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SUMMARY 

Wind power installations have become the second largest contributor to installation of 
electricity capacity in the European Union during the last decade. With this increase in 
production capability and size, technical and economical efforts should be directed to 
achieving the optimal structural performance during the life cycle. The deterioration 
processes, such as fatigue and corrosion, are typically affecting offshore structural systems. 
This damage decreases the system performance and increases the risk of failure, thus not 
fulfilling the established safety criteria. Inspection and maintenance actions are the most 
relevant and effective means of control of deterioration. The risk-based inspection planning 
methodology, based on Bayesian decision theory, represents an important tool to identify the 
suitable strategy to inspect and control the deterioration in structures such as offshore wind 
turbines.    

 
During the last decades, Risk Based Inspection (RBI) approaches have been applied 

in the oil and gas industry, giving a theoretical background that can also be applied for 
offshore wind turbines. Unlike other offshore structures, offshore wind turbines represent low 
risk to society due to their offshore location, no pollution risks and low human risks since 
they are unmanned. This allows the allocation of lower reliability level compared to e.g. oil & 
gas installations. With the incursion to water depths between 20 and 50 meters, the use of 
jacket and tripod structures represents a feasible option that improves technical aspects 
concerning structural robustness, dynamical performance and damage distribution. 
Structural components such as support structures, transition nodes and towers, have critical 
design elements or zones that need special thorough design concerning fatigue damage.  

 
In this work, a framework for optimal risk-based inspection and maintenance planning 

for Offshore Wind Turbines (OWT) is developed. Fatigue prone details (in cast iron and 
welded steel) at the jacket or tripod steel support structures are addressed. For wind farms 
additional efforts are needed when wake are to be accounted for. Wake effects imply 
increased turbulence and thus decrease in OWT fatigue life and performance. In wind farm 
locations and single/alone locations of offshore wind turbines are considered, and 
probabilistic models for assessment of the fatigue reliability are developed.  

 
Further a reliability-based approach to calibrate Fatigue Design Factors (FDF) for 

offshore wind turbine support structures is described. The FDF values are calibrated to a 
specific minimum reliability level and a particular inspection and maintenance strategy. 
Generally, lower FDF values are obtained for offshore wind turbines than for oil & gas 
structures and reduced FDF values are obtained when inspections are taken into account. 
Thereby, the basis is available for selecting a cost-effective fatigue design for offshore wind 
turbines substructures.  

 
Additionally, the integration of condition monitoring information to optimize the 

damage-mitigation activities is considered. This work is contemplating the updating through 
Bayesian statistics and Monte Carlo Markov Chain techniques. The new information and 
uncertainty is incorporated with an orthogonal polynomial approximation for assessment of 
fatigue reliability. 
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The Offshore Wind Industry (OWI) plan to supply around 563 TW/year in 2030 that is 
approximately the 15% of total European Union (EU) electricity demand. This production aim 
by European Commission [1] entails a total installed capacity of 150 GW for 2030. Moreover, 
the European Environment Agency estimates a technical potential of offshore wind of 30,000 
TW/year, which is approximately 7 times the whole EU demand [2]. Currently, the installation 
of a power production of 11 TW/year is planned with an already installed capacity of 3 GWh. 

The OWI exploits a synergy of onshore and offshore activities with the goal to reduce the 
use of fossil fuels and enhancing the internal energy market through the transnational grid 
that will save around 48 million toe (tons of oil equivalent) and 292 million of tones of CO2 for 
2030’s annual installed capacity - this is 30% of the EU’s Kyoto obligation [3]. From an 
industrial outlook, OWI can further boost the maritime industry that actually represents the 
40% gross domestic product (GDP) of EU’s economy.  

Wind turbines at onshore places have several environmental impacts: Visual and noise 
impact, risk for human beings and flying fauna, and disruption of human and wild life. These 
impacts can be significantly reduced by going offshore. Not all is “frosting in the cake”, 
offshore wind installations are 50% more expensive, operate under harsher conditions and 
the future scenario reflects an increasing competition in vessels for installation and 
maintenance of offshore wind installations and grid. The capital costs of offshore wind 
installations depend on site-conditions (water depth, wind speeds, wave, current, soil 
conditions, etc).  

The energy production from offshore wind turbines is determined by: turbine height, 
efficiency of the turbine and wind conditions (related with the location). For onshore wind 
turbines the total cost of the wind turbine can approximately be divided in 78% for the wind 
turbine itself, 3% for the foundation, 5% for the electric installations, 5% for the grid 
connection, 2% for consultancy, 2% for land rental, 3% for financial costs and 2% for road 
construction [4]. Offshore wind turbines cost about 20% more than the onshore turbines and 
also offshore tower and support structure cost 2.5 times more than similar structures at 
onshore location [6]. 

One of the main reasons of going offshore is the high wind speeds at low heights with 
50% larger full load-hours per year than onshore places (3150 full load-hours in average per 
year against 2150 at land places). Danish wind farms have recorded high load-hours of 4700 
[5].  

The operation and maintenance (O&M) costs are expected to decrease from 
approximately 16 to 12 €/MWh in the next 10 years [5]. The average of these operational 
and maintenance cost correspond to 23 and 45 percent of the expected annual investments 
in wind turbines in EU in 2020 and 2030 [6], respectively (based in the electricity production)  

As described above a significant growth of OWI can be foreseen the next years, [7]. 
Offshore structures are highly exposed to deterioration due to the harsh environmental 
conditions that degrades the material. The detrimental processes have properties that will 
‘define’ the suitable manner to handle them. The metal-corrosion process is certainly a time-
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dependent process that depends in multiple factors such as chemical arrangement of the 
metal and outer oxidizing agents, temperature and exposure. In the literature methods can 
be found to control the corrosion or design to accomplish a specific life considering corrosion 
process [8]. In this work chemical deterioration processes are not considered but only the 
mechanical ones. 

Mechanical deterioration of structural systems in a marine environment has been studied 
in different engineering areas from which treatment, control and research have flourished 
from mainstream industry such as oil and gas (O&G), ships and harbor industry.  

With the interest of going offshore, wind industry has to face meso- and micro-
meteorological wind and wave influences, water depth and soil conditions. The wind 
properties represent the main reason for going there. The load conditions made the fatigue 
failure a main long-term design driver for the mechanical components. The wave influence 
may also represent a harmful force to OWT for particular cases where depth is significant, 
poor soil conditions present and the wave-impact area of the support structure is 
considerable. It is assumed in this work that wind condition is dominating the load cases for 
any support structure. This supposition is based in the technical and future conditions of 
OWT. These assumptions are that the load influence is impacting at hub height, creating a 
fast-shift of stresses in the support structure, see [12] and [37]. Additionally when the towers’ 
dimensions and swept area is increasing, the wind influence is larger compare with the wave 
condition. 

When depths are larger than 20-25 meters, monopoles are considered not suitable 
according to experts’ opinions [9]. Moreover, a comparison with alternative support 
structures such as tripod and lattice structural systems reflects that the reduction in material 
could be up to 50% in  cases when water depth of 35 mts, see[10] and  [11] . These 
alternative support structures represent a better structural redundancy at failure scenarios, 
increased stability for hydrodynamic loads and poor site conditions [12]. 

Analyzing the future expected offshore projects (see figure 1.1), the majority tend to be 
placed at sites relatively close to the shore and with less than 60 meters depth which make it 
convenient to use tripod and jacket support structures.  

 

 
Figure 1.1 – Probable future development trends of the offshore industry in the 2025 timeframe including 

operating, under construction, consented, in consenting process or proposed by project developers according to 
EWEA [6]. 

 
This incursion in deeper water imposes the OWT to a harsher environment that decreases 
the structural performance and reliability. Structural reliability methods (SRM) have been 
extensively used in applications in different areas of engineering [44-46]. With the use of 
SRM is possible to quantitatively estimate the reliability and perform a life-cycle analysis of 
structural systems. In the petroleum industry, SRM have contributed to assessment of 
reliability and risk analysis for facilities at offshore places that are exposed to extreme events 
and long-term damage conditions.  
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The OWI can take advantage of this SRM-applications in O&G industry by migrating these 
techniques to assure a suitable performance of the OWT while technical and economical 
aspect are taken into account for optimizing inspection, maintenance, operation and repair 
actions, see [13-15]. Risk-based inspection (RBI) planning and risk management for 
deteriorating structures have increased in number of applications in other areas [16], e.g. 
bridge engineering [17], industrial areas [18], which also illustrate the potential in the wind 
energy industry. In this work, RBI is considered for OWT. Within the assessment of 
reliability, Bayesian updating techniques are considered using stochastic structural 
mechanics and probabilistic methods.  

1.1 SCOPE AND LIMITATIONS
The main objective is the application of RBI approaches for offshore wind turbines’ structural 
components that are prone to fatigue failure. This method is mainly considered for use in the 
support structure but it can be generalized to other components as shown in [19]. The 
following scope and limitations are included in this work: 

 
 Apply RBI approach to OWT support structure. 

 Consider and describe the essential differences with other RBI-approach in the civil 
engineering field 
 Consider offshore wind turbines influences in the adapting of RBI 
 Describe and demonstrate the application of a probabilistic calibration procedure for 
code-base safety factors using the former framework 

 
 Use and describe a probabilistic modeling for the assessment of reliability and consider 
the main characteristic of offshore wind turbines 

 
 Application and description of updating procedures within the RBI approach: 

 Describe classical Bayesian statistics 
 Describe and apply Non-parametric Bayesian statistics and Monte Carlo Markov Chain 
techniques for updating 
 Inclusion of uncertainty through Polynomial Chaos Expansion (PCE) approximation in 
assessment of reliability 

 

1.2 OUTLINE OF THE THESIS
This thesis finds its main incentive in the application of SRA through a RBI format. The 
organization highlights the principal accomplishments in this work, mentioning partially the 
work related with structural reliability for OWT and remark the application of other statistical 
and mathematical tools within the RBI-format and assessment of reliability. 

In chapter two is described a review of offshore environment influences and general 
structural issues for offshore wind turbines, considering especially the dynamical and 
aerodynamical performances.  

Chapter three addresses the fatigue failure aspects for OWT. Former work in assessment 
of fatigue modeling and reliability of structural components is briefly described. Next, the 
external loads and related measurements are described. 

In chapter four, the RBI approach is briefly explained (applied to OWT) based on its 
applications in different areas, but describing the main differences with the OWT case. 
Features of the used design and limit state equations and inspections are described. 

In chapter five, the application of Bayesian statistics for updating is described sing the 
RBI format. Classical and non-parametric Bayesian methods are considered using Monte 
Carlo Markov Chain methods. The PCE approximation is used for modeling the uncertainty 
in SRA. In chapter six, a summary and conclusion of this work is shown. Achievements and 
suggestion for future work are included. 
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The purpose of this chapter is to give a brief review of general structural aspects and 
external factors that affect the reliability and performance of the OWT. In the first part is 
mentioned the related work concerning the structural system and the second is focus on 
loads at offshore places. 

2.1 STRUCTURAL SYSTEM
2.1.1 STRUCTURAL CONNECTIONS
Some elements are structurally more important due to their contribution to system’s 
robustness and its performance. In the offshore context, structural joints participate as an 
important global or local failure-damage estimator. The abrupt changes in material and 
geometry are encounter in connections, are sensitive and prone to the damage. The 
offshore steel structural systems are generally fabricated with hollow sections. Past work in 
offshore structural connections and assembles, see [20]; show the influence of damage in 
the connections where stress concentration plays an detrimental role. This influence has 
been theoretical and experimentally [21,22] addressed .  

Welded steel joints have been stochastically and experimentally studied, e.g. [23] and 
[24]; and criteria for the assessment of reliability have been proposed for welded joints at 
offshore structures considering inspections, see [25]. Work as [26] and [27] precisely 
address the high concentration of stresses in OWT connections and structural solutions are 
proposed. Concerning the global performance, criterion to relate local and global failure has 
been devised to estimate the failure scenario, see Straub and Faber in [28].  

This work is mainly addressing ‘hot spots’ or details at connections where discontinuities 
in geometrical dimensions, components and material, make these parts prone to fatigue 
failure. Only high-reliability components are considered. These components are technically 
or economically not feasible to change and the consequences of failure are costly. The 
fatigue prone details that could be analyzed to the presented methodology are the following: 

a) Support Structure connections – welded steel detail 
b) Transition node between tower and support structure – Welded steel detail 
c) Transition part between tower and nacelle (yaw system) – cast iron detail 

2.1.2 BLADES
The blade components have two notable characteristics: it is a moving and material-
composite element. Commercially 3-blade wind turbines dominate the market with maximum 
size around 60 meters. The choice of blade number is based on energy need; the fewer the
number of blades, the faster the rotor needs to turn to extract certain fixed maximum power 
from the wind input. Comparing the option of two and three blades setup, the two bladed 
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option would lead to a larger energy output according to the coefficient of performance (Cp) 
curve with generally wider plateau that covers intermediate tip speeds. Unfortunately, this 
two-blades setup brings high tip speeds and acoustic noise, and the blade needs small area 
that causes an increase of stress [29], larger fatigue and raises the risk of aerodynamical 
instabilities [30]. 

As composite member, the fatigue damage depends on the materials, e.g. type of resin, 
reinforce fiber, layers, mechanical properties, orientation of the fiber, etc. The improving of 
blade technology to resist more fatigue cycles requires better modeling of relative large 
stress ranges [31]. 

The fatigue failure prone details can be found all over the blade and hub in: 
d) Hub –  cast and welded steel details 
e) Blade-inner girder and connection – Welded and cold-formed steel details 
f) Blade – carbon fiber details. 

2.1.3 TOWER AND SUPPORT STRUCTURE
The tower element is the largest component of the OWT. This consists in a hollow structural 
member that accomplishes the function of transmitting the load to the support structure. 
Important stress concentration sectors are in the extremes where nacelle and transition node 
are. The tower’s dimensions are directly in function of wind conditions and indirectly of the 
location, blade size and power capacity. Due to the dimensions, the hollow section is built 
with cold-form plates and weld-seams are located over all the length. 

The transition node (transition zone) accomplishes the connection of the support 
structure and tower. It is relevant the fatigue design of these structural members for 
possessing abrupt changes in geometry. Commonly with the use of monopile, tripod and 
gravity based support there is not an immediate or unfavorable change in geometry 
(considering that circular hollow structure continues) but in the case of jacket-type support 
structure, this element should adopt an appropriate configuration to transfer properly the 
forces. 

The stresses in the transition zone worsen due to the unusual load cases. The maximum 
vertical load is relatively small compared with the horizontal and the overturning moment on 
the foundation. The ratio of moment to horizontal load is varying hastily with the time, when 
is compared with other typical offshore cases and the wave direction may not be 
synchronized with the existing wind direction. Another remarkable feature of OWT load, lies 
in the fact that wind load only contributes to approximately 25% of the horizontal load but ca. 
75% of the overturning moment that is applied at hub height, [32].  

According to the EWEA [7], 65.2% of online OWT support structures at the end of 2009 
consist in monopile foundation, 23.1% Gravity, 2% jacket, 0.8% tripod and 0.8% floating 
foundation and the rest is unknown. The average depth at offshore place is around 9 m not 
taking into account Alpha Ventus project (30 meters depth and using jacket) and the Hywind 
floating turbine (220 meters depth). Moreover, the average shore distance is 14.4 Km.  

According to the previous mentioned, the jacket support structure is far for being the most 
popular but with the necessity of bigger turbines and going to deeper water; the jacket and 
tripod support structures will represent a feasible technical alternative. 

Nowadays, not all the set of technical problems have been solve for OWT with typical 
monopile foundation [33]. However, the experience gained in O&G industry may help finding 
the technical solutions for the particular case of tripod and jacket support structures. The 
design, construction and practical recommendations in O&G industry may be applied but 
some differences have to be taken into account:   

1) Unusual load cases and extreme load considerations 
2) Mechanical, Electrical and Control system components 
3) Varying characteristics of exchangeable component 
4) Interaction with external agent for benefit per se 
5) Structural risk criteria mainly based on economical lost that human affectation 
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Particular sectors or components should be design for a liable performance for fatigue 
failure, regarding: Fatigue assessment requirements, location of details and consequences 
of failure. The fatigue failure prone details can be found all over these structural parts on: 

g) Tower top –  yaw system – cast and welded steel details 
h) Tower bottom and body – welded steel details 
i)  Transition node – welded steel details 
j) Jacket support structure – welded and cast steel details  

2.2 DYNAMICAL AND AERODYNAMICAL ASPECTS
2.2.1 DYNAMIC OF WIND TURBINES
As a compose system, the wind turbine stand for coupling dynamical characteristics of 
several systems or components. When all this elements are taken separately, it is possible 
to estimate the dynamical properties of each one by simply applying structural dynamics’ 
theory [34], [35]; however when these parts are jointly working the definition can vary 
depending, e.g. governing coupling modes, geometrical and structural configuration, 
mechanical properties, etc [36]. In figure 2.1, the common terminology for degree of freedom 
of wind turbines is shown. 

 

 
 
 
 
 
 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 

 
 
 
 
 
 
Longitudinal (fore-aft) 
Lateral (sidewards) 
Yaw 
Tilt 
Roll 
Pitch* 
Flapwise (flatwise) 
Torsion (twist) 
Edgewise (lead-lag) 
Azimuth 
 
*Pitching is an active-stall and pith-

regulated turbines’ mechanism to regulate 
wind load. 

Figure 2.1 - ‘Common’ degree of freedom of offshore wind turbines. 
  
 

The tower’s natural frequencies show independency toward the speed of the rotor, although 
a gyroscopic coupling of the tower top-motion and rotor, results in a rotor-speed dependent 
ratio and phase that exist between lateral and longitudinal components of tower’s mode 
shapes, see [30]. Moreover, the flexibility of nacelle and rotor as little influence on the 
tower’s bending modes, see figure 2.2.  

Considering different support structure and transition node, the influence in dynamical 
modes may change for the change of mass and rigidity that affects the natural period of the 
OWT. Additionally, there is influenced of the soil interaction [37] that adds flexibility to the 
system. The choice of support structure influences the tower frequencies, see [12]; and 
indirectly the scour condition (and wave impact) by modifying the entire system frequencies 
(top, baseline and surface relative frequency). 
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2.2.2 AERODYNAMIC OF WIND TURBINES
The active control and mechanical parts give to the OWT, its main characteristic for being 
differentiated with offshore structures. Rotor speed makes vary the natural frequency of 
asymmetric modes at standstill (see figure 2.2). 

 

 
Figure 2.2 - Campbell diagram of ground-fixed natural frequencies (○) for the first 10 structural modes of a 

600 kW three-bladed turbine with illustrations of asymmetric standstill modes.14 Lines denote approximations to 
the computed frequencies and the center frequencies of the rotor whirling modes given ±Ω added to the ground-
fixed natural frequencies, taken from [36]. 

 
In the figure 2.2, the natural frequencies are shown with the effect of the rotor speed. The 
blade’s modes are coupling the drivetrain’s torsional mode (main shaft, gearbox and 
generator). Furthermore, tower bending and torsional modes with symmetrical and 
asymmetrical motion. 

There are two special instability problems in aerodynamics that may afflict wind turbines 
due to blade and rotor dynamic: Stall-induced vibrations and classical flutter. The first one 
originated for the stall-condition that produces airfoils state depending of the blade 
orientation. The second arises when the torsional blade mode couples with the flapwise 
bending mode, causing the fluttering. An deeper treatment of the aerodynamical topic 
related with wind turbines is found in [30] and [36]. 

2.3 EXTERNAL LOADS
The wind as phenomenon in the atmospheric boundary layer (ABL) is originated for the 
interaction of air masses due to the evaporation, heat-transfer and the friction. The 
turbulence at free flow condition is mainly the product of the wind shear due to the friction of 
the layers. Assuming homogeneous source of turbulence, the layers can be classified as: 
Convective boundary layer (CBL), Stable Boundary Layer (SBL) and neutral boundary layer. 
These regimes are affected by changes of temperatures, humidity of fluxes that come from 
the sun heat radiation, see figure 2.3.  
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Figure 2.3 - The evolution of the atmospheric boundary layer with height during an ideal diurnal cycle. The 

convective boundary layer (CBL), stable boundary layer (SBL), surface layer, residual layer, entrainment zone, 
and boundary-layer height, zi, are distinguished. Local standard time (LST) is used in the x-axis, taken from [38]. 

 
Wind profile can be modeled by the logarithmic equation: 

(1) 

where  is the wind speed,  is the height above the ground,  is the velocity scale or 
friction velocity,  is the Von Kármán constant (constant, ca. 0.4),  is the roughess length 
according to the height at which the wind speed become zero and  is the diabatic 
correction of the logarithmic wind profile. 
At Offshore places wind profile is characterized by higher speed at lower heights with z0-
values around 0.001 to 0.0002 that contrast with values of 0.1 to 0.03 for countryside and 
open land places. 

The turbulence intensity defined with the equation (2) can be divided in free-flow ambient 
turbulence and in case of any other phenomenon causing more turbulence; this can be 
named additional turbulence. 

(2) 
where  is the standard deviation of along-wind wind speed fluctuations and  is the wind 
speed. 

Wind farm turbulence have been measured and studied extensively, see [39-41], to come 
up wind proper models to take into account this detrimental wind variation for coding 
purposes. 

The sea dynamic as wind is a complex phenomenon that is originated by the centrifugal, 
gravitational and attraction forces in and out of earth. Moreover this is influenced by air 
masses in the ABL and interacts with the places’ geomorphology. In this work is not giving a 
dominant approach to wave condition and is considered as additional secondary load 
process that does not govern the long term fatigue failure scenario, if it is compare with wind 
load. It has to be mention that wave conditions at different sea states could be a dominant 
load when normal wind condition (operational state of the OWT) and poor soil conditions 
exist at a considerable depth, see [42]. However, the model use to consider turbulence was 
calibrated for offshore conditions [53]. 
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3.1 INTRODUCTION 
The OWI is a multidisciplinary business that in favor of competitiveness looks for improving 
its costs jointly with better technology. This technological improvement will have impact 
when more reliable energy production systems are achieved. The OWI is a capital-intensive 
industry with capital costs accounting for up to 80% of the production costs which is larger 
than for the fossil fuel industry [4]. This condition makes the OWI’s safety an imperative 
commitment for the sake of the economic benefit. Unlike the O&G industry, OWI does not 
represent high risk of society and this converts this situation appropriate to use minimum 
reliability levels concerning the mechanical, electrical and structural components in order to 
attain the production goals. 

90% of all OWT support structures are made of steel. Mechanical components in nacelle 
stand for low reliability components that can be studied from a qualitative outlook [43]. This 
qualitative assessment of reliability uses failure statistics that are not attached to any 
particular failure mode but disruption of the power production. This is helpful when 
deterioration mechanisms are increasing-monotonic and rate-dependent processes for the 
mechanical parts. These mechanical and electrical parts are feasible to be repaired or 
changed, not having any economical or technical impediment.  

Unlike wind-energy converter components, the structural components have a high 
reliability and are not feasible to be removed, changed and in certain cases even not to be 
inspected or repaired. In a structural failure scenario, some structural components could 
generate collateral damage to the structure and neighboring ones, e.g. blade failure affecting 
tower or hitting surrounding wind turbines or e.g. buildings. A qualitative reliability approach 
for high-reliability components is not technically viable and more sophisticated reliability 
methods in a life-cycle approach represent a proper solution for assessing reliability 
depending on the failure mechanism, load nature and deterioration time. 

Structural reliability methods (SRM), see [44 - 46] that have been developed in the past 
decades, provide a basis to address this problem; in a similar manner as they are directed to 
other mainstream industry and adjacent engineering areas, e.g. O&G industry, aeronautical 
engineering and marine engineering. This dissertation finds its innovation in the application 
and migration of one of these well-known techniques, Risk Based Inspection (RBI) into 
offshore wind industry. In this way, a first step is established for life-cycle analysis of fatigue 
failure for offshore wind turbine structural components within a RBI framework.  

 
 
 

CHAPTER 3 
 

ASSESSMENT OF FATIGUE RELIABILITY 
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3.2 BACKGROUND

The following review to previous work is considering the fatigue limit state for tower and 
support structures. Also, some work is considered for wind turbines components from a 
general viewpoint. Ultimate limit states (extreme events) are not considered, but it is noted 
that there in some cases is an interaction between the two limit states. 
 Probabilistic methodologies for the fatigue limit state have been developed and applied to 
wind turbines during the last two decades. Most of the initial work was directed to 
consolidate the modeling based on recorded loads. Veers [47] established a general fatigue 
reliability format to estimate the fatigue life for wind turbine components using SRM. This 
approach represents a good beginning considering the state-of-art of multidisciplinary areas 
in wind turbine industry: materials, measurements, electrical and mechanical devices 
(control system), wind turbine scale, cluster of wind turbines, offshore considerations, etc. 
 Lange in [31], considers a probabilistic treatment of the load measurements to establish a 
reliability framework for wind turbines (blades) where different probabilistic load models are 
compared for components and where the load and resistance factor design (LRFD) format is 
calibrated with the model.   

Most recent work by Veldkamp [48] represents an important effort to analyze in detail the 
probabilistic aspects of the main variables (loads, materials, different components, site and 
wake conditions) to assess the fatigue structural reliability in the design life and a cost 
optimization framework is presented. Tarp-Johansen in [49] presented a reliability analysis 
and calibration approach where less uncertainties than Veldkamp [48] are used. A linear 
fatigue accumulation principle is used instead of the equivalent damage concept used in 
Veldkamp [48]. 

Sørensen et al. in [50] and [51] proposed a formulation for evaluating the reliability with 
linear and bi-linear fatigue accumulation limit state equations integrated in a model for 
reliability-based optimization for offshore wind turbines. Further in [19] and [52], a fatigue 
probabilistic model was proposed based on the equivalent load concept integrating a code-
based model for including free flow and in-wind farm wake turbulence models. 

The model proposed in [52] is used as basis for the probabilistic modeling in this thesis. 
The model has the following general characteristics: 

a) Simplification of operational states to standstill and operation. During the design life the 
OWT changes between the operational states, depending on the availability and size of 
the wind resource. This model is not taking into consideration both states but only a 
single state where the accumulation of damage is monotonically increasing during the 
life-cycle of the OWT. 

b) Possibility to address different components. When it is likely to have different hot spots 
or components prone to fatigue failure, it is advantageous to use a model that can be 
applied to different details / zones at the support structure, transition node and yaw 
mechanism all having differences in the load influence.  

c) Loading-influenced formulation (wave, wind and turbulence). One of the drawbacks of 
former work is that the effect of loads from particular geographical sites, e.g. sea 
location and wind farm location, is not explicitly taken into account. This model includes 
these factors by using an influence function which is a product of measurements and/or 
modeling for particular load cases that can be simulated with certain probabilistic 
properties. 

d) Response-influenced formulation (control system and structural layout influence). 
Nowadays, there are several support structures that can be used potentially depending 
on the site conditions and energy production. Additional, the control system of OWT is 
an important characteristic of wind turbines compared with most civil structures. These 
previous factors affect the response dramatically by limiting the maximum and minimum 
stresses and varying the response. When a general probabilistic model is used the 
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simplicity and generality are important to made viable the computing and cover most of 
the typical cases. 

e) Use of code-based turbulence model. With this it is possible to establish the 
accomplishment of the minimum reliability requirements in the code, see Frandsen [53]. 

 
 For OWT the physical modeling, simulation tools, design and control system are 
important for assessment of the structural reliability. In Kühn [54] general descriptions are 
presented on design methodologies, physical modeling including dynamics, aerodynamics, 
soil-substructure interaction and design optimization for OWT. Cheng [55] describes efforts 
in the understanding of reliability through statistical analysis of the response for design 
consideration when extreme events occur. Van der Tempel’s [56] work focus on support 
structures and gives a detailed study and treatment of design procedure from time- and 
frequency-domain approach. 

