-rates

QCIF Sequences 64 kbps 128 kbps 256 kbps CIF Sequences 256 kbps 512 kbps 1024 kbps
Akiyo 0.30 0.23 0.31 Akiyo 0.22 0.21 0.20
Mother & Daughter 0.17 0.27 0.29 Mother & Daughter 0.25 0.24 0.20
Container 0.35 0.22 0.35 Container 0.28 0.24 0.34
Carphone 0.36 0.27 0.27 Foreman 0.44 0.32 0.32
Foreman 0.40 0.27 0.29
Coastguard 0.51 0.33 0.42 Coastguard 0.65 0.43 0.43
Walk 0.47 0.40 0.43 Walk 0.71 0.51 0.44
 Soccer 0.53 0.46 0.43
 Stefan 0.34 0.37 0.47

Table 3-6b: ∆ Y-PSNR due to CABAC in an RDO encoder at
different constant bit-rates

QCIF Sequences 64 kbps 128 kbps 256 kbps CIF Sequences 256 kbps 512 kbps 1024 kbps
Akiyo 0.92 0.77 0.86 Akiyo 0.70 0.69 0.59
Mother & Daughter 0.59 0.74 0.77 Mother & Daughter 0.72 0.67 0.52
Container 0.76 0.61 0.68 Container 0.57 0.53 0.65
Carphone 0.68 0.60 0.60 Foreman 0.80 0.68 0.63
Foreman 0.80 0.59 0.58
Coastguard 0.71 0.56 0.71 Coastguard 0.89 0.67 0.74
Walk 1.03 0.77 0.80 Walk 1.25 0.91 0.81
 Soccer 0.87 0.80 0.92
 Stefan 0.65 0.77 0.85

The results show that at constant bit-rates, the use of CABAC improves the

video quality by a negligible amount of 0.1-0.8 dB in a non-RDO encoder. Even with

the collective use of RDO, only a small improvement of 0.5-1.2 dB has been obtained

in the RDO encoder. This indicates that CABAC is less attractive as a tool for

improving video quality at constant bit-rate than as a compression tool.

3.6 Conclusion

In this chapter, performance analyses of CABAC and RDO have been given.

Benchmark against the performance of a Baseline profile configuration of

 29

H.264/AVC, the advanced coding tools achieves saving in bit-rates up to 35%. A tool-

by-tool analysis shows that CABAC alone saves 3-10% in bit-rates while RDO,

another 1-11%. It is observed that these tools achieved better performance in high-

motion content sequences. At constant bit-rates, the collective use of CABAC and

RDO however is not effective in improving the video quality, achieving a gain of at

most 1 dB. The complexity of CABAC is assessed and presented in the next chapter.

 30

CHAPTER 4 COMPLEXITY ANALYSES

4.1 Introduction

In this chapter, the complexity analysis of CABAC is conducted using Pin and

PAPI tools [24][25]. The complexity metrics are the computational complexity, the

data transfer complexity and the memory usage.

Analyses are carried out at the entropy coder level and the video encoder level.

The entropy coder is a generic term that refers to either the CAVLC or CABAC

entropy coding functional block of the top-level video encoder. At the entropy coder

level, the additional workload required by the entropy coder when CAVLC is

replaced by CABAC, is measured for different configurations in both non-RDO and

RDO encoders. At the top-level video encoder, the effect of using CABAC on the

overall complexity of the video encoder is observed. The workload of the entropy

coder is also partitioned based on their functional sub-blocks for further analyses so as

to identify any critical sub-block or possible bottleneck. Besides the encoder, the

complexity of the decoder is also being addressed. To achieve an exhaustive analysis

of CABAC, a wide genre of video contents has been used as test sequences.

Lastly, a co-evaluation of the performance-complexity of CABAC is given,

where its optimal use is recommended by considering the tradeoff between its

performance and complexity.

 31

4.2 Complexity Metric Definitions

4.2.1 Computational Complexity

The computational complexity of a functional block is given in terms of the number

of complete instruction set computer (CISC) instructions it executed. The instructions

executed by the entropy coding functional block are referred as entropy instructions in

this work.

4.2.2 Data Transfer Complexity and Memory Usage

The data transfer complexity of a functional block is given in terms of the number of

memory accesses it performed for memory read or memory write operations. As for

memory usage, because dynamic memories are allocated and freed at different stages

of the encoding and decoding process, peak memory usage is used as the memory

requirements needed by the encoder/decoder.

4.3 Computational Complexity

In this section, the computational complexity of CABAC when used in both

non-RDO encoder and RDO encoder are analyzed, and are compared with reference

to CAVLC. All computational complexity measurements are expressed in terms of the

average number of instructions (or entropy instructions) executed per GOP.

4.3.1 Effect of CABAC on the entropy coder

The use of CABAC requires more computation to be performed compared to

CAVLC. Table 4-1 shows the percentage increase in computational complexity of the

entropy coder when CABAC replaced CAVLC across different configurations.

 32

Table 4-1: Percentage increase in computational complexity of the entropy coder due
to CABAC

Non-RDO Encoder RDO Encoder

Baseline Main Baseline Main QCIF Sequence

C2 C4 C6 C8 C2 C4 C6 C8

Akiyo 16 19 20 20 19 21 21 21

Mother & Daughter 17 24 26 26 17 20 20 20

Container 21 23 24 24 29 30 30 30

Carphone 18 26 30 30 24 24 26 26

Foreman 16 27 30 29 26 27 28 27

Coastguard 19 25 28 29 33 35 34 34

Walk 18 25 27 27 29 28 31 30

CIF Sequence

Akiyo 17 19 20 20 12 15 15 15

Mother & Daughter 16 23 24 24 10 13 13 13

Container 19 20 20 20 26 27 28 28

Foreman 15 23 26 26 21 23 23 23

Soccer 13 18 21 21 10 16 19 19

Stefan 22 22 22 22 26 25 22 22

Coastguard 17 23 25 25 29 34 31 31

Walk 15 19 23 23 22 22 24 24

From the data, CABAC increases the computational complexity of the entropy

coder by 13-30% for a non-RDO encoder and 10-35% for an RDO encoder. It is

observed that smaller percentage increments are obtained with the use of Baseline

profile configuration (C2) compared to Main profile configurations (C4, C6 & C8).

Smaller percentage increments are also obtained for low-motion content sequences

than high-motion content sequences.

4.3.2 Effect of RDO and complex coding tools on the entropy coder

The use of RDO as the video encoder control significantly increases the

computational complexity of the entropy coder, whereas the use of more complex

coding tools has a smaller effect on its computational complexity. Table 4-2 gives the

computational complexity of the CABAC entropy coder in a non-RDO encoder and

 33

the corresponding complexity increment factor of the CABAC entropy coder in an

RDO encoder, using both Baseline profile configuration and Main profile

configuration. The complexity increment factor is given by normalizing the average

entropy instruction counts executed by the RDO encoder with that of the non-RDO

encoder for the same configuration. Similar results have been obtained for the

CAVLC entropy coder and are not shown.

Table 4-2: Computational complexity of CABAC entropy coder in a non-RDO
encoder and a RDO encoder

Non-RDO encoder RDO Encoder

Baseline (C2) Main (C6) Baseline (C2) Main (C6) QCIF Sequence

Entropy Instruction Count (x103) Increment Factor

Akiyo 6,125 6,120 284 298

Mother & Daughter 7,266 7,169 226 242

Container 7,817 7,056 273 315

Carphone 16,013 15,496 124 136

Foreman 16,240 15,353 128 143

Coastguard 19,338 18,406 126 141

Walk 28,792 27,000 79 92
CIF Sequence

Akiyo 18,837 18,360 308 336

Mother & Daughter 23,084 22,630 243 265

Container 30,690 29,532 266 290

Foreman 58,305 50,236 130 161

Soccer 77,688 66,853 94 117

Stefan 74,219 63,142 98 127

Coastguard 91,822 88,150 106 118

Walk 95,335 86,272 83 100

The use of RDO increases the computational complexity of the CABAC

entropy coder tremendously between 80 and 340 times. This means that the use of

RDO triggered a huge workload for the entropy coder and creates a bottleneck in it.

This necessitates the use of a CABAC hardware accelerator if real-time requirements

are to be met with an RDO encoder.

 Comparatively, changes in computational complexity of the entropy coder

across the configurations are small for each video encoder. This can be seen by

 34

comparing the data between the Baseline and the Main profile configurations, which

shows that the use of Main profile configuration reduces the computational

complexity of the entropy coder up to 15% in a non-RDO encoder and increases its

computational complexity between 4% and 10% in a RDO encoder. This means that

the choice of coding tools used (with the exception of the entropy coding scheme) in

the video encoder has a small effect on the computational complexity of the entropy

coder.

Encoding high-motion content sequences requires a computational complexity

of the entropy coder up to 5 times more for a non-RDO encoder and up to 1.7 times or

70% more for a RDO encoder as compared to low-motion content sequences. This

indicates that the computational complexity of the entropy coder increases with higher

motion contents in the sequence for the same encoder configuration.

4.3.3 Overall computational complexity of the entropy coder

Table 4-3 shows the relative computational complexities of the entropy coder

for different combination of entropy coding schemes with Baseline profile and Main

profile configurations in a non-RDO encoder and an RDO encoder. All comparisons

are made with respect to the non-RDO encoder using Baseline profile configuration

with CAVLC, of which the magnitudes of entropy instructions per GOP are also

given. Results have been given with accuracy up two decimal places in order to show

the finer differences among the values.

 35

Table 4-3: Computational complexities of entropy coder in different combinations of
entropy coding schemes and configurations for non-RDO and RDO encoders

 Non-RDO encoder RDO encoder
 Baseline (C2) Main (C6) Baseline (C2) Main (C6)

QCIF Sequences
Entropy

Instruction
Count (x103)

CAVLC CABAC CAVLC CABAC CAVLC CABAC CAVLC CABAC

Akiyo 5,280 1.00 1.16 0.97 1.16 276 329 285 346

Mother & Daughter 6,211 1.00 1.17 0.92 1.15 225 264 233 279

Container 6,463 1.00 1.21 0.88 1.09 256 330 263 344

Carphone 13,572 1.00 1.18 0.88 1.14 118 146 123 155

Foreman 14,009 1.00 1.16 0.84 1.10 117 148 122 157

Coastguard 16,255 1.00 1.19 0.88 1.13 113 150 119 159

Walk 24,404 1.00 1.18 0.87 1.11 72 93 78 102
CIF Sequences

Akiyo 16,105 1.00 1.17 0.95 1.14 321 360 333 383

Mother & Daughter 19,908 1.00 1.16 0.92 1.14 257 282 267 302

Container 25,799 1.00 1.19 0.95 1.15 252 317 260 332

Foreman 50,701 1.00 1.15 0.79 0.99 124 150 130 160

Soccer 68,756 1.00 1.13 0.80 0.97 96 106 95 113

Stefan 74,198 1.00 1.22 0.85 1.04 72 98 88 108

Coastguard 78,482 1.00 1.17 0.90 1.12 96 124 102 133

Walk 82,903 1.00 1.15 0.85 1.04 78 95 84 104

The data provides an overview of the possible variations in computational

complexity of the entropy coder due to the collective use of different video coding

tools in H.264/AVC for different type of sequences.

The use of CABAC and the Main profile configuration increases the

computational complexity of the entropy coder in a non-RDO encoder by small

factors between 0.97 and 1.16. But the use of RDO alone increases the computational

complexity of the entropy coder by more than an order of magnitude. As a result of

the collective use of RDO, CABAC and Main profile configuration, the entropy

coder’s computational complexity in a RDO encoder using CABAC and Main profile

configuration is 100 to 390 times higher than that of a non-RDO encoder which uses

CALVC and Baseline profile configuration. This indicates that CABAC hardware

accelerator might be needed in a RDO encoder to speed up entropy coding and to

meet any real-time requirements.

 36

4.3.4 Overall computational complexity of the video encoder

Besides the entropy coding stage, the computational complexities in the other

encoding stages of the video encoder also increases due to the use of RDO and more

complex coding tools. As such, the impact of the computational complexity of the

entropy coder has a lesser effect on the video encoder’s computational complexity.

Table 4-4 shows the relative computational complexities of the video encoder for the

different combinations of entropy coding schemes with Baseline and Main profile

configuration, and RDO. In tandem with the analyses given in the earlier subsection,

all comparisons are made with respect to the non-RDO encoder using Baseline profile

with CAVLC, of which the magnitudes of total instructions executed per GOP have

also been given. Results have been given with accuracy to three decimal places in

order to show the finer differences among the values.

Table 4-4: Computational complexities of the non-RDO encoder and the RDO

encoder using different combinations of entropy coding schemes and configurations

Non-RDO encoder RDO Encoder
Baseline (C2) Main (C6) Baseline (C2) Main (C6) QCIF Sequence Instruction

Count (x103)
CAVLC CABAC CAVLC CABAC CAVLC CABAC CAVLC CABAC

Akiyo 705,203 1.000 1.005 7.878 7.884 6.214 6.693 13.405 13.906

Mother & Daughter 719,564 1.000 1.005 8.798 8.804 6.002 6.301 14.129 14.633

Container 704,361 1.000 1.006 8.024 8.030 6.539 7.224 13.931 14.727

Carphone 771,711 1.000 1.007 9.947 9.955 5.932 6.495 15.369 15.956

Foreman 780,657 1.000 1.007 10.86 10.868 5.933 6.532 16.221 16.943

Coastguard 769,952 1.000 1.008 11.891 11.899 6.303 7.140 17.603 18.544

Walk 844,179 1.000 1.009 12.716 12.726 5.786 6.335 17.827 18.527

CIF sequence

Akiyo 2,896,128 1.000 1.002 7.836 7.838 5.907 6.213 13.222 13.521

Mother & Daughter 2,949,502 1.000 1.002 8.698 8.701 5.848 6.157 13.945 14.220

Container 2,908,123 1.000 1.003 8.59 8.593 6.493 7.133 14.406 15.175

Foreman 3,196,301 1.000 1.003 11.284 11.288 5.998 6.307 16.565 17.093

Soccer 3,332,966 1.000 1.004 13.013 13.018 5.642 6.085 17.981 18.342

Stefan 3,380,364 1.000 1.004 12.991 13.013 5.604 6.107 17.229 17.908

Coastguard 3,228,994 1.000 1.005 12.295 12.301 6.263 7.001 18.126 18.966

Walk 3,431,219 1.000 1.005 12.673 12.678 5.668 6.327 17.563 18.113

 37

From the viewpoint of the non-RDO encoder, the use of CABAC has a

negligible effect on its computational complexity across all configurations. This is

shown by the insignificant difference in computational complexity in both Baseline

profile configuration and the Main profile configuration. This suggests that CABAC

should always be used in a non-RDO encoder in order to take advantage of the coding

gain. (The effect of CABAC on the RDO encoder’s computational complexity will be

given later in another set of data.)

For both entropy coding schemes, the use of Main profile configuration

increases the computational complexity of the non-RDO encoder by 7 to 13 times. On

the other hand, using RDO as the optimization control results in the computational

complexity of the RDO encoder to be higher than that of the non-RDO encoder by

about 6 times for Baseline profile configuration, and up to 2 times for Main profile

configuration. As such, the computational complexity of the RDO encoder using

CABAC and Main profile configuration is 13 to 19 times higher than that of a non-

RDO encoder using CAVLC and Baseline profile as a result of the collective use of

RDO, CABAC and Main profile configuration.

