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ABSTRACT 

As the demands for energy increased with the global increase in population, there is a need 

to create and invest in more clean and renewable energy sources.  Energy derived from the 

movement of the tides is an ancient concept that is currently being harnessed in a handful of large 

tidal range locations.  However, the need to move from fossil fuel driven energy sources to those 

that are clean and non-polluting is a priority for a sustainable future.  

Globally, hydropower potential is estimated to be more than 16,400-Terawatt hours 

annually.  Given that the electricity consumption worldwide was at 15,068-Terawatt hours in 2016, 

if properly utilized, hydropower could supply a substantial percentage of current demand. 

Most of the current hydropower supply is drawn from well-established dams and tidal 

barrage systems.  However, tidal power plants that harness the change in water height and flow 

along the coast (i.e. using tidal energy) have the potential to push these figures even higher.  

Although there is no exact number for lengths of global coastlines, there are estimates that put that 

number between 220,000 and 880,000 miles of coasts.  These opportunities in tidal energy 

technologies that harness energy from the sea may one day be the key to solving our energy crises.  

This research explored in detail a closed, convergent system for optimal extraction of head-

driven tidal energy with minimal adverse environmental effects.  The long-term goal of this project 

is to create a system that is viable in low tidal range locations traditionally not considered for 

locations of tidal energy systems, therefore increasing the overall global tidal energy portfolio.   By 

implementing a closed system of ‘bladders’ and convergent nozzles to optimize the flow rate of 

the contained fluid, the proposed system can 1) derive tidal energy in low tidal range geographies 
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2) avoid typical hazards like system biofouling, marine life propeller impacts, and 3) allow for 

ease of installation, operation, and maintenance.  
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1. INTRODUCTION 

The objective of this research was to develop a renewable tidal energy capture system 

that eliminates many or all obstacles that traditional tidal systems, i.e.: tidal barrage, tidal 

lagoon, and tidal stream, have not been able to overcome.  The overall goal was to design a 

system that eliminates system biofouling, minimizes or eliminates negative interference with 

marine life and local ecology, and offers easy of system deployment and maintenance.  

Another important objective of this tidal system research was to create a system that, 

unlike traditional tidal barrages and tidal lagoons, can be utilized in low tidal range regions such 

as the east coast of Florida.  This coast borders the Atlantic Ocean and experiences a semidiurnal 

tidal cycle with an average tidal range that is less than 2 meters.  Traditional systems currently 

worked on a ‘head differential’ and therefore require a tidal range with lower limits around 7 to 

8 meters.  Creating a system that can harness the potential tidal energy in these low tidal range 

regions would tremendously increase the renewable energy potential available across the globe. 

The hypothesis that drove this research was that by creating a closed convergent tidal 

energy capture system that utilizes optimized nozzles to accelerate the contained fluid as it 

approaches the turbine/turbines, we can achieve the following:  1) tidal energy driven by the 

potential energy of the weight of the water column that is then converted to kinetic energy as 

the contained fluid is forced through a nozzle that optimizes fluid velocity; 2) a closed system 

that eliminates biofouling by avoiding exposure to water with high levels of salinity i.e. 

seawater; 3) a closed system that eliminates potential propeller impact on marine life; 4) on 

land turbine housing that allows for ease of operation and maintenance.   
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In order to achieve this goal, the proposed research was aligned with the following plan 

of action:  First, a proof of concept experiment was conducted using a small-scale physical 

model of the proposed tidal energy system.  This allowed for testing the hypothesis that a fluid 

can be driven against gravity in a closed system.  The next test conducted utilized small-scale 

tests using a physical model to test the effect of convergent pipes and nozzles for optimizing 

fluid velocity through the proposed system.  Following this, a simplistic numerical model of the 

tidal system was created to estimate its behavior and investigate theoretical fluid velocity and 

associated power output.  An economic study of the system was then conducted to estimate the 

Levelized Cost of Energy (LCOE) to predict the economic viability and compare it to other 

renewable energy systems.  As an important component of this work, Provision and Utility 