Saranyasoontorn in [57] devised a probabilistic framework where simulation techniques of 
loads are jointly used with reliability methods for short-term load estimation. Another work is 
the one of Agarwal [58], where statistical load extrapolation is used in a similar approach to 
evaluate the reliability considered in [57]. These prior works present a rich source of 
information in physical modeling, design approaches, simulation and extrapolation methods, 
that shows a broad outlook of OWT performance and modeling. 

3.3 MEASUREMENTS AND UNCERTAINTY
In the probabilistic and stochastic modeling of loads, materials and other external agents 
affecting the OWT, it is necessary to understand their characteristics by using the 
information from measurements and other sources. OWI is a well-monitored industry with 
facilities [59], devices and mechanisms for recording, measuring [60] and monitoring at 
experimental [61] and operational stages [62]. 

3.3.1 WIND
The wind resource is typically measured before and after the installation of OWTs, see [63]. 
Meteorological (met-) mast measurements are the primary facilities used to measure the 
wind characteristics [64] at the site. The information that is possible to gather is the following: 

a) Wind speed profile 
b) Short- and long-term wind histories 
c) Turbulence intensity in the wind profile (wind a different heights and directions 
d) Wind roses for the frequency of wind direction occurrence at certain heights 
e) Wind speed roses at certain heights 

 With this information it is possible to obtain wind speed probability distributions and 
statistical parameters in short- and long-term wind histories. It is clear that with this 
availability of wind information it is possible to have an overwhelming amount of data. 
However, there are algorithms to analyze the data and calculate the necessary parameters 
to describe the gained information, e.g. estimation of the distribution and parameters of n-
minutes mean wind speeds by e.g. the Weibull correction method, Wasp [65] or Correlation 
Method. A brief summary can be found in [63]. The average wind speed distribution of 10-
minutes interval occurring during a specific interval is described by the Weibull distribution: 
  (3) 

 
where  and  are the wind shape and scale parameters, respectively. In table 3.3.1 (taken 
from [63]), the Weibull distribution parameters are illustrated using different prediction 
methods. 

 
           Table 3.3.1 Results for 48 m height at Vindeby taken from [63].
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Prediction Method Mean wind speed 
(m/s)

Weibull scale 
parameter (m/s)

Weibull shape 
parameter

Weibull 7.9 8.9 2.1 
WAsP 8.1 9.2 2.4 
Correlation 7.9 8.9 2.2 

Observed (1993-1997) 8.1 9.1 2.3 
OWI has benefited from recent advances in remote sensing technology, such as SODAR 

(Sound detection and ranging) and LIDAR (Light Detection and ranging), see [66,38]; and 
other applications such as ceilometers and satellite measurements that contribute to 
minimize site efforts for measuring wind speed and turbulence conditions, see figure 3.1.  

 

 
Figure 3.1 - Turbulence intensity, , variation with mean wind speed, , for different heights measured at the 
M2-platform at Horns Rev. The observations of the cup anemometers are shown in the left panel and the LIDAR 
observations in the right panel. The lines result from a lest-squares fit of the data taken from [38]. 

 
Turbulence is defined as the standard deviation of wind speed for a measured time interval T 
and with the turbulence intensity is defined as the ratio of the turbulence to the mean wind 
speed in an interval T (see equation 2). The variance of the wind speed is estimated from 
  (4) 

 
where  is the mean wind speed and  is the time interval. The turbulence can statistically 
be approximated by a Lognormal distribution: 
  (5) 

where 

 
(6) 

 (7) 
 

According to IEC 61400-1 [67] the value of  is  

 (8) 
 
where  is the expected value of the turbulence intensity at 15 m/s (IEC-61400-1). Further, 
the model for the mean turbulence is:  
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 c) (9) 
 
where  is a factor in m/s. In addition to free flow turbulence, inside a wind farm wake effects 
originating from upwind surrounding turbines are present. The deficit of the wind speed is 
high in the next two diameter distances (near wake interval) from the turbine and decreases 
until a minimum, see [68]. Further, the turbulence increases in wake compared to free flow. 
This in-wind farm effects can be considered by an effective or equivalent turbulence model. 
The concept of an equivalent turbulence is representing the real turbulence such that it 
basically produce the same fatigue damage by combining and considering the effects of free 
flow conditions. 

The turbulence model used in [67] and proposed by Frandsen [53], is used in this work. It 
has the following general characteristics: 

a) Simple implementation of the model avoiding major modifications of calculations. 
b) When formulating the equivalent concept, the material properties get included in the 

load calculation (Wöhler exponent of S-N curve). 
c) The model can be calibrated to site conditions 
d) The main assumption is the proportionality of turbulence and response of the OWT. 
e) Limitation in maximum number of wind turbines (eight surrounding wind turbines). 
f) Uniformity assumption of wake conditions around the OWT. 
g) The fatigue is considered to be linearly accumulating. 

 
The equivalent turbulence is modeled by: 
 

 (10) 

 (11) 

 
where  is the effective turbulence,  is the number of neighboring wind turbines,  is the 
probability of wake conditions,  is the normalized distance of the jth OWT,  is a constant 
equal to 1(m/s),  and  are the maximum equivalent center wake for wake and free flow 
turbulence. 

3.3.2 OFFSHORE
At offshore locations, wind fields behave different than at land. The sea surface roughness is 
much smaller than at land [39]. Waves are depending on micro and macro phenomena such 
as: earth translational and rotational movements, moon gravitational influence, geographic 
and geomorphology of the location, ABL’s temperature changes and surface wind 
conditions. These phenomena impact in tide, waves and current at offshore locations. The 
sea states can be measured by buoys and met-masts which generally provide: 

a) Sea level at different time of the day, year and specific conditions. 
b) Wave heights  
c) Current and tide information 
d) Wave roses from frequency of wave direction occurrence 

 
According to the statistics, wind and wave correlation is generally strong for sea locations 

while at offshore locations that are close to the shore, this linearly correlated relation 
decrease due to the fact that large significant wave heights are developed with small mean 
wind speeds [58], see figure 3.2. Further, refraction can change the wave direction. A 



 
Chapter 3. Assessment of Fatigue Reliability 
 

José Guadalupe Rangel Ramírez 

16 

loading decoupling between wind and wave can exist. This effect is changing the 
concentration of damage in sectors of the OWT. 

 

 
                                 (a)                        (b) 

Figure 3.2 – (a) Yearly average significant wave height as function of yearly average wind speed at 10 m height 
from NESS/NEXT database, grid point NL-1 from [48]. (b) Wind-wave scatter diagram for winds from the sea 
and shore during storms [58]. 

 
In this dissertation, the wave, wind load and their intrinsic characteristics are jointly taking 

into account through the influence function that is considering the following: 
a) Wind load directly correlated with the wave load (load cases, simulated and 

recorded time history load) 
b) Free flow turbulence 
c) Stress effects in structural details 
d) Control system 
e) Structural layout 

 
The influence function  is defined as the ratio of stress ranges to the mean wind speed 
for a characteristic case, see figure 3.3. This function can be obtained through 
measurements or simulation. Taking realistically, direct measurements of stresses in steel 
details for long periods are not common in OWT and neither devices have been 
implemented that were reliable due to their deterioration in long terms. Indirectly an 
estimation of stresses conditional on the mean wind speed can be done by using vibration 
and acoustic measurements at mechanical parts in the OWT, e.g. the nacelle. The 
disadvantage of recordings is that the resulting influence functions are limited by the setup of 
the installed wind turbines.  

 On the other hand, simulation can be used to theoretically obtain the influence function 
for multiple cases. For loading, code-based load cases [67] can be simulated by generating 
wind fields with turbulence and wave conditions for different setups of the OWT. Moreover, 
different structural components can be considered and also a variety of support structures 
(monopile, tripod, jacket, suction bucket and concrete gravity), material properties (cast iron, 
steel, carbon fiber) and control systems can be included. This complexity in modeling and 
characterization of the OWT can be summarized and integrated in the reliability analysis by 
the influence coefficient that in principle reflects the loading distinctiveness conditional on the 
wind turbine properties.   
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(a) (b) 
Figure 3.3 – (a) influence function for blade flap moment – pith controlled wind turbine. (b) Influence function 

for mudline bending moment – pitch controlled wind turbine, from [52]. 
 

3.3.3 MONITORING OF OFFSHORE WIND TURBINES
For OWTs, surveillance actions can be classified depending on the measurement time 
and/or interval of monitoring: Real-time and long-term monitoring. Real-time condition 
monitoring systems are typically implemented inside the nacelle. The mechanical and 
electrical components in the nacelle are mostly low reliability components where monitoring 
efforts are intended to maximize their performance and reduce the downtime periods. A 
general view of monitoring systems and devices are described in [69] and [70].  

Examples of these OWI’s monitoring systems are considered in the research projects 
CONMOW [71], Cleverfarm® [60] and [72] where use of e.g. vibration and acoustic sensors 
makes it possible to measure the velocity and acceleration in mechanical parts. Besides 
sensors, a fault detection architecture provides damage-detection algorithms to monitor the 
inside components. Additional to the SCADA system (System of Control and Data 
Acquisition), online resources for prediction coming from meteorological satellite 
measurements [60] are integrated.  

When this thesis is concerned about high reliability components, the low-reliability 
component measurements coming from the SCADA system are not directly relevant or 
useful. Nowadays, load monitoring algorithms for wind turbines have been developed for 
components such as blades and rotor component, see [73] and [74]; where optical and 
temperature sensors give the information for load counting [62].  

Inspection and supervision of the state of the OWT details can be considered as long 
term activities for monitoring. Commonly, inspection activities are mostly carried out for 
OWT’s structural components in reachable areas. 

3.4 FATIGUE
The loss of strength as a result of cyclic stressing over a period of time is a general 
phenomenon that takes place for most materials. This failure scenario can take place in 
situations where loads are under the design loads for extreme, ultimate limit states, no 
matter whether static or dynamic conditions are considered. This failure phenomenon was 
first noticed in the nineteenth century by Albert [75] and one of the first researching this 
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phenomenon was Wöhler [76] that investigated the fatigue endurance in railway axles under 
constant amplitude loading. Palmgren [77] and Miner [78] proposed a cumulative linear 
damage model that considers variable amplitudes for fatigue life prediction. 

In short, fatigue life of a component can be summarized in three phases: crack initiation, 
crack propagation and final fracture. From an engineering outlook these periods can be 
defined in two stages: crack initiation life NI that is defined by the number of loading-straining 
cycles required to develop a microcrack and NP that is the number of cycles required to 
propagate a crack to critical dimensions. The last phase may be neglected by stating that it 
can be a sudden state of the crack or very close to the failure. The total fatigue life NT can be 
expressed as: 

 

  (12) 

 
The fatigue problems in components are addressed by estimating the ‘total fatigue life’ in 

terms of the stress-strain statistical properties and environmental conditions. The approach 
proposed by Wöhler together with the Palmgren-Miner linear cumulative damage rule 
represents a simple formulation for estimate the fatigue life. 

Several approaches for adopting safety measures for fatigue failure scenarios have been 
considered. The safe-life approach (1950’s) through fatigue tests intended to predict the 
replacement time for components (aircraft components). This approach often represented a 
very conservative safety measure for decisions on replacement depending on whether or not 
visual damage was present. This replacement could be of the entire system.  

The fatigue-safe approach (1960’s) is aimed for failure modes and paths taking into 
account structural redundancy. Somehow, it was understood that the system robustness will 
give it sufficient capacity to operate during crack propagation period and individual failures.  

Finally, the damage tolerance approach (1970’s) is based upon more sophisticated 
fracture mechanics techniques and rules. The overall assumption is that the system is 
imperfect and flaws may be found at stress-hot spot sectors where the failure and crack 
grow can be predicted, detected and supervised. This approach involves the calculation of 
crack growth rates by fracture mechanics models. 

The fatigue crack propagation is influenced by the micro-structural nature of the material, 
mean stress, frequency of load application, the environment and the constraints of forces on 
it. There have been many efforts to describe the crack development by different crack 
growth laws. The Paris-Erdogan law [79] is one of the broadest used: 

 

 (13) 

 
where  is the crack size,  is the number of cycles,  is the stress intensity factor range,  
is the crack growth rate and  is an exponent. These last to are regarding the material 
constitution. The stress intensity factor range is a parameter that considers the energy 
release rate and crack driving force by the following definition: 
 

 (14) 
 
where  is the stress intensity factor range in the stress cycle and  is the geometry-
function that takes into consideration the shape and geometry of the specimen and crack. In 
the assessing of fatigue life at the level of the crack, the stresses are substantially affected 
by the following factors: 

a) Surface finish. There are three characteristics that will affect the fatigue endurance: 
surface irregularities, condition of the surface (cold worked or softened) and residual 
stress conditions. 
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b) Size of detail. It has been observed that fatigue endurance varies with the size of 
specimen (detail, component). E.g. when the welded flaws is large in volume there is a 
higher probability of failure due to imperfections, see [80]. 

c) Load type (Bending, axial or torsion loads) and mean stress level influence the crack 
growth.  

d) Temperature.  
e) Stress concentration factor: geometrical shape of the detail or component. 
f) Notch sensitivities (size and material). 
g) Miscellaneous effects: corrosion, electrolytic plating, cyclic frequency, etc. 
 
These factors are not directly taken into account in this work except the stress 

concentration factor (SCF) influence. To take into account the mean stress level, a reduced 
and modified fatigue strength may be calculated by Soderberg, Gerber or Goodman criteria, 
see [80]. 

For more than a century where fatigue research have taken place, the presence of fatigue 
endurance have been consolidated in the S-N Curve or fatigue endurance curve by Wöhler. 
The SN-curve is typically constructed on either logarithmic or arithmetic scale that 
indistinctively present the scattered points, having in logarithmic scale the advantage of 
easily observing the ‘knee’ part that is present when carbon steels are analyzed, see figure 
3.4. The curve can be described with the following equation: 

  (15) 
 
where  is the number of cycles to fatigue failure,  the stress ranges and  is a material 
parameters. When there is bilinear consideration, the second part of the SN-curve is typically 
starting from the fatigue limit   for constant amplitude stress ranges at the number of 
cycles , see figure 3.4(a).  defines the stress range for simplicity but typically in literature 

 is used. In following text both will have the same definition and will be used indistinctively.
When a fatigue design analysis is to be performed, the efforts are usually concentrated in 

determination of the expected fatigue life through analysis of the loads history. During the 
load history there are important features that are fundamental to know such as global 
characteristics (variation of stress amplitude and mean stress) and sequential characteristics 
(variations of sequences of the load). To obtain the information from these load-histories, 
cycle counting algorithms are used. These methods may be classified in four groups: 
rainflow counting, level crossing, range/mean and probability methods. 

 

 
Figure 3.4 – SN curve and basic fatigue load stress history 

  
Using the Palmgren-Miner rule of linear accumulation of damage and the SN-curve the 
following discrete formula can be used for the accumulated damage:   
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and introducing  

 
 

 

 

(17) 
 

where  is the total number of cycles of loading and  is the probability density function of 
stress ranges for a variable amplitude loading. 
 

 
Figure 3.5 – Long-term cycles of loading with  fitted density distribution 

 
An important concept in the fatigue analysis and design for OWT is the “equivalence” 

concept that can be formulated for loads, stress ranges and response conditioned on the 
type of load (wind), intensity (speed and turbulence) and alternative features (structural 
component, site, height, recording time, etc).  

The formula (17) represents an equivalent stress range approach. In the case of OWT, 
the distribution function of stress ranges is conditional on the n-minutes wind speed 
(recordings) considering a specific regime of turbulence (free flow in the simple case) at a 
definite site, see figure 3.5.  

In the equivalent turbulence model in formula (10) from [53], the concept of fatigue 
damage was used and it includes wake effects when calibrated for offshore (or onshore) 
conditions. The probability density distribution of stress ranges coupled with the IEC’s 
turbulence model [67] is conditional of the n-minutes (typically, 10 minutes) wind speed at 
hub height. With this model, it is possible to consider both free flow and in-wind farm wake 
effects. The Influence function accomplished to include turbulence conditions and 
characteristics of the simulated wind fields. 

The probability density function of stress ranges given n-minutes wind speed (at hub 
height) can approximately be represented by the Weibull distribution. This typically results in 
a good fitting when not too high values of the Wöhler exponent are used, see [31]. 

With respect to the damage equivalent fatigue load concept, there are some remarkable 
conclusions in [54] about its application: 

a) When different loading conditions are considered, e.g. wind, wave, etc; the 
superposition of fatigue loading of the different load should be done carefully 
considering in- or out-of phase loading and directional misalignment of wind and 
wave loads. 

b) For OWT different ways to handle the aerodynamical and structural damping may 
result in up to 7% errors in the estimation of the equivalent fatigue loading, 
depending on the component. 

 
Structural components such as tower, support structure and transition node have areas 

where the fatigue damage is concentrating and are important to identify by a structural 
analysis. In the context of this work, the ‘hot spot’ term will be used for those small areas or 
sectors in the components where damage will appear as cracks. Hot-spots typically appear 
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in joints with weld seams and local phenomena such as discontinuity of material, stress and 
geometry can be expected to be significant. 

The design codes for OWTs are partially the product of gained knowledge in adjacent 
areas such as offshore regulations in the O&G industry, marine technology, electrical 
equipment, material, corrosion, and other topics, see [33]. However, former knowledge could 
not precisely be matching with what is needed in the OWI, e.g. load cases and load 
superposition, Inspection and maintenance scheduling based in the O&G industry.  

 

3.5 FATIGUE RELIABILITY FOR OFSHORE WIND TURBINES

A variety of SRM may be applied for OWT structures [44-46]. Fatigue failure in the structures 
is generally expected at long terms and conditional on the nature of deteriorating factors 
(load and site conditions) and material properties. Once it is identified as a time-dependent 
deterioration process, a life cycle analysis can be performed for the discrete chosen interval, 
e.g. hours, days, months, years; depending on the characteristics of the problem. 

In this work, FORM (First Order Reliability Methods) were used to assess the fatigue 
reliability during the design life. Commonly, SORM (Second Order Reliability Analysis) or 
Monte Carlo simulation techniques are jointly used but in this work focus is on the accuracy 
of the proposed models or limit state equations and the SRM are not attempt to be 
compared. In [114] is described a general view of reliability methods and uncertainty 
analysis applied to wind turbines. 

Several models to assess the reliability can be found in the literature. Tarp-Johansen [49] 
proposed and used a fatigue limit state function based on the Palmgren-Miner rule for the 
accumulation of damage which includes uncertainties related with the response, load and 
material; additionally a probabilistic calibration of design factor is carried out. In the same 
year and jointly with Sørensen [81] a more elaborated limit state equation is used but 
uncertainties with the response were not considered. Veldkamp in [48] presented a more 
elaborated study of uncertainties and a fatigue probabilistic model that take into account an 
extensive number of uncertainties. Further, Sørensen et al. in [19] and [52] presented a 
more mature model for assessing the reliability where equivalent fatigue load and damage 
concept are incorporated. In this model the characteristics of the load, modeling and 
response are included by an influence function and a code-based model is included. The 
previous mentioned model is used too in this work for the reasons mentioned in (section 3.2) 
concerning the IEC-6400-1 turbulence model. 
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4.1 INTRODUCTION
When OWT are compared with other offshore structures several notable facts appear. Unlike 
O&G industry, OWI profits of the site interaction per se. There is no more structural 
protection than a reliable overall design, damage control and a proper control system 
managing the load input. Furthermore, in a failure scenario, the economical and energy 
production loss is not reversible.  

In the O&G industry, reliability- or risk-based approaches are applied to manage the 
deterioration process that certainly is regarded as a highly uncertain process. These 
methodologies can also assure a proper performance for OWI.  

Historically, Risk-based approaches have a qualitative predecessor. The inspection and 
maintenance (I&M) management was motivated by industrial growth at the past mid-century 
when it was advocated to reduce failures and unplanned downtime with time-based 
preventive maintenance programs. These programs and techniques began as research 
models until the 1960’s (RCM-Traditional Reliability Centered Maintenance [82]) with the 
purpose of optimizing the I&M programs mainly with focus on the Airline industry, see [83] 
and [84]. 

From 1960’s to middle 1970’s several aspects were improved concerning the inspection 
and condition monitoring techniques providing more information about the state of 
equipment and posterior failure states; making qualitative failure-based preventive actions 
more effective than the large time-based preventive maintenance programs used earlier, 
resulting in better designs with less failures as a result. 
 With the arrival of computers, more quantitative approaches were used to optimize 
maintenance qualitative models. Moreover, failure data-bases, measuring technology and 
theory of reliability made it possible to develop a full quantitative, reliability-based 
maintenance (RBM) methodology that was motivated mostly by the developments in the 
mainstream industry (aeronautical, petroleum, marine and nuclear industry). The gain in 
structural performance provided the data-based feedback to the support decision process 
and refinement of the numerical and probabilistic models. The decision process in RBM is 
based theoretically on Bayesian decision theory ([85] and [86]) and the developments during 
the last almost four decades finally found in Risk-Based Inspection (RBI) the rigorous 
probabilistic tool to manage decisions on damage and risk. RBI can be used to prioritize the 
minimization of inspection budgets by embracing the suitable life cycle performance and 
even consider posterior stages. 

In offshore and marine engineering, Risk-Centered Maintenance (RCM) could be defined 
as a process for determining what must be done to ensure that any equipment continue to 
do whatever its users expect it to do [87]. RCM has hence mainly focus on the system 
functions and not on the system hardware that can be achieved using the RBI approach as a 
risk management tool. 
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RBI methods for O&G installations have been developed during the last 3 decades, see 
e.g. [88-96]; giving a theoretical guideline based on Bayesian decision theory [97-99] that 
can be applied also to offshore wind turbines. Based on RBI methods for O&G installations, 
a framework for optimal inspection and maintenance planning for OWT can be developed.  

4.2 RISK BASED INSPECTION AND MAINTENANCE OPTIMIZATION 
In contrast to other structures, OWTs usually represent low risk of human injury, allowing the 
allocation of a minimum reliability level obtained by optimization of the risk-based preventive 
action costs. The expected costs of the inspection strategy can be optimized by performing 
time-tabled inspection when reliability level is close to a minimum established by codes and 
practice recommendations. In work of Faber et al. [100], Sørensen et al. [101] and [102], and 
Straub [103] a cost- and reliability-based framework is used for inspection planning of steel 
structures. Application to OWT has been mentioned in Sørensen and Tarp-Johansen [50] 
and described in the PAPERS [I, II].  

There is an important difference with application to OWI that can make that the 
economical optimization be taken one step further. The condition monitoring and external 
measurements can provide additional information that may be considered in the RBI 
approach. In the PAPER [III], it is schematically described how this information affects the 
process and how through Bayesian statistics this can be integrated into the RBI approach 
(see the next chapter) by updating the stochastic model. This work is not going further in the 
economical analysis but in the application of RBI methodology by using the SN fatigue and 
Fracture Mechanics approaches for the assessment of reliability.  

4.2.1 ASSESSMENT OF RELIABILITY WITH IN RBI APPROACH  
Typically in the RBI methodology two approaches are used for assessment of the reliability: 
a SN-fatigue approach based on the fatigue capacity of the component (its material) and a  
fracture mechanics (FM) approach. In the FM-approach a simulation approach is usually 
used to estimate the reliability. In codes and standards the minimum reliability level is usually 
implicitly given though specified SN-curves and partial safety factors. Therefore to obtain the 
required reliability level the FM approach is usually calibrated to give the same reliability 
level during the life cycle of the structure as obtained by the SN-approach.  

In the SN-approach assessment of the reliability is addressed from a theoretical, physical 
or code based formulation for the components. The probabilistic model and limit state 
equations are based on parameters that take into account uncertainty of material, load and 
structure, not involving an indicator of damage in the real structure [105]. This absence of a 
damage indicator would make the SN-approach a sort of safe-life approach for fatigue life 
estimation - making it only possible to integrate information through the stochastic modeling 
and not though direct measurements of the damage (crack). 

The FM-approach (a sort of damage tolerance criterion) uses a fracture mechanics model 
to formulate a direct relation between the damage estimators and uncertainties. This is 
important when using the possibility of integration of field-knowledge, e.g. inspection results, 
measurement and monitoring information. In principle, the FM approach is the link between 
the SN-approach with no direct damage measure, e.g. crack, wear, denting, and code based 
reliability requirements. 

RBI uses both approaches for assessment of a minimum annual reliability / risk. Although 
in this work the minimum reliability level is chosen without a direct relation to a risk 
acceptance criterion (RAC), the minimum reliability level should be attained based on a 
specific RAC. Straub and Faber in [106] proposed a RAC for offshore structures that can be 
applied into a RBI framework and further in Straub [103] a generic approach to RBI planning 
for steel structures was proposed where the RAC also take into account system 
considerations. Making an analogy with the early methods (section 3.4) to estimate the 
fatigue endurance, the use of RBI with a RCA can be seen as a fatigue-safe approach.  that 
is shape when are used a damage-tolerance (FM), a safe-life approach (SN) and is regarded 
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the component contribution to the system failure. In this chapter is briefly describing general 
aspects of the RBI analysis that were not mentioned in the compilation of technical articles at 
the end of this work.   

4.2.2 RELIABILITY ASSESSMENT USING THE SN-APPROACH 
In reliability assessment using the SN-fatigue approach the minimum requirements 
established by design specifications are followed, playing the role as analysis-indicator of the 
minimum levels of reliability that should be achieved by the detail. The probabilistic model 
uses the variables related with the material properties (SN-curve), site conditions (wind, 
wake and wave condition) and studies of local structural and material properties in certain 
hot spots (stress concentration). No one of the measurements and indicators are directly 
related with damage condition in the structure, e.g. crack, wearing and denting. This makes 
the SN-approach mainly a theoretical approach with the possibility of to require an inspection 
when reliability is lower than the minimum established level.  

In the PAPERS [I-IV] of this work are shown probabilistic models for evaluation of the 
reliability. An extended explanation can be found in [52]. The First Order Reliability Method 
(FORM) is used for assessing the reliability with the probabilistic model and the fatigue limit 
state equations in [52]. This model is a product of the following assumptions: 

a) Wind fatigue load dominates the load cases 
b) Equivalent load concept conditional on the mean wind speed conditions at the site is 

used. 
c) The response of the structure is considered a narrow-banded Gaussian process 

[104] implying that the average frequency of crossings of an establish level of the 
response is proportional to the time interval, e.g. years. 

d) Linear accumulation of damage and additional assumptions of the model proposed 
by Frandsen [53] for wake effects, see the end of section 3.3.1. 

 

4.2.3 RELIABILITY ASSESSMENT USING THE FM-APPROACH 
Offshore sites represent highly different sets of events that can be well addressed and 
described by probabilistic models. The FM-approach is the RBI part that establishes the 
connection between code-based formulation with field conditions (measurements, 
inspections and monitoring) through incorporating structural damage indicators in the 
reliability analysis. For the application of the FM-approach the equivalent stress range 
concept is used and the methodology is shortly described in the following steps: 

a) Simulation of a set of values for the different stochastic parameters that are 
described in probabilistic manner in the stochastic model. 

b) Calculation of parameters in the probabilistic model. These variables include: 
equivalent stress range, fatigue life, crack size, etc. 

c) Statistical analysis of data 
d) Updating through the events of no-finding or finding the damage and repairing. 

 
In the simulation of parameters it is intended to obtain set of the outcomes that reflects the 
probabilistic characteristics of the model when the uncertainties are included. This simulation 
process can be performed by deriving continuous density functions from the uniform 
distribution by transformation of variables [107]. Random number generator algorithms 
should accomplish with six desirable properties, see [108]: randomness, long period of 
repeating, computational efficiency, repeatability, portability and homogeneity. In this work a 
congruential quasi-randon number generator is used and to assure a well-spread sample 
(not depending in the number of generated values) by randomization [109]. 

The calculations in step b are concerned about the application of the formulas shown in 
the published technical articles jointly with the fracture mechanical model for the 
accumulation of damage (see section 3.4). Once the simulation is performed, statistical 
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analysis is performed for the different intervals of the life cycle (yearly basis) and the 
decision process is started including the decision of repair or not depending on the detected 
damage, i.e. cracks. In this work, the crack is assumed to be repaired once it is found.  