Unlike the non-RDO encoder, the use of CABAC increases the computational

complexity of the RDO encoder but the degree of impact depends on the

configuration that is used in the video encoder. Table 4-5 shows the percentage

increase in computational complexity of the video encoder when CABAC replaced

CAVLC.

 38

Table 4-5: Percentage increase in computational complexity of the RDO encoder due
to CABAC

Baseline Main Main Main

QCIF Sequences
C2 C4 C6 C8

Akiyo 6.5 4.2 3.7 0.07

Mother & Daughter 5.0 3.9 3.5 0.14

Container 10.8 7.2 5.8 0.09

Carphone 8.5 6.4 3.9 0.22

Foreman 10.2 7.8 4.3 0.28

Coastguard 12.7 9.7 6.5 0.45

Walk 10.5 7.2 3.9 0.37

CIF Sequence

Akiyo 5.1 3.6 2.3 0.23

Mother & Daughter 5.2 3.1 2.2 0.31

Container 10.9 6.8 4.9 0.44

Foreman 6.8 4.5 3.0 0.51

Soccer 7.1 4.9 2.2 0.73

Stefan 8.9 5.4 4.1 0.97

Coastguard 12.9 7.9 4.4 1.03

Walk 12.5 7.1 3.4 1.08

For the RDO encoder, replacing CALVC with CABAC increases its

computational complexity by 5-13% for the Baseline profile configuration

(configuration C2). The impact is less prominent with the use of Main profile

configuration as the use of more complex coding tools leads to a much higher

computational complexity of the video encoder. For instance, only 2-7% increases in

the computational complexity due to the use of CABAC have been obtained for Main

profile configuration, C6. The increment is even less than 2% for configuration C8,

which employs full-search motion estimation technique. By considering only the

computational complexity, the results do encourage the use of CABAC in the RDO

encoder.

4.3.5 Video Decoder

The computational complexity of the decoder is much lower than the encoder.

It is observed that the use of RDO has little impact on the computational complexity

 39

of the decoder whereas the use of CABAC, contrary to the fact that CABAC is more

computationally intensive than CAVLC, actually yields a reduction in the decoder’s

computational complexity. Table 4-6 shows the percentage reduction in

computational complexity of the decoder due to the use of CABAC for both Baseline

profile and Main profile configurations.

Table 4-6: Percentage reduction in computational complexity of the video decoder
due to CABAC

 RDO Off RDO on
QCIF Sequence Baseline (C2) Main (C6) Baseline (C2) Main (C6)

Akiyo 2.3 1.6 2.2 1.5
Mother & Daughter 3.2 1.9 3.1 2.0
Container 2.8 1.8 2.2 1.5
Carphone 6.2 3.6 5.7 3.6
Foreman 6.3 3.1 6.0 3.4
Coastguard 8.7 5.7 7.7 5.2
Walk 9.9 6.3 9.6 6.6
CIF Sequence
Akiyo 1.7 1.2 1.5 1.0
Mother & Daughter 2.2 1.3 2.1 1.2
Container 3.1 2.5 2.1 2.5
Foreman 5.6 2.9 5.1 2.3
Coastguard 10.2 7.1 10.0 6.6
Stefan 10.4 6.6 10.3 6.1
Soccer 7.6 4.6 7.2 4.1
Walk 8.7 5.5 8.5 5.0

From the data, the use of CABAC results in a 2-11% reduction in the

computational complexity of the decoder compared to CAVLC. CAVLC requires a

higher computation because of the need to search through the code tables for

decoding the syntax element. It is observed that larger percentage reduction in

decoder’s computational complexity can be obtained for high motion content

sequences compared to low motion content sequences.

 40

4.4 Data Transfer Complexity

In this section, the data transfer complexities of CABAC in both non-RDO

encoder and RDO encoder are analyzed and compared with CAVLC. The analyses

are carried out in two parts. The first part assumes a “flat memory architectural”

model and the second part assumes a two-level memory model with the use of a

16KB L1 data cache. All data complexity measurements are expressed as the average

number of memory access per GOP.

4.4.1 Effect of CABAC on the entropy coder

The use of CABAC requires the entropy coder to access the memory more

frequently as compared to CAVLC. Table 4-7 shows the percentage increase in data

transfer complexity of the entropy coder when CABAC replaced CAVLC across the

different configurations.

Table 4-7: Percentage increase in data transfer complexity of the entropy

coder due to CABAC
Non-RDO Encoder RDO Encoder

Baseline Main Baseline Main QCIF Sequence

C2 C4 C6 C8 C2 C4 C6 C8

Akiyo 25. 29 30 31 108 111 108 108

Mother & Daughter 26 33 37 37 108 109 108 109

Container 31 32 35 35 112 112 111 114

Carphone 28 37 43 44 108 107 107 107

Foreman 26 36 43 41 108 108 108 108

Coastguard 30 37 40 42 109 110 108 109

Walk 29 35 40 41 108 108 105 110

CIF Sequence

Akiyo 25 27 29 28 115 112 111 111

Mother & Daughter 24 31 34 36 113 110 110 110

Container 29 32 30 29 115 111 111 112

Foreman 24 32 37 37 112 109 108 109

Soccer 27 34 37 38 111 112 106 109

Stefan 22 28 32 35 109 109 104 107

Coastguard 25 29 34 37 111 109 106 106

Walk 25 28 29 31 114 110 111 112

 41

The data shows that the use of CABAC instead of CAVLC increases the data

transfer complexity of the entropy coder by 20-44% for a non-RDO encoder and a

higher 104-115% for a RDO encoder. The higher percentage increase obtained for the

RDO encoder is expected due to its frequent need to store, load and reset the coding

states of the arithmetic coder as well as the context models. This ensures that

sequential arithmetic coding process can be carried out correctly.

For a non-RDO encoder, smaller percentage increments due to the use of

CABAC are obtained for Baseline profile configuration (configuration C2) compared

to Main profile configurations (configurations C4, C6, & C8). However, no similar

observations are obtained for the RDO encoder. Rather, the use of CABAC results in

consistence percentage increase in the data transfer complexity of the entropy coder

across all configurations.

4.4.2 Effect of RDO and complex coding tools on the entropy coder

The use of RDO has a large influence on the data transfer complexity of the

entropy coder whereas the use of complex coding tools has a small effect on it. Table

4-8 gives the data computational complexity of the CABAC entropy coder in a non-

RDO encoder and the corresponding complexity increment factor of the CABAC

entropy coder in an RDO encoder, using both Baseline profile and Main profile

configurations. The complexity increment factor is given by normalizing the number

of memory access performed by the RDO encoder with that of the non-RDO encoder

for the same configuration.

 42

Table 4-8: Data transfer complexity of CABAC entropy coder in a non-RDO encoder
and an RDO encoder

Non-RDO encoder RDO encoder

Baseline Main Baseline Main QCIF Sequence

Memory access Count (x103) Increment Factor

Akiyo 4,712 4,678 526 545
Mother & Daughter 5,551 5,481 433 453
Container 5,989 5,401 466 530
Carphone 12,270 11,832 218 235
Foreman 12,481 11,779 220 242
Coastguard 14,903 14,102 203 223
Walk 22,228 20,693 131 148
CIF Sequence

Akiyo 14,378 13,992 654 683
Mother & Daughter 17,542 17,151 528 550
Container 23,601 22,524 478 508
Foreman 44,851 38,302 243 290
Soccer 59,568 51,273 178 212
Stefan 67,032 61,427 181 217
Coastguard 70,310 67,618 178 192
Walk 73,522 65,771 151 175

The use of RDO increases the data transfer complexity of the CABAC entropy

coder tremendously by 130 to 700 times.

 Comparatively, the choice of configuration used has a smaller effect on the

data transfer complexity of the entropy coder. This can be seen by comparing the data

between the Baseline and the Main profile configurations, which shows a reduction in

the data transfer complexity of the entropy coder up to 18% in a non-RDO encoder

and an increase in its data transfer complexity up to 6% in an RDO encoder. The

reason for the reduction in data transfer complexity of the non-RDO encoder when

Main profile configuration is used over the Baseline profile configuration is because

the use of Main profile configuration yields better macroblock prediction. This results

in a smaller residual prediction signal, which leads to less number of residual syntax

elements to be entropy coded. On the other hand, this is not so for the RDO encoder

because it cycles through all candidate prediction modes. As a result, more syntax

 43

elements need to be coded in the Main profile configuration than the Baseline profile

configuration.

As compared to low-motion content sequences, encoding high-motion content

sequences increase the data transfer complexity of the entropy coder up to a factor of

5.1 for a non-RDO encoder but a lower factor of 1.2 or a 20% increase for a RDO

encoder. Although this indicates that the data transfer complexity of the entropy coder

increases with higher motion contents in the sequence for the same encoder

configuration, it also shows a weaker influence the video content has on the data

transfer complexity of the entropy coder in a RDO encoder.

4.4.3 Overall data transfer complexity of the entropy coder

Table 4-9 shows the relative data transfer complexities of the entropy coder

for different combination of the entropy coding schemes with Baseline profile and

Main profile configurations in a non-RDO encoder and an RDO encoder. All

comparisons are made with reference to the non-RDO encoder using Baseline profile

configuration with CAVLC, of which the magnitudes of memory access per GOP are

also given. Results have been given with accuracy up two decimal places in order to

show the finer differences among the values.

Table 4-9: Data transfer complexities of entropy coder in different combinations of

entropy coding schemes and configurations for non-RDO and RDO encoders

 Non-RDO encoder RDO encoder
 Baseline (C2) Main (C6) Baseline (C2) Main (C6)

QCIF Sequence

Entropy
Memory
Access

Count (x103) CAVLC CABAC CAVLC CABAC CAVLC CABAC CAVLC CABAC

Akiyo 3,746 1.00 1.26 0.96 1.25 317 659 326 679
Mother & Daughter 4,412 1.00 1.26 0.90 1.24 261 543 270 562
Container 4,566 1.00 1.31 0.88 1.18 289 610 296 626
Carphone 9,609 1.00 1.28 0.86 1.23 134 278 140 289
Foreman 9,923 1.00 1.26 0.83 1.19 133 276 138 287
Coastguard 11,463 1.00 1.30 0.87 1.23 126 264 132 275
Walk 17,191 1.00 1.29 0.86 1.20 81 169 87 178

 44

CIF Sequence

Akiyo 11,470 1.00 1.28 0.96 1.24 381 819 394 832
Mother & Daughter 14,184 1.00 1.26 0.92 1.23 306 653 316 665
Container 18,252 1.00 1.31 0.96 1.25 287 617 296 626
Foreman 36,043 1.00 1.26 0.78 1.08 143 302 148 308
Soccer 49,039 1.00 1.23 0.80 1.06 103 216 108 222
Stefan 53,228 1.00 1.26 0.97 1.17 93 195 99 203
Coastguard 55,474 1.00 1.28 0.90 1.23 107 226 113 234
Walk 58,846 1.00 1.26 0.84 1.13 89 189 95 196

The variation in data transfer complexity of the entropy coder due the use of

different combination of entropy coding schemes, encoder configurations and RDO

behaves similarly to its computational complexity.

The use of CABAC and Main profile configuration increases the data transfer

complexity of the entropy coder in a non-RDO encoder by about 20%. But the use of

RDO alone increases the data transfer complexity of the entropy coder by more than

an order of magnitude. As such, the data transfer complexity of the entropy coder in a

RDO encoder using CABAC and Main profile configuration is 170 to 840 times

higher than that of a non-RDO encoder using CAVLC and Baseline profile

configuration.

For the RDO encoder, the number of memory access performed by its entropy

coder approximately doubled with the use of CABAC compared to CAVLC. This

shows that data transfer have a dominant impact on the CABAC entropy coder when

RDO is used. Further analysis is carried out by breaking down the data transfer

operations performed by the entropy coder into memory read and memory write

operations. It is consistently observed that memory read operations are approximately

50% higher than memory write operations across all configurations and video source.

This suggests that redesign of the memory interface such as the memory read and

write circuitries and bus widths for the CABAC entropy coder might be helpful to

reduce latency.

 45

4.4.4 Overall data transfer complexity of the video encoder

Table 4-10 shows the relative data transfer complexities of the video encoder

for different combinations of entropy coding schemes with Baseline and Main profile

configurations, and RDO. All comparisons are made with reference to the non-RDO

encoder using Baseline profile with CAVLC, of which the magnitudes of memory

access per GOP have also been given. Results have been given with accuracy to three

decimal places to show the finer differences among the values

Table 4-10: Data transfer complexities of the non-RDO encoder and the RDO encoder
using different combinations of entropy coding schemes and configurations

Non-RDO encoder RDO encoder

Baseline (C2) Main (C6) Baseline (C2) Main (C6) QCIF Sequence

Encoder
Memory
Access
(x103) CAVLC CABAC CAVLC CABAC CAVLC CABAC CAVLC CABAC

Akiyo 444,013 1.000 1.006 8.352 8.361 6.825 9.747 14.698 17.773

Mother & Daughter 453,127 1.000 1.006 9.256 9.265 6.612 9.326 15.343 18.246

Container 443,566 1.000 1.007 8.452 8.461 7.248 10.596 15.106 18.621

Carphone 484,471 1.000 1.009 10.299 10.312 6.551 9.417 16.477 19.443

Foreman 489,769 1.000 1.009 11.235 11.248 6.658 9.562 17.382 20.401

Coastguard 484,484 1.000 1.011 12.215 12.228 6.935 10.234 18.701 22.195

Walk 526,040 1.000 1.013 12.999 13.015 6.443 9.258 18.853 21.972
CIF Sequence

Akiyo 1,797,774 1.000 1.003 8.362 8.366 6.684 8.958 14.670 17.443

Mother & Daughter 1,828,642 1.000 1.003 9.244 9.248 6.566 8.723 15.398 18.145

Container 1,806,352 1.000 1.004 9.090 9.096 7.214 10.064 15.818 19.376

Foreman 1,977,606 1.000 1.006 11.803 11.811 6.655 9.033 17.946 20.939

Soccer 2,047,461 1.000 1.007 13.461 13.470 6.348 8.576 19.243 22.016

Stefan 2.108,883 1.000 1.009 13.164 13.176 6.709 9.124 18.858 20.439

Coastguard 2,004,411 1.000 1.009 12.776 12.789 6.963 9.797 19.403 22.921

Walk 2,108,836 1.000 1.009 13.053 13.064 6.232 8.942 18.944 21.289

From the viewpoint of the non-RDO encoder, the use of CABAC has

negligible effect on its data transfer complexity across all configurations. This is

shown by the insignificant difference in data transfer complexity in both Baseline

profile and Main profile configurations. This reaffirms that the use of CABAC is

always recommended for a non-RDO encoder. (The effect of CABAC on the data

transfer complexity of the RDO encoder will be given)

 46

 The use of Main profile configuration increases the data transfer complexities

of the non-RDO video encoder by 8 to 14 times for both entropy coding schemes. Due

to the use of RDO, the data transfer complexity of the RDO encoder is higher than

that of the non-RDO encoder by 6 to 10 times for the Baseline profile configuration,

and about 2 times for the Main profile configuration. The combined effect of using

RDO, CABAC and Main profile configuration results in the data transfer complexity

of the RDO encoder to be 17 to 23 times higher than a non-RDO encoder using

CAVLC with Baseline profile configuration.