Patents were drafted and submitted through the University of North Florida’s Office of 

Sponsored Research to protect the intellectual property be investigated.  As a final step, part of 

the potential transition to an operational system, intermediate scale testing of the system was 

conducted. 
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2. BASIC CONCEPTS AND LITERATURE REVIEW 

This research was predominantly focused on the creation of a closed convergent tidal 

energy system that utilizes convergent flow to optimize fluid velocities in order to capture an 

optimized amount of tidal energy.  This literature review provides background information of 

ocean tidal movements to allow for a basis of background knowledge of physics that drive tidal 

range globally and provide understanding for the vast amount potential energy available from the 

tidal changes.  In addition, a review of historical tidal energy systems, both successful and 

unsuccessful was researched to allow for an understanding of challenges and breakthroughs in the 

industry. 

2.1 Basic Tidal Concepts 

Tides are the result of the interaction of the gravity of the sun, earth, and moon. The rise 

and fall of the tides creates potential energy in the form of ‘head differential’ or tidal range. The 

flows of coastal waters due to flood and ebb currents creates kinetic energy. Both forms of 

energy can be harvested by tidal energy technologies as renewable energy.  The movement of 

the tides can be explained by a variety of gravitation forces that act on the earth and the oceans 

contained on it.  At the center of mass of the earth-moon system, the centripetal acceleration 

provided by the gravitational attraction between the moon and the earth exactly equals the 

centrifugal acceleration due to the rotation about the common center of mass. The period of 

rotation about this common center of mass is 27.32 days.    Everywhere else on the earth, there 

is an imbalance between the centripetal and centrifugal accelerations.  The centrifugal 

acceleration is approximately equal everywhere on the earth, but the gravitational force due to 
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the moon varies over the surface of the earth depending on location.  This imbalance results in 

a force that creates the tides, or tide-generating force.  

At the spot on the earth exactly under the moon or sub-lunar point and the spot on the 

earth exactly opposite that, or antipode, the tide-generating force is in the same direction as 

earth’s gravity.  Therefore, this force has little effect since its magnitude is significantly much 

less than gravity. This horizontal component, of the tide-generating force, is called the tractive 

force.  The equilibrium tide would result from the tide-generating forces if the earth was 

completely covered by water and responded instantly to the changing forces and friction forces 

were not applied.  Because of these tractive forces, the equilibrium tide has two bulges, one on 

either side of the earth. For this reason, you see two high tides and two low tides per lunar day. 

This condition is known as the semidiurnal lunar tidal constituent and has a period of 12.42 

Figure 1:  Tidal Phase and Frequency  (Department of Oceanography, Naval Postgraduate School, 2017) 
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hours.  The lunar day or tidal day is a total of 24.84 hours.  The moon's orbit and associated tidal 

bulges are tilted relative to the earth’s equator.  This results in the two high waters per lunar day 

not being equal. This is known as the diurnal inequality of the lunar semidiurnal tide and results 

in diurnal tides.  

The shape of the ocean basin is a major factor in determining whether the tide in a 

particular area is semidiurnal, diurnal or a mixture of the two. The sun also plays a role in 

influencing the movement of the tides. This interplay gives rise to another semidiurnal 

constituent.  The summation of the lunar and solar semidiurnal tides is known as beating. When 

the sun and moon are at right angles to each other a neap tide condition is created.  These neap 

tides deliver relatively small tidal ranges.  In opposition are spring tides.  These spring tides 

occur when the sun and moon are lined up and deliver relatively large tidal ranges. Various other 

parameters of the moon's orbit around the earth and the earth's orbit around the sun give rise to 

other tidal constituents that add complexity to the tidal signal.  This research relies on a basic 

understanding of tidal constituents and uses a localized semidiurnal average for investigation  

(Department of Oceanography, Naval Postgraduate School, 2017).  