The assessment of the FM-fatigue life results in a FM-reliability curve fitted to the SN-
reliability curve during the whole design life or in the most important interval, see figure 4.1. 
The variables that are iteratively changed in this process are the expected value of the crack 
growth rate and the initiation period of the crack, see figure 4.1-c. Convergence of the 
iterations are obtained when the sum of the differences between the cumulative reliability 
indexes in FM- and SN-approaches for a target period is minimized, see figure 4.1-d. 

 

 
Figure 4.1- (a) SN- and FM- annual and cumulative reliability indexes for a welded steel detail.  (b) SN- and FM- 
annual and cumulative reliability indexes for cast iron steel detail. (c) SN- and FM- cumulative reliability indexes 
for welded steel detail considering updating.  (d) Minimization curve for the crack growth rate. 
Δβ-Annual reliability, β-Cumulative reliability, WS – Welded Steel detail, CI – Cast Iron detail, IWF - In-Wind Farm location, S-

Single/alone location, L-Linear SN-curve, BL-Bilinear SN-curve and CMI-Condition Monitoring Information. 

4.3 INSPECTION AND REPAIR PROCESS 
In the FM-modeling process, the inspections can result in detection or no-detection of cracks 
at hot spots. This is modeled through the probability of detection curve (POD). This 
probability function takes into account the following: 

a) Inspection method 
b) Inspector experience 
c) Miscellaneous factors depending on the: environment, material, type of defect, 

number of inspection, location of the defect and characteristic of the defects. 
 
Unsuitable use or modeling of the probability of detection will influence the reliability of 
updating and the entire RBI of the detail. Straub and Faber in [110] and [111] exemplify the 
influence of choosing of an inappropriate POD which can result in a non-optimal decision of 
repair. In PAPER [VII] the influence on the RBI analysis is described by changing the POD-
defining parameter (expected minimum detectable crack) within a framework of probabilistic 
calibration of fatigue design factors (FDF). This can result in lower values of FDF if too small 
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detectable crack sizes are used. In this work the POD curve was modeled by an exponential 
model. 
 

4.4 PROBABILISTIC CALIBRATION OF FATIGUE DESIGN FACTOR 
This section is dealing specifically with the PAPERS [VI,VII] where a framework for 
probabilistic calibration of fatigue design factors (FDF) for OWT is proposed. The purpose of 
this work is to establish the first step in the calibration of fatigue design factor for OWT by 
using the SN- and FM-approaches resembling the work done in [112] where the calibration 
of partial safety factor is carried out for a specific code format. The calibration presented in 
this work is following the steps recommended by the Joint Committee of Structural Safety, 
JCSS, see [113].  

The probabilistic calibration can be classified in two types: FDF-calibration for a design 
life without inspections and with inspections. When no inspections are considered the FDF-
calibration can be carried out using only the SN-approach and an iterative process to find the 
corresponding FDF secure that the detail has the acceptable minimum reliability in the life 
cycle period, see illustration in figure 4.2.  

When inspections are planned to be performed the use of the FM-approach is necessary 
as explained above. The calibration now consists of two iteration steps: calibration of the FM 
probabilistic model to the reliability obtained by the SN-approach such as described in 
section 4.2.3. Unlike RBI, the calibration of FDF has an additional difficulty because it has to 
be performed iteratively taking into account the whole design life and the inspection times, 
see figure 4.3. The methodology proposed in PAPER [VII] is influenced by the inspection 
conditions by the POD-curve where different values or minimum detectable crack sizes are 
used. This results in important changes in the FDF values. 
 

 
Figure 4.2- Reliability indexes in the probabilistic calibration of FDF for no-inspections during the design life. 
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Figure 4.3- Reliability indexes in the probabilistic calibration of FDF, having one inspection during the design life. 
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5.1 INTRODUCTION
Uncertainties involved in the structural analysis and design are the reason of the application 
of a quantitative probabilistic treatment in engineering problems. Before the probabilistic 
modeling, the first efforts are concentrated in the gain of information from any source with 
the purpose to reduce the uncertainty. 

Nowadays with the advances in measuring technology, recording and inspection 
techniques, the quality and quantity of information give a good support to the modeling. OWI 
has many sources of information with variable-time basis, from the infinitesimal (sensors) to 
long-term lapses of time (inspection results). It is important to mention that external condition 
monitoring is commonly performed in offshore wind farms, providing information about the 
climatic condition and medium where the OWT are placed. 

In this section is described how to integrate information by updating the stochastic model 
during life cycle. The updating of information can be carried out in several different manners, 
attending to the characteristics of the information and condition of the problems. In the 
following diagram these updating options are shown. 

 
 

 
 

5.1 Updating Process within RBI framework. 
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In this chapter the process of updating mainly is based on Bayesian statistics. However, 
there are more techniques for back-estimation of parameters that can be applied in SRM, 
see [115, 116]. Furthermore, the use of non-parametric Bayesian methods is emphasized 
due to their importance when the handling of discrete probabilistic functions is contemplated 
into the SRA.  

Non-parametric Bayesian Updating (NPBU) is computationally more efficient and simple 
when is compared with classical Bayesian updating (CBU). In this work there is no direct 
comparison between Bayesian updating methodologies since they do not have identical 
formulations and assumptions. In the PAPER [IX, X], the application of these techniques are 
described and illustrated. 

In this work inverse estimation of the statistical parameter as part of the updating process 
is not considered. The idea of using the back-estimation as indirect updating of stochastic 
variables can be carried out when there are realizations of an event  available. These 
realization can be related with the event function  that takes into consideration 
variables in the SRA. From  it is possible to back-estimate the variables  inside the event 
and subsequently this can be integrated in the SRA. E.g. with information of the crack size 

, the event function  can be used to estimate the crack growth 
rate, initial crack at any specific time j. A detailed review of inverse estimation of parameters 
is found in [115]. 

5.2 UPDATING THROUGH EVENT
If the new information can be formulated as an event then in the reliability updating an event 
function  is formulated and used jointly with the limit state equation  where X are 
the stochastic variables. The safety margin  will be conditional whether the event 
margin  is taking place or not. This event updating can be carried out into the SRA 
for different set of events and circumstances, see [117] and [118]. For instance, the 
presence, inspection and measurement of crack sizes in a deteriorated component due to 
fatigue loading can be modeled by event updating. Additionally and depending on the 
reparation policy, the damage can be repaired or not, and the reliability can be updated 
according to this.  

RBI is composed by the SN- and FM-approaches. The updating through event into RBI is 
by the FM-approach and considering that the crack was found (POD curve). However, the 
updating can be carried out in SN-approach, see [119].  
 

5.3 CLASSICAL BAYESIAN UPDATING
When it is desired to update the stochastic variables of the probabilistic model, Classical 
Bayesian Statistics can be used. The Bayes’ Updating Theorem is defined as: 
 

 (18) 

 
where  is the likelihood density function,  is the prior density function and 

 is the posterior density function. The likelihood function is the density function of 
the set of realizations  of the variable  conditional on the vector  of statistical parameters 

 that defines it. The prior distribution represents our beliefs or state of knowledge of the 
vector of parameters . The posterior density distribution is the updated distribution of the 
vector of parameters . The divisor is typically understood as a normalizing constant. 

Once the posterior density function is obtained the next step is to calculate the predictive 
distribution function with the following formula: 
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 (19) 

where  is the probability density function of the stochastic variable ,  is the 
posterior density function and  is the predictive, updated distribution of the stochastic 
variables . The predictive distribution conditional on the set of realizations  of  is the 
product of the initial assumed probability density function of the set of realizations of  for a 
given vector of defining parameter  and the posterior density of the parameters  
integrated over all values of . 

By means of the formulae (18) and (19), it is possible to update any of the variables 
considering the former information and measurements. There are some other considerations 
for the updating that is important to take into account:  

a) How well-supported is the prior knowledge of the variables. 
b) The number of parameters defining the prior distribution and the likelihood function. 
c) Type of statistical family, and the use of conjugated prior / posterior distributions. 
d) Possibility of integration of the predictive distribution in the assessment of reliability. 
 
These considerations are vital for carrying out the updating. When the decision makers 

disregard them, it may be result in an erroneous estimation of the predictive distribution and 
the following ‘slip-ups’ may be occurring: 

1) When there is not much information about one or more of the statistical parameters, 
a vague assumption on the prior can be taken. When this case occurs, the decision 
maker should pay attention to both the posterior and predictive distributions to be 
sure that the assumptions are not leading to theoretical and physical wrong statistical 
descriptions of the parameters and variables. Commonly in the literature prior 
distribution is taken as an estimator of the beliefs (prior’s assumptions), see [120] 
and [121]. The predictive distribution is estimated for the need of using it in 
assessment of the reliability. 

2) Wrong assumptions can be made when the prior density functions are not well 
described, e.g. when there is a multi-parameter likelihood function with mixed prior 
distributions. Another example is to neglect (by a simplicity supposition) a parameter 
of the likelihood function that could have an important influence on the variable. 

3) While the application of conjugacy in Bayesian statistics (see [97]) makes the 
calculations a straightforward process, it may also bring limitations in the number and 
parameters.   

4) Once a predictive distribution is calculated the next task is to integrate it into reliability 
analysis in a computational-efficient manner. This is possible for some standard 
density distributions through their transformation and approximations [122]. However, 
for complex multi-parameter conjugated predictive distributions, this task is a 
cumbersome process. 

 
The following sections focus on presenting the updating process with Bayesian 

Statistical Methods. The non-parametric methods are lying in Bayesian statistics, however 
other techniques or methods are used from other fields(see [120] and [124]). In this work 
Markov Chain Monte Carlo techniques (MCMC) are considered within Bayesian statistics 
how they are generally in the Bayesian literature, see [121] and [123].  

There are several approaches for application of Bayesian updating. A formal approach is 
the standard and ideal case using the classical Bayesian updating process. It is assumed 
that former information and beliefs are well supporting the decision of choosing certain prior 
distributions. Moreover conjugation is present to deliver standard distributions for posterior 
and predictive distributions, e.g. known standard deviation and Normal distributed mean as 
prior with Normal distributed likelihood, which then results in a Normal distributed posterior 
and Normal predictive distribution. 

There are several drawbacks with this formal approach: 
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a) Studies related to obtaining the posterior and predictive distributions are limited to a 
few distributions, see [97]; e.g. the exponential family. 

b) When choosing conjugated, multi-parameter prior distributions, the predictive 
distributions become more complicated and it will be more difficult to integrate to RBI 
or SRA, e.g. in the simplest case with unknown mean and variance. 

c) Unrealistic in some cases when the parameters of the prior distributions are 
correlated in the conjugated formulation which again affect the posterior. 

 
When there is no previous information supporting the prior beliefs, the non-informative 

approach can be adopted in CBU. The vague-assumption can be classified as notational 
and functional. The notational handling refers to the use of certain parameter to choose the 
prior and functional to the use a particular distribution function as prior. In the literature these 
procedures have several names: vague, flat, diffuse, non-informative and negligible priors, 
see [126] and [127]. What is in principle done, is giving more weight to the data and 
neglecting the beliefs. This vague consideration results in properly weighted posterior and 
predictive distributions. 

In PAPER [III] it is shown how to integrate the classical Bayesian Approach into the RBI 
format. The influence on the reliability is tangible when the updating is performed on a yearly 
basis. Meteorological measurements can warn about dispersion of data and change the 
statistical properties thus integrating the harsher or milder environments into the RBI 
modeling. Although an increase of reliability is obviously expected, a decrease may be a 
possibility, [128]. 

Additional complexity is added when several parameters are considered, see table 5.1 
where the case of unknown mean and standard deviation for the Normal distribution is 
shown. 
 

Table 5.1 Unknown mean and standard deviation for independent and identically Normal distributed 
samples  of . 

Distribution function Conjugated case
Prior: variance  (20) 
Prior: mean conditional on the variance  (21) 
Likelihood function  (22) 
Posterior: mean conditional on the variance  (23) 
Posterior: variance  (24) 
In prior:  and  (25) 

In posterior:  mean  and  (26) 

In posterior: variance      and      (27) 

 
 is the mean of the stochastic variable,  is the variance of the variable,  is the size of the 

prior sample,  is the prior sample variance,  is the size of prior observations,  is the 
mean of  prior observations,  is the number of samples with sample mean  and  is the 
mean of  prior observations. 

5.4 NON-PARAMETRIC BAYESIAN METHODS
Although the application of classical Bayesian updating methods is diverse, it is arguable 
that there is a lack of ‘flexibility’ when multi-parameter probabilistic models are considered. 
The non-parametric Bayesian updating (NPBU) method is an approximate discrete solution 
of the updating process for multi-parameter models which not necessarily use conjugated or 
relative distributions. Although these methods can be used in a special accurate formulation, 
they are approximations that have more flexibility but somehow conditional on the 
‘computational’ resources. In this section the non-parametric methods are grouped in 1) 
semi- or non-conjugated discrete approximation and 2) MCMC applications. 
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5.4.1 SEMI OR NON-CONJUGATED DISCRETE APPROXIMATION
The notion of conjugacy is connected to explicit parametric solutions (see [129]) that enable 
the decision maker to handle probabilistic models on assumptions, e.g. vague prior 
information, degree of freedom, interdependency of variables, etc. However, drawbacks can 
appear in the notation. On the other hand, the avoidance of conjugacy turns out to be helpful 
numerically but not parametrically. From table 5.1 inconveniencies in the conjugating 
formulations can be exemplified. In formula (21) in the conjugated case, the  term is 
considered for the case of conjugacy. This means that the prior variance on  is proportional 
to the sampling variance and implies the assumption of having the prior variance on  
proportional to the  prior samples of the population and with small values of that, an 
unwanted effect can influence the nominal prior uncertainty for . Although, there is no need 
of obtaining the constant divisor in the formula (18), this can require additional numerical 
efforts when it is calculated. When more than two parameters or any hierarchical sub-
dependence is introduced, the classical Bayesian updating approach may be impossible to 
use in practice, due to the complexity. 

The discrete semi-conjugated updating is a discrete approximation. The definition of the 
posterior distribution  can be rewritten in its discrete form: 

 (28) 

 
By using the definition of conditional probability: 
 

 (29) 

 
and by simplifying, the discrete formulation of the posterior distribution is obtained: 
 

 (30) 

 
The marginal (conditional on the samples) posterior distribution for any parameter  can 

then be obtained by simply summing over the other arrays of parameters, e.g. for calculating 
the marginal of  conditional on the samples  : 
 

 (31) 

In the PAPER [IX] an example is considered for a Lognormal distributed variable 
  with a transformation to a Normal distributed variable .  

 

5.4.2 MARKOV CHAIN MONTE CARLO
The MCMC methods were developed in the middle of the last century [130,131] but were not 
widely used since two decades ago, [132]. In short, these algorithms are based on the 
Markov property of using sequential sets of sampling that are conditionally independent. 
Based on that, these algorithms approximate a target distribution when the number of 
samples tends to infinity just as in Monte Carlo simulations. One of the methods within 
MCMC is Gibbs sampling (GS). GS represents a rather simple simulation technique to 
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estimate the posterior probability density function. Unlike CBU and NPBU, GS relies on the 
full conditional distributions and on a sequential simulation algorithm.  

The dependence on the full conditional distribution gives GS its main advantage and 
strength when a hierarchical arrangement of unknown parameters are constituting the 
stochastic modeling of a stochastic variable . In contrast to crude Monte Carlo simulation 
(MC), the GS algorithm is based on a more elaborated iterative sampling idea but still 
straightforward. In principle, the simulation of sequences of samples represent state of the 
parameters  and with the new set of samples, the new states 

  will be generated by the following recursive algorithm 
 

1) ; 
2)  
3)  
4)  

5) Initializing ; 
 

A general and detail view to GS can be found in [133-135]. In comparison with CBU and 
NPBU, GS provides a simulating technique that can handle updating of more parameters or 
hierarchical definitions of variables, see PAPER [IX]. 
 

5.5 POLYNOMIAL CHAOS EXPANSION APPROXIMATION
In this section is described how the updated stochastic modeling described above can be 
integrated in SRA using a Polynomial Chaos Expansion Approximation (PCEA). This 
orthogonal approximation is a particular technique to tackle the problem of integration of the 
uncertainty in structural reliability analysis.  

When FORM or SORM is used the non-Normal stochastic variables can usually easily be 
transformed to a standard Normal variable by the simple transformation  and 
then integrated in the reliability analysis. In the non-parametrical case or in the case of a 
very intricate distribution the integration to reliability analysis is not simple and could be 
performed by e.g. a polynomial / rational approximation or by asymptotic expansions, see
[136]. In this work a PCEA is used as a generic solution of this problem. 

The “Wiener-Hermite chaos” polynomial function is used assuming that the underlying 
stochastic process is Gaussian, [137]. Although the application of PCEA in this work is 
mainly concerned with incorporation of uncertainty, in [138] and [139] the use of the Hermit-
Chaos expansion is formulated as a framework to account for the randomness and spatial 
variability of mechanical properties.  

Tatang in [140] and Isukapalli in [141] extended the application into chemical engineering. 
In [141] PCEA is used as a functional approximation for integration of uncertainty into a 
computational efficient method for propagation. In this way, PCEA can be used to 
approximate a probabilistic model of a random variable such that it can be expressed as a 
linear combination of Hermite polynomials having a Gaussian stochastic variable as its 
argument.  

The Homogeneous Chaos expansion was proposed by Wiener [137]. The main 
advantage of this approximation is its fast exponential convergence rate when Gaussian 
variables or process are to be represented. However, this rate can be seriously affected in 
some non-Gaussian cases. A review of the Wiener-Askey scheme for orthogonal polynomial 
expansion can be found in [142]. The formulation can be adjusted in two manners: the first is 
by increasing the number of random variables to reduce the random “fluctuations” in the 
stochastic field and the second is to increase the maximum order of the polynomial chaos for 
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handling the non-linear behavior of the process. For probabilistic approximations with one 
stochastic variable, a one-dimensional polynomial chaos approximation is used with an -
order of the homogeneous chaos. The Gaussian stochastic process can be approximated by 
the following series: 
 

 

(32) 

 
The term  is the Hermite-Chaos term of order  in the standard Gaussian 

variables  with zero mean and unit variance.  are Hermite polynomials and  
are Fourier coefficients of the series. The general polynomial chaos of order  can be 
obtained with 
 

 (33) 

 
Equation (32) is the approximation of the stochastic process. From this process, the 
probabilistic characteristics can be calculated using the k-central moments equal to 

. From the first moment and k-central moments the parameters  can be 
calculated under an optimization-minimization least-square scheme.  
In PAPERS [III, IX and X], these three manners of Bayesian updating are applied for OWT. 
The application is shown in uni- and multiparametric cases for stochastic variables in the 
assessment of reliability. The importance of perform the updating of information is found in 
the decrease of uncertainty not only for a certain variable but within the model. In the 
PAPERS [IX] and [X] is emphasizing the application of discrete non-conjugated and 
simulating techniques. The DSCU approach is a approximating tool that is not use 
commonly for updating because CBU is parametrically easy to carried out. However, CBU is 
limited. The Gibbs sampling is widely use as MCMC’s simulating scheme and common tool 
within Bayesian network but its application as updating tool in the assessment of reliability 
have not been emphasize. The application of this NPBU has importance as simple 
simulating tool and because could be seen as the first step to hierarchically update the 
variables within the assessment of reliability.  
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6.1 CONCLUSIONS
This work is addressing the fatigue reliability assessment and reliability-based Inspection 
and maintenance planning of Offshore Wind Turbines (OWT). The fatigue damage is 
assumed to occur in details or hot spots where the cracks are potentially initiated. These 
sectors are found in geometrical and material discontinuities, e.g. in weld seams and casted 
details. Fatigue damage can influence the performance of the structure significantly; 
ultimately resulting in failure and collapse.  

Nowadays, large clusters of OWT are developed in wind farms. Under these conditions, 
the fatigue damage increases due to additional turbulence in wakes for wind turbines within 
the wind farm. This aspect is taken into account by using an equivalent turbulence model 
[52, 53] which is integrated into the assessment of the reliability. 

The inspection and maintenance costs for offshore wind turbines are significantly higher 
than for onshore locations. The application of a Reliability Based Inspection (RBI) framework 
for OWT can improve the inspection and maintenance planning and reduce associated costs 
and thereby decrease the cost of energy. The RBI optimization of inspection and 
maintenance plans can further assure the fulfillment of required risk acceptance criteria for 
OWT. Moreover, the RBI can be managed in a generic system approach [103] to be applied 
as a decision tool to generate inspection and maintenance plans for one wind turbine or the 
whole cluster of OWT, i.e. the wind farm. The migration of the RBI method from the Oil & 
Gas industry brings additional challenges such as: 
 
Offshore ‘atypical’ load cases: The external load conditions and control system generate 
atypical load scenarios such as an extreme load condition with simultaneous wind and wave 
loads at the operational stage of OWT (which requires load extrapolation), load situations 
when there is a voltage fault (variation of electromagnetic torque) during operation, 
misalignment of wind and wave loads, etc. For the fatigue limit state the different operational 
stages and external conditions were summarized and merged into a single load situation 
where damage is accumulating. This is partially allowed by the long-term nature of the 
fatigue damage phenomenon.  
 
Mechanical, Electrical and Control system components: The influence of the control 
system is approximately taken into account by using an influence function (see section 
3.3.2). This function depends on the type of component considered and on the control 
system, which can also be influenced by the external load conditions. In the case of offshore 
platforms in the O&G industry, the wave conditions dominate the wind ones and there is not 
a control system moduling the wave influence. However, for OWT the control function 
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represents an additional ‘effect’ in the normal load situation. Also the configuration of the 
control system is substantially affecting the forces in the fatigue prone details. 
 
Varying characteristics of exchangeable components: the mechanical and electrical 
components generally fail at some shorter time intervals than structural members. When 
failure occurs, the components are changed or repaired. Change of electrical and 
mechanical components could influence the structural parts.  
 
Structural risk criteria are mainly based on economic losses than possible human 
injuries: In the oil & gas industry, the failure scenarios and criteria directly consider the 
consequences of human injuries / deaths and environmental effects. This is not in general 
the case for the OWI and therefore the RBI optimization can be based on economic criteria 
directly. The assessment of structural reliability in this work focuses on the following aspects: 

a) Application of RBI for OWT 
b) Formulation of a framework for probabilistic calibration for fatigue design factors 

(FDF) 
c) Application of Bayesian updating within the assessment of structural reliability and 

RBI 
 
The application of RBI planning for OWT is described in PAPERS [I, II, IV and VIII]. The 
presented cases deal with welded steel and cast iron details. The stochastic and 
probabilistic models are evaluated by sensitivity analyses. From the application of RBI 
planning to OWT, it is concluded that: 

a) RBI can be applied to OWT for single/alone locations and In-wind farm locations. 
This is accomplished by using the model in [52, 53].  

b) The RBI approach could also be applied as a decision tool for estimating the 
consequences of a possible service life extension. Also, RBI can be used for 
strengthening (or reduction) of the programmed inspection & maintenance efforts. 

c) Although the RBI planning was limited to structural components such as support 
structures or transition nodes, the methodology can also be applied to other 
structural components. This application can be achieved by using proper influence 
functions and properties characterizing the considered case.  

d) A particular probabilistic model is used based on [52]. In the work [47-52], it is 
possible to find other models to carry out the reliability assessment for the fatigue 
limit state. The main reason for using the model in [52] is the generic application of 
this to different details, components and the incorporation of an influence function 
that reflects the characteristics of loads and setup of wind energy converters.  

e) The design and limit state equations and the FM model are represented by improper 
functions and have multiple integration processes. This makes the process a time 
and computational consuming process. Due to the use of distribution functions, 
deviation-limit intervals (instead of improper intervals) can be set up. However, the 
simulation process counted in thousands can still be a time consuming process. E.g. 
with up-to-date (dual workstation processor) computational resources, approx. 400 
hrs. CPU time is needed for one case of RBI planning for 20 years life time. 

f) According to the equivalent turbulence model in [53], wake conditions have a 
detrimental influence on the reliability level. As many surrounding OWTs exist, the 
inner one will have lower reliability if not designed for the higher wake induced loads. 

g) The use of bilinear SN-curves (for design and reliability analysis) decreases the 
reliability levels in the life cycle. Although the change in slope in the bilinear case is 
certainly assigning higher number of cycles for low values of the stress ranges, the 
reliability is affected by the additional larger uncertainty of the bilinear part. 

h) From the obtained reliability values, it can be seen that the life cycle reliability is 
lower than for oil & gas offshore structures. 
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The framework for probabilistic calibration of fatigue design factors (FDF) presented in 
the PAPERS [VI and VII] follows the steps recommended by Joint Committee of Structural 
Safety (JCSS) for general code calibration, see [113, 143]. From the results of the proposed 
framework for probabilistic calibration for FDF in PAPERS [VI and VII], it can be concluded: 

a) The FDF values can be reduced when inspections are performed. The decrease will 
be reflected in the costs of the OWT support structure. Although a comparison of 
costs was not carried out, the reductions of the FDF and associated less cost of 
materials should be further investigated in comparison with the additional life cycle 
costs to inspection and maintenance / repairs. 

b) The influence of the quality of inspections on the FDF is important. When the quality 
is reduced the FDF values will be higher. Although the examples are illustrative, they 
basically show the effect of the inspection quality.   

c) The framework of reliability-based calibration of FDF values can also be used as a 
tool to determine a cost-effective fatigue design considering initial design cost and 
service life costs of a given wind turbine or wind farm. 

d) Due to the larger uncertainty associated with the turbulence in a wind farm, the 
required FDF values for In-wind farm locations are larger than for a single wind 
turbine. 

 
The application of Bayesian updating within the assessment of updated reliability and 
RBI is addressed in the PAPERS [III, IX and X]. he PAPER [III] presents a straightforward 
Bayesian inference application with an illustrative example of integration of condition 
monitoring information using uni-parametric, classical Bayesian updating. Although the 
examples in PAPER [III] are rather simple, they illustrate the main features of updating 
process into a RBI framework. The application of classical Bayesian updating allows an 
effortless integration of the predictive distribution because this is represented by a standard 
distribution function. However, when classical multi-parametric Bayesian updating is 
considered, the integration of uncertainty can be a cumbersome task. 

In the PAPER [IX] and [X], the application of Non-Parametric Bayesian Updating (NPBU) 
is shown for the fatigue assessment of reliability. These papers focus on presenting NPBU 
as a generic updating tool within the assessment of reliability of OWTs. In these papers, the 
integration of uncertainty is carried out by a Polynomial Chaos Expansion Approximation. 
This Gaussian-driven generic approximation tackles the problem of integration as described  
PAPER [III]. Additionally, PAPER [IX] and [X] focus on emphasizing the difference in 
formulation of classical and non-parametric Bayesian updating approaches. This difference 
is essential for modeling and solving an updating problem in the suitable manner and not 
increasing the epistemic uncertainty due to erratic conjugation or parameter-dependence 
assumptions.  

Two approaches are shown in the NPBU methods: Discrete parameter updating and 
Gibbs Sampling. Both are helpful tools, where discrete parametric updating is an approach 
for cases with several unknown parameters or hierarchical vectors of unknown parameters. 
This is generally what is needed for updating stochastic models in the assessment of 
reliability.  