 The use of CABAC over CAVLC in a RDO encoder increases its data transfer

complexity but the degree of impact depends on the configuration that is used in the

video encoder. Table 4-11 shows the percentage increase in data transfer complexity

of the video encoder when CABAC replaced CAVLC.

Table 4-11: Percentage increase in the data transfer complexity of the RDO encoder
due to CABAC

Baseline Main

QCIF Sequences
C2 C4 C6 C8

Akiyo 42.1 28.8 20.9 14.6

Mother & Daughter 41.5 27.4 19.3 13.7

Container 46.0 31.0 23.2 15.9

Carphone 43.5 29.2 18.6 13.2

Foreman 43.9 28.9 17.8 13.0

Coastguard 46.8 26.5 18.6 13.6

Walk 44.7 27.5 16.3 12.2

CIF Sequence

Akiyo 34.3 25.9 19.8 10.2

Mother & Daughter 33.5 24.7 18.1 9.7

Container 39.1 27.2 21.8 11.6

Foreman 36.6 23.5 16.6 7.8

Soccer 35.0 21.4 14.5 6.5

Stefan 35.8 21.0 14.9 6.6

Coastguard 40.1 27.8 17.6 8.2

Walk 36.8 21.1 12.4 6.3

 47

The use of CABAC increases the data transfer complexity of the RDO encoder

by 33-47% for the Baseline profile configuration whereas lower percentage

increments are obtained for Main profile configurations. For instance, the use of

CABAC results in a 12-24% increase in the RDO encoder’s data transfer complexity

for Main profile configuration C6. The use of Main profile configurations reduces the

impact of CABAC on the RDO encoder’s data transfer complexity as the use of more

complex coding tools leads to a much higher data transfer complexity of the RDO

encoder. Nonetheless, the additional data transfer complexity incurred by the video

encoder due to the use of CABAC is still high. This discourages the use of CABAC in

the RDO encoder.

Comparing the change in computational complexity with the change in data

transfer complexity of the video encoder across all configurations, the results show

that the use of CABAC results in higher increase in data transfer complexity as

compared to the increase in computational complexity. This shows that CABAC is

dominated more by data transfer complexity compared to computational complexity.

Thus, the bottleneck can be at the memory interface.

4.4.5 Effect of using a 16KB of L1 data cache

The use of a data cache significantly reduces the number of accesses to

memory which improves the average latency of data transfer. Table 4-12 gives the

percentage reduction in data transfer complexity of the RDO encoder due to the use of

a 16KB L1 data cache for different combination of entropy coding schemes with

Baseline profile and Main profile configurations.

 48

Table 4-12: Reduction in average memory access by the RDO encoder per GOP due
to 16KB L1 data cache

Percentage (%)

Baseline Main QCIF sequence

CAVLC CABAC CAVLC CABAC

Akiyo 99.5 94.7 99.3 96.4
Mother & Daughter 99.5 94.6 99.3 96.6
Container 99.5 95.1 99.3 96.6
Carphone 99.5 94.9 99.3 96.9
Foreman 99.5 95.0 99.4 97.1
Coastguard 99.5 95.2 99.4 97.2
Walk 99.5 95.2 99.4 96.2
CIF sequence
Akiyo 99.4 94.4 99.2 96.3
Mother & Daughter 99.4 94.3 99.3 96.5
Container 99.4 94.8 99.3 96.6
Foreman 99.4 94.7 99.3 97.1
Soccer 99.4 94.6 99.4 97.3
Stefan 99.4 95.0 99.4 97.3
Coastguard 99.4 94.8 99.4 97.4
Walk 99.4 94.4 99.2 96.3

The use of a data cache reduces the average number of memory access per

GOP in the entropy coder by more than 99% for CAVLC and between 94-98% for

CABAC. The large reduction in memory access means a lower data transfer

complexity of the video encoder as the time to access the cache is much faster than

access to memory.

4.4.6 Video decoder

Similar to the computational complexity of the decoder, the use of RDO has

negligible impact on the decoder’s data transfer complexity whereas the use of

CABAC over CAVLC results in a reduction in its data transfer complexity. Table 4-

13 shows the percentage reduction in decoder’s data transfer complexity due to the

use of CABAC for Baseline profile and Main profile configurations.

 49

Table 4-13: Percentage reduction in data transfer complexity of the video decoder due
to CABAC

 RDO Off RDO on
QCIF Sequence Baseline (C2) Main (C6) Baseline (C2) Main (C6)

Akiyo 4.6 3.6 4.4 3.5
Mother & Daughter 5.4 3.7 5.1 3.5
Container 5.7 4.5 5.7 4.5
Carphone 10.0 6.3 10.3 6.5
Foreman 9.9 5.2 10.1 5.8
Coastguard 12.9 8.7 13.2 9.1
Walk 16.0 10.1 16.3 10.8
CIF Sequence
Akiyo 3.1 2.4 3.0 2.4
Mother & Daughter 3.6 2.5 3.6 2.5
Container 5.4 4.9 5.5 4.9
Foreman 8.8 4.9 9.1 5.2
Soccer 11.5 7.1 12.1 7.8
Stefan 12.8 10.0 13.5 10.7
Coastguard 14.8 10.2 15.2 10.7
Walk 13.4 8.7 14.0 9.3

 From the data, we saw a 3-17% reduction in the data transfer complexity of

the decoder due to the use of CABAC. The lower computational complexity and

lower data transfer complexity at the video decoder when CABAC is used in place of

CAVLC, suggests that CABAC should be selected for offline applications in which

coding time and power consumption at the video encoder are not critical but where

the communication bandwidth and battery life are limited in the video decoder such as

portable devices.

4.5 Memory Usage

The memory usage by the encoder / decoder comprises of three parts: memory

for storing the binary codec executable and library, stack memory and dynamic

memory. The memory used for the storage is pre-determined by the compiler in which

the GCC compiler has been used in this work. On our Linux platform, the encoder

 50

executable has a memory size of 0.6MB while the decoder has a memory size of

0.35MB. A total memory size of 2.2MB is needed for storing all the video codec

executables and the necessary libraries.

To cater to the diverse range of encoder configurations and video source,

dynamic memory is allocated and freed as needed during a coding session. The peak

memory usage depends on the configuration used and the encoding frame size, but is

independent of the video contents and the use of RDO as the encoder control. Figure

4.1 shows the peak memory usage during a coding session for different configurations

with QCIF and CIF sequences.

Figure 4.1: Instruction set architecture of entropy instruction executed by the CABAC
entropy coder

The peak memory usage of the video encoder lies between 2–13 MB for QCIF

sequences and between 9–34 MB for CIF sequences. The use of some complex

coding tools (higher number of reference frames, complex motion estimation

techniques, etc.) varies the buffer requirements and increases the peak memory usage

of the video encoder. Compared to the Baseline profile configuration C2, the use of

 51

Main profile configuration C6 increases the peak memory usage of the encoder about

3 times for QCIF and 3.5 times for CIF. However, the peak memory usage during a

coding session for CAVLC and CABAC are almost identical, given that the rest of the

coding tools used in the video encoder are the same. The profiling results show that

replacing CAVLC with CABAC adds only an additional 0.06 MB of memory usage

per slice for context modeling. Because the additional memory required per slice is

small and each frame can only contains a limited number of slices, this explains the

negligible increased in peak memory usage when CABAC is used over CAVLC

The peak memory usage for the video decoder is smaller compared to the

video encoder, lying between 3-7 MB for QCIF sequences and 10-16 MB for CIF

sequences. Compared to that of Baseline profile configuration C2, decoding

sequences encoded with Main profile configuration C6 doubled the decoder’s peak

memory usage. Similarly to the video encoder, the difference in the peak memory

usage of the video decoder between CAVLC and CABAC is too small to be reflected

in the figure.

4.6 Functional Sub-blocks and ISA classes Analyses

4.6.1 Functional sub-blocks complexity analysis

The complexities of the functional sub-blocks of CABAC in a RDO encoder

are analyzed in this sub-section. For analysis purposes, the functional sub-blocks of

CABAC entropy coder have been given from a different perspective as shown in Fig.

4.2.

 52

Figure 4.2: Functional sub-blocks diagram of the CABAC entropy coder

The four functional sub-blocks of CABAC entropy coder are the Binarization

and Context Modeling (B&CM) blocks for non-residual data syntax element

(NRDSE) and residual data syntax element (RDSE), and the Arithmetic Coding (AC)

blocks for interval subdivision (AC-IS) and renormalization (AC-Renorm). NRDSE

are syntax elements that contains information required for forming a macroblock

prediction at the decoder, whereas RDSE are syntax elements that contain information

on the residual (difference) macroblock, i.e. the transform coefficients. Note that the

bypass coding stage has been integrated into each of the B&CM block for RDSEs and

NRDSEs. Fig. 4.3 shows the percentage of computation spent by each sub-block

when encoding CIF sequences at different QP values. Similar results are obtained for

QCIF sequences and are not shown.

Syntax element

Binarization and context
modeling - NRDSE

Binarization and context
modeling - RDSE

Arithmetic coding
– Interval

subdivision

Arithmetic coding
 - Renormalization

Bitstream

 53

Figure 4.3: Percentage breakdown of entropy coding computation based on functional

sub-blocks of CABAC entropy coder in a RDO encoder with Main profile
configuration

The results show that the B&CM-NRDSE is the least critical sub-block,

constituting at most 12% of the computation. At low and moderate QP values, each of

the sub-blocks of B&CM-RDSE, AC-IS and AC-Renorm constitutes about one-third

of the remaining computation whereas at high QP values, B&CM-RDSE is the most

computationally complex block, constituting about 40% of the total computation. This

means that B&CM-RDSE sub-block’s computational complexity is higher than that of

B&CM-NRDSE sub-block by approximately 8 times at QP=20 and approximately 4

times at QP=40. As such, in hardware-software partitioning, it is preferable to

implement this functional sub-block in hardware, leaving the B&CM-NRDSE

functional sub-block in software. This is because implementing the latter in hardware

will require past coded data to be either stored in hardware (resulting in duplication of

data) or be transferred from the software to the hardware for context modeling. This

requires additional buffers or more data transfer to be performed. On the other hand,

 54

no such data are needed by the B&CM-RDSE functional sub-block for context

modeling.

4.6.2 Instruction set architecture classes

The entropy instructions have been classified into fourteen Instruction Set

Architecture (ISA) classes. These instruction classes are given in Appendix A1. Fig.

4.4 shows the percentage of instruction classes for the executed entropy instruction in

a RDO encoder. Less significant classes such as Unconditional Branch class and

Floating Point class have been grouped together as ‘Others’. Similar results are

obtained for the other sequences and are not shown.

Figure 4.4: Percentage of ISA classes for the executed entropy instructions in a RDO
encoder

For both CABAC and CAVLC, Integer ALU class makes up the bulk of the

entropy instructions, constituting more than 70% of it. This is followed by the

Conditional Branch class which makes up 8% to 11%. This shows that integer

computation dominates the entropy coder’s complexity whereas the use of floating

 55

point instructions is minimal. In fact, CABAC uses no floating point operations for

performing entropy coding except for adaptive initialization of context models at the

start of each new slice. Comparatively, CABAC uses the stack more frequently

compared to CAVLC. This is shown by the higher percentage of PUSH and POP

classes with the use of CABAC, indicating that a higher memory bandwidth is

required.

In the Integer ALU class, the MOV instruction dominates the integer

operations making up 40% of the executed entropy instructions whereas

multiplication and division operations constitute an insignificant percentage of the

integer operations. A detailed ISA classification of the instructions executed in the

entropy coders and the RDO encoder for CIF Foreman is given in Appendix A2.

4.7 Performance-Complexity Co-evaluation of CABAC

A performance-complexity co-evaluation of CABAC is presented. The

objective is to identify scenarios where the use of CABAC will be more cost effective

than CAVLC in software implementation. Table 4-14 summarized the performance

and complexity of the non-RDO encoder and the RDO encoder for different

combinations of entropy coding schemes with Baseline and Main profile

configurations. All performance and complexity gains are measured with respect to

the non-RDO encoder using CAVLC with Baseline profile configuration. The table

has been arranged such that complexity generally increases from the lower left corner

to the upper right corner.

 56

Table 4-14: Performance-complexity table

 Baseline profile configuration C2 Main profile configuration C6
 CAVLC CABAC CAVLC CABAC

 LMS HMS LMS HMS LMS HMS LMS HMS
BR Saving

(%) 7.1 – 8.4 5.8 – 9.5 12.7 -14.9 12.8 – 14.7 10.3 – 12.6 18.7 –
26.9 15.7 – 18.6 25.5 – 32.3

∆ Y-PSNR
(dB) 0.20 - 021 -0.05 –

0.16 0.22 – 0.26 -0.05 –
0.16 0.52 - 0.80 0.3 – 0.53 0.52 – 0.85 0.33 – 0.55

EMA 6.5 – 7.2 6.3 – 6.9 8.7 – 10.0 8.5 – 9.1 14.6 – 15.8 18.8 –
19.4 17 – 20.9 20.4 – 22.9

ECC 5.8 - 6.4 5.6 – 6.2 6.1- 7.1 6.0 – 7.0 13.2 – 14.4 17.2 –
18.1 13.5 – 15.1 17.9 – 18.3

DCC 0.99 -1.00 0.90 –
0.92 0.97 -0.98 0.87 – 0.90 0.98 – 1.00 0.96 –

1.00 0.96 – 0.99 0.91- 0.96

EPMU
(MB) 9.0 9.0 9.0 9.0 30.0 30.0 30.0 30.0

C
IF

DPMU
(MB) 10.0 10.0 10.0 10.0 15.0 15.0 15.0 15.0

BR Saving
(%) 4.2 – 10.5 4.2 – 8.5 8.7 – 14.5 8.6 – 14.4 7.6 – 19.0 18.4 -23.6 11.8 – 18.8 24.3 – 27.9

∆ Y-PSNR
(dB)