2.2 Untapped Global Potential of Hydropower 

Hydropower uses water as its fuel in a manner roughly analogous to how a traditional 

coal-fired power plant uses coal to fuel its turbines. However, unlike coal, this fuel is not 

reduced or used up in the process.  Because the motions in a tidal cycle are part of a constantly 

recharging system, hydropower is a renewable energy.  When flowing water is captured and 

turned into electricity, it is called hydroelectric power or hydropower (Energy Efficiency & 

Renewable Energy, 2017) 
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Tidal energy is a form of hydropower that converts the energy of the cyclical movement 

of tides into electricity or other useful forms of power. Since the tides are governed by the earth, 

moon, and sun interactions as outlined above, they are entirely predictable and can be modeled 

years and decades into the future.  This makes tidal energy a completely reliable and predictable 

energy source (Kim Rutledge, 2011).   

Hydropower is currently the most harnessed form of renewable energy and plays a vital 

role in global power generation.  Worldwide, the total installed hydro capacity was reported at 

1,246 Gigawatts in 2015, bringing the total energy generation for 2016 to an estimated 4,102-

Terawatt hours (International Hydropower Association, 2017).  This total represents the greatest 

contribution of energy from a renewable source estimated to date. These current hydropower 

figures are equivalent to approximately 16% of global electricity generation. These existing 

hydropower plants also provide at least 50% of the total electricity supply in more than 35 countries 

(International Renewable Energy Agency, 2015). 

Globally, hydropower potential is estimated to be more than 16,400-Terawatt hours 

annually, although the estimates vary and are dependent on the source (U.S. Energy Information 

Administration, 2017),.  Independent research that utilized both calculations based on theoretical 

methods of tidal dynamics and also the use of 2D hydrodynamic numerical models resulted in 

results that are consistent with published proposed tidal energy values. The proposed Severn Tidal 

Barrage in the United Kingdom was taken as a case study by Junqiang Xia, Roger Falconer, 

Binliang Lin, and Guangming Tan.  These two aforementioned approaches were then applied to 

estimate the potential annual tidal energy output. The results show that the estimated tidal energy 

output for the barrage would range from 13 to 16 Terawatt hours per annum, which is similar to 



 

 

21 

 

the value of 15.6 Terawatt hours in reports published by the International Energy Agency and 

Department of Energy and Climate Change (Junqiang Xia1, 2015).   

The second method provides a more accurate estimate of the total annual energy output 

from a barrage, but more detailed information on the barrage and turbine parameters is required 

for more accurate results.  The model predictions from the second approach also indicated that the 

energy output from the Severn Barrage could be increased with technological advances in the 

sluice gate and turbine performance. It was predicted that the total annual energy output could be 

increased to 15.3 Terawatt hours with a higher discharge coefficient, and to 15.1 Terawatt hours 

with an improved turbine performance. It was also estimated that the annual output could be 

increased to 16.6 Terawatt hours if the performance of both sluices and turbines could be improved 

to match ideal conditions. Again, projected potential annual energy output corresponds to figures 

published in reports by climate and energy authorities (Junqiang Xia1, 2015).  

It’s important to note that these studies project values of tidal barrage potentials over 

coastal regions that experience a given tidal range.  There are also vast amounts of dynamic tidal 

or tidal stream energy that is left out of these figures and models that could potentially change 

these projections by a factor of two or more.  Given that electricity consumption worldwide was 

at 15,068-Terawatt hours in 2016, if properly utilized, hydropower could supply a hefty percentage 

of current demand (Enerdata, 2018).  Most of the current hydropower figures are drawn from well-

established dams and tidal barrage systems.  However, tidal power plants that harness the change 

in water height and flow along the coast (i.e. using tidal energy) have the potential to swing these 

figures even higher.  Although there is no exact number for lengths of global coastlines, there are 

estimates that put that number between 220,000 and 880,000 miles of coasts.  These tidal energy 
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technological interfaces between the land and sea may one day be the key to solving our energy 

crises (Egbert, 2002).  

2.3 Understanding the Future of Tidal Energy Systems Through the Past 

Harnessing power from water or hydropower has been used throughout human history.  