In Monte Carlo Markov Chain, Gibbs Sampling carries out the handling of hierarchical 
arrangement of stochastic variables. Gibbs Sampling is a suitable method for multi-
parametric updating for large hierarchical arrangements. The conclusions for integration of 
new information and uncertainty to the assessment or reliability and RBI for OWT are: 

a) The decision on using any of the shown updating approaches should be made 
according to the characteristics of the variable(s) or process to be updated. In other 
words, the notion of conjugacy, mixed prior notation, non-informative assumptions, 
prior independency and general formulation should be representative for the 
stochastic variable and type of information considered. 

b) The non-informative or vague prior information assumption is to be preferred for 
engineering problems rather than functional vague prior considerations. This is 
mainly because predictive distribution is the main target and not only the posterior of 
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parameters. However, when the target is parameter estimation, the functional non-
informative updating can be applied, using the predictive distribution as a right-
choice-of-prior estimator (as in general statistical applications). 

c) Polynomial Chaos Expansion Approximation can be useful to integrate the updated 
stochastic variable for reliability assessment using simulation or FORM/SORM 
methods. Examples indicate that the obtained approximations have less than 2.0% 
error in the 90% confidence interval. However, it is possible that the PCEA deceive 
this adjustment criterion and thus it is necessary to check the quantiles in the 
empirical cumulative density function of the PCEA. It should be mentioned that the 
stochastic variable is somehow close to a normal / Gaussian process with priors from 
the exponential family. This can assure in general a good fit of the PCEA, but in 
cases very different form a normal distribution other polynomials could be relevant 
[30]. 

d) The DSCU and GS can result in posterior distributions that are not symmetrical in 
any of their parameters. In these cases the predictive distribution function is further to 
be considered from normal distribution family, the least-square minimization of the 
PCEA becomes more complicated and the percentiles have to be checked in detail.  

e) In the assessment of fatigue reliability for OWT, the influence of choosing any of 
these updating approaches is especially seen in the beginning of the lifetime implying 
different updated reliabilities, but with ‘almost’ convergence with time. The updated 
reliabilities ended (in these particular illustrative cases) in lower life-cycle reliability 
than if not updating was performed. Commonly, one could suppose that it should be 
the other way around. However, it should be pointed out that the samples were not 
from Lognormal distribution. Additionally, the predictive distribution ended in the 
parametric case as a log-student distribution that is remarkably different than in the 
initial year. 

 
The application of RBI planning for OWT is the first step of application of the RBI 

methodology in the Offshore Wind Industry. Although the considered examples are based on 
a particular probabilistic model, it can also be done using different models. The 
computational resources are important due to the nature of the calculations, which are based 
on simulations and computation of multiple integrals. In this work risk assessment criteria is 
not used directly - a minimum reliability level is simply assumed to be given, mainly based on 
the reliability level implicitly used for calibration of partial safety factors in the IEC 61400-1 
standard. As a first approach to OWT, the methodology and examples indicate that RBI can 
be used for planning and optimization of inspection and maintenance / repair for OWI. 

The framework for probabilistic calibration of FDF values illustrates the potential of 
the reliability-based approach for calibration of FDF values or equivalently partial safety 
factors for fatigue design – and for including the effect of possible inspections during the life 
time of a wind turbine. This can also be useful in possible lifetime extensions of offshore 
wind turbines.  

The application of Bayesian updating within the assessment of reliability and RBI 
does not only show the application within updating and incorporation of uncertainty in the 
OWI, it can be used in other applications in civil engineering. The application of Non-
parametric Bayesian updating methods is someway the transition between Classical 
Bayesian statistics and Monte Carlo Markov Chain techniques that could improve the 
information and integrate the uncertainty for multi-parametric cases and hierarchical 
arrangements in reliability assessments. The CBU is widely used for engineering purposes 
in codes, standards and recommendations. This parametrical handling makes it 
straightforward to integrate the information. Nonetheless, it should be considered according 
to the characteristics of the problem if full conjugation and mixing notation schemes make 
sense. The DSCU approach is useful when multivariate updating is considered. It lacks of 
parametric handling, full conjugating scheme and represent an approximation. These last 
two characteristics could not entirely be seen as disadvantages due to the fact that the 
second one possibly makes the easy handling of multivariate updating and the last can be 
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minimized in error by managing the discrete vector size. In the other hand, the Gibbs 
sampling is depending on quasi-random processes, a simulation algorithm and discrete 
considerations. That makes it less exact for updating but unlike DSU and CBU, this MCMC’s 
sampling technique can manage hierarchical arrangement of variables in the stochastic 
model in the assessment of reliability. The application of DSCU, GS approaches jointly with 
PCEA can also be applied to other structures and into a risk-based framework for OWT in 
order to strengthen or reduce the maintenance and inspection efforts in the life cycle of the 
infrastructure. 
 

6.2 FUTURE WORK
In the RBI application for OWT the following aspects could be considered for further 
research: 

 For future and nowadays clusters of OWTs, a generic approach to RBI planning for 
OWT could be helpful for decision making on management of I&M efforts for given 
hot spots, different components and groups of OWT. Generic RBI for planning of oil 
& gas industry has already been developed [103]. However, offshore wind turbines 
have additional challenges such as: Clusters of OWT (different structures), different 
components, different rates of damage affectation (single or in-wind farm location), 
etc. 

 The minimum reliability level to be used for offshore wind turbines should be 
established by use of risk acceptance criteria. There are different criteria proposed by 
oil & gas industry but offshore wind turbines have characteristics that would not allow 
these criteria to suit properly.  

 A cost analysis of the application of RBI may be carried out to investigate the cost 
impacts of a risk-based inspection and maintenance methodology. However, this 
requires that realistic costs models can be established. 

 Several different probabilistic models to assess the fatigue reliability have been 
proposed, see [47-52]. These models should be compared and evaluated to find their 
benefits and weaknesses for particular cases using a RBI format. 

 The stochastic variables are reflecting the uncertainty in the design and physical 
models. To assessment and to find the probabilistic distinctiveness of the variables, 
statistical analysis, measurements, recordings and simulation approaches are carried 
out. Depending on the source of information, it is possible to devise a hierarchical 
path or formulation to define the probabilistic model for a stochastic variable . 
Instead of just taking the data and assume a distribution function, the hierarchical 
arrangement will result in a distribution for the variable. Non-parametric updating can 
be used to update the information through the hierarchical model and PCEA can 
integrate the uncertainty to the assessment of reliability of the OWT. This 
methodology should be further investigated. 

 Further work is necessary to settle a framework for probabilistic calibration of FDF 
values. This could be achieved by considering a range of different fatigue critical 
details, material thicknesses, SN-curves, number of inspections, inspection 
techniques and repair strategies. Moreover, the sensitivity of the stochastic models 
should be investigated, especially for ,  and .  

 Additional to the work with the model in [52], the impact of different influence function 
for fatigue assessment of reliability should be investigated together with a deeper 
treatment considering different components, wind condition and characteristics, setup 
of control system, etc.  

 The development of a method for estimation of the probability of failure, considering 
the extreme load given fatigue failure of one or more components. The extreme load 
case should include both the stand-still and the operational situations. 
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Abstract

Wind turbines for electricity production have increased significantly the last years both in production capability and size. This 
development is expected to continue also in the coming years. The support structure for offshore wind turbines is typically a 
steel structure consisting of a tower and monopile, tripod or jacket type foundation. Monopiles are at present the most typical 
foundation, but tripods and jackets are expected to be used in the future at larger water depths. The support structures are facing 
deterioration processes such as fatigue and corrosion. To ‘control’ this deterioration, inspection and maintenance activities are 
developed. This paper considers aspects of inspection and maintenance planning of fatigue prone details in jacket and tripod 
types of wind turbine support structures. Based on risk-based inspection planning methods used for oil & gas installations, a 
framework for optimal inspection and maintenance planning of offshore wind turbines is presented. Special aspects for offshore 
wind turbines are considered: usually the wind loading are dominating the wave loading, wake effects in wind farms are 
important and the reliability level is typically significantly lower than for oil & gas installations. An illustrative example is 
presented. As part of the results, inspection times are calculated, showing that earlier inspections are needed at in-the-wind farm 
sites due to the increase of fatigue coming from wake turbulence. 

Keywords: inspection, reliability, decision analysis, fatigue, wake turbulence 

1. Introduction 

Risk Based Inspection (RBI) planning is addressed to 

achieve a suitable life-cycle performance by an optimal 

inspection, maintenance and reparation strategy. This 

strategy entails an optimal control of deterioration in the 

structure, not neglecting important economical, technical 

and social aspects related with its overall performance. 

Operation and maintenance costs for offshore Wind 

Turbines are much larger than for onshore wind turbines, 

making RBI an important tool to accomplish substantial 

improvements in costs that will be considerable, bearing 

in mind the significant increase of this industry in production 

capability and size. Attending to this expansion, 5-10 

MW wind turbines are developed and going to harsh 

environments begin to be profitable options. In-place 

conditions as deep water depths, waves and wind farm 

location affects significantly the life-cycle performance of 

offshore wind turbines (OWTs). Depending on the site 

characteristics, typically, OWTs support structure is made 

Note.-Discussion open until May 1, 2009. This manuscript for this 
paper was submitted for review and possible publication on Septem-
ber 26, 2008; approved on November 29, 2008 

*Corresponding author 
E-mail: jr@civil.aau.dk, jds@civil.aau.dk 

of steel consisting of a tower and monopile, being used at 

lower water depths; and jacket and tripod support structures 

used for larger depths due to economical and technical 

(dynamical behaviour and structural redundancy) advantages 

over monopile support structures. 

RBI for oil & gas installations have been developed 

during the last two decades, see e.g. Faber et . (2000), al

Sørensen and Faber (2001) and Moan (2005), giving a 

theoretical guideline based on Bayesian decision theory 

that can be applied also to offshore wind turbines. 

This paper considers aspects of inspection and 

maintenance planning of fatigue prone details in jacket 

and tripod types of OWT support structures. Based on 

RBI methods for oil & gas installations, a framework for 

optimal inspection and maintenance planning of OWTs is 

presented. It is taken into account that for fatigue loading 

usually the wind load is dominating the wave load. 

Within wind load, wake effects in wind farms increase 

the fatigue load significantly. 

In contrast to other civil engineering structures and oil 

& gas installations, OWTs usually represent low risk of 

human injury, allowing the allocation of a minimum 

reliability level obtained by minimization of the total 

expected life-cycle costs. Conditioned and time-tabled 

maintenance actions (inspection, maintenance and repairing) 

can be optimized by applying pre-posterior Bayesian 

decision theory approach permitting use of diverse 
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information, e.g. inspection data and load/wind/wave 

measurements. 

In wind farms, which are a viable source of electricity 

production, additional technical and economical efforts 

have to be considered related to the interaction of the 

OWTs. Spatial correlation of OWTs entails turbulence 

conditions that affect the performance of neighbouring 

wind turbines. Wake effects, coming from the decrease of 

wind velocity behind OWT and increase the turbulence, 

results in a decrease in OWT fatigue life. Other loads 

from waves and ice represent important aspect also to be 

considered. 

A fatigue failure limit state steel details in OWT is 

described in this paper. Fatigue failure critical details are 

located in several structural and mechanical parts (in the 

nacelle, wind energy converter WEC), being the 

interaction between structural, mechanical and electrical 

components a remarkable difference comparing OWTs 

with other structures. Active control affects considerably 

the response from wind actions in structural and non-

structural parts. Non-structural failure modes are related 

with start/stop operation and accidental/unusual loads that 

will affect these specific parts. Within these fatigue 

critical parts, welded steel details in joints (the support 

structure and tower) and transition zones (transition node 

tower-support structure, yaw mechanism, hub) need 

special careful design concerning the fatigue performance. 

RBI optimization of OWT is considered in this paper 

for fatigue prone details in jacket and tripod type support 

structures. Probabilistic models and representative limit 

state equations for ultimate structural fatigue failure are 

formulated. Examples are described, considering fatigue 

failure using both linear and bilinear SN-curves and for 

single and wind farm location. 

2. Optimal Planning of Inspection and 
Maintenance 

The time varying fatigue degradation in offshore structures 

is a highly uncertain process, making a probabilistic 

approach the best way to deal with the problem. Further, to 

assess the uncertainties arising from external randomness 

(external conditions, environmental exposure, etc) and 

model uncertainties stochastic modelling, is a rational tool. 

Reliability-based and risk-based approaches for inspection 

and planning have been developed during the last decades, 

see Skjong (1985), Madsen et al. (1987), Thoft-

Christensen and Sørensen (1987) and Fujita et al. (1989); 

and are being applied to outline RBI plans that have as 

main aim to improve structural reliability and minimize the 

life cycle overall costs. 

The suitable decision plan to improve costs will be 

carried out in the framework of pre-posterior analysis 

from classical Bayesian decision theory, see Raiffa and 

Schlaifer (1961), Benjamin and Cornell (1970) and Ang 

& Tang (1975), and adapted to the particular case of 

OWTs. 

In Fig. 1 is shown a decision tree for RBI planning for 

OWTs, The basic steps in the decision process are 

illustrated. The decisions and random outcomes could be 

summarized as follows: 

• In the  Initial design phase, the optimal design 

parameters z=(z ,z2,z ,..,zn) are determined, having 1 3

certain limits z -z . The interval z -z  is established 

according to codes and practice requirements. 
min max min max

• First interaction with external conditions, such as 

wind and wave climate; triggers a state of nature X o
modeled by stochastic variables/process. Random 

outcomes, due to high-uncertain nature; are part of the 

process in which reliability and simulation methods 

attempt to represent numerically time-deterioration 

process (wear, dent, corrosion, fatigue…). Model 

uncertainties are included here, and if the statistical 

basis for evaluation of the uncertainties is limited then 

also epistemic uncertainties will become important. 

• Monitoring activities e at the times t=(t ,t ,t ,..,t ),1 2 3 i

include inspection, sampling and analyzing actions 

which result in inspection results S (degree of wear 

and corrosion, denting level, size of fatigue cracks…) 

that are obtained depending on inspection quality 

q=(q ,q ,q ,..,q ) (inspection techniques, technical 

expertise of inspectors…). 
1 2 3 n

• Based on the obtained monitoring results, Mitigation 

alternatives will be considered according to a fixed or 

adapting mitigation policy d(S). Such policies are 

related to repairing or not repairing activities. 

• State of nature X indicate generation of new random i

outcomes. Theoretically, these outcomes are based on 

posterior states of nature which depend on 

assumptions established to simplify the RBI process, 

e.g. assuming that repaired components behave like 

new component (inducated in Fig. 1as the dashed line 

t -t ).i o

In Fig. 1,C (e S d S ,X  is the total service life costs. T , , ( ) i)

Overall cost optimization will be achieved by minimizing 

the expected value of C : T

min E C z e d S ,X )]= z[ T( , , ( ) i CI( )+

E CInsp z e S ,Xi) +( d( ) ][ , ,

E C[ Rep z e, , S ,Xi) +
(1) 

( d( ) ]

E C[ F z e, ,d( )S ,Xi)](

z
min

z z
max

, i=≤ ≤ 1,2, .....,n i i i

ΔP t z e d S ) P
max

, t=1,2,.....,T F t( , , , ( ) ≤Δ F L
,

E[C ] is the expected total costs in the service life T T L

where C I is the initial costs, E[C Insp] is the expected 

inspection costs, E[C Rep] is the expected repair costs and 

E[C ] is the expected failure costs. Equation (1) is F

constrained by limits on design parameters and that the 

annual probability of failure ΔP  has to be less thanF,t
max

ΔP  at all times, assuring a minimum annual risk-state. F
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Figure 1. RBI’s 

The n inspections are performed at times t j, i=1,2,…,n 

where t
0

t
1
t
2
… tn TL .≤ , , , ≤

The total capitalized expected inspection costs are: 

n

1
, ( ) = ( ) 1 ( ) ---------------CInsp(e d S ) ∑CInsp q ( –PF ti ) (2)

,i t
(1+r)

i=1

where index i characterizes the capitalized inspection 

costs at the ith inspection when failure has not occurred 

earlier, C Insp,i(q) is the inspection cost of the ith 

inspection, P F(t i) is the probability of failure in the time 

interval [0,t i] and r is the real rate of interest. 

The total capitalized expected maintenance and repair 

costs are: 

n

1
, ( ) = ( ) ( )---------------CRep(e d S ) CRep,i q PRep

i

ti (3)∑ t
(1+r)

i=1

where index i characterize the capitalized reparation costs 

at the ith inspection when failure has not occurred earlier, 

C Rep,i(q) is the cost of maintenance and repair (incl. loss 

of production) at the ith inspection and P t is the( )R
i

i

probability of performing a reparation after the ith 

inspection when failure has not occurred earlier and 

assuming no earlier repair action has been performed. 

The total capitalized expected costs due to failure are: 

T
L

1
C (e d S = C ( ) P PF , ( )) F t Δ F t,∑ COLFAT t

(1+r)
(4) 

t=1

where index t represent the costs of failure at the time t, 

C F(t) is the cost of failure (incl. loss of production), ΔP F,t
is the annual probability of failure and P is the COLFAT

i

conditional probability of collapse or the structures given 

fatigue failure of the considering component j. It is noted 

that in this paper fatigue critical components are considered, 

implying that P FAT
i

=1. For less fatigue critical that COL

P FAT
i

<1, and the upper limit on the annual fatigue COL
max

probability of failure, ΔP can be increased. F

Considering posterior optimization of the inspection 

Decision tree. 

plan, inspection and monitoring data can be use to update 

RBI plans making this process a recursive activity, see 

Sørensen et al. (1991). This approach can be used for 

OWTs’ structural and mechanical parts (tower, blades, 

support structures, gears, shafts…). With inclusion of 

different types of components, more precise RBI should 

be carried out, taking into account the refinement in time 

intervals (years to months or day), structure conditioned-

states (active or passive controlled OWTs) and non-usual 

or extreme external events. 

Unlike oil & gas installations, OWTs response is often 

dominated by wind loading, including wind farm 

turbulence (wake effects). Wind intensity fluctuations are 

a significant feature to consider for fatigue failure limit 

state, causing typical load cycles per year (νwf=5×10 7 and 

νrr=1×10 7 cycles per year, wake effects and rotor response 

dominating case, respectively) that are larger compared 

with wave dominating cases (typically, νwave=1×10 6 cycles 

per year). Density function of stress ranges, that is obtained 

from the structural response by different counting methods 

(Rain-flow counting method, peak counting method…); 

will differ depending the response dominating cases. 

Generally, they can be modeled by a Weibull distribution. 

3. Wind Load 

The wind load at an offshore site is fairly different than 

at land sites. This variation is principally related with the 

difference of surface roughness, where sea roughness is 

typically much smaller than the land one. The wind stability 

statistics show that sea mean atmospheric stability is 

slightly on the stable side; whereas over land it is seen 

slightly unstable conditions on the average, see Frandsen 

et al. (1996). In addition to the ambient turbulence, 

OWTs inside of wind farms face certain unfavorable 

wind variations (see Fig. 2) with increase of wakes 

behind others OWTs and decrease of their fatigue life. 

Wind load stress effects are strongly related with the 

type of power control (pitch or stall) in the OWT. Moreover, 

the response is dependent on the OWT mode: standstill or 
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Figure 2. Ratios of wind speed (ν /ν ) and standardF A

deviation of turbulent wind speed fluctuations (σF/σ )A
vertical profiles inside and outside the wind farm. The 
indices “A” and “F” refer to meteorogical mast outside of
wind farm and inside wind farm, respectively. Ambient
wind speed between (a) 8<U<12 m/s and (b) 12<U<24 
m/s from Frandsen and Christensen (1994). (c) Ratios of
wind speed U at hub height and turbulence σu inside (Uh

and σwf) and outside (U and σ0) the wind farm, as 
function of wind speed. The full lines are the model 
predictions, from Frandsen (2005). 

operational. Within the operational case there are passive, 

active or mixed power control, assuring a rational, stable 

output of electricity and protecting structural and 

electromechanical parts. 

The turbulence intensity, defined as the standard 

deviation of the wind speed fluctuations divided by the 

mean (n-minutes) wind speed; represent an important 

aspect to consider because of its influence on OWT’s 

fatigue life. In this paper is used the following model for 

the standard deviation of wake turbulence proposed by 

Frandsen, S. (2005): 

1 ⁄mm m[( σσ= 1–N p ) +N p σ ] (5)w w w w w0

where σ0 is the turbulence standard deviation under free 

flow condition, σw is the maximum wake turbulence 

under wake condition, Pw (=0.06) is the probability of 

wake condition and Nw is the number of wakes to which 

the considered wind turbines is exposed to. It is assumed 

that the standard deviation of the response is proportional 

to the standard deviation of turbulence; while in certain 

situations (load, passive or active power control; complex 

geography, atypical terrain condition…) this simple 

relation with the response may be inadequate. 

The above mentioned turbulence model can be shown 

to be consistent (with a slightly conservative inaccuracy 

of 3-4%) when it is used with a superimposed 

deterministic load component, see Frandsen (2005) and 

Sørensen et al. (2007). 

4. Probabilistic Model for Fatigue Failure 

In this section the probabilistic models for assessing the 

fatigue failure life based on SN-curves and fracture 

mechanics (FM) model are briefly presented. To evaluate 

the fatigue life is used the probabilistic model for fatigue 

failure described in Sørensen et al. (2008). 

In the assessment of SN fatigue life, the deterministic 

design equation for free flow ambient turbulence is 

written: 

U
out

⋅ν⋅FDF TL
G z 1–------------------------- D (m;σ

Δσ
( ) ⋅f U dU 0 (6)( )= U U( ) =∫ L )

Kc
U

in

where for linear SN-curve is: 

∞

m
m;σ U ) ⋅f ( σ U ds (7)D ( ( ) = s s )L Δσ ∫ Δσ Δσ

0

and bi-linear SN-curve is: 

DL(m1,m2,ΔσD;σΔσ(U))= 

Δσ
D ˆ

⎛ σu( )⎞Um
2 α U ---- -- ds( ) --------s ⋅f s∫ Δσ Δσ⎝ ⎠z

0
(8) 

∞ ˆ
⎛ σu( )⎞Um

1 α U ---------- - ds+ s ⋅f s ( ) ---∫ Δσ Δσ⎝ ⎠z
Δσ

D

σ Uu( )
σ U = U ⋅-------------- (9a)( ) α ( )
Δσ Δσ z

mˆσ U = 0.75⋅U+b) b=5.6 -- (9b)u( ) I ( ; --
ref s

ν is the total number of fatigue load cycles per year, 

FDF is the fatigue design factor (FDF=TF/TL), KC is the 

characteristic value of K (mean log K minus two standard 

deviation of log K ), Uin and Uout are the cut-in and cut-

out wind speed, respectively. fU(U) is the density function 
mof mean wind speed U, DL is the expected value of Δσ

given standard deviation σΔσ and mean wind speed U in 

58



299 Optimal Risk-Based Inspection Planning for Offshore Wind Turbines 

which fΔσ(s|σΔσ(U)) represents the density function for 

stress ranges given standard deviation σΔσ(U) at mean 

wind speed U. This density function and ν can be 

obtained by counting methods, e.g. Rainflow counting. 

In the equation (9a) αΔσ(U) is the influence coefficient 

for stress ranges given mean wind speed U (σΔσ(U)/ 

σ U(U)), σ u(U) is the standard deviation of turbulence 

given mean wind speed U and z is the design parameter 

(e.g. proportional a cross sectional area). The equation 

(9b) is the characteristic (90% fractil representative 

turbulence) ambient turbulence where Iref is the (IEC-) 

reference turbulence intensity (equal to 0.14 for medium 

turbulence characteristics). 

The corresponding limit state equation is: 

U
out∞

m σ ( )Uν⋅t ⎛ u ⎞( ) ------ ( ) U -------------g t =Δ– - X ⋅X ⋅D m;α ( ) -
W SCF L Δσ∫ ∫ ⎝ ⎠K z

0U
in

f σ⋅ ( U) f ⋅dσ dU (10)⋅σ
u

u U u

where Δ is a stochastic variable modeling the uncertainty 

related to the Miner’s rule for linear damage accumulation, 

t is the life time in years, X W is the model uncertainty 

related to wind load effects (exposure, assessment of lift 

and drag coefficients, dynamic response calculation), 

X SCF is the model uncertainty related to local stress 

analysis and σ u(U) is modeled as Lognormal distributed 

with a representative mean turbulence (90% fractil value-

IEC 61400-1) equal to  I ref(0.75·U+3.6) with a standard 

deviation equal to 1.4 m/s·I ref. 

For a wind turbine within a wind farm the design 

equation based on IEC 61400-1 (IEC 2005) can be 

written: 

ν⋅FDF T⋅ L
G z =1 -------------------------( ) –

KC

(1–N ⋅p )⋅w w

ˆσ U⎛ u( )U
out ⎞

L Δσ U ------------ pwD m;α ( ) -- +⎝ ⎠z⋅ (11)∫
U

N
w

in ˆσu j, ( )U j⎛ , ⎞U ----------- --⋅ D m;α ( ) -------
L Δσ∑ ⎝ ⎠z

j=1

⋅f U dU=U( ) 0

where N w is the number of neighboring wind turbines, pw

is the probability of wake from a neighboring wind 

turbine (equal to 0.06), σu i, is the standard deviation of 

turbulence from neighboring wind turbine no. j: 

2
0.9 ⋅U 2ˆ ˆ( ) ---------------------------------------------+σu (12)σu j , =, U j

2

1.5+0.3 ⋅( dj U c)⁄

where d j is the distance between OWT normalized by 

rotor diameter to the neighboring wind turbine j and c is 

a constant equal to 1 m/s. 

The limit state equation corresponding to the above 

Figure 3. Surface crack idealization in plate under fatigue 
loads. 

equation is written: 

U
out∞

ν⋅t m
g t =Δ - ( ⋅X( ) –------ X )wake SCF∫ ∫K

0U
in

ˆσ U⎛ u( )⎞( ) U ------- -1–N ⋅p ⋅D m;α ( ) ------
w w L Δσ⎝ ⎠z

⋅ (13)N
w

σ ( )U j⎛ u j, , ⎞U -------- ------+p ⋅ D m;α ( ) ------
w L Δσ∑ ⎝ ⎠z

j=1

U( ) σu⋅f U ⋅f ( U) dσ dU⋅ uσ
u

2
Xw ⋅U 2σu j, , = ---------------------------------------------+σ (14)U j( ) u2

1.5+0.3 ⋅( dj U c)⁄

where XW is the model uncertainty related with wale 

turbulence model. The design parameter z is calculated 

using (6) or (11) and then used in limit state equations 

(10) or (13) to estimate the reliability index or probability 

for failure corresponding to the reference time t. 

For the assessment of fracture mechanics (FM) fatigue 

life is used a one dimension crack model (see Fig. 3) 

where the crack length c is for simplicity related with the 

crack depth a through a constant f . A coupled model a

could also be used, but is computationally much more 

time-consuming, especially when performing reliability 

assessments. It is assumed that the fatigue life may be 

represented by fatigue initiation life and a fatigue 

propagation life. This is represented as follows: 

N=N I+N p (15) 

where N is the number of stress cycles to fatigue failure, 

N I is the number of stress cycles to crack propagation and 

N P is the number of stress cycles from initiation to crack 

through. The crack growth can be described by the 

following equations: 

da m
---- C ΔK ) a N a (16)--- ( == , ( )A A 0 0dN

ΔK =Δσ⋅ πa (17)A

c f a ) c (18)( =a ⋅ 0 0
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where CA and m are the material parameters, a0 and c0
describe the initial crack depth a and crack length c, 

respectively, after NI cycles and where the stress intensity 

range is ΔKA. 

The stress range Δσ is obtained from: 

eΔσ=Y·Δσ (19) 

where Y is the model uncertainty variable related to the 
egeometry function and Δσ is the equivalent stress range. 

eΔσ for a single OWT is calculated with: 

1
U

out∞ m
σ U⎛ u( )⎞∫ ∫ L Δσ( )--------D m;α U ------eΔσ =X ⋅ ⎝ ⎠ (20)X ⋅ zW SCF

0U
in

⋅f U f ( U ⋅dσ( )⋅ σ ) dUU σ
u

u u

and for a wind farm location case: 

eΔσ =X ⋅Xwake SCF

σ U⎛ u( )⎞( ) U ------------1–N p ⋅D m;α ( ) --
w w L Δσ⎝ ⎠z

U
out∞ (21)

N
w

⋅ σ ( )U j dU∫ ∫ ⎛ u j, , ⎞+p ⋅ D m;α U --------------------
w ∑ L Δσ( )⎝ ⎠0 zU

in

j=1

⋅f U f ( U) dσU( )⋅ σu ⋅ uσ
u

The limit state criteria used in the FM analysis is 

related with the failure when crack exceeds a critical 

crack size: 

g(t)=ac−a(t) (22) 

where ac is the critical crack size and a is crack depth. 