0.13 –
0.22

-0.12 -
0.01 0.11 – 0.19 -0.08 –

0.16 0.65 – 0.85 0.16 –
0.43 0.65 – 0.88 0.22 – 0.48

EMA 6 .6 – 7.2 6.4 – 7.2 9.3 – 10.5 9.2 -10.7 14.6 – 15.3 18.7 –
18.9 17.7 – 18.6 21.9 – 22.7

ECC 6 – 6.5 5.7 – 6.5 6.3- 7.2 6.3 – 7.6 13.4 – 14.3 17.6 – 18 13.9 – 14.7 18.5 – 19.2

DCC 0.98 –
1.00

0.84 –
0.88 0.97 – 1.00 0.99 – 1.02 0.97 – 1.00 0.93 –

0.99 0.96 – 0.08 0.85 – 0.93

EPMU
(MB) 2.6 2.6 2.6 2.6 8.5 8.5 8.5 8.5

R
D

O
 E

nc
od

er

Q
C

IF

DPMU
(MB) 3.0 3.0 3.0 3.0 6.0 6.0 6.0 6.0

BR Saving
(%) 5.4 – 6.9 5.8 – 8.7 7.3 – 8.6 15.2 –

19.8 12.7 – 14.0 19.6 – 26.2

∆ Y-PSNR
(dB) 0 0 0.26 – 0.60 0.32 –

0.47 0.26 – 0.60 0.32 – 0.47

EMA 1.003 –
1.004

1.003 -
1.009

8.362 –
9.244

8.362 –
13.461

8.366 –
9.248

8.366 –
13.470

ECC 1.002 -
1.003

1.004 –
1.005 7.836 -8.698 12.295 –

13.013
7.838 –
8.701

12.301 -
13.018

DCC 0.97 – 0.98 0.90 -0.92 0.98 – 1.00 1.00 –
1.04 0.95 – 0.98 0.94 - 0.99

EPMU
(MB) 9.0 9.0 30.0 30.0 30.0 30.0

C
IF

DPMU
(MB) 10.0 10.0 15.0 15.0 15.0 15.0

BR Saving
(%) 3.8 – 4.3 4.1 – 7.5 6 – 12.9 12.9 -17.2 10.2 – 17.1 20.2 - 22.6

∆ Y-PSNR
(dB) 0 0 0.36 – 0.62 0.25 –

0.70 0.36 – 0.62 0.25 - 0.70

EMA 1.006 -
1.007

1.011 -
1.017

8.352 –
9.256

12.196 –
12.999

8.361 –
9.265

12.216 -
13.015

ECC 1.005 -
1.007

1.008 -
1.011

7.878 –
8.798

11.891 –
12.716

7.884 -
8.804

11.899 -
12.726

DCC 0.97 – 0.98 0.87 – 0.91 0.97 – 1.00 0.99 –
1.02 0.96 – 0.98 0.89 – 0.95

EPMU
(MB) 2.6 2.6 8.5 8.5 8.5 8.5

N
on

-R
D

O
 E

nc
od

er

Q
C

IF

DPMU
(MB) 3.0 3.0 6.0 6.0 6.0 6.0

LMS – Low-motion sequence, HMS – High-motion sequence
BR – Bit-rate; ∆ Y-PSNR: quality of the luminance component
EMA – Video encoder Memory Access, ECC – Video encoder Computational Complexity,
DCC – Video decoder Computational Complexity
EPMU: Encoder Peak Memory Usage; DPMU: Decoder Peak Memory Usage
The BR saving and ∆ Y-PSNR are given with respect to Baseline profile configuration with CAVLC
The values for EMA, ECC and DCC denote the increment factors with respect to Baseline profile configuration with CAVLC.

 57

The table shows that it is not necessary true that coding performance and

complexity performance have to be traded against each other. From the data, the use

of CABAC, Main profile configuration and RDO improves the coding performance

but have different impact on the encoder’s complexity.

For a non-RDO encoder, the use of CABAC alone saves up to 9% bit-rates in

Baseline profile configuration with negligible increase in encoder’s complexity. The

use of Main profile configuration with CAVLC achieves better bit-rate savings up to

20% at the expense of large increase in the encoder’s computational complexity up to

13 times and its data transfer complexity up to 14 times. Note that the higher

requirements arise solely from the use of more complex coding tools in the Main

profile configuration. Up to another 10% bit-rates can be saved with the use of

CABAC alone in the Main profile configuration with insignificant increase to the

encoder’s complexity. This gives an overall bit-rate savings up to 26% with the

collective use of CABAC with Main profile configuration. The fact that bit-rates can

be reduced while incurring negligible increase in encoder complexity indicates that

CABAC is the most useful performance optimization tool for the non-RDO encoder

and its use is always preferred.

 For a RDO encoder, the use of CABAC increases its computational

complexity up to 13% and the data transfer complexity up to 47% for an additional 3-

9% bit-rate savings. Given that the RDO encoder is 2 to 10 times more complex than

a non-RDO encoder, the additional data transfer requirements due to CABAC might

be too high for many applications. It is observed that it is more cost-effective in terms

of performance-complexity tradeoffs, to use Baseline profile configuration with

CABAC for low motion sequences and Main profile configuration with CABAC for

high motion sequences in a RDO encoder. This is because the use of Main profile

 58

configuration over Baseline profile configuration in a RDO encoder doubled its

computational and data transfer complexities for all sequences but obtained only a

small improvement in bit-rate savings for low motion content sequences. On the other

hand, more than twice the bit-rate savings can be obtained for high motion content

sequences in this case.

4.8 Conclusions

In this chapter, the complexity assessment of CABAC under different encoder

scenarios is given and is co-evaluated with its coding performance.

The analyses show that the use of CABAC over CALVC has negligible impact

on the complexity of a non-RDO encoder which makes the use of CABAC to improve

coding performance always preferable. The low complexity of CABAC from the

perspective of the non-RDO encoder suggests the feasibility of implementing

CABAC in software without any hardware assistance.

For the RDO encoder, the use of CABAC alone increases the encoder’s

computational complexity up to 13%, and its data transfer complexity up to 47%. This

has yet to take into considerations the effect of using RDO, which not only increases

the computational and data transfer complexities of the CABAC entropy coder

tremendously by more than an order of magnitude, but also increases the complexities

of other coding stages in the video encoder. As such, the RDO encoder is 2 to 6 times

higher in computational complexity, and 2 to 10 times higher in data transfer

complexity compared to a non-RDO encoder of a similar configuration. This suggests

the need of a CABAC hardware accelerator for a RDO encoder.

It is observed for the RDO encoder, the marginal improvement in coding

efficiency due to the use of additional complex coding tool saturates faster for low-

 59

motion content sequences. This makes it more cost effective to use Baseline profile

with CABAC for low-motion content sequences, and Main profile configuration with

CABAC for high-motion content sequences.

It is observed that the use of CABAC results in higher increase in encoder’s

data transfer complexity in comparison to the increases in computational complexity.

This indicates that CABAC is dominated more by data transfer complexity rather than

computational complexity, and its bottleneck might lies at the memory interface.

Given the relationship that memory read operations are 50% higher than memory

write operations when CABAC is used, memory read and memory write circuitries

and bus width can be designed accordingly. Alternatively, data cache can be used to

effectively reduce the average latency of data transfer.

Within the CABAC entropy coder, up to 8 times less computation is

performed for the binarization and context modeling of NRDSEs than RDSEs. For

hardware-software co-design, we propose to implement the non-critical B&CM-

NRDSE functional sub-block in software, whereas the remaining sub-blocks (B&CM-

NRDSE and the arithmetic coder) in hardware. In addition, CABAC can be

implemented without the use of floating-point instruction class. This information

might be useful for hardware designers.

Given the rest of the coding tools used in the video encoder are the same, the

use of CABAC over CALVC is always beneficial to the decoder as it results in lower

computational and data transfer complexities of the decoder. This suggests that

CABAC should be selected for off-line encoding applications where processing time

and power consumption are not an issue at the encoder but at the decoder, for

instance, mobile phones and PDAs.

 60

In the next chapter, research work extending from the complexity analyses of

CABAC will be given.

 61

CHAPTER 5 RDO FOR MODE DECISION

In this chapter, separate findings and recommendations on the use of rate-

distortion optimization (RDO) for mode decision in the video encoder are presented.

5.1 Predictive Coding Modes

5.1.1 Statistic of prediction modes selected for encoding

Due to the high temporal correlation between neighboring frames, it is

statistically more efficient to use an Inter mode than an Intra mode to encode a

macroblock. Figure 5.1 shows the percentage of prediction modes used by a RDO

encoder with Main profile configuration for the different sequences. The Inter modes

of SKIP/DIRECT, 16x16, 16x8, 8x16 and 8x8 are grouped as ‘Inter’ whereas Inter

modes with block size smaller than 8x8 are grouped as ‘Inter P8x8’.

 62

Figure 5.1: Percentage of prediction modes used in encoding QCIF and CIF
sequences

The statistic shows that Intra 4x4 mode constitutes a very low percentage of

the prediction modes that is selected for encoding the wide genre of video contents in

our work. This means that the likelihood of using the Intra 4x4 mode to encode a

macroblock in an Inter frame is low.

 63

5.1.2 Entropy computation partitioning based on prediction modes

On the other hand, the use of RDO requires each macroblock to be entropy

coded in every candidate predictive coding modes for mode decision. A partitioning

of the computational complexity of the entropy coder based on the candidate

predictive coding modes is given in Figure. 5.2.

Figure 5.2: Partitioning of entropy instructions based on predictive coding modes in
the RDO encoder

The data show that more than 60% of the executed entropy instructions are for

coding macroblocks in Intra 4x4 mode alone. From the entropy coder’s perspective,

 64

this implies that evaluating the optimality of using Intra 4x4 mode to encode a

macroblock is much more computationally complex than evaluating the optimality of

other candidate predictive coding modes. This is so due to the high number of spatial

directional modes employed for spatial prediction in Intra 4x4 mode. More details on

spatial directional modes can be found in [26].

Due to the low probability of using Intra 4x4 mode in Inter frame, and the high

accumulated complexity of evaluating the optimality of Intra 4x4 mode, it might be

more cost-efficient to disable the use of Intra 4x4 directional modes in Inter frame.

5.1.3 Effect of disabling Intra4x4 mode for inter frame

Table 5-1 shows the performance degradation of the RDO encoder and the

reduction in its computational and data transfer complexities, when all directional

modes of Intra 4x4 are disabled in the RDO encoder. The use of Intra 4x4 DC mode is

however not disabled, so as to minimize performance degradation.

Table 5-1: Performance degradation and complexity reduction in the RDO encoder
due to disabling Intra 4x4 directional modes for Main profile configuration with

CABAC

Performance Degradation Complexity Reduction

QCIF sequence
∆ Bit-rate (%) ∆ Y-PSNR (dB) ∆ Computational

Complexity (%)
∆ Data Transfer
Complexity (%)

Akiyo 0.00 0.00 22.5 31.2
Mother & Daughter 0.09 -0.01 20.6 30.1
Container 0.01 0.00 24.3 34.0
Carphone -0.06 -0.01 19.6 30.1
Foreman 0.02 -0.02 18.6 27.7
Coastguard -0.21 -0.01 19.2 28.6
Walk 0.19 0.00 16.7 24.9
CIF Sequence
Akiyo 0.06 0.00 21.4 29.3
Mother & Daughter -0.04 -0.01 19.9 27.6
Container -0.01 0.00 23.0 31.3
Foreman 0.41 -0.03 17.9 24.8
Soccer -0.01 -0.01 16.0 22.6
Coastguard 0.42 -0.04 18.9 25.4
Walk 0.11 -0.03 16.1 22.7

 65

The results show that for Inter frame, disabling the use of Intra 4x4 directional

modes in the RDO encoder results in negligible degradation to the coding

performance but achieved a reduction in its computational complexity up to 25% and

a reduction in its data transfer complexity up to 34%. These are large percentage

reductions, which mean that it is much more cost-efficient to use the RDO encoder

with Intra 4x4 directional modes disabled when coding an Inter frame. For easy

reference, the RDO encoder with Intra 4x4 directional modes disabled shall be

referred to as the suboptimal-RDO encoder.

5.1.4 Effect of CABAC on suboptimal-RDO encoder’s complexity

The use of CABAC in the suboptimal-RDO encoder increases it’s

computational and data transfer complexities. Figure 5.3 compares the percentage

increments in computational complexity of the RDO encoder and the suboptimal-

RDO encoder due to the use of CABAC. Figure 5.4 compares the percentage

increment in data transfer complexity of the RDO encoder and the suboptimal-RDO

encoder due to the use of CABAC.

 66

(a)

(b)

Figure 5.3: Percentage increments in computational complexity of the RDO encoder
and the suboptimal-RDO encoder due to the use of CABAC for (a) QCIF sequences

(b) CIF sequences

 67

(a)

(b)

Figure 5.4: Percentage increments in data transfer complexity of the RDO encoder
and the suboptimal-RDO encoder due to the use of CABAC for (a) QCIF sequences

(b) CIF sequences

 68

For the suboptimal-RDO encoder with the same Main profile configuration,

the use of CABAC only increases its computational complexity by at most 2.5%, and

its data transfer complexity by at most 9%. As reported earlier, the use of CABAC in

the RDO encoder resulted in a 2-6 % increase in computational complexity and a 12-

24% increase in data transfer complexity for Main profile configuration. This shows

that a reduction in the complexity of the entropy coder diminishes the effect of using

the more computationally intensive CABAC on the video encoder’s complexity.

5.1.5 Bit-rate saving by CABAC in a sub-optimal RDO encoder

For both type of video encoders (RDO encoder and sub-optimal RDO

encoder), similar bit-rate savings due to the use of CABAC can be obtained. This is

shown in Table 5-2, which lists the bit-rate savings by CABAC for the RDO encoder

and the suboptimal-RDO encoder.

Table 5-2: Bit-rate savings by CABAC for the RDO encoder and the suboptimal-RDO
encoder

Bit-rate saving (%)

QCIF Sequences RDO
encoder

Suboptimal-
RDO encoder

Akiyo 4.6 4.6

Mother & Daughter 4.1 4.1

Container 4.4 4.5

Carphone 3.5 3.5

Foreman 4.7 4.8

Coastguard 7.2 7.2

Walk 5.7 5.7

CIF Sequences

Akiyo 5.8 5.7

Mother & Daughter 6.8 6.8

Container 6.0 6.2

Foreman 6.6 6.7

Soccer 7.6 7.5

Coastguard 8.3 8.3

Walk 7.4 7.7

 69

The use of CABAC in the suboptimal-RDO encoder saves 3-8 % bitrates. The

bit-rate savings obtained for the suboptimal-RDO encoder is similar to that of the

RDO encoder. This indicates that the coding performance of CABAC is not affected

by the use of suboptimal-RDO encoder.

Hence, the suboptimal-RDO encoder should be used if the combined use of

RDO and CABAC is desired for performance optimizations with an overall lower

encoder’s complexity and marginal increases in the computational complexity and

small increase in data transfer complexity due to the use of CABAC.

 Although our results show that there is little performance degradation, we are

not suggesting that the use of Intra 4x4 directional modes is totally redundant in Inter

frame. This is because the use of Intra 4x4 mode might improve the subjective quality

of the video, which could be missed in our objective evaluation of video quality.

5.2 Fast RDO

 A fast-RDO encoder (that has been discussed in chapter 2, section 2.3) is used

to encode “Head & Shoulder” sequences. Its coding performance and complexity

performance are presented here, benchmarked against a non-RDO encoder.

