819 research outputs found

    An assessment of the sea breeze energy potential using small wind turbines in peri-urban coastal areas

    Get PDF
    From wind speed data recorded hourly at 2 m high during 18 years (1993-2010) in the Llobregat Delta (15 km south of Barcelona city; northeast of the Iberian Peninsula), wind speed distributions at 10 m high were computed for the whole year and for the sea breeze period (from March 1 to September 30, from 10 to 19 local time). Weibull probability density functions fitted to the distributions were used to assess the wind energy generated by two off-grid small wind turbines: the IT-PE-100 and the HP-600W. Results from FAST and AeroDyn simulation tools were compared with those obtained by applying measured wind speeds to manufacturer power curves. Using manufacturer data, the IT-PE-100 would deliver 132 kWh during the whole year (70 kWh during the sea breeze period). From the simulations, the IT-PE-100 would deliver 155 kWh during the whole year (80 kWh during the sea breeze period). It is concluded that the sea-breeze is an interesting wind energy resource for micro-generation, not only in the Mediterranean basin but in other areas of the world with similar wind regimes, and particularly in peri-urban coastal areas where large-scale wind farms cannot be implemented.Peer ReviewedPostprint (published version

    [Report of] Specialist Committee V.4: ocean, wind and wave energy utilization

    No full text
    The committee's mandate was :Concern for structural design of ocean energy utilization devices, such as offshore wind turbines, support structures and fixed or floating wave and tidal energy converters. Attention shall be given to the interaction between the load and the structural response and shall include due consideration of the stochastic nature of the waves, current and wind

    Reliability Assessment and Reliability-Based Inspection and Maintenance of Offshore Wind Turbines

    Get PDF

    An Integrated Closed Convergent System for Optimal Extraction of Head-Driven Tidal Energy

    Get PDF
    As the demands for energy increased with the global increase in population, there is a need to create and invest in more clean and renewable energy sources. Energy derived from the movement of the tides is an ancient concept that is currently being harnessed in a handful of large tidal range locations. However, the need to move from fossil fuel driven energy sources to those that are clean and non-polluting is a priority for a sustainable future. Globally, hydropower potential is estimated to be more than 16,400-Terawatt hours annually. Given that the electricity consumption worldwide was at 15,068-Terawatt hours in 2016, if properly utilized, hydropower could supply a substantial percentage of current demand. Most of the current hydropower supply is drawn from well-established dams and tidal barrage systems. However, tidal power plants that harness the change in water height and flow along the coast (i.e. using tidal energy) have the potential to push these figures even higher. Although there is no exact number for lengths of global coastlines, there are estimates that put that number between 220,000 and 880,000 miles of coasts. These opportunities in tidal energy technologies that harness energy from the sea may one day be the key to solving our energy crises. This research explored in detail a closed, convergent system for optimal extraction of head-driven tidal energy with minimal adverse environmental effects. The long-term goal of this project is to create a system that is viable in low tidal range locations traditionally not considered for locations of tidal energy systems, therefore increasing the overall global tidal energy portfolio. By implementing a closed system of ‘bladders’ and convergent nozzles to optimize the flow rate of the contained fluid, the proposed system can 1) derive tidal energy in low tidal range geographies 5 2) avoid typical hazards like system biofouling, marine life propeller impacts, and 3) allow for ease of installation, operation, and maintenance

    Technical-economic analysis, modeling and optimization of floating offshore wind farms