For RBI planning the FM model is usually calibrated to 

result in the same reliability level as the code-based SN 

model. The RBI planning and maintenance are strongly 

related with inspection quality (inspection methods, 

technology, environmental conditions, inspectors’ expertise, 

etc). The incorporation of these influential factors is 

attained by using a distribution of the smallest detectable 

crack size by a so-called probability of detection curve 

(POD). Examples of POD curves are: 

bx⎛ ⎞POD x =1 1– ⁄( ) 1+ ---- (23)⎝ ⎠x
0

POD( ) P ⋅ 1–exp –x ⁄λ) (24)x = ( ( )O

where x0 and λ are the minimum detectable crack size, PO

and b are distribution parameters depending on the 

inspection methods. 

5. Examples 

An offshore wind turbine with a steel jacket support 

structure is considered. The OWT is assumed to have an 

expected life time equal to 20 years and a design fatigue 

life time (TF) equal to 60 years. For the Influence 

Figure 4. σΔσ/σU for mudline bending moment for a
representive pitch controlled wind turbine. 

coefficient αΔσ(U) is used the function in Fig. 4 (mudline 

bending moment-pitch controlled wind turbine) regarding 

this as a representative function for the stress effects in 

the support structure. This influence function is highly 

non-linear due to the control system. 

A wind turbine within a wind farm (IWF) and a 

standalone/single (S) OWT location are considered. For each 

location is considered linear (L) and bi-linear (BL) SN-

curve. In Tables 1-3 are shown the stochastic models used. 

The design values z for each case are shown in Table 4 

(Equations 6 and 11) and in Fig. 5 is shown the results of 

the assessment of the reliability with SN approach 

(Equations 10 and 13). β and Δβ are defined as the 

cumulative probability of failure (PF) and the annual 
−1 −probability (ΔPF) of failure (β=(Φ (PF(t)) and Δβ=(Φ

1 −1(PF(t))−Φ (PF(t−1)))), respectively. It is seen that for 

bilinear SN-curve values of β and z are smaller than for 

linear cases. The design values for cases in wind farm 

location (wake turbulence) are larger than the ones 

exposed to free flow turbulence due to the accumulation 

of fatigue. 

Table 1. SN Stochastic model (welded steel detail) 

Expected Standard 
Variable Distribution 

value deviation 

Δ N 1.0 0.10 

X LN 1.0 0.10 W

X LN 1.0 0.10 SCF

X LN 1.0 0.15 wale

m

m1 D 3 --

2 D 5 --

Δ D 71 MPa --σD

Log K1 N Determined from Δ 0.20σD

Log K2 N Determined from Δ 0.25 

TF D 60 years --

Nw D 5/-- --

σD

7
ν D 5·10 --

Uin-Uout D 5-25m /s --

pw D 0.06/0.0 --

dj D 4.0 --

D: Deterministic, N: Normal, LN: LogNormal, W: Weibull. 
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Table 2. FM Uncertainty modeling (welded steel detail) 

Variable Distribution 
Expected Standarddevia-

value tion 

Ln Cc N μlncr (fitted) 0.77 

NI W μ0=Tinit 0.35·μ0

Y LN 1.0 0.10 

WX LN 1.0 0.10 

XSCF N 1.0 0.10 

Xwale LN 1.0 0.15 

ac D 50 mm --

a0 D 0.4 m m --

fcr D 4.0 --

Thickness D 50 mm --

m D 3.0 --

Table 3. Distribution parameters and Equations 

Variable Distribution Parameters 

−3 −4

f

ΔPF D 1.0·10 /1.0·10 

FU(u) W(α,βU) α=2.3, βU=10.0 m/s 

ΔσD(·) W(αΔσD,βΔσD) αΔσD=0.8 

fσu(·) LN(μ,σ) 
μ=Iref(0.75·Uj+3.6), 

α=1.4·Iref
−1POD(x) Equation (4.19) PO=1.0, l=2.67 mm 

–m
1

N1(s) K ⋅s s≥Δσ
1 D

–m
2

N2(s) K ⋅s s<Δσ
2 D

Table 4. z-design parameters 

IWF-L S-L IWF-BL S-BL 

0.5654  0.4934  0.4253  0.3657 

Figure 5. Reliability indices for SN-approach corresponding 
to an cumulative probability of failure 

For all the cases the calibration of fracture mechanic 

reliability curve in the interval 10 to 20 years (see Fig. 6). 

In Figs. 7a-d and Table 5 are shown the resulting life-

cycle assessment of reliability and inspection plan 

Figure 6. Reliability indices for SN- and calibrated fracture
mechanics curve corresponding to the cumulative probability
of failure. 

obtained with a maximum acceptable annual probability 
−3 −4of failure equal to 1.0×10  and 1.0×10 . Comparing the 

first inspection time, slightly earlier inspections are 

obtained for in-wind farm sites due to the increase of 

fatigue coming from wake turbulence. It is noted that in 

all four cases the design parameter z is determined by 

deterministic design such that the code-based design 

criteria is exactly satisfied. 

5. Conclusions 

Based on risk-based inspection planning methods for 

oil & gas installations, a framework for optimal inspection 

and maintenance planning was applied for offshore wind 

turbines, addressing the analysis of fatigue prone details 

(single hot spots in the context of RBI for this work) at 

the jacket or tripod steel support structures. In wind park 

location and single offshore wind turbines were considered 

using a probabilistic model for fatigue failure based on 

the code used for wind turbine design. This inspection 

optimization approach represents a viable method to obtain 

risk-based inspection plans aimed at OWT, regarding its 

application to large structural systems (steel jacket, tripod 

and monopile as support structures). Furthermore, it may 

also be applied to other important components like 

blades, nacelle, yaw system, etc (see Sørensen et al. 

2008). Due to the fast growth of wind industry (EWEA 

2007) and offshore wind turbine parks, larger and 

complex clusters of such structural systems may 

potentially be benefited for optimizing the inspection and 

maintenance efforts and generate suitable inspection 

plans ensuring an acceptance criteria with respect to risk. 

Besides, this RBI approach may also be applied as a decision 

tool for estimating the consequences of a possible service 

life extensions and reduction (or strengthening) on the 

necessary maintenance and inspection efforts. 
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ΔP
F

max
−4Figure 7. Annual and cumulative probability of failure as a function of time ( =1×10  and reliability indices 

corresponding to the cumulative and annual probability of failure. (a) In wind farm OWT with linear SN-curve. (b) Single 
OWT with linear SN-curve. (c) In wind farm OWT with bilinear SN-curve. (d) Single OWT with bilinear SN-curve. 
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ABSTRACT 
Deterioration processes such as fatigue and corrosion are 

typically affecting offshore structures. To “control” this 
deterioration, inspection and maintenance activities are 
developed. Probabilistic methodologies represent an important 
tool to identify the suitable strategy to inspect and control the 
deterioration in structures such as offshore wind turbines 
(OWT). Besides these methods, the integration of condition 
monitoring information (CMI) can optimize the mitigation 
activities as an updating tool. 

In this paper, a framework for risk-based inspection and 
maintenance planning (RBI) is applied for OWT incorporating 
CMI, addressing this analysis to fatigue prone details in welded 
steel joints at jacket or tripod steel support structures for 
offshore wind turbines. The increase of turbulence in wind 
farms is taken into account by using a code-based turbulence 
model. Further, additional modes t integrate CMI in the RBI 
approach for optimal planning of inspection and maintenance. 

As part of the results, the life cycle reliabilities and 
inspection times are calculated, showing that earlier inspections 
are needed at in-wind farm sites. This is expected due to the 
wake turbulence increasing the wind load. With the integration 
of CMI by means Bayesian inference, a slightly change of first 
inspection times are coming up, influenced by the reduction of 
the uncertainty and harsher or milder external agents. 

 

INTRODUCTION 
The inspection and maintenance costs for offshore wind 

farms are in general significantly larger than for onshore 
structures. Besides economical aspects, the restrictions in time 
(season) and location (structural part and offshore location) are 

present, implying more complex inspection and maintenance 
activities for OWT 

During the last decades RBI approaches have been applied 
to the oil and gas industry (see e.g. Madsen et al. 1987, Thoft-
Christensen and Sørensen 1987, Sørensen and Faber 1991, 
Faber et al. 1992), giving a theoretical background that can also 
be applied for offshore wind industry considering its particular 
implications, i.e. wind dominated loading, wind farm locations 
and internal dependence of different components (mechanical, 
electrical and structural.  

The offshore wind resources have been monitored since the 
beginning of the 1990's for many purposes such as to 
investigate the characteristics of prospective wind energy sites 
in the coastal waters, development and validation of models 
and monitoring of the performance of the wind turbines in wind 
farms. This information can be integrated into the RBI 
approach taking into account the type of information. 

The typical support structure for an OWT in shallow water 
is a monopile, whereas jacket and tripod support structures can 
be used for larger depths, implying technical improvements as 
for instance, increased structural redundancy, lighter weight and 
larger stiffness (influencing the dynamical behavior). For these 
structures, transition sections ‘tower-to-support’ and joints are 
critical design parts, needing special careful design especially 
with respect to fatigue. Offshore wind farm locations require 
additional considerations due to the turbulence conditions that 
affect the performance of neighboring wind turbines decreasing 
their fatigue life. 

In this paper, it is described how CMI can be integrated 
into a RBI format and applied to OWT addressing fatigue prone 
structural details.  
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MONITORING INFORMATION 
Due to the desire to increase the efficiency and 

competitiveness of wind industry in compliance with safety 
standards and requirements, surveillance systems have been 
developed. These monitoring systems can be divided in 
external monitoring information (meteorological 
measurements) and structural condition monitoring (including 
mechanical, electrical, structural and electronic parts), having 
both two aspects: measuring technology (infrastructure, 
instrumentation and/or measuring devices technology) and data 
processing (data availability and quality control, processing and 
diagnostic algorithm, etc).  

External measurements for offshore wind farms have been 
carried out since the beginning of the 1990's (see e.g. 
Barthelmie et al. 2005, Frandsen et al. 1996), having as main 
objectives to obtain project-related, long- and short-term data. 
Within meteorological measurements, the data processing phase 
will focus on finding the probabilistic properties and 
characteristics of the external agents (wind, wave, turbulence, 
geographical influence, etc) and then processing the records 
with suitable algorithms to maximize the benefit from it. 

The components in the OWT may be grouped together 
considering their reliability against deterioration failure and 
basically related with their design. High reliabilities are 
associated with components for which the replacement of the 
entire component or sub-system is not feasible, neither 
economically nor technically and their failure will result in a 
whole system failure, e.g. support structure, transition node and 
tower. Medium reliabilities for components that are possible to 
replace or can be replaced but their damage could entail further 
additional deterioration or direct failure in other components. 
Finally, low reliability parts are those that are replaced even 
considering their relative high cost (mainly, parts in wind 
energy converter, WEC). Monitoring of all three groups of 
components can be implemented with a condition monitoring 
system (CMS, see Giebel et al. 2004, Wiggelinkhuizen et al. 
2008 and Hameed et al. 2007). It is noted that in the WEC (low 
and medium reliability components), condition monitoring has 
become an important issue with a noteworthy increase in 
conditioning monitoring techniques, deterioration/failure 
detection algorithms and measuring technology. The high 
reliability components are only considered in this work within a 
RBI framework, but in general this probabilistic format based 
on Structural Reliability Analysis (SRA) and pre-posterior 
Bayesian decision theory can be implemented for the other 
types of components. 

For jacket and tripod’s structural parts such as transition 
node between the tower and support structure, tower, blades, 
nacelle, yaw mechanism and hub are important components 
triggering major consequences in case of failure. For these 
components, the surveillance activities could be divided in 
CMS and inspection activities. In CMS monitoring can be 
carried out as measurements of important spots (stress/strain 
monitoring), dynamical performance of members (inertial 
sensing, vibration characteristics) and acoustic emissions. 
Moreover, the long-term inspection activities are providing data 

related with the damage (corrosion, cracking, denting, wear and 
scour condition) through different methods depending on the 
type of deterioration. 

With this real-time information and sequential inspection 
actions, a gain in information is achieved, making possible the 
updating of modeling parameters and improvements in 
accuracy of prediction, e.g. long- and short-term wind intensity 
distribution, wave conditions, turbulence conditions and 
damage presence in certain details.  

RISK-BASED INSPECTION PLANNING AND 
CONDITION MONITORING 

RBI represents an effective method to deal with structures 
exposed to deterioration. It has to be linked with a decision tool 
to identify the most suitable strategy. The decision analysis will 
accomplish the task of directing the necessary and sufficient 
mitigation activities, based on information previously collected. 
The RBI methodology, as an application of Bayesian decision 
analysis (see Raiffa and Schlaifer, 1961 and Benjamin and 
Cornell, 1970) and based on SRA; aims at finding the optimal 
inspection and maintenance strategy that can be updated using 
e.g. CMI. The inclusion of these data can be achieved through 
updating and inference of data.  

In the updating process variables, parameters and events 
are updated using new information. The RBI methodology is 
concerned with updating using events at the moment of finding 
the suitable inspection and maintenance strategy. The stochastic 
variables are fixed for the periods  when the information is 
collected in the life-cycle. At updating, a limit state function 

 is formulated as  a function of i stochastic 
variables and an event function  representing the 
new information, is considered jointly. The conditional 
probability of failure is denoted by 

0 0   . In RBI, the limit state 
function could be related to fatigue failure and the event 
function can be the no-detection-of-cracks at the inspection. 

Bayesian statistical methods can be used to update the 
density functions  of stochastic variables  
considering the vector of the distribution parameters  as 
uncertain. Denoting the prior density function   and 
assuming that j realizations of the stochastic variable Xi are 
available: , the posterior density function is: 

Q(qi|xi)  (xi|qi)·f'Q(qi) (1) 
where 

f'' xi qi = fXi(xi,j,qi)
N

j=1

 (2) 

Equation (2) gives the probability of obtaining the given 
observations assuming that the distribution parameters are . 
The updated density function of the stochastic variable  given 
the realization  is obtained by the predictive density function: 

 (3) 
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DL m1,m2, D ; U = 

sm2·f s| U u U
z

D

0

ds 

+ sm1·f s| U u U
z

D

ds 

(7)

U = U · u U
z

 (8) 

u U =Iref· 0.75·U+b       ,        b=5.6
m
s

 (9) 

 is the total number of fatigue load cycles per year, FDF is the 
fatigue design factor (FDF= TF TL), KC is the characteristic 
value of K (mean log K minus two standard deviation of log K), 
Uin and Uout are the cut-in and cut-out wind speed, respectively; 
 fU(U) is the density function of mean wind speed U, DL is the 
expected value of m given standard deviation  and mean 
wind speed U in which f s| U  represents the density 
function for stress ranges given standard deviation U  at 
mean wind speed U. This density function and  can be 
obtained by counting methods, e.g. Rainflow counting. 

In the equation (8), U  is the influence coefficient for 
stress ranges given mean wind speed U defined as ( U

(U) U(U) , where u U  is the standard deviation of 
turbulence given mean wind speed U and z is the design 
parameter (e.g. proportional a cross sectional area). Equation 
(9) gives the characteristic (90% fractile representative 
turbulence) ambient turbulence where Iref is the (IEC-61400) 
reference turbulence intensity (equal to 0.14 for medium 
turbulence characteristics). The corresponding limit state 
equation is: 

g t = -
·t

K
XW·XSCF

m ·DL m; U u U
z

0

Uout

Uin

 

 
·f u u U  ·f

U
(U)·d u dU 

(10) 

where  is a stochastic variable modeling the uncertainty 
related to the Miner rule for damage accumulation, t is the life 
time in years, XW is the model uncertainty related to wind load 
effects (exposure, assessment of lift and drag coefficients, 
dynamic response calculation), XSCF is the model uncertainty 
related to local stress analysis and u U  is modeled as a 
lognormal distributed stochastic variable with a representative 
mean turbulence level obtained from a 90% fractile value (see 
IEC 61400-1) equal to Iref 0.75·U+3.6  and a standard 
deviation equal to 1.4 m s ·Iref. 

For a wind farm location the design equation is based on 
IEC 61400-1 (IEC 2005): 

 

G z =1-
·FDF·TL

KC
·

1-Nw·pw ·

DL m; U u U
z

+pw 

· DL m; U u,j U,j
z

Nw

j=1

Uout

Uin

 

 ·fU U  dU=0 
 

(11) 

where Nw is the number of neighboring wind turbines, pw is the 
probability of wake from a neighboring wind turbine (equal to 
0.06), u,j is the standard deviation of turbulence from 
neighboring wind turbine no. j: 

u,j U,j =
0.9·U2

1.5+0.3·dj U c
2 + u

2 (12) 

dj is the distance between OWT normalized by rotor diameter 
to the neighboring wind turbine j and c is a constant equal to 1 
m/s. 

The limit state equation corresponding to the above design 
equation is: 

g t = -
·t

K
Xwake·XSCF

m

0

Uout

Uin

 

·

1-Nw·pw ·DL m; U u U
z

+pw· DL m; U u,j U,j
z

Nw

j=1

 

 ·fU U · f
u u U ·d u dU 

(13) 
 

u,j U,j =
XW·U2

1.5+0.3·dj U c
2 + u

2 (14) 

where Xwake is the model uncertainty related with the wake 
turbulence model. The design parameter z is obtained from (5) 
or (11) and then used in limit state equation (10) or (13) to 
estimate the reliability index or the probability of failure for the 
reference time t. 

For assessment of the FM fatigue life a one-dimensional 
crack model is used for illustration. The crack length c is 
related with the growth crack depth a through a constant fcr. It 
is assumed that the total fatigue life may be represented by 
fatigue initiation life and a fatigue propagation life. This is 
modeled as follows: 

N=NI+NP (15) 
where N is the number of stress cycles to fatigue failure, NI is 
the number of stress cycles to crack propagation and NP is the 
number of stress cycles from initiation to crack through. The 
crack growth can be described by the following equations: 
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Table 2. FM stochastic models 

Variable Distribution Expected 
 value 

Standard  
deviation Comment 

Ln Cc N ln Cc 
(fitted) 

0.7 Crack growth 
ratio 

NI W 0=Tinit·  0.35· 0 
(fitted), 

Initiation 
Time 

Y LN 1.0 0.10 Shape factor 
XW LN 1.0 0.15 Wind 

XSCF N 1.0 0.10 
Stress 

concentration 
factor 

Xwake LN 1.0 0.15 Wake 

ac D 25 mm -- Critical crack 
size 

ao D 0.4 mm -- Initial crack 
size 

fcr D 3.0 -- 
Crack 

length/depth 
ratio 

thickness D 25 mm -- thickness 

m D 3.0 -- Material 
parameter 

Ln Cc and NI are correlated with correlation coefficient ln Cc, NI
= -0.5

 
Table 3. Distribution parameters and equations 

Variable Distribution Parameters 
PF D 1.0·10-4 

FU(u) W( , U) =2.3 , U=10.0 m/s 
f D(·) W( D,

D
) D=0.8 

f u(·) LN( , ) =Iref· 0.75·Ui+3.6 ,
=1.4·Iref 

POD(x) PO·(1-exp(-x/ ))    PO=1.0,  =2.67 mm 
N1(s) K1·s-m1 s  D 
N2(s) K2·s-m2 s< D 
 

As a simple illustration of CMI integration, XW will be 
updated. It is assumed that the standard deviation is known 
equal to 0.14. The prior density function will be considered 
normal distributed with mean value equal to 1.0 and standard 
deviation equal to 0.05. It is assumed that the condition 
monitoring system allows to estimate XW each year. The vector 
of data , with dimension (ti-1); will have values around 1.0 
and standard deviation equal to 0.05. For the first year, the 
mean and standard deviation of the stochastic variable XW are 
1.0 and 0.15. The design parameter z will be calculated initially 
and will be fixed for the remaining life. The updating will be 
considered from the second year until the last year. 

RESULTS 
The design values z for each case are shown in table 4 
(obtained using equations 5 and 11). In figure 3 is shown the 

results of the assessment of the reliability with the SN approach 
(equations 10 and 13) and the calibrated FM model (equations 
20 and 21, respectively). The accumulated reliability index  
and the annual reliability index  are obtained from 
cumulative probability of failure (PF) and the annual probability 
( PF) of failure ( = -1(PF(t)  and 

= -1(PF(t))- -1(PF(t-1))  ), respectively. It is seen that for 
a bilinear SN-curve, values of  and z are smaller than for linear 
cases. The design values for cases in wind farm location are 
larger than the ones exposed to free flow turbulence due to the 
larger turbulence level and corresponding accumulation of 
fatigue.  
 

Table 4. z-design parameters
IWF-L S-L IWF-BL S-BL 

0.5654 0.4934 0.4253 0.3657
    
    For all the cases a fracture mechanical model is calibrated 

and the resulting reliability curves are shown in the interval 10 
to 20 years, see figure 3. 

 

Fig 3. Reliability indices for SN-analysis and calibrated fracture 
mechanics curve corresponding to the cumulative probability of 

failure. 
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Fig 4. SN-Reliability indices for RBI and RBI with updating 
(RBI-CM) for corresponding to the cumulative probability of 

failure. 
In the table 6 is shown the resulting inspection plans obtained 

with a maximum acceptable annual probability of failure equal 
to 1.0×10-4. Comparing the first inspection time, slightly earlier 
inspections are obtained for in-wind farm sites due to the 
increase of fatigue coming from wake turbulence. With the 
inclusion of CMI by means Bayesian updating, the first 
inspection times change. It is noted that in all four cases the 
design parameter z is determined by deterministic design such 
that the code-based design criteria is exactly satisfied. 

The density function for the stochastic parameter (XW) 
converges to a standard deviation around 0.09 when more than 
10 years of information are incorporated. It is noted that the 
estimates are assumed to be statistically independent from year 
to year. Higher reliabilities were therefore obtained for updating 
cases. Of course, real life information will be for some 
occasions (years, months, weeks…) harsher (or milder) than in 
others, showing a different tendency of the predictive density 
functions used in these examples (see figure 4).  For RBI 
planning the FM model was calibrated to the code-based SN 
model such that the reliabilities are as close as possible in the 
vicinity of first inspection time.  After the first inspection, the 
outcome (some information such as no-detection or detection of 
crack length, crack length, etc) will be obtained in the real life. 
The inspection planning for the rest of the life-cycle should be 
conditional on this additional gain of knowledge. The results in 
table 6 do not integrate this knowledge. 

 
Table 6. Inspections times as a function of the threshold on the 

maximum annual probability of failure 
 INSPECTION TIME 
 Maximum Annual Pf =1.0x10-4

CASE RBI RBI-Condition 
Monitoring 

IWF-L 17 21 
S-L 26 27 

IWF-BL 7,15,30 9, 24 
S-BL 8,17,38 11 

 

CONCLUSION AND DISCUSSION 
Based on RBI methods, a framework for optimal inspection 

and maintenance planning was applied for OWT, addressing 
the analysis of fatigue prone details (single hot spots in the 
context of RBI for this work) at the jacket or tripod steel 
support structures. In wind farm location and single offshore 
wind turbines were considered using a probabilistic model for 
fatigue failure based on the IEC standard used for wind turbine 
design. The approach represents a viable method to obtain risk-
based inspection plans for fatigue critical details in offshore 
wind turbines, especially details in the tower and the support 
structure (steel jacket, tripod and monopile). Furthermore, it 
may also be applied to other important components like blades, 
nacelle, yaw system, etc (see Sørensen et al. 2007).  

The use of the RBI framework for wind farms may 
potentially be beneficial for optimizing the inspection and 
maintenance efforts, generating inspection plans assuring 
fulfillment of acceptance criteria for the whole wind farm. 
Furthermore, the approach could also be applied as a decision 
tool for estimating the consequences of a possible service life 
extension. 

The paper presents a straightforward-Bayesian inference case 
and a simple example is shown of integration of CMI using 
Bayesian updating, illustrating the main features of updating 
process into a RBI framework.  

Besides of being applied to high reliability components, this 
approach for updating within a RBI framework may be also 
used on different components with lower reliability levels (e.g. 
WEC parts, blades, hub, etc), having the proper limit state 
equations relating the real-time information coming from the 
measuring devices for different components. 
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1 INTRODUCTION
Wind turbine structures, located at offshore sites,
face up additional detrimental conditions that de-
crease their life-cycle performance making inspec-
tion, maintenance and repairing activities vital ac-
tions for achieving established safety levels. The 
interaction with harsher environments at offshore lo-
cation (extreme wave and wind conditions, water 
depth situation...) imply additional complex and di-
verse uncertainties that will play an important role in 
the technical aspects concerning the design life and 
inspection and maintenance planning policies. These 
site conditions are highly complex processes that
triggers uncertain structural states that can be best 
modeled in probabilistic terms.
The deterioration processes such as fatigue, corro-
sion and scour are typically affecting offshore struc-
tural systems. The damage decrease the system per-
formance, thus not fulfilling the established safety 
criteria. To control this deterioration, the inspec-
tion/maintenance activities are developed, 
representing the most relevant and effective means 
of control.
The RBI methodology, based on Bayesian decision 
theory, represent an important tool to identify the 
suitable strategy to inspect and control the deteriora-
tion in structures such as wind turbines. During the 
last decades RBI approach has been applied to the 
mainstream industry (oil and gas, marine, aeronauti-
cal...), giving a theoretical background that can also 
be applied for OWT. 
Unlike other structures, wind turbines have mechan-
ical, electrical and structural components with a 
close dependence, e.g. blades with pitch control. 

This active control affects considerably the response 
and non-structural failure modes are important in 
connection to start/stop operation and acciden-
tal/unusual loads that will affect these specific parts.  
Other differences are the low risk of human injury 
that this kind of structure represents allowing alloca-
tion of a lower reliability level and larger operation 
and maintenance costs.
Offshore Wind farms need additional technical and 
economical efforts. Spatial correlation of OWTs 
imply turbulence conditions that affect the perfor-
mance of neighboring wind turbines. Wake effects, 
coming from the decrease of wind velocity behind 
OWT, increase the turbulence resulting in decrease 
in OWT fatigue life.
In water depths of about 20 m to 50 m, the use of 
jacket and tripod structures represents a feasible op-
tion that improves technical aspects concerning 
structural redundancy, damage distribution, scour 
conditions and dynamical behavior. An important 
OWT part is the transition node between the jacket 
or tripod and the tubular tower. The transition node 
is a critical design element, needing special careful 
design concerning the fatigue performance. In this 
paper reliability-based inspection and maintenance 
planning of details in the transition node is consi-
dered.

2 WIND LOAD
In addition to the ambient turbulence, OWTs inside 
of wind farms face certain unfavorable wind varia-
tions due to wakes behind other OWT where the 

Risk-Based Inspection and Maintenance Planning Optimization of 
Offshore Wind Turbines

J.G. Rangel-Ramírez and J.D. Sørensen
Aalborg University, Aalborg, Denmark

ABSTRACT: A risk-based inspection planning (RBI) approach applied to offshore wind turbines (OWT) is 
presented, based on RBI methodology developed in the last decades in the oil and gas industry. In wind farm 
(IWF) and single-alone locations are considered using a code-established turbulence models including free 
flow and in wind farm wake turbulence. Limit state equations for fatigue failure and illustrative examples are 
presented considering linear and bi-linear SN-curves. As part of the results for each case, inspection times are 
calculated, showing that earlier inspections are needed in-wind farm sites due to the increase of fatigue com-
ing from wake turbulence. 
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mean wind speed decreases slightly and turbulence 
intensity increases significantly. The turbulence in-
tensity, defined as the standard deviation of the wind
speed fluctuations divided by the mean (n-minutes) 
wind speed; represent an important aspect to consid-
er because its effects on OWT's fatigue life. In this 
paper, the following model is used for the efficient
standard deviation of wake turbulence proposed by 
Frandsen, S. (2005):
σ= 1-Nwpw σ0

m+Nwpwσw
m 1 m (1)

Where σ0 is the turbulence standard deviation under 
free flow condition, σw is the maximum wake turbu-
lence under wake condition, pw (=0.06) is the proba-
bility of wake condition and Nw is the number of 
wakes to which the considered wind turbines is ex-
posed to. It is further assumed that the standard dev-
iation of the response is proportional to the standard 
deviation of turbulence.
Wind load stress effects are strongly related with the 
type of power control (pitch or stall) in the OWT. 
Besides, the response is dependent on the OWT 
mode: standstill or operational.