The motivation for such analysis is due to the low-motion characteristics of

Head & Shoulder sequences, which makes the use of fast-RDO encoder particularly

suitable for this type of sequences. To be more explicit, Head & Shoulder sequences

are characterized by stationary backgrounds, slow temporal change in background

scene, and low entry and exit of video objects into the scene. In a stationary

background, the likelihood of using SKIP/DIRECT and Inter 16x16 modes are much

higher whereas in regions of head and shoulder motion, the likelihood of using Inter

 70

modes of smaller block size are higher. Due to the slow changing scene, there exists a

strong temporal correlation between the prediction modes used in the current

macroblock and the co-located macroblock of the neighboring frame. On the other

hand, the early termination strategy of the fast-RDO encoder works effectively well if

the candidate prediction modes can be accurately ordered based on their likelihood of

being selected for encoding. Therefore, the fast-RDO encoder can reference the

prediction modes used in the previous encoded frame to guide its ordering of the

candidate prediction modes for the current frame.

5.2.1 Ordering of prediction mode

For this work, the fixed ordering of prediction modes used in the fast RDO

encoder is modified slightly to adapt to the local statistic as given below. Let M

denotes the prediction mode used in the co-located macroblock. Table 5-3 lists the

prediction modes orderings used by the RDO encoder for the possible modes of M.

Table 5-3: Ordering of prediction modes for the fast-RDO encoder

M Prediction Mode Ordering

SKIP/DIRECT
Inter_16x16
Inter_16x8
Intra Modes

{SKIP, DIRECT, Inter_16x16, Inter_16x8, Inter_8x16, Inter_8x8,
Inter_8x4, Inter_4x8, Inter_4x4, Intra_16x16, Intra_4x4}

Inter 8x16 {SKIP, DIRECT, Inter_16x16, Inter_8x16, Inter_16x8, Inter_8x8,
Inter_8x4, Inter_4x8, Inter_4x4, Intra_16x16, Intra_4x4}

Inter 8x8 /
Inter 8x4 /
Inter 4x4

{SKIP, DIRECT, Inter_16x16, Inter_8x8, Inter_8x4, Inter_4x8,
Inter_4x4, Inter_16x8, Inter_8x16, Intra_16x16, Intra_4x4}

Inter 4x8 {SKIP, DIRECT, Inter_16x16, Inter_8x8, Inter_4x8, Inter_8x4,
Inter_4x4, Inter_16x8, Inter_8x16, Intra_16x16, Intra_4x4}

 71

5.2.2 Coding performance

The use of a fast-RDO encoder achieves lower bit-rates than a non-RDO

encoder with similar configuration. Table 5-4a summarized the bit-rate savings

obtained due to the use of the fast-RDO encoder for different configurations.

Configurations that use CABAC as the entropy coding scheme are indicated by an

asterisk “*”. For example, C1 denotes the collective use of configuration C1 with

CAVLC whereas C1* denotes the collective use of configuration C1 with CABAC.

Table 5-4b lists the corresponding change in Y-PSNR as a result of using the fast-

RDO encoder.

Table 5-4a: Percentage bit-rate savings due to fast-RDO encoder

CIF C1 C1* C2 C2* C3 C3* C4 C4* C5 C5* C6 C6* C7 C7*

Akiyo 6.9 6.4 6.9 6.6 5.8 4.9 3.6 2.8 2.8 2.5 2.7 2.1 2.6 2.3

Mother & Daughter 4.6 5.1 7.2 5.1 3.5 3.7 2.8 3.1 2.5 2.9 3.4 4.1 3.3 3.9

Silent 5.6 5.3 4.7 5.6 4.4 4.0 3.7 3.5 3.4 3.1 2.0 2.6 1.9 2.8

Paris 6.8 6.8 5.9 6.8 5.7 4.8 3.9 3.8 3.7 3.3 3.1 2.7 3.6 2.8

Table 5-4b: ∆ in Y-PSNR (dB) due to fast-RDO encoder

CIF C1 C1* C2 C2* C3 C3* C4 C4* C5 C5* C6 C6* C7 C7*

Akiyo 0.09 0.11 0.15 0.12 0.14 0.06 0.07 0.05 0.03 -0.01 0.04 0.07 0.04 0.06
Mother
& Daughter 0.15 0.14 0.17 0.16 0.17 0.16 0.05 0.04 0.08 0.07 0.10 0.06 0.09 0.06

Silent 0.15 0.11 0.21 0.18 0.20 0.17 0.13 0.06 0.15 0.04 0.12 0.08 0.12 0.08

Paris 0.13 0.12 0.14 0.14 0.11 0.13 0.08 0.11 0.06 0.04 0.05 0.05 0.05 0.06

For Head & Shoulder sequences, savings in bit-rates between 2% and 7% can

be obtained with the use of fast-RDO in the video encoder. This comes with

insignificant changes to the Y-PSNR. It is observed that smaller savings are obtained

for more complex configurations. This implies that the performance of fast RDO

algorithm worsens with the use of more complex coding tools. Its performance

however is minimally affected by the choice of entropy coding scheme used.

 72

5.2.3 Computational complexity

Figures 5.5 – 5.9 show the computational complexities of the non-RDO

encoder and the fast-RDO encoder across different configurations for the Head &

Shoulder sequences. Configurations that use CABAC as the entropy coding scheme

are indicated by an asterisk, “*”. The percentage change in computational complexity

of the video encoder due to the use of fast-RDO is listed in Table 5-5.

Figure 5.5: Computational complexity of the fast-RDO encoder and the non-RDO
encoder for test sequence Akiyo

 73

Figure 5.6: Computational complexity of the fast-RDO encoder and the non-RDO

encoder for test sequence Mother & Daughter

Figure 5.7: Computational complexity of the fast-RDO encoder and the non-RDO

encoder for test sequence Silent

 74

Figure 5.8: Computational complexity of the fast-RDO encoder and the non-RDO

encoder for test sequence Paris

Table 5-5: Percentage change in computational complexity of the video encoder due
to fast-RDO in comparison to a non-RDO encoder

CIF C1 C1* C2 C2* C3 C3* C4 C4* C5 C5* C6 C6* C7 C7*

Akiyo 42.3 47.6 43.3 47.1 -9.5 -12.2 -5.4 -8.9 -14.2 -16.7 -13.5 -16.2 -13.3 -14.6
Mother
& Daughter 67.7 69..8 68.4 72.0 24.7 23.4 1.6 1.3 0.7 0.6 1.8 3.7 1.8 1.9
Silent 67.0 73.6 67.6 72.9 3.6 4.4 -18.7 -18.9 -17.6 -20.1 -18.7 -14.9 -18.9 -14.1
Paris 98.9 114.4 99.3 115.8 24.5 34.9 -10.5 -6.8 -11.0 -7.5 -9.1 -5.2 -9.3 -5.3

For Head & Shoulder sequences, the use of fast-RDO increases the encoder’s

computational complexity up to 120% for simple configurations but may achieved

reduction in encoder’s computational complexity up to 20% for complex

configurations. From the computational complexity point of view, this makes it

attractive to use the fast-RDO encoder for complex configurations in comparison to a

non-RDO encoder, as bit-rate savings can be achieved with negligible degradation in

video quality and possible reduction in encoder’s computational complexity.

 75

5.2.4 Data transfer complexity

Table 5-6 lists the percentage increase in data transfer complexity of the video

encoder due to the use of fast-RDO.

Table 5-6: Percentage increase in data transfer complexity of the video encoder due to
fast-RDO in comparison to a non-RDO encoder

CIF C1 C1* C2 C2* C3 C3* C4 C4* C5 C5* C6 C6* C7 C7*

Akiyo 56.9 63.4 52.0 61.9 12.6 10.5 8.2 7.6 4.8 3.1 2.7 1.2 2.9 1.3
Mother
& Daughter 74.8 85.1 78.1 83.6 37.4 38.3 10.9 11.4 8.6 4.2 7.3 6..9 7.6 6.5
Silent 70.2 77.5 74.3 79.1 13.7 16.1 3.8 3.4 3.2 2.6 0.2 1.3 0.7 1.8
Paris 119.3 131.5 104.6 127.2 40.5 44.3 9.7 8.6 3.4 6.3 2.9 3.9 3.1 4.6

For Head & Shoulder sequences, the use of fast-RDO increases the data

transfer complexity of the video encoder up to 140%. It is observed that the

percentage increments obtained with complex configurations are relatively small. As

such, it is still be preferable to use the fast-RDO encoder than the non-RDO encoder

for complex configurations, so as to take advantage of the additional bit-rate savings.

5.2 Conclusion

In this chapter, a suboptimal-RDO encoder and a fast-RDO encoder for mode

decision have been discussed.

The suboptimal-RDO encoder merely refers to the RDO encoder with Intra

4x4 directional modes disabled for use in Inter frames. The results showed that the

use of the suboptimal-RDO encoder achieves similar bit-rate savings as the RDO

encoder with negligible degradation in video quality, but with a reduction in

computational complexity up to 25%, and a reduction in data transfer complexity up

 76

to 34% in comparison to the RDO encoder. The use of CABAC in suboptimal-RDO

mode increases in both encoder’s computational complexity and data transfer

complexity, but by smaller percentages in comparison to the use of CABAC in a RDO

encoder. This comes with negligible degradation in the coding performance. As such,

it is more cost-effective to use the suboptimal-RDO encoder with CABAC as

compared to a RDO encoder.

The fast-RDO encoder achieves fast mode decision by adopting an early

termination strategy so as to reduce the number of candidate prediction modes to a

smaller subset. It is found that fast-RDO encoder works well for Head & Shoulder

sequences. For such sequences, savings in bit-rate between 2 and 7% can be obtained

by using fast-RDO encoder in comparison to a non-RDO encoder. For complex

configurations, the computational complexity of the fast-RDO encoder may be lower

than that of the non-RDO encoder up to 20%. The results demonstrate that more bit-

rates can be saved with less computational complexity and small increases in data

transfer complexity of the fast-RDO encoder when it is used for complex

configurations. This makes it attractive to use fast-RDO as the video encoder control

in power-limited devices when complex coding tools are turned on in the video

encoder.

In the next chapter, conclusions will be given.

 77

CHAPTER 6 CONCLUSIONS

In this thesis work, comprehensive analyses on the performance and

complexity of CABAC have been conducted. A summary of the findings that have yet

been reported or not highlighted in other works are given below. This is followed by

recommendations and suggestions on complexity reductions for the CABAC

implementation.

6.1 Findings

 The computational and data transfer requirements of a CABAC entropy coder

depend largely on the encoder control used by the video encoder. Between a non-

RDO encoder and a RDO encoder, these requirements vary drastically by more

than an order of magnitude. Table 6-1 shows the real-time computational and

data transfer requirements needed by the CABAC entropy coder in a non-RDO

encoder and a RDO encoder when coding QCIF and CIF sequences at a frame

rate of 30 fps.

Table 6-1: Real-time computational and memory requirements of CABAC
entropy coder

QCIF Sequence CIF Sequence

Encoder Control Computational
(MIPS)

Memory Access
Frequency
(x106 /s)

Computational
(MIPS)

Memory Access
Frequency
(x106 /s)

Non-RDO 80 60 290 220

RDO 6420 5240 25 850 19 620

The real-time requirements suggest that when no performance optimization is

used in the video encoder (i.e. no use of RDO for mode decision), it is feasible to

 78

implement CABAC in software without using any hardware assistance. When

rate-distortion optimization is used by the video encoder for optimizing mode

decision, hardware accelerator of CABAC will definitely be needed to meet any

real-time requirements or to speed up the entropy coding process. Alternatively,

sub-optimal RDO techniques can be used instead to lower the computational and

data transfer requirements of the CABAC entropy coder to near real-time but at

the expense of degradation in coding performance.

 The use of CABAC is found to have a larger impact on the entropy coder’s data

transfer complexity than on its computational complexity. In comparison with

CAVLC, CABAC increases the data transfer complexity of the entropy coder up

to 44% for a non-RDO encoder and up to 115% for a RDO encoder. The higher

percentage increases in data transfer for the RDO encoder is due to its more

frequent need to store and reset the coding states of the context models and

arithmetic coder when it is computing the bit-rates of the candidate prediction

modes. This is one of the possible IO bottlenecks of CABAC.

 Analyzing the complexity increment of using CABAC over CALVC from the

perspective of the video encoder can be misleading [4]. This is because the

relative figures depend on the overall computational and data transfer

complexities of the video encoder. To elaborate further, the impact of using

CABAC on the video encoder’s complexity diminishes

- when there is a reduction in the complexity of the CABAC entropy coder, or

- when there is an increase in the overall complexity of the video encoder as a

result of using more complex coding tools (not inclusive of the RDO tool).

 79

Nonetheless, the relative complexities of the video encoder for different

combinations of entropy coding schemes and configurations show that the use of

CABAC in a non-RDO encoder is not computationally expensive. CABAC adds

negligible increases to the video encoder. Hence, its use is always preferred over

CAVLC in a non-RDO encoder.

 It is also cost-effective in terms of coding efficiency improvements and

complexity increment (in computational and data transfer) to use CABAC over

CAVLC in a RDO encoder. However, given the already high computational

complexity and data transfer complexity of the RDO encoder, up to 13% increases

in computational complexity and 47% increase in data transfer complexity due to

the use of CABAC alone can be too demanding for some systems.

 Both the use of CABAC and RDO improve the coding efficiency. However, in

terms of coding efficiency improvements and complexity increases in the video

encoder, CABAC is much more useful than RDO as it provides a substantial

improvement in coding efficiency without incurring a high increases in

computational and data transfer complexities of the video encoder. (Refer to

Tables 3-5, 4-4 and 4-10 for the supporting statistics). Furthermore, CABAC

delivers consistent coding efficiency improvements regardless of the configuration

used in the video encoder whereas the coding performance of RDO is dependent

on the choice of coding tools used in the video encoder. It is found that the use of

complex coding tools saturates the overall coding efficiency for low-motion

content sequences, making the use of RDO for further bit-rate reduction less

effective in such cases. However, the use of RDO has negligible impact on the

 80

decoder’s complexity. This makes the use of RDO presently more suitable for off-

line encoding applications, where bandwidth is a more important issue over

coding time and processing power.

 For constant bit-rate encoder, the use of CABAC in comparison to CAVLC results

in only marginal improvement in video quality. This indicates that CABAC is not

a useful tool for improving the video quality at constant bit-rate.

 The use of CABAC is always beneficial to the decoder as it results in lower

computational and data transfer complexities of the decoder. (This was not

reported in any work although in [4], similar result has been obtained for one of

their test sequences). This leads to lower processing power, which is attractive for

power-limited devices.

 81

6.2 Suggestions / Recommendations

 CABAC is essentially a sequential process, which makes it difficult to accelerate

the process using Single Instruction Multiple Data (SIMD) techniques. However,

there are still parallelizations that can be exploited for its implementation using

multiprocessor with Multiple Instruction Multiple Data (MIMD) techniques.

CABAC can be carried out in parallel for every frame or slice (if more than one

slice is used per frame) because the coding states of context models and arithmetic

coder are reset when coding each new frame/slice, and neighboring frames/slices

have no data dependencies. For a RDO encoder, parallelism can also be identified

on a smaller scale at the macroblock level. The task of computing the bit-rates of

all candidate prediction modes for a macroblock may be carried out in parallel, as

the coding states of context models and arithmetic coder are restored back to the

initial coding states before computing the bit-rate of the next candidate prediction

mode. However, distinct memory locations need to be allocated for each candidate

prediction mode for storing the coding states of context models and arithmetic

coder so as to eliminate any data dependencies and to ensure correct coding

results.