Perhaps dating back to the prehistoric times, humans realized the utility of putting fast-moving 

river currents to work with the aid of a paddle-equipped wheel linked up to a spindle or rotor.  The 

water wheel dates back at least to ancient Greece, where Grecian millers used this rudimentary 

form of hydropower to grind wheat into flour (Shere, 2013). 

In the late 19th century, hydropower became a primary source for generating electricity in 

many parts of the United States. The first hydroelectric power plant was built at Niagara Falls in 

1879. In 1881, street lamps in the city of Niagara Falls were powered by hydropower (Kim 

Rutledge, 2011). 

The past century of hydropower has seen many advancements that have helped it become 

an integral part of the renewable energy mix in the United States and the global economy.  

Hydropower is no longer just the venerable water wheel but shows up as a variety of machinery 

used to capture the energy present in rivers, changes in tide, currents, and waves (Energy Efficiency 

& Renewable Energy, 2017). 

2.4 Existing Tidal Energy Capture Systems 

Currently, there are two types of systems that derive energy from the cyclical movement of 

the tides.  Tidal range systems use the vertical difference in height known as ‘head differential’ or 

‘tidal range’ between the high tide and the succeeding low tide.  Artificial tidal barrages, in the 

form of a dam, lagoon, or other barrier, may be constructed to capture the tide. Turbines in the 
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barrier or lagoon generate electricity as the tide floods into the reservoir. This water is retained and 

can then be released through turbines, generating electricity once the tide outside the barrier has 

receded (Ruud Kempener, 2014). 

There are several large commercial scale tidal power plants in operation around the world. 

Sihwa Lake Tidal Power Station is the largest tidal power station in the world was commissioned 

in South Korea in 2011.  This power station has a maximum generating capacity of 254 MW and 

is an interesting construction because of its design that utilized an existing seawall and then 

retrofitted it with ten 25.4 MW submerged turbines to produce electricity from the tidal flows. The 

next largest is a 240 MW bulb turbine plant at the mouth of La Rance estuary in France. This power 

station site generates enough power to supply electricity to a city of 300,000 people.  The 

Annapolis Royal Generating Station is another high energy producing barrage, located on the 

Annapolis River in Nova Scotia, Canada.  This power station was commissioned in 1984 and has 

a generating capacity of 20MW. The Annapolis Station has the capability to power around 4500 

houses in the area.  Others barrage systems include Kislaya Guba Tidal Power Station in Russia 

with a capacity of 1.7 MS, Jianxia Tidal Power Station in China at 3.2 MW, and Uldolmok Tidal 

Power Station in South Korea at 1.5 MW (Tidal Power, 2017) 

Tidal stream technologies, or dynamic tidal systems, are the second class of tidal power 

generation schemes.  They act much like underwater wind turbines, generating power from the 

kinetic energy of fast-flowing tidal currents. Tidal Stream systems capture the flow of water as the 

tide ebbs and floods, manifesting as tidal current. Tidal stream devices extract energy from this 

kinetic movement of water, much like wind turbines extract energy from the movement of air. The 
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currents created by the movement of the tides are often magnified where water is forced to flow 

through narrow channels or around headlands (Tidal Power, 2017).  

The generators are generally sunk between twenty to thirty meters below the surface of the 

water and can be situated anywhere that possesses a strong tidal flow. However, developing a 

successful tidal current turbine has been more difficult than simply dropping a wind turbine in the 

ocean. Because water is about 800 times denser than air, tidal stream turbines must be built to be 

much more robust than their terrestrial counterparts. The advantage of the greater density of water 

is that relatively large amounts of power can be produced with relatively small rotor diameters. 

For example, rotors with a diameter of 10-15 meters can generate as much as 700 kilowatts of 

power, whereas a 600 kilowatt wind turbine requires a rotor diameter of up to 45 meters. Current 

designs of tidal turbines function best at flow rates of 7-11 kilometer per hour (Tidal Power, 2017). 