3 OPTIMAL INSPECTION AND 
MAINTENANCE PLANNING

Reliability-based and  risk-based approaches for in-
spection and planning have been developed during 
the last decades, see Skjong (1985), Madsen et al. 
(1987), Thoft-Christensen and Sørensen (1987) and 
Fujita et al. (1989); and are being applied to outline 
RBI plans that have as main aim to improve struc-
tural reliability and minimize the life cycle overall 
costs. The suitable inspection and maintenance plan 
to improve costs can be carried out in the framework 
of pre-posterior analysis from classical Bayesian de-
cision theory, see Raiffa and Schlaifer (1961), Ben-
jamin and Cornell (1970) and Ang and Tang (1975), 
and adapted to the particular case of OWTs.
In figure 3.1 is shown a decision tree for RBI plan-
ning for OWTs, The different steps in the decision 
process are illustrated. The decisions and random 
outcomes could be summarized as follows:

Fig. 3.1 RBI decision tree

 Initial design phase, in which the optimal design 
parameters z= z1,z2,z3…,zn  are determinate. They 

have certain limits zmin-zmax. This interval is estab-
lished according codes and practice requirements.
 First interaction with external conditions, such as 

wind and wave climate; triggers a state of nature Xo.
This random outcome, due to high-uncertain nature; 
is the part of the process in which reliability and si-
mulation methods attempt to represent numerically 
time-deterioration process (wear, dent, corrosion, fa-
tigue…) dealing with model uncertainties at the 
same time. If the statistical basis for evaluation of 
the uncertainties is limited then also epistemic un-
certainties will become important.
 Monitoring activities "e" at the times 

t= t1,t2,t…,ti , include inspection, sampling and ana-
lyzing actions which result in inspection results "S"
(corrosion, denting level, size of fatigue cracks…) 
that are obtained depending on inspection quality 
q= q1,q2,q3…,qn (inspection techniques, technical 
expertise of inspectors…).
 Based on the obtained monitoring results, Mitiga-

tion alternatives will be considered according to 
fixed or adapting mitigation policy d(S).  Such poli-
cies are related to repairing or not repairing activi-
ties.
 State of nature Xi at the ith inspec-

tion/maintenance represents the beginning of new 
random outcomes. Theoretically, posterior states of 
nature depend on assumptions established to simpli-
fy the RBI process, e.g. assuming that repaired com-
ponents behave like new component and repaired 
parts will have no indication of damage at the in-
spection.

In Figure 3.1, CT(e,S,d S ,Xi) is the total service 
life cost. Overall cost optimization will be achieved 
by minimizing CT:
min E CT z,e,d S ,Xi =

+CI z +E CInsp z,e,d S ,Xi

+E CRep z,e,d S ,Xi
                                 +E CF z,e,d S ,Xi

(2)

zi
min≤zi≤zi

max , i=1,2,….,n
∆PF,t t,z,e,d S ≤∆PF

max,     t=1,2,…., TL

E CT is the expected (RBI action) costs in the 
service life TL where CI is the initial costs,  E CInsp

is the expected inspection costs, E CRep is the ex-
pected reparation costs and E CF is the expected 
failure costs. Equation (2) is constrained by limits on 
design parameters and that the annual probability of 
failure ∆PF,t has to be less than ∆PF

maxat all times, as-
suring a maximum annual risk-state. The n inspec-
tions are performed at times ti, i=1,…,n where 
to≤t1, t2, ….,tn≤TL.
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4 PROBABILISTIC MODEL FOR FAILURE
In this section the probabilistic models for assess-

ing the fatigue failure life based on SN-curves (SN) 
and fracture mechanics (FM) model are briefly men-
tioned. To evaluate the fatigue life is used the prob-
abilistic model for fatigue failure described in 
Sørensen et al. (2007).

In the assessment of SN fatigue life, the determi-
nistic design equation for free flow ambient turbu-
lence is:

G z =1-
ν∙FDF∙TL

KC
D m;σΔσ U ∙ fU(U)

Uout

Uin

 dU=0 (3)

where for linear SN-curve:

DL m;σΔσ U = sm∙fΔσ s|σΔσ U
∞

0

ds (4)

and bi-linear SN-curve:
D L m1,m2,ΔσD ;σΔσ U =

sm2 ∙fΔσ s|αΔσ U
σu U

z

ΔσD

0

ds

+ sm1 ∙fΔσ s|αΔσ U
σu U

z

∞

ΔσD

ds

(5)

σΔσ U =αΔσ U ∙
σu U

z
(6)

σu U =Iref∙ 0.75∙U+b       ,        b=5.6
m
s (7)

where ν is the total number of fatigue load cycles 
per year, FDF is the fatigue design factor 
(FDF= TF TL), KC is the characteristic value of K 
(mean log K minus two standard deviation of log K
), Uin and Uout are the cut-in and cut-out wind speed, 
respectively;  fU(U) is the density function of mean 
wind speed U, DL is the expected value of Δσm giv-
en standard deviation σΔσ and mean wind speed U in 
which fΔσ s|σΔσ U represents the density function 
for stress ranges given standard deviation σΔσ U at 
mean wind speed U. This density function and ν can 
be obtained by counting methods, e.g. Rainflow 
counting.

In the equation (6), αΔσ U is the influence 
coefficient for stress ranges given mean wind speed 
U ( σΔσ(U) σU(U) , σu U is the standard deviation 
of turbulence given mean wind speed U and z is the 
design parameter (e.g. proportional a cross sectional 
area). The equation (7) is the characteristic (90% 
fractil representative turbulence) ambient turbulence 
where Iref is the (IEC-) reference turbulence intensity 
(equal to 0.14 for medium turbulence characteris-
tics). The corresponding limit state equation is:

g t =∆-
ν∙t
K

XW∙XSCF
m ∙DL m;αΔσ U

σu U
z

∞

0

Uout

Uin  
∙fσu σu U  ∙f

U
(U)∙dσu dU

(8)

Where Δ is a stochastic variable modeling the un-
certainty related to the Miner rule for damage accu-
mulation, t is the life time in years, XW is the model 
uncertainty related to wind load effects (exposure, 
assessment of lift and drag coefficients, dynamic re-
sponse calculation), XSCF is the model uncertainty 
related to local stress analysis and σu U is modeled 
as lognormal distributed with a representative mean 
turbulence (90% fractil value-IEC 61400-1) equal to 
Iref 0.75∙U+3.6 with a standard deviation equal to 
1.4 m s ∙Iref.

For a wind farm location the design equation is 
based on IEC 61400-1 (IEC 2005):

G z =1-
ν∙FDF∙TL

KC
∙

1-Nw∙pw ∙

D m;αΔσ U
σu U

z
+pw 

∙ D m;αΔσ U
σu,j U,j

z

Nw

j=1

Uout

Uin

 ∙fU U  dU=0

(9)

where Nw is the number of neighboring wind tur-
bines, pw is the probability of wake from a neighbor-
ing wind turbine (equal to 0.06), σu,j is the standard 
deviation of turbulence from neighboring wind tur-
bine no. j:

σu,j U,j =
0.9∙U2

1.5+0.3∙dj U c
2 +σu

2 (10)

where dj is the distance between OWT norma-
lized by rotor diameter to the neighboring wind tur-
bine j and c is a constant equal to 1 m/s.

The limit state equation corresponding to the 
above equation is:

g t =∆-
ν∙t
K

X ∙XSCF
m

∞

0

Uout

Uin

∙

1-Nw∙pw ∙D m;αΔσ U
σu U

z

+pw∙ D m;αΔσ U
σu,j U,j

z

Nw

j=1
                ∙fU U ∙ fσu

σu U ∙dσu dU

(11)

σu,j U,j =
X ∙U2

1.5+0.3∙dj U c
2 +σu

2 (12)

Where Xwake is the model uncertainty related with 
wake turbulence model. The design parameter z is 
calculated with (3) or (9) and then used in limit state 
equation (8) or (11) to estimate the reliability index 
or probability for failure of the reference time t.

For the assessment of FM fatigue life is used
for illustration a one dimension crack model (figure 

79



4.1) where the crack length c is related with the 
growth crack depth “a” through a constant fcr. It is 
assumed that life may be represented by fatigue init-
iation life and a fatigue propagation life. This is 
represented as follows:

N=NI+NP (13)
Where N is the number of stress cycles to fatigue
failure, NI is the number of stress cycles to crack 
propagation and NP is the number of stress cycles 
from initiation to crack through. The crack growth 
can be described by the following equations:

Figure 4.1 surface crack idealization in plate under fatigue 
loads.

da
dN

=CA ∆KA
m              a(No)=ao (14)

∆KA=∆σ∙ πa (15)
c(fcr∙ao)=co (16)
where CA and m are the material parameters, aoand 
co describe the initial crack depth a and crack length 
c, respectively, after NI cycles and where the stress 
intensity range is ∆KA.

The stress range ∆σ is obtained from:
Δσ=Y∙Δσe (17)

where Y is the model uncertainty variable related to 
geometry function and Δσe is the equivalent stress 
range.  Δσe for a single OWT is calculated with:

Δσe=XW∙XSCF∙
D m;αΔσ U

σu U
z

∞

0

Uout

Uin

  ∙fU U ∙fσu
σu U  dσu dU

1
m

(18)

and for a wind farm location case:

Δσe=X ∙XSCF

∙

1-Nw∙pw ∙D m;αΔσ U
σu U

z

+pw∙ D m;αΔσ U
σu,j U,j

z

Nw

j=1

∞

0

∙ fU U ∙  fσu σu U  dσu

Uout

Uin

 dU

1/m

(19)

The limit state criteria used in the FM analysis is 
related with the failure when crack exceeds a critical 
crack size:

g(t)=ac-a(t) (20)
where is the critical crack size and is crack 
depth. For RBI planning the FM model is usually ca-
librated to result in the same reliability level as the 
code-based SN model. The RBI planning and main-
tenance is strongly related with inspection quality 
(inspection methods, technology, environmental 
conditions, inspectors’ expertise, etc). The incorpo-
ration of these influential factors is attained by using 
a distribution of the detectable crack size or proba-
bility of detection curve (POD).

5 EXAMPLE
An offshore wind turbine with a steel jacket sup-

port structure is considered as support of an OWT. 
OWT’s have an expected life time at 20 years and a 
design fatigue life time (TF) of 60 years. For the In-
fluence coefficient αΔσ U is used the function in 
figure 5.1 (mudline bending moment – pitch con-
trolled wind turbine) regarding this as a representa-
tive function in the support structure. This influence 
function is highly non-linear due to the control sys-
tem.

Figure 5.1 σΔσ σU for mudline bending moment – pitch 
controlled wind turbine.

Wind turbine in wind farm (IWF) and alone/single 
(S) OWT location are considered. For each location 
is considered linear (L) and bi-linear (BL) SN-curve
and cast iron (CI) and welded steel (WS) detail. In 
tables 5.1–5.3 are shown the stochastic models and 
parameters used.
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Table 5.1 SN stochastic models

Variable Distribution Expected
value

Standard
deviation

N 1.0
0.10 , 0.2 (WS)
0.20 , 0.4 (CI)

XW LN 1.0 0.10
XSCF LN 1.0 0.10
Xwake LN 1.0 0.15

m1 D
3 (WS)
6 (CI) --

m2 D 5 (WS)
11 (CI)

--

ΔσD D 71 MPa (WS) 
150 Mpa (CI) --

Log K1 N
Determined from 

ΔσD

0.20 (WS)
0.10 (CI)

Log K2 N
Determined from 

ΔσD

0.25 (WS)
0.15 (CI)

TF D 60 years --
Nw D 5/-- --
ν D 5∙107 --

Uin- Uout D 5 – 25 m/s --
pw D 0.06/0.0 --
dj D 4.0 --

Log K1 and Log K2 are assumed fully correlated
D: Deterministic, N:Normal, LN:LogNormal, W:Weibull

Table 5.2 FM stochastic models

Variable Distribution Expected
value

Standard 
deviation

Ln Cc N μln Cc (fitted) 0.7
NI W μ0=Tinit∙ν 0.35∙μ0
Y LN 1.0 0.10
XW LN 1.0 0.10

XSCF N 1.0 0.10
Xwake LN 1.0 0.15

ac D 25 mm --
ao D 0.4 mm --
fcr D 3.0 --

thickness D 25 mm --

m D 3.0 (WS)
6.0 (CI) --

Ln Cc and NI are correlated with correlation coefficient
ρln Cc, NI

= -0.5

Table 5.3 Distribution parameters and equations
Variable Distribution Parameters

PF D 1.0∙10-4

FU(u) W(α,βU) α=2.3 , βU=10.0 m/s
fΔσD(∙) W(αΔσD,βΔσD

) αΔσD=0.8

fσu(∙) LN(μ,σ) μ=Iref∙ 0.75∙Ui+3.6 ,
σ=1.4∙Iref

POD(x) PO∙(1-exp(-x/λ))    PO=1.0,  λ=2.67 mm
N1(s) K1∙s-m1 s≥ ∆σD

N2(s) K2∙s-m2 s< ∆σD

6 RESULTS

The design values z for each case are shown in table 
6.1 and 6.2 (equations 3 and 9) and in figures 6.1
and 6.2 are shown the results of the assessment of 
the reliability with FM approach (equations 18 and 
19) calibrated to result in the same reliability level as 
the code-based SN model (equations 8 and 11). β is
defined as the cumulative probability of failure (PF).

(a)

(b)

Figure 6.1 SN and FM model for (a) WS detail with S.D.=0.10 
and (b) CI detail with S.D.=0.20

It is seen that for bilinear SN-curve values of and 
z are smaller than for linear cases. The z design 
values (table 6.1 and 6.2) for cases in wind farm 
location (wake turbulence) are larger than the ones 
exposed to free flow turbulence due to the 
accumulation of fatigue
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Table 6.1 Inspection time and z design parameter 
WELDED STEEL DETAIL (WS)

S.D. = 0.10 S.D.=0.20
num. of 

insp.
insp. 
time

num. of 
insp.

insp. 
time z

IWF–L 1 19 1 17 0.5654
S–L 0 -- 0 -- 0.4933

IWF–BL 1 9 1 11 0.4226
S-BL 1 15 1 14 0.3632

Table 6.2 Inspection time and z design parameter 
CAST IRON DETAIL (CI)

S.D. = 0.20 S.D.=0.40
num. 

of 
insp.

insp. 
time

num. of 
insp.

insp. 
time z

IWF–L 4 2,4,8,18 4 1,2,5,12 0.1900
S–L 2 5,13 2 3,9 0.1596

IWF–BL 4 1,3,7,16 4 1,2,4,10 0.1864
S-BL 3 2,4,9 3 2,5,11 0.1560

Comparing the inspection times, earlier inspections 
are coming out in-wind farm sites due to the increase 
of fatigue coming from wake turbulence. It is noted 
that in all cases the design parameter z is determined 
by deterministic design such that the code-based de-
sign criteria is exactly satisfied

7 CONCLUSIONS

Based on risk-based inspection planning methods for 
oil & gas industry, a framework for optimal inspec-
tion and maintenance planning was applied for off-
shore wind turbines, addressing the analysis of fati-
gue prone details in cast and welded steel detail at 
the jacket or tripod steel support structures. In wind 
park location and single OWT were taken into ac-
count by using a turbulence model. This inspection 
optimization approach represents a viable method to 
outline inspection plans aimed at OWT, regarding its 
application to large structural systems. Furthermore, 
it may also be applied to other important compo-
nents like blades, nacelle, yaw system, etc. Kno-
wingly of the fast growth of wind industry and off-
shore wind turbine parks, larger and complex cluster 
of such structural systems may potentially be bene-
fited for optimizing the inspection and maintenance 
efforts and generate suitable inspection plans ensur-
ing an acceptance criteria with respect to risk. Be-
sides, this RBI approach may also be applied as a 
decision tool for estimating the consequences of a 
possible service life extensions and reduction (or 
strengthening) on the necessary maintenance and in-
spection efforts.
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Abstract:
This paper describes a reliability-based 
approach to determine fatigue design factors 
(FDF) for offshore wind turbine support 
structures made of steel. The FDF values are 
calibrated to a specific reliability level and 
linked to a specific inspection and maintenance 
(I&M) strategy used for the considered offshore 
wind turbines in such a way that the specific 
uncertainties for the fatigue life are accounted 
in a rational manner. Similar approaches have 
been used for offshore oil & gas sub-
structures, but the required reliability level for 
offshore wind turbines is generally lower and 
the fatigue loading is different. Based on 
representative stochastic models and response 
functions a set of FDF values are determined 
which depend on the degree of accuracy of the 
fatigue analysis and the consequences of 
fatigue failure of a critical detail. It is illustrated 
how the FDF values can be reduced if 
inspections are planned during the design life, 
and thereby the basis is available for selecting 
a cost-effective fatigue design. Further, the 
results can be used as basis for 
recommendations in standardization. 

1. Introduction
Design for fatigue failure is important for wind 
turbine components, especially for future very 
large offshore wind turbines (OWT) where 
fatigue can be an important design driver for 
the support structures. Different types of 
support structures are being developed, most 
of them made in steel with many fatigue prone 
details. The estimation of the fatigue life is 
associated with many uncertainties, e.g. from 
wave and wind load, wake effects in wind 
farms, influence of control system and stress 
analyses to determine stress ranges. Models 
for the fatigue strength is typically based on 
experimental tests and used in a SN-approach 
or a fracture mechanics (FM) method. These 
models are highly uncertain due to physical, 
model and statistical uncertainties. Finally, the 

fatigue damage accumulation rules used in 
design, e.g. the Miner’s rule, are very uncertain 
if not carefully calibrated together with e.g. the 
SN curves. Beside of material and load 
uncertainties, detection and no-detection of 
fatigue cracks at inspections represent an 
additional uncertainty that typically is modelled 
through probability of detection (POD) curves. 
FDF values are used in relation to different 
fatigue assessment requirements (e.g. damage 
tolerant / safe life design philosophies) and the 
consequence of failure (fail- or non-fail-safe 
components). Offshore codes such as [1] and 
[2] use FDF taking into account component 
location (i.e. accessible or not for inspection, 
change and repair).  
In the offshore oil & gas industry reliability-
based techniques for planning of inspections 
have been developed during the last 10-20 
years and are used as basis for calibration of 
fatigue design factors and for cost-optimal 
planning of inspections; see e.g. [3].  The 
reliability level for oil & gas offshore 
installations is typically much higher than 
required for offshore wind turbines. Further, the 
fatigue loading is quite different. Therefore the 
results from oil & gas industry cannot be used 
directly, but the basic principles and approach 
can be applied for offshore wind turbines. This 
is described and illustrated in this paper. FDF 
values are obtained depending on the 
consequences of fatigue failure and calibrated 
to a reliability level which is suitable for 
offshore wind turbines. It is shown how the 
FDF values can be reduced if inspections are 
planned to be performed during the design life, 
and thereby the basis is available for selecting 
a cost-effective fatigue design with or without 
inspections (of selected details).  

2. Calibration of Fatigue Design 
factors
Calibration of FDF values (or equivalently 
partial safety factors to be applied to the 
fatigue load and the fatigue strength) can be 
performed on a probabilistic basis through the 
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steps recommended by [4], see [5] for general 
code calibration. Basically, it is assumed that a 
certain number of inspections has to be 
performed in the design life. Assuming no-
inspection within the design life a SN-approach 
(see appendix A) is used with linear damage 
accumulation by the Miner’s rule. The steps 
include: 

 Definition of code objective: design of 
fatigue critical details in offshore wind 
turbine steel substructures 
 Stochastic modelling of uncertainties: 
fatigue load (wind and wave), calculation of 
fatigue stress effects (stress ranges), SN-
curves and model uncertainty (Miner’s rule). 
 Target reliability level: this should for 
different classes of fatigue critical details be 
selected such that the same general 
reliability level is obtained as for other 
ultimate failure modes, but taking into 
account the consequences of failure, see 
reference [6]. In special cases it can be 
argued that the reliability level should be 
increased / decreased if the marginal cost 
of improving the reliability is low / high, see 
reference [4]. 
 Identification of typical fatigue critical 
details: these have to be selected and used 
in the calibration to secure that the FDF 
values can be used in the whole range of 
typical applications. 
 Determination of FDF values: FDF values 
are calibrated such that the reliability level 
for the different typical fatigue critical details 
are as close as possible to the target 
reliability level. 
 The calibrated FDF values have to be 
verified for use in practical design.  

Extension to include the effect of performing 
inspections during the design life is 
straightforward if a FM model (see appendix B) 
is calibrated to the SN-approach and the 
reliability of possible inspection methods are 
included though POD-curves (see section 4 
and table 1). 

3. Probabilistic models
The underlying assumptions of the probabilistic 
models are briefly described in this section. 
The turbulence intensity represents an 
important aspect to consider due to its effects 
on the OWT’s fatigue life. It can be taken into 
account by specifying a characteristic influence 
function where the fluctuation of the (n-
minutes) wind speed can be related with 
internal forces (stress ranges) for a specific 

component, sector or detail (hot spots) of the 
OWT support structure.  
When an OWT is in wind farm location (IWF) 
the model should be modified to include 
additional turbulence due to wake conditions 
from surrounding turbines. To incorporate this 
additional IWF turbulence the following code-
based [7] model is used: 
 
σ= 1-Nw∙pw σ0

m + Nw∙pw∙σw
m 1 m (1) 

 
In equation (1), Nw is for number of wakes 
affecting the wind turbine, pw is the probability 
of wake condition, m is the Wöhler exponent, 
σ0 is the turbulence standard deviation under 
free flow condition and σw is the maximum 
wake turbulence. It is assumed that the 
standard deviation of response is proportional 
to the standard deviation of turbulence, see [8]. 
In the design equation, it is assumed that the 
response of the structure can be modelled by a 
narrow-banded stationary Gaussian process 
and that the failure occurs as a result of the 
accumulated effect of stress cycles for the 
given mean wind speed distribution. With these 
assumptions the frequency of maxima in the 
response (typical cycles per year, ν) are 
proportional to the time interval t (years).  
In the fatigue failure limit state equation, the 
uncertainties related with the wind, stress 
concentration factor and Miner rule (see 
appendix A) are taken into account. In case of 
IWF, the model in equation (1) is integrated in 
the design and limit state equations.  

4. Reliability-based inspection 
planning
If inspections are performed during the design 
life a reliability-based approach can be used to 
determine the times for the inspections such 
that the reliability during the whole design life is 
larger than a minimum reliability level. The 
reliability of the inspection technique (e.g. 
visual inspection, Eddy current or MPI) is 
modelled by a probability of detection (POD) 
curve, see table 1 and appendix B. Further it is 
assumed that all detected cracks are perfectly 
repaired by grinding, welding or replacement. 

5. Application examples
A probabilistic calibration of FDF for OWT 
support structure is presented in this section 
and illustrative results are presented. A 
representative influence coefficient function is 
used where the stress ranges are related to 
the wind load (wind load is assumed to be 
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dominating). These functions could be 
obtained in different manners such as by 
simulations and/or by measurements.  
If measurements or monitoring data are 
available indirect information about the OWT 
performance can be obtained. Data from e.g. 
strain gauges at specific hot spots can provide 
direct information about stresses at the critical 
detail.  
In the following example is used an influence 
coefficient function, αΔσ(U) which is 
representative for fatigue load effects in a 
critical welded detail in a steel support 
structure. The influence function is shown in 
figure 1. Due to the effect of the control 
system, the internal stresses will not vary 
linearly, and thereby the influence function will 
vary non-linearly as illustrated in figure 1. 
 

 
Figure 1. Influence coefficient function 
(σΔσ(U)/σu(U)) – pitch controlled wind turbine.  

5.1 Example cases
FDF values are obtained for four different 
cases for welded steel details. These will be 
the combinations of linear (L) and bilinear (BL) 
SN-curve cases with in wind farm (IWF) and 
single (S) location of the wind turbine.  

5.2 Stochastic models
Table 1. Distribution parameters and Equations 

Variable Distribution Parameters Comment 

fU(U) W(α,βU) α=2.3, 
βU=10.0m/s 

Mean wind 
speed 

fΔσD(·) W(αΔσD,βΔσD) αΔσD=0.8 Stress 
ranges 

fσu(·) LN(μ,σ) 
μ=Iref·(0.75·U+3

.6), 
σ=1.4m/s·Iref. 

Mean 
turbulence 

POD(x) Po·(1-exp(-
a/λ)) 

PO=1.0, λ=2.67 
mm POD curve 

N1(s) K1·s-m1 s ≥ ΔσD SN curve 
linear 

N2(s) K2·s-m2 s < ΔσD SN curve 
bi-linear 

D: Deterministic, N: Normal, LN: Lognormal, W: Weibull 
 
An offshore wind turbine with steel jacket / 
lattice support structure is considered. An 
expected design life TL equal to 20 years is 
assumed. It is noted that for a linear SN-curve, 

FDF is related to the partial safety factors on 
load, γf and fatigue resistance, γm by FDF = 
(γf·γm)m. In table 1 and 2 representative 
stochastic models, equations and parameters 
are shown, based on uncertainty models used 
for offshore oil & gas installations, see [3] and 
for offshore wind turbines, see [9] and [10]. 
 

Table 2. Stochastic models 
Variable Distr E[·] Standard 

deviation Comment 

Δ N 1.0 (1) 0.0, 
(2) 0.2 

Damage 
accumulation 

XW LN 1.0 VW Wind 

XSCF LN 1.0 VSCF 
Stress 

concentration 
factor 

Xwake LN 1.0 (1) 0.10, 
(2) 0.15 Wake 

m1 D 3.0 -- 

SN-curve. 
Wöhler 

exponent 
(linear) 

m2 D 5.0 -- 

SN-curve. 
Wöhler 

exponent (bi-
linear) 

ΔσD D 71 MPa -- 
Constant 
amplitude 

fatigue limit 

Log K1 N Determined 
from ΔσD 0.20 Material 

parameter 

Log K2 N Determined 
from ΔσD 0.25 Material 

parameter 

NW D 5/-- -- 
In-wind 

farm/single 
OWT 

Ν D 5x107 -- 
Fatigue 

cycles per 
year 

Uin -Uout D 5 – 25 m/s -- Cut in – out 
velocities 

pW D 0.06 / 0.0 -- 
In-wind 

farm/single 
OWT 

dj D 4.0 -- 
Normalized 
distance of 

OWT 

Ln CC N μlnCc (fitted) 0.77 Crack growth 
ratio 

NI W μO=Tinit·ν 0.35·μO 
Tinit (fitted), 
Initiation 

Time 
Y LN 1.0 0.10 Shape factor 

aC D 50 mm -- Critical crack 
size 

aO D 0.4 mm -- Initial crack 
size 

fcr D 4.0 -- 
Crack 

length/depth 
ratio 

thickness D 50 mm -- Thickness 

m D 3.0 -- Material 
parameter 

Log K1 and Log K2 are assumed fully correlated.  Ln CC and 
NI are correlated with correlation coefficient ρ LnCc,NI=-0.5 

0
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σΔσ(U) / σu(U)
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5.3 Results
Table 3.  FDF and TF (in years) for minimum annual 
reliability index (Δβ=3.1) and no-inspections during 
design life. 