 It is found to be much more computationally complex to compute the bit-rate of

Intra 4x4 mode as compared to other candidate predictive coding modes.

Alternatively, it might be more efficient to just separate Intra 4x4 mode from the

rest of the candidate predictive coding modes, and execute its bit-rate computation

in parallel with the bit-rate computation for the remaining candidate predictive

coding modes.

 82

 Conditional branch instructions constitutes up to 11% of the entropy instructions.

Though the percentage is not high, it can still degrade the performance of the

CABAC system if the conditional branch instruction stalls the processor pipeline

until the next instruction to be fetched is decoded. One of the conditional branches

executed most frequently is the conditional branch for encoding a least probable

symbol (LPS) / most probable symbol (MPS). One simple way to deal with this

branch delay is to employ trivial branch prediction. Based on our observations that

approximately 65-73% of the bins encoded are MPS, the branch predictor can

predicts that the branch to LPS will always not be taken and the fetch stage

continues to fetch instructions from the fall-through path of MPS without stalling.

If a wrong prediction is made, the pipeline is then flushed clean and the correct

instruction is fetched.

 Alternatively, delayed branches may be more useful for the LPS/MPS branch.

Since the operation E - ELPS is performed in both paths, their corresponding

instructions are executed independent of the result of the branch instruction. These

instructions can be carefully selected at compiled time to be executed in the

branch delay slots. This ensures that useful instructions are executed till the

branch address is available, thereby removing the penalty of executing the branch

instructions.

 The ADD instruction contributes to a substantial percentage of the entropy

instructions as well as the total instructions executed by the video encoder. The

use of more execution subunits operating in parallel for ADD operations will

enhance efficiency.

 83

 It is found that there exists a 3:2 relationship between memory read operations and

memory write operations in the entropy coder. As such, the associated memory

read and memory write circuitries, and bus widths can be designed accordingly to

reduce the data transfer latency. The use of multi-level memory hierarchy (i.e.

registers, caches, off-chip memory and main memory) may also help to reduce the

memory access time. It is observed that RDSEs are encoded much more frequent

by 4 to 8 times more than NRDSE. As such, the context models corresponding to

RDSEs, together with the range look-up table should be stored in fast off-chip

memory where they are accessed or/and updated more often, and the remaining

context models can be stored in slower main memory.

 When implementing CABAC with Field Programmable Gate Array (FPGA), it is

recommended that context modeling of NRDSEs is performed in software using

existing microprocessor, whereas the context modeling of RDSEs is realized in

hardware. This is because context modeling of NRDSEs for a current macroblock

involves using context information of neighboring macroblocks for selecting a

probability distribution model. No such information is needed for the context

modeling of RDSEs. When implemented in hardware, these context information

needs to be transmitted through the system bus to the hardware. Although the

number of NRDSEs is lower than the number of RDSEs, delay through system

bus due to transmission of context information can still lower the efficiency of the

hardware. The cost of calculation using an existing processor is much lower

because all context information can be easily accessed from the buffers in the

software.

 84

BIBLIOGRAPHY

[1] ITU-T Recommendation H.264, “Advanced Video Coding for Generic

Audiovisual Services”, ITU, Mar 2005

[2] ISO/IEC 14496-2, “Information Technology – Coding of Audio-Visual

Objects”, Committee Draft, Mar 1998

[3] ITU-T Recommendation H.263, “Video Coding for Low Bit Rate

Communication”, ITU, 1995 (version 1), 1998 (version 2), 2000 (version 3)

[4] S. Saponara, K. Denolf, C. Blanch, G. Lafruit, and J. Bormans, “Performance

and Complexity Co-evaluation of the Advanced Video Coding Standard for

Cost-effective Multimedia Communications”, EURASIP, vol. 2004, pp. 220-

235, Feb. 2004

[5] D. Marpe, H.Schwarz and T. Wiegand, “Context-based Adaptive Binary

Arithmetic Coding in the H.264/AVC Video Compression Standard”, IEEE

Trans. Circuits Syst Video Technol., Vol. 13, No. 7, pp. 620-636, Jul 2003

[6] G. Stitt and F. Vahid., “Hardware/Software Partitioning of Software Binaries: A

Case Study of H.264 Decode,” IEEE/ACM International Conference on

Computer Aided Design (ICCAD), pp. 164-170, Nov. 2002.

[7] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini and G. J. Sullivan, “Rate-

Constrained Coder Control And Comparison of Video Coding Standards”, IEEE

Trans. Circuits Systs. Video Technol., vol. 13, no. 7, pp. 688-702, July 2003

[8] P. Pushner and C. Koza, “Calculating the Maximum Execution Time of Real

Time Program”, Journ. Trans. Signal Process., vol. 46, no.4, pp. 1027-1042,

Apr 1998

 85

[9] V. Lappalainen, A. Hallapuro and T. Hamalainen, “Complexity of Optimized

H.26L Video Decoder Implementation”, IEEE Circuits Syst. Video Technol.,

vol. 13, pp. 717-725, Jul 2003

[10] Dongarra, J., London, K., Moore, S., Mucci, P. and Terpstra, D., "Using PAPI

for Hardware Performance Monitoring on Linux Systems," Conference on

Linux Clusters: The HPC Revolution, Linux Clusters Institute, Urbana, Illinois,

June 25-27, 2001.

[11] S. Graham, P. Kessler and M. McKusick, “Gprof: A Call Graph Execution

Profiler”, Proc. Symp. Compiler Construction (SIGPLAN), vol.17, pp.120-126,

Jun 1982

[12] C. Xu, M.T. Le, T.T. Tay, “Instruction Level Complexity Analysis”, IMSA

2005, pp.341-346, Aug 2005

[13] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff

Lowney, Steven Wallace, Vijay Janapa Reddi and Kim Hazelwood. "Pin:

Building Customized Program Analysis Tools with Dynamic Instrumentation,"

Programming Language Design and Implementation (PLDI), Chicago, IL, June

2005

[14] K. Denolf, P. Vos, J. Bormans, and I. Bolsens, “ Cost-efficient C-level Design

of an MPEG-4 Video Decoder”, Lecture Notes in Computer Scienc, vol. 1918,

pp. 233-242, Springer-Verlag, Heidelberg, Sep 2000.

[15] M.Ravasi and M. Mattavelli, “High-Abstraction Level Complexity Analysis

And Memory Architecture Simulations of Multimedia Algorithms”, IEEE

Circuits Syst. Video Technol., vol. 15, pp. 673-684, May 2005

[16] H.J. Stolberg, M. Berekovic and P. Pirsch, “A Platform-independent

Methodology for Performance Estimation of Streaming Media Applications”,

 86

IEEE International Conference on Multimedia and Expo, pp. 105-108,

Lausanne, Switzerland, Aug 2002.

[17] M. Horowitz, A. Kossentini and A. Hallapuro, “H.264/AVC Baseline Profile

Decoder Complexity Analysis”, IEEE Circuits Syst. Video Technol., vol. 13, pp.

704-716, Jul 2003

[18] V. Lappalainen, A. Hallapuro and T. Hamalainen, “Performance Analysis of

Low Bit-rate H.26L Video Encoder,” IEEE ICASSP’01, pp. 1129-1132, May

2001

[19] F. Catthooer, Custom Memory Management Methodology, Kluwer Academic

Publishers, 1998

[20] L. Nachtergaele, D. Moolenaar, B. Vanhoof, F. Catthoor and H. De Man,

“System-level Power Optimization of Video Codec on Embedded Cores: A

Systematic Approach,” Journ. VLSI Signal Processing, vol.18, no. 2, pp. 89-

111, 1998

[21] http://www.imec.be/design/atomium/

[22] D. Burger and T.M. Austin, “The SimpleScalar Tool Set”, Computer

Architecture News, pp. 13-15, June 1997.

[23] F. Pan, K. TW. Choo, and Thinh M. Le, “Fast Rate-Distortion Optimization in

H.264/AVC Video Coding”, Knowledge-Based Intelligent Information &

Engineering Systems: Multimedia Compression, Springer – series of Lecture

notes in Computer Sciences, pp. 425-432, 2005.

[24] http://rogue.colorado.edu/pin

[25] http://icl.cs.utk.edu/papi

[26] J. Osternabb, J. Bormans, P. List, D. Marple, M. Narroschke, P. Pereira, T.

Stockhammer, and T. Wedi, “Video Coding with H.264/AVC: Tools,

 87

Performance, and Complexity,'' IEEE Circuits System Magazine, First Quarter

2004

 88

APPENDICES

A1: Instruction Set Architecture Class

Table A-1: Intel ISA used in the entropy coders and the video encoder

INT_ALU COND_BR STRINGOP X87_ALU FCMOV CMOV
ADC MUL JB CMPSB FABS FNSTCW FCMOVE CMOVB
ADD NEG JBE MOVSB FADD FNSTSW CALL CMOVBE
AND NOT JL MOVSD FCHS FRNDINT CALL_NEAR CMOVL
BSR OR JLE MOVSW FCOMP FST RET CMOVLE
CDQ RDTSC JNB SCASB FDIV FSTP RET_NEAR CMOVNB
CLD SAHF JNBE STOSB FDIVR FSUB INTERRUPT CMOVNBE
CMP SBB JNL STOSD FDIVRP FSUBR INT CMOVNLE

CWDE SETBE JNLE SHIFT FILD FUCOM POP CMOVNS
DEC SETL JNP SAR FIST FUCOMI POP CMOVNZ
DIV SETLE JNS SHL FISTP FUCOMIP PUSH CMOVS
IDIV SETNL JNZ SHLD FLD FUCOMP PUSH CMOVZ
IMUL SETNLE JP SHR FLD1 FUCOMPP SEMAPHORE
INC SETNZ JrCXZ SHRD FLDCW FXAM CMPXCHG
LEA SETZ JS FLDLG2 FXCH XCHG

LEAVE SUB JZ FLDLN2 FYL2X
MOV TEST UNCOND_BR FLDZ FYL2XP1

MOVSX XCHG JMP FMUL
MOVZX XOR FMULP

 - The ISA class name are shaded in grey.

 89

A2: ISA Classification for CIF Foreman

Table A2-1: ISA classification using configuration C6, CABAC and RDO

 CABAC Entropy Coder Video Encoder

Op code
No. of entropy

instructions
% of total entropy

instructions
No. of

instructions
% of total

instructions
INT_ALU

ADC - - 1876055893 0.11433
ADD 10732713484 4.15798 179643209868 10.94767
AND 2001504542 0.77541 7224193942 0.44025
BSF - - 983 0.00000
BSR - - 1977 0.00000
BSWAP - - 22 0.00000
CDQ 384799928 0.14908 3502478637 0.21345
CLD 371773962 0.14403 806105776 0.04913
CMP 10423891946 4.03834 61958655151 3.77583
CWDE - - 344124984 0.02097
DEC 3583840025 1.38842 14979411997 0.91286
DIV 384799928 0.14908 812646960 0.04952
IDIV 384799928 0.14908 1626432819 0.09912
IMUL 98846573 0.03829 8625459524 0.52565
INC 3976202285 1.54043 36061083660 2.19761
LEA 7121818932 2.75908 43934824342 2.67744
LEAVE - - 309 0.00000
MOV 110446701410 42.78837 739103681163 45.04186
MOVSX 1576391111 0.61071 4568302493 0.27840
MOVZX 7303831667 2.82959 97568682252 5.94595
MUL - - 12895 0.00000
NEG 91618539 0.03549 7655087023 0.46651
NOT - - 21802396 0.00133
OR 816829717 0.31645 959126407 0.05845
RDTSC - - 1 0.00000
SAHF - - 154564275 0.00942
SBB - - 1704654 0.00010
SETBE 81606050 0.03162 81960866 0.00499
SETL - - 346785253 0.02113
SETLE - - 303 0.00000
SETNBE - - 1007 0.00000
SETNL 2140903 0.00083 23604883 0.00144
SETNLE 257496426 0.09976 350829551 0.02138
SETNZ 1641175884 0.63581 1838631438 0.11205
SETS - - 1 0.00000
SETZ 506767541 0.19633 534652317 0.03258
SUB 7570209150 2.93279 87958850967 5.36032
TEST 11661086734 4.51764 50548656773 3.08050
XOR 2104028034 0.81513 8968740331 0.54657

COND_BR
JB 443113 0.00017 788865 0.00005
JBE 2675652033 1.03658 2811426385 0.17133
JL 394708763 0.15291 5624559247 0.34277

 90

JLE 912565282 0.35354 31617705733 1.92682

JNB 38453046 0.01490 706208288 0.04304
JNBE 2354425539 0.91213 2487644247 0.15160
JNL 491408343 0.19038 10420902048 0.63506
JNLE 479824304 0.18589 4126609601 0.25148
JNP - - 21260448 0.00130
JNS 798802920 0.30947 1859831278 0.11334
JNZ 4505546742 1.74550 15364363057 0.93632
JP - - 93288 0.00001
JrCXZ 87766074 0.03400 171358780 0.01044
JS 933104266 0.36150 21082077739 1.28477
JZ 7604261599 2.94598 23702941401 1.44449

UNCOND_BR
JMP 3243812650 1.25669 20295519651 1.23683

INTERRUPT
INT - - 27 0.00000

PUSH / POP
POP 16514466706 6.39790 35642772950 2.17211
PUSH 14744121125 5.71205 34555448316 2.10585

CALL/ RET
CALL_NEAR 5146471043 1.99380 15202826371 0.92648
RET_NEAR 5287401421 2.04840 15154745473 0.92355

SEMAPHORE
CMPXCHG - - 216472 0.00001
XCHG 1157092478 0.44827 6819790064 0.41561

SHIFT
SAR 1104679930 0.42797 11052119739 0.67353
SHL 3830869470 1.48412 11085893687 0.67559
SHLD 213249135 0.08262 223257007 0.01361
SHR 1457122309 0.56451 4961586082 0.30236
SHRD 162496854 0.06295 162575610 0.00991

STRINGOP
CMPSB - - 11 0.00000
MOVSB - - 90935670 0.00554
MOVSD 284007888 0.11003 660120049 0.04023
MOVSW - - 23775985 0.00145
SCASB - - 1340 0.00000
STOSB 87766074 0.03400 185785862 0.01132
STOSD 87766074 0.03400 157857367 0.00962

CMOV
CMOVB - - 107203 0.00001
CMOVBE - - 1340 0.00000
CMOVL - - 203 0.00000
CMOVLE - - 1022 0.00000
CMOVNB - - 300 0.00000
CMOVNBE - - 20559 0.00000
CMOVNLE - - 3756 0.00000
CMOVNS - - 1780 0.00000
CMOVNZ - - 101300 0.00001
CMOVS - - 1968 0.00000
CMOVZ - - 3311 0.00000