    Get PDF
    The offshore wind sector has grown significantly during the last decades driven by the increasing demand for clean energy and to reach defined energy targets based on renewable energies. As the wind speeds tend to be faster and steadier offshore, wind farms at sea can reach higher capacity factors compared to their onshore counterparts. Furthermore, fewer restrictions regarding land use, visual impact, and noise favors the application of this technology. However, most of today's offshore wind farms use bottom-fixed foundations that limit their feasible application to shallow water depths. Floating substructures for offshore wind turbines are a suitable solution to harness the full potential of offshore wind as they have less constraints to water depths and soil conditions and can be applied from shallow to deep waters. As several floating offshore wind turbine (FOWT) concepts have been successfully tested in wave tanks and prototypes have been proven in open seas, floating offshore wind is now moving towards the commercial phase with the first floating offshore wind farm (FOWF) commissioned in 2017 and several more are projected to be constructed in 2020. This transition increases the need for comprehensive tools that allow to model the complete system and to predict its behavior as well as to assess the performance for different locations. The aim of this thesis is to analyze from a technical and economic perspective commercial scale FOWFs. This includes the modeling of FOWTs and the study of their dynamic behavior as well as the economic assessment of different FOWT concepts. The optimization of the electrical layout is also addressed in this thesis. The first model developed is applied to analyze the performance of a Spar type FOWT. The model is tested with different load cases and compared to a reference model. The results of both models show an overall good agreement. Afterwards, the developed model is applied to study the behavior of the FOWT with respect to three different offshore sites. Even at the site with the harshest conditions and largest motions, no significant loss in energy generation is measured, which demonstrates the good performance of this concept. The second model is used to perform a technical-economic assessment of commercial scale FOWFs. It includes a comprehensive LCOE methodology based on a life cycle cost estimation as well as the computation of the energy yield. The model is applied to three FOWT concepts located at three different sites and considering a 500MW wind farm configuration. The findings indicate that FOWTs are a high competitive solution and energy can be produced at an equal or lower LCOE compared to bottom-fixed offshore wind or ocean energy technologies. Furthermore, a sensitivity analysis is performed to identify the key parameters that have a significant influence on the LCOE and which can be essential for further cost reductions. The last model is aimed to optimize the electrical layout of FOWFs based on the particle swarm optimization theory. The model is validated against a reference model at first and is then used to optimize the inter-array cable routing of a 500MW FOWF. The obtained electrical layout results in a reduction of the power cable costs and a decrease of the energy losses. Finally, the use of different power cable configurations is studied and it is shown that the use of solely dynamic power cables in comparison to combined dynamic and static cables results in decreased acquisition and installation costs due to the avoidance of cost-intensive submarine joints and additional installation activities.El sector eólico marino ha crecido significativamente durante las últimas décadas impulsado por la creciente demanda de energía limpia. Los parques eólicos en el mar pueden alcanzar factores de capacidad más altos en comparación a los parques eólicos en la tierra debido a que las velocidades del viento tienden a ser más altas y constantes en el mar. Ademas, existen menos restricciones con respecto al uso de la tierra, el impacto visual y el ruido. Sin embargo, la mayoría de los parques eólicos actuales utilizan subestructuras fijas que limitan su aplicación factible a aguas poco profundas. Las subestructuras flotantes para turbinas eólicas marinas (FOWTs en inglés) son una solución adecuada para aprovechar todo el potencial de la energía eólica, ya que tienen menos restricciones para las profundidades del agua y el fondo marino. Dado que varios prototipos de FOWTs se han probado con éxito en el mar, la industria ahora esta entrando a la fase comercial con el primer parque eólico flotante (FOWF en inglés) operativo y se proyecta que se pondrán en marcha más en los próximos anos. Esta transición aumenta la necesidad de herramientas integrales que permitan modelar el sistema completo y predecir su comportamiento, así como evaluar el rendimiento para diferentes lugares. El objetivo de esta tesis es analizar desde una perspectiva técnica y económica los FOWFs a escala comercial. Esto incluye el modelado de FOWTs, el estudio de su comportamiento dinámico, y la evaluación económica de diferentes conceptos. La optimización del diseño eléctrico también se aborda en esta tesis. El primer modelo desarrollado se aplica para analizar el rendimiento de un FOWT tipo Spar. El modelo se prueba con diferentes tipos de carga y se compara con un modelo de referencia. Los resultados de ambos modelos muestran una buena concordancia. Posteriormente, el modelo se aplica para estudiar el comportamiento con respecto a tres lugares diferentes. Los resultados muestran que incluso en el sitio con las condiciones más severas, no se mide ninguna pérdida significativa en la generación de energía, lo que demuestra el buen rendimiento de este concepto. El segundo modelo se utiliza para realizar una evaluación técnico-económica de los FOWF a escala comercial. Esto incluye una metodología integral del costo nivelado de energía (LCOE en ingles). El modelo se aplica a tres conceptos de FOWTs ubicados en tres lugares diferentes y considerando un parque eólico de 500MW. Los resultados indican que los FOWTs son una solución altamente competitiva y que la energía se puede producir con un LCOE igual o inferior en comparación con los parques eólicos con subestructuras fijas o las tecnologías de energía oceánica. Asimismo, se realiza un análisis de sensibilidad para identificar los parámetros claves que tienen una influencia significativa en el LCOE y que pueden ser esenciales para reducciones de costos. El último modelo se aplica para optimizar el diseño eléctrico en función de la teoría de optimización por enjambre de partículas. Inicialmente el modelo se valida contra un modelo de referencia y luego se utiliza para optimizar la conexión de los cables entre los FOWTs. El diseño eléctrico obtenido da como resultado una reducción de los costos de cables y una disminución de las pérdidas de energía. Finalmente, se estudia el uso de diferentes configuraciones de cables y se demuestra que el uso de cables únicamente dinámicos en comparación con los cables dinámicos y estáticos combinados da como resultado una disminución de los costos de adquisición e instalación debido a que evitan la necesidad de juntas submarinas costosas y costos adicionales de instalación.Postprint (published version

    System Value of Wind Power : An analysis of the effects of wind turbine design. Economic dispatch modelling of medium-term system implications of advanced wind power technologies