VSCF 0.05
VW FDF IWF-L S-L IWF-BL S-BL 

0.10

Vwake-2,VΔ-2 2.00 1.40 2.00 1.60 
Vwake-2,VΔ-1 1.85 1.30 3.90 1.50 
Vwake-1,VΔ-2 1.65 1.40 1.95 1.60 
Vwake-1,VΔ-1 1.55 1.30 1.85 1.50 

 

VSCF 0.05
VW TF IWF-L S-L IWF-BL S-BL 

0.10

Vwake-2,VΔ-2 40 28 40 32 
Vwake-2,VΔ-1 37 26 78 30 
Vwake-1,VΔ-2 33 28 39 32 
Vwake-1,VΔ-1 31 26 37 30 

 
Table 4.  FDF and TF (in years) for minimum annual 
reliability index (Δβ=3.1) and no-inspections during 
design life. 

VSCF 0.1
VW FDF IWF-L S-L IWF-BL S-BL 

0.10

Vwake-2,VΔ-2 2.15 1.60 2.40 1.90 
Vwake-2,VΔ-1 2.00 1.45 5.65 4.50 
Vwake-1,VΔ-2 1.85 1.60 2.35 1.90 
Vwake-1,VΔ-1 1.70 1.45 5.60 4.50 

 

VSCF 0.1
VW TF IWF-L S-L IWF-BL S-BL 

0.10

Vwake-2,VΔ-2 43 32 48 38 
Vwake-2,VΔ-1 40 29 113 90 
Vwake-1,VΔ-2 37 32 47 38 
Vwake-1,VΔ-1 34 29 112 90 

 
In tables 3 and 4 results are shown for one 
typical fatigue critical detail with the influence 
coefficient function in figure 1 and without 
inspections. The minimum target annual 
reliability index is chosen to Δβmin = 3.1, as 
used in [11] and [12]. In figure 2 the reliability 
indices as function of time are shown for IWF-
L, VW=0.1,VSCF=0.05,Vwake-1 and VΔ-1. Both FDF 
values and fatigue design lives TF = FDF · TL 
are shown in tables 3 and 4.  
 

 
Figure 2.  Annual reliability indices of SN and 
FM approach for IWF-L, VW=0.1, VSCF=0.05, 
Vwake-1 and VΔ-1 without inspections during 
design life. 
 
The results in table 3 and 4 show that the FDF 
values are generally smaller than those used 
for fatigue design for oil & gas installations, but 
are dependent on especially the uncertainty of 
the stress range calculation (SCF). 
In table 5 results are shown for FDF and TF in 
the case where one inspection is performed 
during the design life. In figure 3 the reliability 
indices as function of time are shown for IWF-
L, VW=0.1, VSCF=0.05,Vwake-1 and VΔ-1. The 
effect of the first inspection is seen to be very 
efficient (with the assumed POD-curve) and 
results in a significant increase in reliability 
which has the implication that lower values of 
FDF and TF are required to maintain the 
requirement that the annual reliability has to be 
larger than Δβmin = 3.1.  

Table 5.  FDF and TF (in years) for minimum annual 
reliability index (Δβ=3.1) and one-inspection during 
design life. 

VSCF 0.05
VW FDF / TF IWF-L S-L IWF-BL S-BL 

0.10 Vwake-1,VΔ-1 
0.35 0.30 0.4 0.30 

7 6 8 6 
First inspection 

time
(year)

3 3 3 3 

 
 
 
 

90



   

 
Figure 3.  Reliability indices of SN and FM 
approach for IWF-L, VW=0.1, VSCF=0.05, Vwake-1 
and VΔ-1 with one-inspection during design life. 
 

The above results illustrate the potential of the 
reliability-based approach for calibration of 
FDF values or equivalently partial safety 
factors for fatigue design – and for including 
the effect of possible inspections during the life 
time of the wind turbine. However, more results 
are needed considering a range of different 
fatigue critical details, material thicknesses, 
SN-curves, number of inspections, inspection 
techniques and repair strategies. Further, the 
sensitivity of the stochastic models should be 
investigated, especially for Δ, XW and XSCF. 
Finally, for some details where the 
consequence of failure is less severe, a 
smaller value of βmin can be accepted. 

6. Conclusion
A methodology for probabilistic calibration of 
fatigue design factors for offshore wind turbine 
support structure is described. Representative 
stochastic models and influence coefficient 
functions are presented. For calibration 
examples single wind turbines and wind 
turbines within a wind farm are considered for 
a linear and a bi-linear SN-curve for welded 
steel details. Representative FDF values are 
obtained without and with one inspection 
during the design life. 
Using the reliability level used for calibration of 
partial safety factors for ultimate limit states in 
the IEC 61400-1 standard lower FDF values 
are obtained than used for civil engineering 
structures and offshore oil and gas steel 
platforms. If an inspection is performed during 
the design life then the FDF values can be 
decreased even more. However, the decrease 
in cost of the substructure due to the lower 
FDF values should be compared to the cost of 

the inspection and possible repair if a crack is 
detected. It is noted that the results presented 
are illustrative – more examples (influence 
coefficients modelling different types of critical 
details) and different types of inspections 
should be considered before recommendations 
for standardization can be formulated. 
This framework of reliability-based calibration 
of FDF values can also be used as a tool to 
select for a given wind turbine (wind farm) a 
cost-effective fatigue design considering initial 
design cost and service life costs. 
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Appendices - Probabilistic Models

Appendix A. SN-assessment of reliability

Design equation for free flow condition
Based on the assumptions mentioned in 
section 3 the design equation for a single/alone 
OWT can be written: 
 

G z =1-
ν FDF TL

Kc
D(m;σΔσ(U,z)) fU(U) dU = 0

Uout

Uin

 (2) 

 
where ν is the number of stress cycles per 
year, FDF is the fatigue design factor (TF= TL· 
FDF and FDF=(γf·γm)m for a linear SN-curve 
using laod and material partial safety 
factors γf and γm), TL is the design life time, 
Kc is characteristic value of K (material 
parameter in SN-curve), Uin and Uout are the 
cut-in and –out wind speeds, m is the Wöhler 
exponent in SN-curve, fU(U) is the probability 
density function of mean wind speed U, z is the 
design parameter and D represents the 
expected value of fatigue for the all stress 
ranges given a mean wind speed U and 
standard deviation σΔσ and considering 
medium turbulence characteristics [7]. The 
expected value of Δσ can be obtained for 
linear and bilinear SN-curve with the following 
formulae: 

where fΔσ(s|σΔσ) represents the probability 
density function for stress ranges given a 
standard deviation σΔσ at the mean wind speed 
U. σΔσ and ν can be obtained by cycle counting 
methods, e.g. Rainflow counting and σΔσ is 
written: 

 
In equation (5), αΔσ is the influence function 
referring to an specific detail (hot spot) or 
sector in the OWT and is a function of the wind 
speed. σU is the (normal) turbulence standard 
deviation (IEC-) considering class B. 
 
Design equation for in-wind farm location
For wind farm location the turbulence model is 
integrated at the model, resulting in the 
following design equation: 
 

G z =1-
ν FDF TL

Kc
∙ 

1-Nw∙pw ∙D(m;σΔσ(U,z))

+pw∙ D(m;σΔσ,j(U,z,j))
Nw

j=1

fU(U) dU = 

Uout

Uin

 

 

(7) 

where σΔσ,j is the standard deviation of stress 
ranges considering wake condition from j-
neighboring wind turbine and is defined as 
follows: 

σΔσ =αΔσ(U)∙
σu,j(U,j)

z
 (8) 

σu,j=
0.9 U2

1.5+0.3∙dj U c
2 +σu

2 (9) 

 
dj is the distance between OWT normalized by 
the rotor diameter of the neighboring wind 
turbine j and c is the constant equal to 1 m/s. 
 
Limit state equation for free flow condition
The limit state equation in free flow conditions 
is written: 
 

g t =Δ-
ν t
K

Xw∙XSCF
m

∞

0

Uout

Uin
D(m;σΔσ(U,z))
fσu(σu|U) fU(U)  dσu dU  

(10) 

where Δ, Xw and XSCF represent the 
uncertainties related with the Miner rule of 
damage accumulation, wind load effects and 
local stress concentration and analysis. t is the 
reference time and fσu is the probability density 
function for free flow turbulence that is 
modeled as LogNormal distributed with a 
representative mean turbulence equal to: 
Iref∙(0.75∙U+3.6)  (11) 
and standard deviation equal to 1.4m/s times 
the Iref. 

DL= sm∙fΔσ(s|σΔσ(U,z)) ds
∞

0

 (3) 

DBL= sm1∙fΔσ(s|σΔσ(U,z)) ds

ΔσD

0

 

+ sm2∙fΔσ(s|σΔσ(U,z)) ds
∞

ΔσD

 

(4) 

σΔσ=αΔσ(U)∙
σu(U)

z
 (5) 

σu=Iref∙(0.75∙U+b) ,    b=5.6m/s (6) 
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Limit state equation for in-wind farm 
location
To assess the reliability in wind farm location 
the following limit state equation is used: 
 

g t =Δ-
ν t
K

Xw∙XSCF
m  

1-Nw∙pw ∙D(m;σΔσ(U,z))

+pw∙ D(m;σΔσ,j(U,z,j))
Nw

j=1

∞

0

Uout

Uin

 

                                                         
fσu(σu|U)∙f

U
(U) dσu dU  

(12) 

 

σu,j=
Xw ∙U2

1.5+0.3∙dj U c
2 +σu

2 (13) 

 
where Xwake models the uncertainty related to 
the wake turbulence conditions coming from 
surrounding wind turbines. When equation (8) 
is used with this model, equation (9) will 
change in order to take into account the wind 
turbulence with the additional turbulence 
coming from the wake condition. The formula 
becomes: 
 
Appendix B. FM-assessment of reliability
Crack model
For the assessment of the FM-fatigue life, a 
one dimensional representative crack growth 
model is used with crack length c related with 
the crack depth a through a constant factor fcr. 
The following (Paris- Erdogan) model is used: 
 
da
dN

=Ca∙(ΔKa)m ,    
 a(N0)=a0  ,  c(fcr∙a0)=c0 

(14) 

 
where Ca is a material parameter (crack growth 
rate), ΔKa is the stress intensity factor range in 
a stress cycle. a0 and c0 represent the initial 
dimensions of the crack. The fatigue life is 
represented by two stages: fatigue initiation life 
(NI) and fatigue propagation life (NP). Adding 
these periods is obtained the number of stress 
cycles to fatigue failure. The stress intensity 
factor is written: 
 
ΔKa=Y∙Δσe∙ a∙π (15) 
 
Y is a stochastic variable taking into account 
the uncertainty of the geometry function and 
Δσe is the equivalent stress range that can be 
calculated as follow for free flow condition: 
 

Δ e=Xw∙XSCF  

D(m;σΔσ(U,z))
fσu(σu|U) fU(U) 

∞

0

 dσu dU 

Uout

Uin

1 m

 
(16) 

 
In case of wind farm location: 
 
Δσe=Xw∙XSCF

1-Nw∙pw ∙D(m;σΔσ(U,z))

+pw∙ D(m;σΔσ,j(U,z,j))
Nw

j=1

fσu(σu|U)∙f
U
(U) dσu dU

∞

0

Uout

Uin

1 m

(17) 

 
Limit state equation
The limit state equation used in the FM-
approach is associated with failure that occurs 
when the crack a(t) at the considered detail 
exceeds the critical size ac of the crack (e.g. 
thickness). The limit state equation is thus 
written: 
 
g(t)=ac-a(t) (18) 
 
The uncertainty related to a chosen inspection 
technique is modeled by a probability of 
detection (POD) curve (see table 1). 
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Abstract: 

The stochastic models for assessing the life cycle reliability are propped up with the state of 
knowledge of the considered phenomenon and its variables. Offshore Wind turbines consist of 
structural, mechanical and electrical parts that are strongly related, influencing each other 
during operational and standstill states and extreme events. In offshore wind industry the 
monitoring and inspection activities improve the quality and quantity of information about 
external phenomena. This information can be used to reduce the uncertainty by updating the 
stochastic model. Typically, the updating process is carried out through classical Bayesian 
approach. Although this represents a parametric effortless solution, the limited number of 
variables, strict conjugation, necessary mixed notation and the problems of integration to the 
structural reliability analysis represent some drawbacks. The discrete non-conjugated and Gibbs 
sampling approaches of Bayesian statistics can be used to overcome these disadvantages. 
Moreover, the integration of uncertainty into the assessment of reliability can be carried out by 
polynomial chaos expansion approximations. In this paper, these methodologies and updating 
techniques are applied for stochastic variables in the fatigue assessment of reliability of offshore 
wind turbines. A short description of their differences and the application of the orthogonal 
polynomial approximation are described and illustrated in an example. 

Keywords: Bayesian Analysis, Structural Reliability, Offshore Wind Turbine, Polynomial Chaos 
Expansion Approximation   

 
1. INTRODUCTION 
In 2030, the European Union (EU) electricity demand is planned to be supplied with 563 
TW/year [1] from the Offshore Wind Industry (OWI), which corresponds to 15% of the total 
electricity demand. One of the main reasons for going offshore is the higher wind speeds at low 
heights for longer periods than in land. Furthermore, the full-load hours per year are typically 
50% larger than at onshore places [2]. On the other hand, offshore structures are exposed to 
severe deterioration due to the harsh environmental conditions that deteriorates their 
components.  
Unlike offshore structures in the oil and gas (O&G) industry, offshore wind turbines represent 
much lower direct risk to the society and the personnel due to its location and because 
personnel is not needed in-situ for the operational phase. This allows having only economical 
cost included when optimizing the life cycle cost-benefits. 
In the OWI, the monitoring, measuring and surveying systems can be compared with the ones 
for oil & gas industry. The SCADA systems (Systems of Control and Data Acquisition) can 
provide online data coupled with real-time fault-prediction algorithms, see [4-7]. Currently, there 
are attempts to integrate this information for structural purpose to predict failures and to assess 
the influence of the mechanical damage on the structural reliability.  
 
To integrate the new information, a Classical Bayesian Updating (CBU) approach can be used 
for providing a straightforward solution in case of well-known standard distributions, see [8-10]. 
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However, when there is more than one unknown parameter, the resulting predictive distribution 
will be intricate and thereby restricts the application of the solution. In case of more than two 
uncertain/unknown statistical parameters, the CBU approach will not be a viable approach. This 
is an obstacle that probabilistic updating is facing in its way to be integrated to the Structural 
Reliability Analysis (SRA). 
Within Bayesian statistics, Discrete Semi-Conjugated Updating (DSCU) represents a discrete 
solution to integrate the information into the probabilistic model, see [11]. This approach can 
handle updating with either partially or totally discarding the notion of conjugacy that is used in 
CBU. In addition, it extends the possibility to incorporate multi-parameter probabilistic models. 
Further, Bayesian simulation techniques can also be applied to update the probabilistic 
information, i.e. Gibbs sampling. Monte Carlo Markov Chain (MCMC) techniques can use the 
Bayesian statistical formulation to perform an approximate solution for updating the stochastic 
models for the SRA, see [12-14]. 
The Bayesian Updating methods allow integrating new information into the stochastic model 
and the next challenge comes when the non-parametric multi-parameter distributions are to be 
used in SRA. In this paper this is accomplished by using a Polynomial Chaos Expansion 
Approximation (PCEA) of the updated probabilistic model. This application has been used to 
directly integrate uncertainty into the SRA [15,16] but not formerly applied in a Bayesian 
updating framework to integrate the updated non-parametric probabilistic model into the SRA.  
This paper describes an approach to apply non-parametric Bayesian statistics in SRA by using 
PCEA. The application is exemplified for fatigue assessment of offshore wind turbine structures 
but the proposed procedure can also be applied for extreme loads and for other types of 
structures.  
 
2. UPDATING AND INTEGRATION OF NEW INFORMATION 
Due to the desire to increase the efficiency and competitiveness of offshore wind industry, 
measurement and monitoring technologies have become important for engineering purposes 
such as failure prediction, damage detection, inspection planning and optimization of design. 
Bayesian statistics presents a consistent approach to address this integration by updating with 
new information. The updating process is based on the well know Bayesian updating formula 
 

 (1) 

 
where  is the prior distribution of the vector or set  of statistical parameters and 
represents the beliefs concerning the statistical parameters of the probability density function 
(PDF)  of the stochastic variables . The prior distribution is gathering the available 
information on the parameters at the moment of starting collecting information on .  is 
the PDF of the stochastic variable , defined by the  parameters . When this density function is 
considered as a function of the variables  defined for a fixed  then this PDF is not entirely the 
same in definition and thus the properties change. This is the reason to call it the likelihood 
function. The resulting updated PDF is called the posterior density function  of the set  
conditional on . The denominator in the formula (1) is the normalizing constant of the posterior 
distribution.  
 
When new outcomes  of the variable  are available, the density function 

 change to its estimating form as  and the posterior to . The likelihood 
function uses the samples and is defined by 
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 (2) 

 
In this paper, the main reason of calculating the posterior function is the interest per se in the 
predictive density function because it can be used in the assessment of the structural reliability 
and not as an estimator of good choice of the prior to assure the right beliefs, as in pure 
statistical cases.  
The predictive distribution of  represents the updated predictions of the probabilistic distribution 
of  taking into account both the uncertainty on  and the residual uncertainty on  conditional 
on whether parameter  is known or not. The assumption of knowing any parameter  brings 
theoretical limitations for the CBU approach and can provide a non-negligible approximation, 
e.g. for the case with a Normal likelihood with known variance is unlikely to be fully justified in 
practical cases.  
However, the above approach provides a parametric solution for the classical approach and the 
MCMC technique can be used to obtain the full conditional distributions. The predictive 
distribution is defined as follows 

 (3) 

 
where  is the predictive distribution function of  conditional on the new samples . The 
above formulas work together with the notion of conjugacy (see [17]) when the CBU-approach is 
chosen for simplicity and parametric treatment. However, when the set  has more than one 
parameter to be updated, the predictive density function is no longer simple to handle. The 
difficulty is not only in the algebraic handling but also in the incorporation to the SRA. Jointly 
with the conjugation, mixing of notation is typically used, e.g. normal distribution with unknown 
mean and standard deviation. When mixed-notation is included in the prior formulation, the 
decision makers should not generalize for any application case. This can bring either a 
conservative estimation of the predictive distribution or a wrong estimation. Examples of 
estimation of distribution with CBU-approach can be found in statistics [18,19] and engineering 
literature [20,21]. 
The consideration of “vague” prior information can be done but the decision makers should be 
aware about the kind of characterization. Although “vague” is commonly interpreted as synonym 
to “non-informative”, “diffuse”, “flat” and “negligible” adjectives. This, in a sense, is not entirely 
correct. The vague-assumption can be classified as notational or functional.  For example, in 
[22] updating with CBU is considered assuming notational-vague considerations when 
parameters are set to create the non-informative treatment with the purpose of "weighting" the 
likelihood function and "filter" the right information to the posterior distribution.  
When vague functional consideration is taken into account, the “weighting” prior function is a 
deterministic function such as Jeffrey’s and Haldane’s prior and arcsine distribution, see [23,24]. 
This bias filtering of information may affect the predictive distribution and make evident how 
vague-notational consideration is more suitable for engineering purposes than deterministic 
vague consideration. 
The notion of conjugated, mixed-prior formulation and uni-parametric functions are 
disadvantages of CBU. Conjugated priors are limited to those existing into the likelihood’s 
family. The DSCU belongs to non-parametric updating techniques and it avoids correlation 
inherited by mixing the priors’ notation for multi-parameter density functions. Moreover, DSCU is 
more efficient for numerical implementation compared with the entire evaluation of equation (1). 
The relative posterior discrete density function is calculated by 
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 (4) 

 
where  is the joint probability distribution of the parameters 

 to be updated with the sample .  refers to the of number 
of parameters. The denominator is the summation of -number of finite series of the joint 
probability distribution . The complete derivation of formula (4) can be found 
in the Appendix B. 
The DSCU-approach should only be compared with CBU numerically. They produce different 
results due to their formulations: one is based on conjugation (CBU) and the other on semi- or 
non-conjugated prior distributions (DSCU). Due to the non-conjugating formulation, DSCU is 
numerically easier to integrate with more variables. However, the discrete calculation can only 
be applied for a small number of parameters due to the fact that the chosen discrete vector of 
every parameter  is increasing exponentially with the -number of updating parameter . The 
discrete predictive distribution can be obtained by simply multiplying by the discrete probability 
density distribution .  
GS (Gibbs Sampling) is a subclass of MCMC algorithms, and represents a simulating technique 
to estimate the posterior PDF. Unlike CBU and DSCU, GS relies on full conditional distributions 
and on a sequential simulation algorithm. In contrast to crude Monte Carlo simulation (MC), the 
GS algorithm uses a more elaborated iterative sampling idea but still rather simple. In essence, 
the simulation of sequences of samples represent state of the parameters 

 and with the new set of samples, the new states 

  will start to be generated by the following recursive 
algorithm 

1) ; 
2)  
3)  
4)  

5) Initializing ; 
It is noted that the GS algorithm requires that the full conditional distributions have to be set up 
for sampling.  
In order to illustrate the application of the three approaches, the Normal / Lognormal distribution 
case is considered.  is assumed to be a Lognormal distributed stochastic variable 

. Initially, it is assumed that both  and  are unknown. A transformation of  to 
a Normal distributed variable  is established.   and  are similarly considered to be 
unknown, i.e. the unknown parameters are .  
For the CBU-approach the prior distributions of the parameters are defined as follows: the mean 
is assumed to be Normal distributed:   and the standard deviation (in terms 
of the precision parameter) is assumed to be Gamma distributed: 

.  and  can be interpreted as the number of observations 
from our prior knowledge describing  and .  is the prior sample variance. The joint prior 
distribution of  and  is thus defined by the parameters , , ,  and . Using a 
distribution from the exponential family, the conjugation of the likelihood can be carried out, see 
appendix A. In figure 2.1, the posterior and predictive distributions are shown for the CBU-
approach using the following prior parameters: ,  and 

 (in black).  
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For case , 20 log-samples,  were simulated from a normal distribution with mean 1 and 
standard deviation 0.15. If it is assumed that the prior information consists of 10 prior samples 
that are added to , the uncertainty decreases (see figure 2.1- , in gray) for the posterior 
distribution. However this barely influences the predictive distribution (see figure 2.1-b). E.g.  the 
5% / 95% probability levels change less than 0.18% in both quantiles. In figure 2.1-c is shown 
the posterior distribution obtained by Gibbs sampling. This  simulating approach allows to fast 
construction of the posterior distribution due to the dependent sequence of sampling for every 
parameter. 
 

                            (a)                                                        (b)                                                      (c) 
Figure 2.1 – (a) and (b) CBU, (black) the joint posterior of  and predictive distribution of  and 
(gray) joint posterior of  and predictive distribution of  with additional 10 prior samples. (c) 
Gibbs sampling, joint posterior distribution of . 
 
For the DSCU and GS approaches, the same basic prior formulation is used. But instead of 
using the term   in the -prior distribution,  is simply defined (see appendix B). This 
definition of the standard deviation originates from the semi-conjugating condition. Obviously, in 
the Normal case, CBU and DSCU approaches are going to be close in their results when 

 is close to , e.g. if  is close to unity and  is close to . The semi-conjugating 
condition makes the updating formulation of CBU different from the one in DSCU and GS, and 
thus they should not been compared directly. Although the difference in the central moments is 
small for this example (see table 2.1, with  for DSCU and GS), the difference 
becomes larger when the samples  fall outside the probable tendency (distribution) of the prior 
beliefs.  
To exemplify the influence of the formulation and the samples, a case  is shown where the 
samples  are taken as 15 log-samples from  and 5 log-samples from . 
The vector of log-samples is shown in table 2.2. In table 2.1-b is shown the quantitative 
differences between CBU and DSCU. In case  the CBU mean and standard deviation 
decrease and increase, respectively while in the DSCU-approach both increase.  

 
Table 2.1 Simulated vector of 20 Log-normal samples, case  and  

case  
 

 
-0.09868  0.02717 -0.13392  0.21454  0.04824 -0.13132  0.07056  0.10503  0.08283 -0.04689     
 0.20438  0.05683 -0.09781 -0.40377  0.15592 -0.00676 -0.00243  0.13240  0.11616  0.08533 

 
 
 

 
-0.13132  0.07056  0.10503  0.08283 -0.04689  0.20438  0.05683 -0.09781 -0.40377  0.15592  
-0.00676 -0.00243  0.13240  0.11616  0.08533 -0.17032  0.04488 -0.23433  0.33562  0.07915 
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Table 2.2 1st moment and K-central moments of the predictive distribution of  after 20 samples. 
 CBU DSCU MCMC-GS* 
 (a) (b) (a) (b) (a) (b) 

Mean 1.0257 1.0183 1.02608 1.02809 1.02552 1.02752 
Standard deviation 0.1566 0.1813 0.15922 0.17950 0.15977 0.18018 
2nd central moment 0.0245 0.0328 0.02535 0.03222 0.02552 0.03246 
3rd central moment 0.0020 0.0037 0.00216 0.00349 0.00220 0.00357 
4th central moment 0.0023 0.0043 0.00249 0.00417 0.00255 0.00431 

Coefficient of 
skewness 0.5342 0.6238 0.53581 0.60373 0.54079 0.61163 

Coefficient of kurtosis 0.8803 1.0650 0.88711 1.02168 0.91898 1.09117 
*500,000 simulations       
 
The values in table 2.2 show the situation when the standard deviation  of the mean is 
chosen to result in minimum difference between CBU and both DSCU and GS approaches (see 
appendix B). The preference of using GS instead of DSCU takes place when a hierarchical 
modeling of the stochastic model can be used to describe the probabilistic model of , see [25-
27].  
 
3. INTEGRATION OF UNCERTAINTY 
Integration of statistical uncertainty in structural reliability analysis (SRA) is basically not a 
problem. Generally, when FORM or SORM are used a non-normal distribution can easily be 
transformed to a standard Normal variable by the simple transformation . 
However, when an intricate or non-parametric distribution function is used, integration of 
statistical uncertainty can require an additional effort. The integration can be done in different 
ways, e.g. by a polynomial / rational approximation or by asymptotic expansions, see [28]. 
Nonetheless, there is a particular necessity for a generic procedure for uncertainty integration in 
cases where the distribution functions are complex, such as the ones generated in the updating 
process described above, e.g. In the conjugated case of a normal variable with both statistical 
parameters unknown.  
In this paper, the “Wiener-Hermite chaos” polynomial function is used assuming the underlying 
stochastic process as Gaussian, [29]. In the context of stochastic processes, the homogeneous 
chaos expansion converges to any process with finite second-order moments, see [30]. 
Although the application in this paper is concentrated about the incorporation of uncertainty into 
the model, Ghanem & Spanos in [31] and Sudret and Der Kiureghian [32] used Hermit-Chaos 
expansion together with the finite element method for formulating a framework to account for the 
randomness and spatial variability of mechanical properties.  
Besides mechanical and structural application, Tatang in [33], Webster et al. in [34] and 
Isukapalli in [35] extended the application into chemical engineering. In [35] PCEA is used as a 
functional approximation for integration of uncertainty into a computational efficient method for 
propagation. Similarly in this paper PCEA is used to approximate a probabilistic function to a 
random variable that can be expressed as a linear combination of Hermite polynomials having a 
Gaussian variable as its argument. The key point in this paper is to integrate the information to 
decrease uncertainty. Although an increase of reliability is obviously expected, a decrease may 
be a possibility, [36]. 
This section presents a brief review of the PCEA techniques for functional approximation. For a 
deeper description of the theory, reference is made to previous mentioned papers. The 
Homogeneous Chaos expansion was proposed by Wiener [29]. The main advantage of this 
approximation is its fast exponential convergence rate when Gaussian variables or process are 
represented. However, this rate can be seriously affected in some non-Gaussian cases. A 
review of the Wiener-Askey scheme for orthogonal polynomial expansion can be found in [30]. 
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The formulation can be adjusted in two manners: the first is by increasing the number of random 
variables to reduce the random “fluctuations” in the stochastic field and the second is to 
increase the maximum order of the polynomial chaos for handling the non-linear behavior of the 
process. For probabilistic approximations with one stochastic variable, a one-dimensional 
polynomial chaos approximation is used with an -order of the homogeneous chaos. The 
Gaussian stochastic process can be approximated by the following series: 
 

 

(5) 

 
The term  is the Hermite-Chaos term of order  in the standard Gaussian 
variables  with zero mean and unit variance.  are Hermite polynomials and  are 
Fourier coefficients of the series. The general polynomial chaos of order  can be obtained with 
 

 (6) 

 
In the one dimensional case with a third order chaos expansion the series (5) results in equation 
(7). This is obtained by constructing the polynomial chaos expansion by the direct approach 
(see [31]) and using the properties of the orthogonal polynomials: 
 

 (7) 
 (8) 

 
The parameters  can be calculated by an optimization scheme where the least-square error 
obtained from the k-central moments is minimized. For case  and  in table 2.1 the predictive 
distributions for the DSCU- and GS-approaches are approximated by PCEA, see table 3.1 and 
3.2 and figure 3.1. For case  the error is up to 1.5% for the 97.5% and 2.5% quantile and less 
than 0.19% for 50% quantile (see table 3.1). In order to add more accuracy, a fourth order 
chaos PCEA can be used. 
 