FCMOVE

 91

FCMOVE - - 7 0.00000

X87_ALU
F2XM1 - - 50830 0.00000
FABS - - 51987 0.00000
FADD - - 5078477 0.00031
FADDP - - 67954525 0.00414
FCHS - - 7 0.00000
FCOMP - - 51987 0.00000
FDIV - - 19676879 0.00120
FDIVP - - 10493 0.00000
FDIVR - - 22389837 0.00136
FDIVRP - - 19630543 0.00120
FILD - - 312169673 0.01902
FIST - - 116 0.00000
FISTP - - 41231479 0.00251
FLD - - 660314233 0.04024
FLD1 - - 713423 0.00004
FLDCW - - 85909116 0.00524
FLDLG2 - - 1153 0.00000
FLDLN2 - - 4 0.00000
FLDZ - - 1416979 0.00009
FMUL - - 157739417 0.00961
FMULP - - 963821 0.00006
FNSTCW - - 23325104 0.00142
FNSTSW - - 154721978 0.00943
FRNDINT - - 1850812 0.00011
FSCALE - - 50830 0.00000
FSQRT - - 93288 0.00001
FST - - 213611 0.00001
FSTP - - 591840922 0.03607
FSUB - - 44792531 0.00273
FSUBR - - 1426621 0.00009
FUCOM - - 3402628 0.00021
FUCOMI - - 80684 0.00000
FUCOMIP - - 79527 0.00000
FUCOMP - - 49419147 0.00301
FUCOMPP - - 101690517 0.00620
FXAM - - 157699 0.00001
FXCH - - 203975821 0.01243
FYL2X - - 51934 0.00000
FYL2XP1 - - 53 0.00000

Total 258123159880 100.00000 1640926133666 100.00000

(Instructions that are executed frequently is highlighted in bold)

 92

Table A2-2: ISA Classification using configuration C6, CAVLC and RDO

 CAVLC Entropy Coder Video Encoder

Op code
No. of entropy

instructions
% of total entropy

instructions No. of instructions
% of total

instructions
INT_ALU

ADC - - 1875155833 0.11891
ADD 8974011088 4.68502 178353943382 11.31037
AND 1237711665 0.64617 6465829212 0.41003
BSF - - 981 0.00000
BSR - - 1980 0.00000
BSWAP - - 22 0.00000
CDQ 401178789 0.20944 3516263630 0.22298
CLD 158865498 0.08294 592074445 0.03755
CMP 5921325084 3.09132 57531643520 3.64839
CWDE - - 344124984 0.02182
DEC 3421714601 1.78636 14852217178 0.94186
DIV 321203037 0.16769 748447377 0.04746
IDIV 401178789 0.20944 1641117908 0.10407
IMUL 12634980 0.00660 8566398352 0.54324
INC 2736535969 1.42865 34831898862 2.20888
LEA 4834480004 2.52392 41680517280 2.64318
LEAVE - - 309 0.00000
MOV 87700139163 45.78522 717303996014 45.48804
MOVSX 356676288 0.18621 3350892550 0.21250
MOVZX 2221256511 1.15964 92733970579 5.88075
MUL - - 12948 0.00000
NEG 284755695 0.14866 7861034404 0.49851
NOT 150957268 0.07881 172636176 0.01095
OR 2077684887 1.08469 2230678241 0.14146
RDTSC - - 1 0.00000
SAHF 7935657 0.00414 163100750 0.01034
SBB - - 1704676 0.00011
SETBE - - 354816 0.00002
SETL - - 346972771 0.02200
SETLE 11249608 0.00587 11249911 0.00071
SETNBE - - 1005 0.00000
SETNL - - 21399996 0.00136
SETNLE 94388712 0.04928 188756426 0.01197
SETNZ 39613608 0.02068 237239693 0.01504
SETS - - 1 0.00000
SETZ 25399626 0.01326 53088925 0.00337
SUB 3989224709 2.08264 84560606088 5.36244
TEST 10416286274 5.43798 49353533903 3.12977
XOR 2882275102 1.50474 9749436797 0.61826

COND_BR
JB 2 0.00000 3305710 0.00021
JBE 84974337 0.04436 220387560 0.01398
JL 1382831093 0.72193 6607078044 0.41899
JLE 1203073731 0.62808 31916748712 2.02401
JNB 95420573 0.04982 763868432 0.04844
JNBE 165196759 0.08624 298503820 0.01893
JNL 995332845 0.51963 10963084219 0.69523

 93

JNLE 629097024 0.32843 4311302941 0.27340
JNP - - 21260448 0.00135
JNS 1529232736 0.79836 2590238826 0.16426
JNZ 3437846766 1.79478 14340261407 0.90939
JP - - 93288 0.00001
JrCXZ 6158128 0.00321 89754208 0.00569
JS 2239670957 1.16926 22403721376 1.42074
JZ 6960056286 3.63361 23077988369 1.46350

JMP 2673194139 1.39558 19745962620 1.25220

INTERRUPT
INT - - 27 0.00000

PUSH / POP
POP 8437226192 4.40479 27620973193 1.75159
PUSH 7866006060 4.10657 27727551519 1.75835

CALL / RET
CALL_NEAR 3883956400 2.02768 13974535699 0.88620
RET_NEAR 4004282404 2.09050 13904314649 0.88175

SEMAPHORE
CMPXCHG - - 215232 0.00001
XCHG 516721097 0.26976 6201699497 0.39328

SHIFT
SAR 1783938998 0.93133 11740871356 0.74455
SHL 2173206718 1.13456 9425290046 0.59771
SHLD - - 9960850 0.00063
SHR 1553666921 0.81112 5072138476 0.32165
SHRD 13699262 0.00715 15135725 0.00096

STRINGOP
CMPSB - - 11 0.00000
MOVSB - - 90935672 0.00577
MOVSD 70986059 0.03706 445179464 0.02823
MOVSW - - 23717314 0.00150
SCASB 81721311 0.04266 81722651 0.00518
STOSB 6158128 0.00321 104181290 0.00661
STOSD 6158128 0.00321 76252795 0.00484

CMOV
CMOVB - - 106584 0.00001
CMOVBE 81721311 0.04266 81722574 0.00518
CMOVL - - 203 0.00000
CMOVLE - - 1020 0.00000
CMOVNB - - 300 0.00000
CMOVNBE 81721311 0.04266 81741780 0.00518
CMOVNLE - - 3754 0.00000
CMOVNS - - 1781 0.00000
CMOVNZ - - 100660 0.00001
CMOVS - - 1968 0.00000
CMOVZ - - 3310 0.00000

FCMOVE
FCMOVE - - 7 0.00000

X87_ALU
F2XM1 - - 50830 0.00000
FABS - - 51987 0.00000

 94

FADD - - 4365353 0.00028
FADDP - - 67952181 0.00431
FCHS - - 7 0.00000
FCOMP - - 51987 0.00000
FDIV - - 19676879 0.00125
FDIVP - - 10493 0.00000
FDIVR - - 22221646 0.00141
FDIVRP - - 19630543 0.00124
FILD 28344659 0.01480 341900718 0.02168
FIST - - 116 0.00000
FISTP 28344659 0.01480 72200351 0.00458
FLD 219961334 0.11483 895701912 0.05680
FLD1 - - 299 0.00000
FLDCW 40818004 0.02131 130189372 0.00826
FLDLG2 - - 1153 0.00000
FLDLN2 - - 4 0.00000
FLDZ 40818004 0.02131 44984111 0.00285
FMUL 23148569 0.01209 180126234 0.01142
FMULP - - 291009 0.00002
FNSTCW 20409002 0.01065 45465232 0.00288
FNSTSW 36280316 0.01894 194227325 0.01232
FRNDINT - - 1850812 0.00012
FSCALE - - 50830 0.00000
FSQRT - - 93288 0.00001
FST 40818004 0.02131 44493867 0.00282
FSTP 232434679 0.12135 838572761 0.05318
FSUB - - 44456149 0.00282
FSUBR - - 373 0.00000
FUCOM - - 3397940 0.00022
FUCOMI 20409002 0.01065 22220812 0.00141
FUCOMIP 20409002 0.01065 22219655 0.00141
FUCOMP 7935657 0.00414 57694424 0.00366
FUCOMPP - - 101956403 0.00647
FXAM 28344659 0.01480 31126571 0.00197
FXCH 116405936 0.06077 327230007 0.02075
FYL2X - - 51934 0.00000
FYL2XP1 - - 53 0.00000

Total 191546819774 100.00000 1576906736934 100.00000

(Instructions that are executed frequently is highlighted in bold)

 95

A3: Pin Tools Program Codes

/* INS.c
*==
* Instruction count / Function Call Frequency
*==
*/

#include <iostream>
#include <fstream>
#include <iomanip>
#include "pin.H"

#define CNT_SIZE 14
#define TOTINS 0

UINT64 functcall[CNT_SIZE];
UINT64 counter[CNT_SIZE];
UINT32 status[CNT_SIZE];
UINT32 semaphore = 0 ;
UINT8 bisymbol=0;
UINT32 CNT_SIZE_MINUS_ONE = CNT_SIZE -1;
UINT8 flag=0;
UINT64 temp_counter=0;

string F1 = "writeIPredMode_CABAC";
string F2 = "Get_Rate_8x8blk";
string F3 = "write_one_macroblock";
string F4 = "writeMBLayer";
string F4 = "Get_Rate_MB";
string F5 = "store_coding_state";
string F6 = "reset_coding_state";
string F7 = "CheckAvailabilityOfNeighborsCABAC";
string F8 = "terminate_slice";

void Global_Init()
{
 int i;
 for (i=0;i<CNT_SIZE;i++)
 {
 functcall[i] =0;
 counter[i]=0;
 status[i]= 0;
 }
 status[TOTINS]=1;
}

void docount(UINT32 idx, UINT32 state)
{
 if (state==1)
 flag=1;

 96

 if(flag)
 counter[idx]++;

 if(state==0)
 {
 flag=0;
 functcall[idx]++;
 }
}

void checkdocount(INT32 c)
{

 counter[TOTINS] += c;

 if(semaphore>0)
 {
 counter[semaphore] += c;

 }
}

void switch_status(UINT8 idx, UINT8 state)
{
 if(state == 1)
 {
 functcall[idx]++;
 }

 //single semaphore
 if(semaphore == 0 && state==1)
 {
 semaphore = idx;
 }
 else if (idx == semaphore && state == 0)
 {
 semaphore = 0;
 }

 //more than one semaphores
 //if(semaphore < idx && state==1)
 // semaphore = idx;
 //else if(semaphore == idx && state ==0)
 // semaphore--;

}

#define START_STOP(funct_num)\
{\

 97

 if(RTN_Name(rtn).c_str()==F ## funct_num)\
 {\
 INS_InsertCall(ins_head, IPOINT_BEFORE, (AFUNPTR)docount,IARG_UINT32,
funct_num, IARG_UINT32, 1, IARG_END);\
 for(INS ins=INS_Next(ins_head);INS_Valid(ins);ins=INS_Next(ins))\
 {\
 if(INS_IsRet(ins))\
 INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)docount,
IARG_UINT32, funct_num, IARG_UINT32, 0, IARG_END);\
 else\
 INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)docount,
IARG_UINT32, funct_num, IARG_UINT32, 1, IARG_END);\
 }\
}\
else{\
INS_InsertCall(ins_head, IPOINT_BEFORE, (AFUNPTR)docount,IARG_UINT32, 2,
IARG_UINT32, 2, IARG_END);\
 for(INS ins=INS_Next(ins_head);INS_Valid(ins);ins=INS_Next(ins))\
 {\
 INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)docount,
IARG_UINT32, 2, IARG_UINT32, 2, IARG_END);\
 }\
 }\
}

void Routine(RTN rtn, void *v)
{
 INS ins_head;

 RTN_Open(rtn);
 ins_head = RTN_InsHead(rtn);
 START_STOP(1);
 START_STOP(2);
 START_STOP(3);
 START_STOP(4);
 START_STOP(5);
 START_STOP(6);
 START_STOP(7);
 START_STOP(8);
 RTN_Close(rtn);
}

void Trace(TRACE trace, void *v)
{
 RTN rtn = TRACE_Rtn(trace);

 for (BBL bbl = TRACE_BblHead(trace); BBL_Valid(bbl); bbl = BBL_Next(bbl))
 {
 BBL_InsertCall(bbl, IPOINT_ANYWHERE, (AFUNPTR)checkdocount,
IARG_UINT32, BBL_NumIns(bbl), IARG_END);

 }

 98

}

#define PRINT2FILE(K, out)\
{\
 out << F ## K << " = " << counter[K] << " | " << functcall[K] << endl;\
}

void Fini(INT32 code, VOID *v)
{

 ofstream out("INS.out",ios_base::app);

 out << "Tot instruction = " << counter[0]/1000000 << endl;
 PRINT2FILE(1, out);
 PRINT2FILE(2, out);
 PRINT2FILE(3, out);
 PRINT2FILE(4, out);
 PRINT2FILE(5, out);
 PRINT2FILE(6, out);
 PRINT2FILE(7, out);
 PRINT2FILE(8, out);
 out << "Tot Coding instruction = " << compute_tot_codingins(&percentage) <<
endl;
 out << setw(30) << "Percentage = " << percentage << endl;
 out.close();

}

int main(int argc, char * argv[])
{

 PIN_InitSymbols();

 PIN_Init(argc, argv);

 Global_Init();

 RTN_AddInstrumentFunction(Routine,0);

 TRACE_AddInstrumentFunction(Trace, 0);

 PIN_AddFiniFunction(Fini, 0);

 PIN_StartProgram();

 return 0;
}

 99

/* MA.c
*==
*
* Memory access in functional blocks
*
*==
*/

#include "pin.H"
#include "instlib.H"
#include <unistd.h>
#include <iostream>
#include <iomanip>
#include <fstream>
#include <vector>

using namespace INSTLIB;

typedef UINT64 COUNTER;

#define CNT_SIZE 14

COUNTER MemRead ;
COUNTER MemWrite;
COUNTER MemTotal;
UINT32 semaphore = 0;

string F1 = "Get_Rate_4x4Intrablk";
string F2 = "Get_Rate_8x8blk";
string F3 = "writeMBLayer";
string F4 = "store_coding_state";
string F5 = "reset_coding_state";

typedef class BBLSTATS
{
 public:
 COUNTER _bblcnt;
 COUNTER _mem_rd_cnt;
 COUNTER _mem_wr_cnt;

 public:
 BBLSTATS(COUNTER mem_rd_cnt, COUNTER
mem_wr_cnt):_mem_rd_cnt(mem_rd_cnt), _mem_wr_cnt(mem_wr_cnt)
 {
 _bblcnt=0;
 }
};

vector<const BBLSTATS*> statsList;

void docount(COUNTER* counter)
{
 if(semaphore > 0)

 100

 {
 (*counter)++;

 }
}

void switch_status(UINT8 idx, UINT8 state)
{
 if(semaphore == 0 && state ==1)
 {
 semaphore = idx;
 }
 else if(semaphore == idx && state == 0)
 {
 semaphore = 0;
 }

}

void Global_Init()
{
 MemRead = 0;
 MemWrite = 0;
 MemTotal = 0;
}

void Trace(TRACE trace, VOID *v)
{
 for (BBL bbl = TRACE_BblHead(trace); BBL_Valid(bbl); bbl = BBL_Next(bbl))
 {
 COUNTER cnt_mem_rd = 0;
 COUNTER cnt_mem_wr = 0;

 const INS head = BBL_InsHead(bbl);

 if (! INS_Valid(head)) continue;

 for (INS ins = head; INS_Valid(ins); ins = INS_Next(ins))
 {
 if(INS_IsMemoryRead(ins))
 cnt_mem_rd ++;

 if(INS_IsMemoryWrite(ins))
 cnt_mem_wr++;
 }

 BBLSTATS* bblstats = new BBLSTATS(cnt_mem_rd, cnt_mem_wr);
 INS_InsertCall(head, IPOINT_BEFORE, (AFUNPTR)docount, IARG_PTR,
&(bblstats->_bblcnt), IARG_END);
 statsList.push_back(bblstats);
 }