    Get PDF
    This thesis intends to assess the system impacts, the potential cost reductions and the market value projections of different wind turbine designs. Using an Economic Dispatch model, the development of the European power system until 2030 is simulated. With a particular focus on Germany, the deployment of different nshore wind technologies is simulated. The outcomes of the analysis show that reduced specific power has a large impact in system costs and value factors of wind power

    Behaviour of piles driven in chalk

    Get PDF
    Driving resistance is difficult to predict in chalk strata, with both pile free-fall self-weight ‘runs’ and refusals being reported. Axial capacity is also highly uncertain after driving. This paper reviews recent research that has explored these topics. Programmes of onshore tests and novel, high-value offshore, experiments involving static, dynamic and cyclic loading are described. The key findings form the basis of the Chalk ICP-18 approach for estimating the driving resistance and axial capacity of piles driven in low-to medium-density chalk. The new approach is presented and the highly significant impact of set-up after driving is emphasised. It is shown that Chalk ICP-18 overcomes the main limitations of the industry’s current design guidelines by addressing the underlying physical mechanisms. While further tests are required to enlarge the available test database, the new approach is able to provide better predictions for tests available from suitably characterised sites. A new Joint Industry Project is outlined that extends the research to cover further axial, lateral, static and cyclic loading cases

    Power generation from tidal currents. Application to Ria de Vigo

    Get PDF

    Offshore Electrical Networks and Grid Integration of Wave Energy Converter Arrays - Techno-economic Optimisation of Array Electrical Networks, Power Quality Assessment, and Irish Market Perspectives

    Get PDF
    Wave energy is an emerging industry and faces many challenges before commercial wave energy converter (WEC) arrays are installed. One of these challenges is the grid integration of WEC arrays. This includes offshore electrical networks, grid compliance, and access to electrical markets. This must be achieved in a technically viable manner and also at an acceptable cost. As electrical networks are expected to make up a large proportion of the overall WEC array CAPEX, perhaps up to 25%, this area is critical to the long term competitiveness of wave energy. The objectives of this thesis are to develop technically and economically acceptable electrical network designs for WEC arrays, evaluate voltage flicker issues for WEC arrays and develop design tools to analyse same, and evaluate the market scale for wave energy in Ireland, considering electrical integration issues in both the domestic and export markets. This thesis presents the optimum design for WEC array electrical networks. By building from the industry state of the art, including offshore wind experience, a comprehensive techno-economic optimisation process is undertaken. This includes optimising the key electrical interfaces between the WEC and the array electrical network, optimising the array network configuration, assessing efficiency of the network, and demonstrating that the network can be achieved at a cost which will allow competitiveness. Some challenges to the economics of WEC array electrical networks and some strategies for improving the economics are presented in this research also. The results provide timely guidance to WEC and WEC array developers. This research also demonstrates the critical link between voltage flicker emissions from WECs and the primary resource, i.e. ocean waves. Some practical assessment tools for the evaluation of this power quality issue are shown to assist in quantifying the problem. Also the full flicker performance of a candidate WEC is assessed helping characterise this link further. In this thesis both the domestic and export markets for Ireland’s wave energy resource are assessed as, although Ireland has an enviable wave energy resource, it is unclear where the market for this resource lies. This analysis shows that the medium term market for wave energy in Ireland is an export market. Also, although technically feasible, there is an additional cost for export transmission which must be considered in evaluating export markets. Some of the critical grid integration issues have been evaluated and addressed in this thesis. Future work is recommended in the areas of weather risk to cable installation at high energy wave sites, evaluating the benefits of shared electrical infrastructure across a range of renewable projects, designing offshore substations for WEC arrays, and quantifying the benefits of the addition of wave energy to the Irish renewable energy mix

    Offshore wind power: a reliable and renewable energy source for all?

    Get PDF
    Climate change is a major challenge of the 21st century with potential severe consequences of global warming on all biological systems. The main reason is the CO2 emissions caused by human activities. In this context, renewable energies are one of the most promising solutions to strive against this issue. This master’s thesis aims to a better understanding of the offshore wind power, by studying the advantages, drawbacks and potential of this technology. Wind offers a large and clean resource of power, available all over the world. Wind power plants have first been developed onshore in 1980 as it is an easy and cheap technology. However, onshore wind is limited in terms of capacity suffering from volatile wind conditions and limited acceptance from the population. Conversely, offshore wind power allows very large-scale development, featuring larger turbines in areas where a stronger and more consistent wind blows. This allows to generate more power and to have better capacity factors, explaining why offshore wind power has recently emerged as an excellent asset to develop renewable energies at large-scale. Yet, offshore wind power currently suffers from one major drawback: the shallow-water requirement. Wind turbines are currently placed on fixed foundation that can reach a maximum water depth of 60 meters. This drastically limits the possible development areas and has led to large development inequalities across the world. Floating wind turbines are being developed to remove this restriction. Several approaches are under testing to tackle stability issues, all successful so far. This would be a game changing technology because it would unlock countless areas to implement offshore wind farms particularly for countries that do not have offshore shallow waters
    corecore