Tidal stream technologies are still in its infancy and have experienced many innovations as 

well as setbacks along the way.  For this reason, there are many companies forging the path forward 

in this field, but none have proved a concept that can stand the test of the battering currents and 

environmental exposure.   Almost 40 new devices have been tested in the last few years with a few 

making it to full-scale testing.  So far, most of the development of this technology is taking place 

in Canada, China, France, Ireland, Japan, South Korea, Spain, the United Kingdom, and the United 

States.  Most of these countries have at least one open sea test site. The European Marine Energy 

Centre (EMEC), based in Scotland, is one of the longest running sites where tidal current turbines 

have been tested since 2005. In the USA, the Verdant turbine was tested in the East River of New 

York City and Ocean Renewable Power Company is demonstrating its vertical axis turbines near 

Eastport in Maine (Ruud Kempener, 2014). 
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2.5 Global Research in Tidal Energy Capture Systems 

Looking toward the future, innovative scientists and engineers have proposed several novel 

tidal range alternatives to the barrage.  One of the most promising being the tidal lagoon. Tidal 

lagoons would not be attached to the shoreline at all, but rather be artificially created pools in the 

sea that would let water in and out while generating power similar to the way tidal barrages operate.  

These proposed lagoons would offer with greater efficiency without isolating ecologically 

sensitive inter-tidal areas. As of early 2016, the first tidal lagoon project was under construction 

off the coast of the Welsh city of Swansea, enclosing around 11 km2 of water. It is projected to 

produce 320 Megawatts of power for 14 hours a day.  This is enough energy to power 155,000 

homes and will make it the largest tidal energy facility in the world. The Swansea Tidal Lagoon is 

scheduled for completion in 2019, if successful, it will be the first of six proposed tidal lagoon 

projects to be built on Britain’s west coast (Tidal Power, 2017) 

  The Dutch-designed Dynamic Tidal Power system is an even more radical and promising 

tidal range proposal. A large T-shaped pier would be built up to 60 km straight out from the coast, 

blocking tides that move parallel to the coast and cause enough head differential to could produce 

tremendous amounts of electricity, while possibly avoiding many of the economic and 

environmental problems of other tidal range technologies. No such projects have been built yet, 

but teams from China and the Netherland are moving forward with planning on such projects (Tidal 

Power, 2017). 

Tidal stream technologies have seen huge advances in the last decade, with many 

companies around the world working to recreate the success of wind turbines on land in the 

underwater realm. Yet the technology is far less mature than wind power, and tidal stream 
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technologies are just now leaving the prototype and demonstration phase. Companies around the 

world are pioneering a large variety of different designs, recently totaling around 40 unique 

prototypes.  Most function on the same principles as horizontal axis wind turbines, however, there 

are a collection of more novel designs.  These include vertical-axis turbines, rotating screws, tidal 

kites, and paddlewheels. Further research is necessary in this field, the most critical is creating 

turbines that can survive the hostile and saline conditions of the ocean.  A recent test in Nova Scotia 

resulted in a tidal stream turbine failing as the rotors were ripped off by the immense tidal forces 

experienced in the Bay of Fundy. In addition, the corrosive salt water encountered in the marine 

environments also takes a serious toll on equipment. Experiments are also ongoing on the best 

method for mooring the turbines to the seafloor. Concrete bases on the seabed are the most 

common of mooring system being utilized.  However, other mooring designs include turbines 

mounted on towers and floating systems that are tethered to the seabed.  Research is also being 

conducted on overcoming the challenges of connecting the power grid (Tidal Power, 2017). 

2.6 Predictable and Reliable Tides 

Tidal energy outperforms all other renewable energies when it comes to predictability.  