Table 3.1 PCEA-parameters and error of the PCEA when is compared with an ECD of the variable  for 

the case . 
 DSCU GS 
 1.028092 1.027526 
  -0.177831 -0.178459 
  0.016221 0.016335 
  -0.003456 -0.003779 

            Error for 2.5% quantile  1.23 % 1.47 % 
            Error for 97.5% quantile 1.31 % 1.27 % 
            Error for 50.0% quantile 0.1765 % 0.1874 % 
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(a) (b) 

Figure 3.1- (a) Comparison of PCEA for the predictive distribution from CBU- (black solid-line), DSCU- 
(gray) and GS-approaches (red dash-line) for case . (b) Comparison of PCEA for the predictive 

distributions from CBU-(black solid-line), DSCU-(gray) and GS-approaches (red dash-line) for case b. 
 

Table 3.2 – Quantiles from the 95% probability interval of case a and b. 
 CBU DSCU GS 
 A b A B a b 

2.5% quantile 0.7519 0.7076 0.7479 0.7189 0.7464 0.7168 
97.5% quantile 1.3720 1.4232 1.3781 1.4275 1.3791 1.4291 

 
 
The statistical analysis of the three updating approaches is mainly addressed in this section to 
compare the different assumptions in the updating techniques. In the following sections the 
impact on the structural reliability is analyzed for the case of offshore wind turbines (OWT). 
 
 
 
 
4. OFFSHORE WIND TURBINE SUPPORT STRUCTURES 
 
Offshore wind turbines have characteristics that make them different from common structural 
systems. The reason is their mechanical and electrical systems through a control system 
influence the internal forces, performances and deterioration processes (e.g. fatigue). Figure 4.1 
shows the main components in a wind turbine and the most important degrees of freedom. 
The tower transmits the forces to the support structure. The transition zone between the tower 
and foundation structure is an important part of the wind turbine that is prone to fatigue failure 
due to changes and discontinuities in geometry and materials. Weld seams can be found in 
these structural components and cracks can potentially be found there.  
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Figure 4.1 - ‘Common’ degrees of freedom for offshore wind turbines. 
 
There are different types of support structures. According to EWEA [37], 65.2% of offshore wind 
turbine support structures at the end of 2009 consist of monopile foundations, 23.1% of gravity 
foundation, 2% of jackets, 0.8% of tripods and the rest is unknown. The average depth at 
offshore places is around 9 m (not taking into account Alpha Ventus project with 30 meters 
depth and using jacket, and the Hywind floating turbine with 220 meters depth). Additionally, the 
average shore distance is around 14 km. Currently, not all technical solutions have been 
developed for offshore wind turbines [38]. However, the experience gained in the oil & gas 
industry may help finding efficient technical solutions especially for tripod and jacket type 
support structures. 
 
4.1 External and Condition Monitoring 
External measuring (EM) and condition monitoring (CM) have been carried out for offshore wind 
turbines for more than one decade, [39]. The main objective is to gain of information about the 
external conditions and data related to the wind turbines performance. In EM data on spatial 
and time/frequency characteristics of the external wave and wind phenomena are collected 
while in CM data is analyzed mainly to devise failure-detection and diagnostic algorithm to 
assess the performance of the wind turbines. In [40] and [41] a review of measuring 
technologies for wind turbines is given. 
The monitoring actions can e.g. be real-time measurements and inspection monitoring actions. 
The SCADA systems are mainly monitoring the nacelle components with the purpose of 
maximizing its performance and reduce downtime periods. Examples of SCADA system are 
presented in CONMOW [42], Cleverfarm® [43] and WT-Ω systems [6]. 
For fatigue assessment in structural components (high-reliability components) information from 
SCADA systems can be used indirectly for short-term considerations. However, load monitoring 
algorithms for wind turbines have been developed for components such as blades and rotor 
components, see [44-46]; where optical and temperature sensors give the information for 
fatigue load counting. For the high-reliability components, Inspection and supervision actions 
are only carried out for critical and important components and information of crack growing or 
mechanical damage can thus be obtained. 
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For measurements of external conditions different facilities [47], devices and mechanisms for 
recording, measuring [43] and monitoring [48] are available. Meteorological masts are the main 
facility to measure the wind speed. However, recent advances in remote sensing technologies, 
such as SODAR (Sound detection and ranging) and LIDAR (Light Detection and ranging) show 
promising results, see [49] and [50]. 
At offshore locations, wind fields behave different than at onshore sites. Sea surface roughness 
is much smaller than at land locations implying that the wind speeds increase and the free flow 
turbulence level decrease [51]. Besides higher wind intensity and longer load periods, ocean 
waves contribute typically to 75% of the horizontal load for support structures. Further, loads 
from ice, tidal sea level variations and current can be important. According to available statistics, 
wind and wave load correlation is generally large for sea locations while at offshore location 
close to the shore, this correlation decrease due to refraction and breaking of the waves [52]. 
When information from measurements and condition monitoring are available the stochastic 
model for the assessment of the structural reliability can be updated. This updating typically 
decreases the uncertainty in the variables and their parameters. CBU-updating has been 
performed for different situations in structural engineering, see [33], [53-55]. However, the 
situation of having discrete statistical distributions of the parameters could take place. In such 
cases, the decision maker can apply a semi-conjugate or non-conjugate discrete updating. In 
case of many unknown parameters an approximation with GS may be used. The case 
considered below is about updating of variables related to wind and wake conditions in offshore 
wind farms for welded details in the support structure that are prone to fatigue failure. The cases 
exemplify the updating and integration of information due to the measuring, e.g. new devices or 
measuring facilities.  

5. RELIABILITY ASSESSMENT OF FATIGUE 
5.1 FATIGUE 
The loss of strength as a result of cyclic loading over a period of time is a general phenomenon 
that takes place for most materials. This failure scenario typically takes place in situations where 
loads are under the design loads for ultimate, extreme load. The failure phenomenon was 
modeled by Wöhler [56] for the case of constant amplitude loading. Later, Palmgren [57] and 
Miner [58] propose a cumulative linear damage summation model that considers variable 
amplitude loads and may be used to predict the fatigue life. 
The fatigue life of a component can be summarized in three phases: crack initiation, crack 
propagation and final fracture. From an engineering outlook these periods can be defined in two 
stages: crack initiation life NI that is defined by the number of loading-straining cycles required 
to develop a micro-crack and NP that is the number of cycles required to propagate a crack to a 
critical size. The last phase may be neglected and the total fatigue life NT can be expressed as: 
 

  (9) 

 
The approach proposed by Wöhler together with the Palmgren-Miner linear cumulative damage 
rule represent a simple formulation for estimation of the fatigue life. The fatigue crack 
propagation is influenced by the micro-structural nature of the material, mean stress level, 
frequency of load application, the environment and force constrains. There have been many 
efforts to describe the crack development by different crack growth laws. The Paris-Erdogan law 
[59] is one of the broadest used: 
 

 (10) 
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where  is the crack size,  is the number of cycles,  is the stress intensity factor range,  is 
the crack growth rate and  is the Wöhler exponent. The stress intensity factor range   is a 
parameter that considers the energy release rate and crack driving force by the following 
definition: 
 

 (11) 
 
where the  is the stress intensity factor range in a stress cycle and  is the geometry function 
that takes into consideration the shape and geometry of the specimen and crack.  
Fatigue endurance is an important characteristic for many materials and has been modeled by 
S-N curves or Wöhler curves, see example in figure 5.1.  
 
 

 
Figure 5.1 – SN curve and basic fatigue load stress history 

  
Using the Palmgren-Miner rule the accumulated damage can be obtained from: 
 

and by introducing  
 

 

 
 
 
 

(12) 
 

where  is the total number of load cycles,  is a material parameter and  is the probability 
density function of stress ranges. An important concept in fatigue analysis for offshore wind 
turbines is the concept of an equivalent stress range that can be formulated conditioned on the 
type of load (wind and wave), intensity (e.g. wind speed and turbulence) and other features 
(structural component, site, height, recording time, etc). Formula (12) represents an equivalent 
stress range approach. In the case of offshore wind turbines the distribution function of stress 
ranges is conditional in the n-minutes wind speed (recordings) considering a specific type of 
turbulence (free flow in the simple case) at a specific site.  
 
The model used in [60] and proposed by Frandsen [61] for wake effects in wind farms is used in 
this paper. It has the following general characteristics: 

a) Simple implementation of the model. 
b) When the equivalent stress is formulated, the material properties are included in the load 

calculation (Wöhler exponent of S-N curve). 
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c) The model should be calibrated to site conditions. 
d) The main assumption is the proportionality of turbulence and response. 
e) Limitation in maximum number of wind turbines (eight surrounding wind turbines). 
f) Uniformity assumption of wake conditions around the offshore wind turbine. 
g) The fatigue is assumed to accumulate linearly and a linear SN-curve is used. 

The model is described by: 
 

 (13) 

 (14) 

 
where  is the effective standard deviation of the turbulence (including wake effects),  is the 
number of neighboring wind turbines,  is the probability of wind direction (uniformly 
distributed),  is the standard deviation of turbulence in a wake and  is the standard 
deviation of free flow turbulence,  is the distance (normalized by rotor diameter to jth 
neighboring wind turbine and  is a constant equal to 1 m/s.  
In the turbulence model in (13), the concept of linear fatigue damage accumulation is used and 
offshore wake conditions included. The density function of stress ranges,  is coupled with the 
IEC’s turbulence model [60] for n-minutes (typically, 10 minutes) wind speeds at hub height. 
With this model, it is possible to consider both free flow and in-wind farm wake effects.  
 
5.2 STRUCTURAL RELIABILITY 
Structural components such as tower, support structure and transition node have areas where 
the fatigue damage are important. A variety of structural reliability methods may be applied to 
assess the reliability of offshore wind turbine substructures. In this paper, FORM (First Order 
Reliability Method) is used to assess the fatigue reliability during the design life.  
Several models for reliability analysis of offshore wind turbines can be found in the literature. 
Tarp-Johansen [62] proposed and used a fatigue limit state function based on the Palmgren-
Miner rule which includes uncertainties related with the response, load and material; additionally 
a probabilistic calibration of design safety factors is carried out. In Sørensen [63] a more 
elaborated limit state equation is used but uncertainties in the response were not considered. 
Veldkamp [64] presented a study of the uncertainties and fatigue probabilistic fatigue model that 
take into account a large number of uncertainties. Further, Sørensen et al. in [65] and [66] 
presented a more mature model for assessing the reliability where equivalent fatigue loads and 
damage concepts are incorporated. In this model, the characteristics of the load, modeling and 
response are included by an influence function and a code-based fatigue model is included. 
This model is also used in this paper as mentioned in section 3.2 concerning the IEC-6400-1 
turbulence model. In the assessment of fatigue reliability, the minimum requirements in design 
specifications are followed. The probabilistic model includes uncertainties in material (SN-
curve), site measurements (wind, wake and wave conditions) and stress concentrations. The 
limit state and design equations are described in appendix C. 

6. EXAMPLE  
A welded detail (hot spot) in a wind turbine support structure is considered and the support 
structure has a  design life of 20 years. The fatigue life  for the component is 40 years. In 
tables 6.1 and 6.2 are shown representative stochastic models, equations and parameters (see 
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explanation of parameters in appendix C). It is only taken the linear case of the limit state 
equation. The influence function Δ  in figure 6.1 is used. 

 

Figure 6.1 - Influence coefficient function (σΔσ(U)/σu(U)) – pitch controlled wind turbine. 

It is assumed that a meteorological mast provides samples  of , which can be used for 
updating of the probabilistic model.  is defined as LogNormal distributed . Further, the 
uncertainty related to the wake model,  is updated based on measurements from 
surrounding wind turbines that can provide samples .  is defined as LogNormal 
distributed and when is this variable updated, it is assumed that the number of wind turbines is 
five.

Table 6.1 Distributions and stochastic model  
Variable Distribution Parameters Comment 

  W(α,βU) α=2.3, βU=10.0m/s Mean wind speed 
  W(αΔσD,βΔσD) αΔσD=0.8 Stress ranges 

  LN(μ,σ) μ=Iref·(0.75·U+3.8), 
σ=1.4m/s·Iref. 

Mean turbulence 

N1(s) K1·s-m1 s ≥ ΔσD SN curve linear 
N2(s) K2·s-m2 s < ΔσD SN curve bi-linear 

D: Deterministic, N: Normal, LN: Lognormal, W: Weibull 

Table 6.2 Stochastic variables 
Variable Distribution E[·] Standard deviation Comment 

  N 1.0 0.1 Damage accumulation 
 LN To be updated To be updated Wind 

 LN 1.0 VSCF Stress concentration factor 
 LN To be updated To be updated Wake 

 D 3.0 -- SN-curve. Wöhler exponent 
(linear) 

 D 5.0 -- SN-curve. Wöhler exponent (bi-
linear) 

 D 71 MPa -- Constant amplitude fatigue limit 

Log K1 N Determined from 
ΔσD 0.20 Material parameter 

Log K2 N Determined from 
ΔσD 0.25 Material parameter 

 D 5/-- -- In-wind farm/single OWT 
 D 5x107 -- Fatigue cycles per year 

 D 5 – 25 m/s -- Cut in – out velocities 
 D 0.06 / 0.0 -- In-wind farm/single OWT 
 D 4.0 -- Normalized distance of OWT 

Log K1 and Log K2 are assumed fully correlated. 

0
250
500
750

1000
1250
1500
1750
2000

0 5 10 15 20 25 30

σΔσ(U) / σu(U)

U (m/s)

109



6.1 RESULTS 
In figures 6.2 to 6.5 are shown the results of reliability assessment with FORM. It is assumed 
that the reliability is updated each year sequentially using the information obtained the latest 
year. The data are assumed statistically independent.  is the reliability index corresponding to 
the cumulative probability of failure  and is defined as . A third order chaos 
expansion approximation is used in this example. 
The variables  and  are updated to illustrate the impact of updating. Eleven general 
cases are addressed in this work and shown in the table 6.3. 
 
 Table 6.3 – General cases 

General Cases Updating Sample vector Variable  

1 WITHOUT UPDATING -- --  
 -- 

2 CBU-a CBU     -- 
3 DSCU-a DSCU     0.075 
4 GS-a GS     0.075 
5 CBU-b CBU     -- 
6 DSCU-b DSCU     0.075 
7 GS-b GS     0.075 

8 CBU- -a, CBU-  CBU -a / -
N(1,0.25)*  and  -- 

9 DSCU- -a, DSCU-  DSCU -a / -
N(1,0.25)*  and  0.075 / 0.10 

10 DSCU-a, COV~0.15 DSCU     0.15 
11 DSCU-N(0.9,0.05)* DSCU N(0.9,0.05)*   0.075 

 *the samples are log-samples of normal distribution 
 
Cases 2-4 were selected to compare the three updating approaches for a consistent sample 
vector . It is important to remember that  is selected such that DSCU and GS to 
converge by the updating to the results of the CBU case. In the figure 6.2 is shown the initial 
four cases and case 11 where the samples are obtained with a mean value less than 1 and a 
small standard deviation. The updated reliability estimates are for case 2-4 below the case 
without updating and only in case 11 higher updated reliability indices are obtained, as 
expected. From figure 6.2 is seen an initial difference in the three updating approaches, no 
matters the identical sample. This is the result of different factors such as the formulation (non-
conjugated approach and mixed prior), the limit state equation, PCEA order and the 
computational algorithms. The basic formulation is the reason for the initial difference (year 5-8) 
between CBU / DSCU and GS. However, the influence of the updated stochastic variables is 
also important. In this case  and  influence the limit state equation (see appendix C) 
and the choice of PCEA order can be a sensitive step in the calculation of the reliability. For the 
vector  samples the difference of CBU, DSCU and GS is not significant at the end of the 
lifetime. It is noted that case 11 converges to a higher reliability level due to the more ‘favorable’ 
samples. 
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Figure 6.2 – Reliability indices of the assessment of reliability of the general cases 1-4 and 11. 

 
In figure 6.3 the difference between the updated reliability and the reliability without updating is 
larger than in figure 6.2. The reason is that the vector of samples  has a larger standard 
deviation. The impact of the sample variation isn’t significant when the different approaches are 
compared, However when a higher  is used the convergence of this approach takes more 
samples, see figure 6.5. 
 

 
Figure 6.3 – Reliability indices of the assessment of reliability of the general cases 1, 5-7 and 11. 
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In cases 8 and 9 two variables (  and ) are updated during the life cycle using samples 
obtained for each year by measurements or monitoring. The results are shown in figure 6.4. 
Comparing DSCU and CBU approaches for updating of two variables, The difference is 
approximately 13% in the beginning of the lifetime. At the end of design life the difference is 
much smaller but not converging. Also, the impact of number of updated variables is clearly 
seen at the end of the design life. 
 

 
Figure 6.4 - Reliability indices of the assessment of reliability for the cases 2, 8 and 9. 

 

 
Figure 6.5 - Reliability indices of the assessment of reliability for the cases 2, 3 and 10.
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Figure 6.5 shows a comparison of the CBU and DSCU approaches. Compared to case 3 the 
prior standard deviation of the mean of   is doubled in case 10. It is seen that using the 
Discrete Semi-Conjugated Updating (DSCU) approach smaller reliabilities (as expected) are 
obtained in the beginning of the lifetime for case 10, and that the reliabilities are almost 
converging in the end of the lifetime. The results also show that the choice of updating approach 
is especially important in the beginning of the lifetime, where only a few data is available and the 
statistical uncertainty therefore is large. The updated predictive distribution is subjected to 
statistical uncertainty that will decrease with the integration of new samples. It is important to 
bear in mind that a strict convergence of the reliability estimates of the CBU and DSCU 
approaches will not exist due to the different models of the semi-conjugated prior.  

7. CONCLUSION AND DISCUSION 
Bayesian updating approaches can be applied to model and reduce uncertainty and to integrate 
new information into the stochastic model in assessment of reliability for OWT support 
structures. Limit state equations are formulated that allow considering in-wind farm locations 
with wake effects. In this paper three Bayesian approaches are considered: the classical, a 
discrete and a technique using simulation for updating. Special emphasis is put on describing 
the differences in the formulations (conjugation, mixing notation and probability distribution 
family), algorithm and computational aspects when the approaches are applied for OWT. In 
particular updating of Lognormal distributed variables is considered in order to illustrate the 
characteristics, drawbacks and advantages of choosing each of these updating methods. 
The Classical Bayesian Updating (CBU) is widely used for engineering purposes in codes and 
recommendations. It is based on a parametric formulation which allows straightforward to 
integrate new information. Nevertheless, it should be used carefully since it uses a conjugating 
and mixing prior that set dependency of parameter. The Discrete Semi-Conjugated Updating 
(DSCU) approach is useful when multivariate updating is considered. It lacks a parametric 
handling, a full conjugating scheme and it is an approximate technique. The last two 
characteristics could not be entirely seen as disadvantages since the second one makes 
possible the easy handling of multivariate updating and the last can be minimized by managing 
the discrete vector size. On the other hand, the Gibbs Sampling (GS) technique is based on a 
quasi-random process model, a simulation algorithm and discrete considerations. This makes it 
less exact for updating but unlike DSU and CBU, the applied sampling technique can manage 
hierarchical statistical formulation of the variables in the stochastic model for assessment of the 
reliability. 
Integration of the stochastic models updated by new information in reliability assessment is 
carried out through a third order Polynomial Chaos Expansion Approximation (PCEA) of the 
predictive distribution. The PCEA is converging with good accuracy for cases where the 
predictive distribution is close to a Normal distribution. Values corresponding to a 95% 
confidence interval and the mean are used for convergence check. However, when the 
predictive is far from being Normal, different percentiles have to be checked, i.e. in the initial 
updating stage (with few data) and in cases where the sample is not matching the prior beliefs. 
It is noted that the least-square optimization-minimization technique used to fit the PCEA can 
have numerical problems when more local minima are found. Further, reliability methods (e.g. 
FORM) can be sensitive to small changes of the PCEA.  
The examples show that the updated reliabilities by the different techniques converge with time 
(when many samples are available). However, is should be noted that due to differences in the 
formulations the three different updating techniques will not have a strict convergence of the 
reliability estimates in any of the cases. The integration of new information represents the 
reduction of the phenomenological uncertainty by means of external observations and condition 
monitoring of OWT. The illustrative examples show the impact of Bayesian updating methods in 
the assessment of reliability and a clear influence of the chosen prior and updating approach. 
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The third order PCEA used for approximating the predictive distribution should not be taken as a 
definitive solution and thus the order should be adapted to the considered case. Finally it is 
noted, that the application of non-parametric updating techniques together with PCEA can be 
applied also for reliability assessment of other types of infrastructure systems.
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APPENDICES 
A. CLASSICAL BAYESSIAN UDPDATING FORMULATION 
Defining X as a Lognormal distributed variable,  with transformation to a Normal 
distributed variable denoted . The prior of the mean  is considered to be Normal 
distributed  with an expected value   and standard deviation   
for the CBU-approach. The standard deviation  is dependent on the mean of  through its 
definition. The parameter  can be interpreted as the number of mean prior samples. The  
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term can be taken as the same value of  or not, depending on our beliefs. In this paper 
parameter  is equal to .  
The prior of the standard deviation  can be modeled by two different conjugating distributions: 
either in terms of the precision parameter  or in terms of the 
variance . In this paper the model by the precision 
parameter is used.Regarding the precision notation the definition of the  is changed to 

 and the precision parameter  is defined by the gamma distribution 
that is defined with expected value  and variance . 
The parameters  and  will be adjusted to the value of  and chosen parameter  or to 
adjust the gamma distribution to the beliefs or prior knowledge of the variable. In the table A.1 
are shown the formulas for obtaining the posterior distribution. 
 
Table A.1 – Normal distributed case : Unknown mean and standard deviation for 

conjugating prior with samples  
Distribution function Conjugating case 

Prior: variance  
Prior: mean conditional in the 
variance  

Likelihood function  
Posterior: mean conditional in the 
variance  

Posterior: variance  
In prior gamma:  and  

In posterior:  mean  and  

In posterior: variance      and      

 
 
B. DISCRETE SEMI-CONJUGATED UPDATING FORMULATION 
The discrete semi-conjugated updating is a discrete numerical ‘shortcut’. The definition of the 
posterior distribution  can be rewritten on its discrete form: 

 B.1 

 
By using the definition of conditional probability: 
 

 B.2 

 
and by simplifying, the discrete formulation of the posterior distribution is obtained: 
 

 B.3 
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The marginal (conditional on the samples) posterior distribution for any parameter  can then 
be obtained by simply summing over the other arrays of parameters, e.g. for calculating the 
marginal of  conditional on the samples  : 

 B.4 

For the example considered in this paper,  is defined as Lognormal distributed variable 
  with a transformation to normal distributed variable . The prior of the 

mean is considered to be normally distributed  for DSCU-approach. Due to the semi-
conjugated formulation for DSCU, the value of  is directly illustrating the difference between 
CBU and DSCU. In the table B.1 the statistical properties of the posterior are shown for different 
values of .  
 
Table B.1 K-moment and K-central moments of the predictive distribution of  for DSCU-approach 

with different values of . 
                 0.025 0.05 0.075 0.1 0.15 0.2 

Mean 1.01152 1.02165 1.02608 1.02814 1.0298 1.03051 
Standard deviation 0.15446 0.15758 0.15922 0.16005 0.1607 0.16106 
2nd central moment 0.02386 0.02483 0.02535 0.02561 0.0258 0.02594 
3rd central moment 0.00192 0.00206 0.00216 0.00221 0.0022 0.00229 
4th central moment 0.00219 0.00238 0.00249 0.00256 0.0026 0.00264 

Coefficient of 
skewness 0.52108 0.52749 0.53581 0.54104 0.5461 0.54830 

Coefficient of kurtosis 0.84965 0.86430 0.88711 0.90232 0.9176 0.92431 
 
When  is equal to , the values of the posterior distribution are closed to the values of 
the CBU-approach in table 2.1. Product of the semi-conjugated prior formulation, the DSCU and 
GS approach should have an assigned coefficient of variance . In this example,  
was chosen to be 0.075 to illustrate how CBU is diverging from DSCU and CBU values. 
 
 
C. LIMIT STATE EQUATIONS 
Design equation for free flow condition
Based on the assumptions mentioned in section 3 the design equation for a single offshore wind 
turbine (not within a wind farm) can be written, see [65,66]: 
 

 C.1 

 
where  is the number of stress cycles per year, FDF is the fatigue design factor (  
and  for a linear SN-curve using load and material partial safety factors  and 

, TL is the design life time,  is characteristic value of  (material parameter in SN-curve), 
 and  are the cut-in and –out wind speeds, m is the Wöhler exponent in SN-curve,  

is the probability density function of mean wind speed ,  is a design parameter and  
represents the expected value of fatigue damage for the all stress ranges given a mean wind 
speed U and standard deviation of stress ranges . Medium turbulence characteristics are 
assumed (IEC-61400). The expected value of the fatigue damage can be obtained for linear and 
bilinear SN-curve with the following formulae: 
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 C.2 

 C.3 

where  represents the probability density function for stress ranges given a standard 
deviation σΔσ at the mean wind speed .  and can be obtained by cycle counting methods, 
e.g. Rainflow counting. is written: 

 C.4 

 C.5 
 
In equation (C.4),  is the influence function referring to a specific detail (hot spot) or sector in 
the OWT and is a function of the wind speed.  is the (normal) turbulence standard deviation 
(IEC 61400-1). 

Design equation for in-wind farm location
For a wind turbine within a wind farm the equivalent turbulence model is integrated at the model 
resulting in the following design equation: 
 

 C.6 

where  is the standard deviation of stress ranges considering wake condition from j-
neighboring wind turbine and is defined as follows: 

 C.7 

 C.8 

 
 is the wind turbine distance to the neighboring wind turbine  normalized by the rotor diameter 

and  is a constant equal to 1 m/s. 
 
Limit state equation for free flow condition
The limit state equation in free flow conditions is written: 

 C.9 

 
where ,  and  represent the uncertainties related with the Miner rule of damage 
accumulation, wind load effects and local stress concentration and analysis. t is the reference 
time and  is the probability density function for free flow turbulence that is modeled as 
LogNormal distributed with a representative mean turbulence equal to  and 
standard deviation equal to 1.4m/s times the Iref. 
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Limit state equation for in-wind farm location
To assess the reliability for wind turbines within a wind farm the following limit state equation is 
used: 

 C.10 

 C.11 

 
where  models the uncertainty related to the wake turbulence conditions coming from 
surrounding wind turbines.  
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