 101

}

void Fini(int, VOID * v)
{
 std::ofstream out("mem_access.txt",ios_base::app);
 COUNTER total_access_mem = 0;

 statsList.push_back(0);

 for(vector<const BBLSTATS*>::iterator bi = statsList.begin(); bi!=statsList.end();
bi++)
 {
 const BBLSTATS* bblstats = (*bi);
 if(bblstats==0) continue;

 MemRead += (bblstats->_bblcnt * bblstats->_mem_rd_cnt);
 MemWrite += (bblstats->_bblcnt * bblstats->_mem_wr_cnt);

 }
 MemTotal = MemRead + MemWrite;
 total_access_mem += MemRead;
 total_access_mem += MemWrite;

out << "Mem [rd] [wr] [tot] access" << " ; " << MemRead/1000 << " ; " << MemWrite/1000
<< " ; " << MemTotal/1000 << endl;\
 out << "Mem [rd] [wr] [tot] access" << " ; " <<
(float)MemRead/(float)MemTotal*100.0 << " ; " << (float)MemWrite/(float)MemTotal
*100.0<< " ; " << (float)MemTotal/(float)MemTotal*100.0 << endl;\
 out.close();
}

#define START_STOP(funct_num)\
{\
 if(RTN_Name(rtn).c_str()==F ## funct_num)\
 {\
 INS_InsertCall(ins_head, IPOINT_BEFORE, (AFUNPTR)switch_status,
IARG_UINT32, funct_num, IARG_UINT32, 1, IARG_END);\
 for(INS ins=INS_Next(ins_head);INS_Valid(ins);ins=INS_Next(ins))\
 { \
 if(INS_IsRet(ins))\
 {\
 INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)switch_status,
IARG_UINT32, funct_num, IARG_UINT32, 0, IARG_END);\
 printf("Return instruction found for %s\n",(F ## funct_num).c_str());\
 }\
 }\
 }\
}

void Routine(RTN rtn, VOID * v)
{

 102

 INS ins_head;

 RTN_Open(rtn);
 ins_head = RTN_InsHead(rtn);
 START_STOP(1);
 START_STOP(2);
 START_STOP(3);
 START_STOP(4);
 START_STOP(5);
 RTN_Close(rtn);

}

int main(int argc, CHAR *argv[])
{
 PIN_InitSymbols();

 PIN_Init(argc, argv);

 Global_Init();

 RTN_AddInstrumentFunction(Routine,0);

 TRACE_AddInstrumentFunction(Trace, 0);

 PIN_AddFiniFunction(Fini, 0);

 PIN_StartProgram();

 return 0;
}

 103

/* ISA.c
/* ========================
/* ISA Class Classfication
/* ========================
*/

#include "pin.H"
#include "instlib.H"
#include <unistd.h>
#include <vector>
#include <iostream>
#include <iomanip>
#include <fstream>

using namespace INSTLIB;

typedef COUNTER COUNTER;

const UINT32 MAX_INDEX = 4096;
const UINT32 INDEX_SPECIAL = 3000;

UINT32 semaphore = 0;

string F1 = "Get_Rate_4x4Intrablk";
string F2 = "Get_Rate_8x8blk";
string F3 = "writeMBLayer";
string F4 = "store_coding_state";
string F5 = "reset_coding_state";

UINT32 StringLength(BBL bbl, BOOL memory_acess_profile)
{
 UINT32 count = 0;

 for (INS ins = BBL_InsHead(bbl); INS_Valid(ins); ins = INS_Next(ins))
 count++;
 return count;
}

class STATS
{
 public:
 COUNTER instr[MAX_INDEX];
 COUNTER category[MAX_INDEX];

 void Clear()
 {
 for (UINT32 i = 0; i < MAX_INDEX; i++)
 {
 instr[i] = 0;
 category[i] = 0;

 }
 }
};

 104

STATS GlobalStats;

typedef class BBLSTATS
{
 public:
 COUNTER _counter;
 const UINT16 * const _stats;
 const UINT16 * const _stats_category;

 public:
 BBLSTATS(UINT16 * stats, UINT16 * stats_category) : _counter(0), _stats(stats),
_stats_category(stats_category) {};

};

LOCALVAR vector<const BBLSTATS*> statsList;

void docount(COUNTER * counter)
{
 if(semaphore > 0)
 (*counter) ++;
}

void switch_status(UINT8 idx, UINT8 state)
{
 if(semaphore == 0 && state ==1)
 {
 semaphore = idx;
 }
 else if(semaphore == idx && state == 0)
 {
 semaphore = 0;
 }

}

#define START_STOP(funct_num)\
{\
 if(RTN_Name(rtn).c_str()==F ## funct_num)\
 {\
 INS_InsertCall(ins_head, IPOINT_BEFORE, (AFUNPTR)switch_status,
IARG_UINT32, funct_num, IARG_UINT32, 1, IARG_END);\
 for(INS ins=INS_Next(ins_head);INS_Valid(ins);ins=INS_Next(ins))\
 { \
 if(INS_IsRet(ins))\
 {\
 INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)switch_status,
IARG_UINT32, funct_num, IARG_UINT32, 0, IARG_END);\
 }\

 105

 }\
 }\
}

VOID Routine(RTN rtn, VOID * v)
{
 INS ins_head;

 RTN_Open(rtn);
 ins_head = RTN_InsHead(rtn);
 START_STOP(1);
 START_STOP(2);
 START_STOP(3);
 START_STOP(4);
 START_STOP(5);
 RTN_Close(rtn);

}

VOID Trace(TRACE trace, VOID *v)
{

 for (BBL bbl = TRACE_BblHead(trace); BBL_Valid(bbl); bbl = BBL_Next(bbl))
 {
 INS head = BBL_InsHead(bbl);
 if (! INS_Valid(head)) continue;

 UINT32 n = StringLength(bbl, 1);

 UINT16 *stats = new UINT16[n + 1];
 UINT16 *stats_end = stats + (n + 1);
 UINT16 *curr = stats;

 UINT16 *stats_category = new UINT16[n + 1];
 UINT16 *stats_category_end = stats_category + (n + 1);
 UINT16 *curr_category = stats_category;

 for (INS ins = head; INS_Valid(ins); ins = INS_Next(ins))
 {
 *curr++ = INS_Opcode(ins);
 *curr_category++ = INS_Category(ins);
 }

 *curr++ = 0;
 *curr_category++ = 0;

 ASSERTX(curr == stats_end);
 ASSERTX(curr_category == stats_category_end);

 BBLSTATS * bblstats = new BBLSTATS(stats, stats_category);

 106

 INS_InsertCall(head, IPOINT_BEFORE, AFUNPTR(docount), IARG_PTR, &(bblstats-
>_counter), IARG_END);
 statsList.push_back(bblstats);
 }
}

void PrintStats(ofstream& out, STATS& stats)
{

 for (UINT32 i = 0; i < INDEX_SPECIAL ; i++)
 {
 stats.instr[INDEX_SPECIAL] += stats.instr[i];
 stats.category[INDEX_SPECIAL]+= stats.category[i];
 }

 for (UINT32 i = 0; i < INDEX_SPECIAL; i++)
 {
 if(stats.instr[i] == 0) continue;

 out << i << " " << ljstr(OPCODE_StringShort(i),20) << " " << stats.instr[i] << endl;
 cout << i << " " << ljstr(OPCODE_StringShort(i),20) << " " << stats.instr[i] << endl;

 }

 for (UINT32 i = 0; i < INDEX_SPECIAL; i++)
 {
 if(stats.category[i] == 0) continue;

 out << i << " " << ljstr(CATEGORY_StringShort(i),20) << " " << stats.category[i] <<
endl;
 cout << i << " " << ljstr(CATEGORY_StringShort(i),20) << " " << stats.category[i] <<
endl;

 }
 out << "Total " << stats.instr[INDEX_SPECIAL]/1000000 << endl;
 out << "Total" << stats.category[INDEX_SPECIAL]/1000000 << endl;

}

void Fini(int, VOID * v)
{

 std::ofstream out("ISA.txt", ios_base::app);
 statsList.push_back(0);

 for (vector<const BBLSTATS*>::iterator bi = statsList.begin(); bi != statsList.end(); bi++)
 {
 const BBLSTATS *b = (*bi);

 if (b == 0) continue;

 107

 for (const UINT16 * stats = b->_stats; *stats; stats++)
 {
 GlobalStats.instr[*stats] += b->_counter;
 }

 for (const UINT16 * stats_category = b->_stats_category; *stats_category;
stats_category++)
 {
 GlobalStats.category[*stats_category] += b->_counter;
 }
 }

 PrintStats(out, GlobalStats);
 out.close();
}

int main(int argc, CHAR *argv[])
{
 PIN_InitSymbols();

 PIN_Init(argc,argv);

 RTN_AddInstrumentFunction(Routine,0);

 TRACE_AddInstrumentFunction(Trace, 0);

 PIN_AddFiniFunction(Fini, 0);

 PIN_StartProgram();

 return 0;
}

 108

/* MU.c
 ==
 Trace dynamic memory allocation and compute peak memory usage
 ==
*/

#include "pin.H"
#include "instlib.H"
#include "unistd.h"
#include <iostream>
#include <iomanip>
#include <fstream>
#include <vector>

using namespace INSTLIB;

std::ofstream op("PMU.txt");
UINT32 Cur_mem_type =0;
ADDRINT Cur_mem_size =0;
ADDRINT Tot_mem_size =0;
ADDRINT Peak_mem_size = 0;

typedef class MEMSTAT
{
 public:
 ADDRINT _mem_addr;
 ADDRINT _mem_size;

 public:
 MEMSTAT(ADDRINT addr,ADDRINT size):_mem_addr(addr),_mem_size(size){}
};

vector<MEMSTAT*> statList;

void dyn_mem_size(UINT32 dyn_mem_funct, ADDRINT mem_size, ADDRINT elem_size)
{

 if(dyn_mem_funct == 1)
 {
 Cur_mem_size = mem_size;
 Cur_mem_type = dyn_mem_funct;
 }
 else
 {
 Cur_mem_size = mem_size * elem_size;
 Cur_mem_type = dyn_mem_funct;
 }
}

void dyn_mem_addr(UINT32 dyn_mem_funct, ADDRINT mem_addr)
{
 ADDRINT stored_mem_size = 0;
 INT32 pos;

 109

 UINT32 p;

 if(dyn_mem_funct==Cur_mem_type)
 {
 Tot_mem_size += Cur_mem_size;
 MEMSTAT* memstat = new MEMSTAT(mem_addr, Cur_mem_size);
 statList.push_back(memstat);

 if(Tot_mem_size > Peak_mem_size)
 Peak_mem_size = Tot_mem_size;

 }
 else if (dyn_mem_funct == 0)
 {
 p = 0;
 pos = -1;
 for(vector< MEMSTAT*>::iterator bi= statList.begin(); bi!=statList.end();
bi++,p++)
 {
 MEMSTAT* ms = *bi;
 if(ms->_mem_addr == mem_addr)
 {
 pos = p;
 stored_mem_size = ms->_mem_size;
 Tot_mem_size -= stored_mem_size;
 ms->_mem_addr = 0;
 ms->_mem_size = 0;
 }
 }
 if(p>=0)
 statList.erase(statList.begin()+pos);
 }
}

void Image(IMG img, void *v)
{
 RTN rtn;

 rtn = RTN_FindByName(img,"malloc");
 if(RTN_Valid(rtn))
 {
 RTN_Open(rtn);
 RTN_InsertCall(rtn, IPOINT_BEFORE, (AFUNPTR)dyn_mem_size,
IARG_UINT32, 1, IARG_G_ARG0_CALLEE, IARG_ADDRINT, 0, IARG_END);
 RTN_InsertCall(rtn, IPOINT_AFTER, (AFUNPTR)dyn_mem_addr,
IARG_UINT32, 1, IARG_G_RESULT0, IARG_END);
 RTN_Close(rtn);
 }

 rtn = RTN_FindByName(img,"calloc");
 if(RTN_Valid(rtn))
 {
 RTN_Open(rtn);

 110

 RTN_InsertCall(rtn, IPOINT_BEFORE, (AFUNPTR)dyn_mem_size,
IARG_UINT32, 2, IARG_G_ARG1_CALLEE, IARG_G_ARG0_CALLEE, IARG_END);
 RTN_InsertCall(rtn, IPOINT_AFTER, (AFUNPTR)dyn_mem_addr,
IARG_UINT32, 2, IARG_G_RESULT0, IARG_END);
 RTN_Close(rtn);
 }

 rtn = RTN_FindByName(img,"free");
 if(RTN_Valid(rtn))
 {
 RTN_Open(rtn);
 RTN_InsertCall(rtn, IPOINT_BEFORE, (AFUNPTR)dyn_mem_addr,
IARG_UINT32, 0, IARG_G_ARG0_CALLEE, IARG_END);
 RTN_Close(rtn);
 }

}

void Fini(int, void *v)
{
 COUNTER count=0;
 COUNTER memsize=0;

 op << dec << noshowbase << "Peak Memory Usage = " << Peak_mem_size << endl;
 op << "Total Memory Leakage = " << Tot_mem_size << endl;

 for (vector<MEMSTAT*>::iterator bi = statList.begin();bi!=statList.end(); bi++)
 {
 MEMSTAT* ms = *bi;
 if(ms==0) continue;
 memsize += ms->_mem_size;
 count++;
 op << count << " : " << ms->_mem_size << endl;
 }

 op << "Total mem left in statlist = " << memsize << endl;
 op << "statlist size = " << count << endl;

 op.close();

}

int main(int argc, char** argv)
{

 PIN_InitSymbols();

 PIN_Init(argc, argv);

 IMG_AddInstrumentFunction(Image, 0);

 PIN_AddFiniFunction(Fini, 0);

 111

 PIN_StartProgram();

 return 0;
}

/* CM.c
/ ==========================
/ Codec memory size
/ ==========================
*/

#include "pin.H"
#include "instlib.H"
#include <iostream>
#include <fstream>

std::ofstream op("codec_memsize.txt");

void Image(IMG img, void *v)
{

 op << ljstr("Image name",15) << " = " << IMG_Name(img) << endl;
 op << ljstr("Low address",15) << " = " << IMG_LowAddress(img) << endl;
 op << ljstr("High address",15) << " = " << IMG_HighAddress(img) << endl;
 op << ljstr("Image size", 15) << " = " << dec << noshowbase <<
IMG_SizeMapped(img) << endl;

}

int main(int argc, char ** argv)
{
 PIN_InitSymbols();

 PIN_Init(argc, argv);

 IMG_AddInstrumentFunction(Image, 0);

 PIN_StartProgram();

 return 0;
}

 112