Unlike the amount of sun-filled days or the available wind velocity, the tides are well understood 

and can be modeled to optimize an energy generation system for years to come.  Because of this, 

the power generation as a percent of the installed capacity of tidal systems far outperforms wind 

and solar, reaching up to 90% of the installed or nameplate capacity for a system.  Where nameplate 

capacity is the design intended full-load sustained output of a facility.  Power generating systems 

with an output consistently near their nameplate capacity have a high capacity factor.  
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These capacity factors as compared to nameplate capacity are important factors when 

comparing renewable energy across economic performance.  For example, wind turbines under 

100-kilowatt on average cost between $3000 to $8000 per kilowatt of nameplate capacity. At the 

utility scale, this initial construction cost is between $1.3-$2.2 million per Megawatt of nameplate 

capacity. It is important to note that the nameplate capacity of wind turbines and other energy-

producing plants is then scaled back by the above-mentioned capacity factor. Wind has an average 

capacity factor of 25% to 33%, meaning that wind farms will only achieve their nameplate capacity 

rating of 1/4 to 1/3 of their runtime. This is due to inconsistent wind speeds, variability in wind 

directions, and time periods when no wind is present (Poyry, 2017). 

2.7 Current State Hydropower and Tidal Energy 

Historically, hydropower has proven to be a cost-effective and reliable electricity source. 

It offers high efficiency and low operating and generation costs, though its upfront investment cost 

is relatively high. The capital costs of large hydropower projects are dominated by the civil works 

and equipment costs.  These can represent between 75% and as much as 90% of the total 

investment costs. These initial investment costs are highly site-specific as each project is designed 

for a particular location. Proper site selection and hydro scheme design are therefore key 

challenges.  Annual operations and maintenance costs are often quoted as a percentage of the 

investment cost per kilowatt per year, or as USD per kilowatts per annum. Typical values range 

from 1% to 4% of the total system cost. The International Energy Agency (IEA) assumes 2.2% for 

large and 2.2% to 3% for smaller hydropower projects, with a global average of around 2.5%. 

Other studies indicate that fixed operation and maintenance costs represent 4% of the total capital 

cost. This figure may be appropriate for small-scale hydropower plants, however large hydropower 
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plants will have significantly lower values. An average value for operation and maintenance costs 

of 2% to 2.5% is considered the acceptable average for large-scale projects, which is equivalent to 

average costs of between USD 20 per kilowatt per annum and USD 60 per kilowatt per annum for 

the average project by region in the IRENA Renewable Cost Database. (Agency, 2015) 

There are a limited amount of established tidal power plants to derive long-term cost and 

return from.  Because of this, tidal range power generation study is dominated by two large plants 

in operation, the La Rance Tidal Barrage in France and the Sihwa Tidal Plant in South Korea. The 

construction costs for La Rance were around USD 340 per installed kilowatt (2012 value, 

originally commissioned in 1966), while the Sihwa barrage was constructed for USD 117 per 

installed kilowatt in 2011. The latter used an existing dam for the construction of the power 

generation technology. The construction cost estimates for proposed tidal barrages range between 

USD 150 per installed kilowatt in Asia to a much higher USD 800 per installed kilowatt in the UK 

but are very site specific. Again, the typical systems are high in installation cost but yield a good 

return with a low cost of electricity production.  For example, electricity production costs for La 

Rance and Sihwa Dam are EUR 0.04 per kilowatt-hour and EUR 0.02 per kilowatt-hour 

respectively (International Renewable Energy Agency, 2015). 

2.8 Current Competitive Renewables: Wind and Solar 

Other renewable energy capture devices, such as wind turbines, photovoltaic cells and solar 

concentration plants play an important role in the long-term power generation portfolio.  Currently, 

wind energy and their corresponding turbines offer a technology that is effective in high sustained-

wind regions but cannot be implemented in many coastal areas. The same can be said about solar 

which relies heavily on solar exposure and is often unpredictable. 
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However, the proposed tidal system can add another avenue of energy collection in regions 

where these other technologies are not optimal or even viable.  If used in harmony with each other, 

we could move to a future that moves away from a dependence on fossil fuels and completely 

renewable power generation portfolio. 

Currently, solar photovoltaic cells are an important component of the global renewable 

portfolio.  These systems are easily scaled, either too large solar farms for commercial use or down 

to rooftop solar for residential use.  However, these systems experience a large amount of 

variability due to weather conditions and unavailable solar energy generation during the sundown 

hours.  In addition, solar technologies face intermittency issues, large energy storage costs, have a 

limited lifetime of photovoltaic cells with cell efficiency diminishing each year after being 

manufactured.  The cost of utility-scale installation comes in around $3-$3.5 million per Megawatt 

(SunRun, 2018).  When the capacity factor in introduced to these cost figures, the cost jumps to 

$20-$30 million per actual Megawatt. 

Energy harnessed from the wind currently contributes an important piece of the total 

renewable energy portfolio.  Wind turbines offer a technology that is highly effective in regions 

that experience high sustained winds.  However, these turbines cannot be implemented in many 

coastal areas that experience intermittent winds and high-intensity storms.  Wind farms also create 

concerns over effects on surrounding ecology, noise level concerns, and complaints about visual 

clutter of the affected geographies.  These systems require a high cost to manufacture, install, as 

well as, operation and maintenance (Windustry Resource Library, 2012).  The present cost of these 

system average at $1.3-$2.2 million per Megawatt for utility scale installation.  When the capacity 

factor for wind is introduced, this figure jumps to $5.2-$8.8 million per Megawatt. 
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3. MOTIVATION FOR 

The motivation behind this research was to develop a renewable energy tidal system that 

builds on the previous research and history of this field while moving forward with a system that 

can overcome many of the traditional obstacles that past system have and presently encounter.  If 

able to achieve this, our system will be able to contribute another resource in the renewable 

portfolio of clean energy systems helping to gain more global independence from fossil fuels as a 

primary energy source. 

Current tidal barrage systems and the proposed tidal lagoon and tidal stream systems 

encounter are exposed to biofouling conditions because the mechanical parts interface with the 

harsh and high salinity waters of the tidal systems that they must operate within.  This increases 

the amount of system maintenance that is required.  The direct contact with turbine propellers with 

the surrounding ecosystem also means there is the possibility of impacts with local marine life as 

it passes through the system.  The proposed system aimed to eliminate the interaction of both 

biofouling waters to the mechanical system the mechanical impacts to local marine life. 

In addition, this research into a novel tidal system aimed to develop a system that can be 

deployed in coastal regions with low tidal ranges that would not typically be considered for tidal 

energy capture systems such as the tidal barrage or tidal lagoon. 

Finally, this system may also offer unique uses in the area of disaster relief, remote location 

energy production, remote or emergency military operations, and possible use for powering 

desalination projects. 
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4. PROPOSED TIDAL ENERGY SYSTEM 

This section of work begins with an outline of an innovative, closed convergent tidal energy 

system.  The proposed system allows for scalable energy generation from tides, even in areas with 

relatively small tidal ranges, while avoiding many of the traditional pitfalls of existing technologies, 

such as bio-fouling, harm to marine ecosystems, damages to turbines due to debris in the water 

and wear on moving parts due to sediment and other suspended materials in the water. This system 

has the flexibility to be used in residential and commercial energy production applications. 

Additionally, the need for system maintenance is greatly reduced by placing the turbines on land 

for easy accessibility, which also permits easier access to the energy grid. 

Figure 2: Infographic illustrating the proposed closed convergent tidal system.  The closed convergent 

tidal generator uses two compliant flexible bladders, one offshore and the other offshore to derive energy 

from the tidal range.  The onshore option of generator placement allows for easy of installation and 

maintenance.  The closed system eliminates biofouling and interactions with local ecology. 
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sources to generate renewable energy.  The proposed system has the potential to solve this  

Figure 5: Low tide infographic of proposed tidal system.  As the ebb tide forces the tidal waters to recede, 
the onshore bladder releases its fluid.  Gravitational forces pull the fluid through the turbine and toward 
the offshore bladder. 

Figure 4:Slack tide infographic of proposed tidal system.  During this portion of the tidal cycle, the tidal 
waters are free from forces in either direction.  At this time, a sluice gate or valve will be closed in order 
to hold the potential energy of the system while the tide moves to the optimum position. 

Figure 3: High tide infographic of proposed tidal system.  As the flood tide pushes in towards high tide, 
the tidal waters apply pressure to the full offshore bladder and force the contained fluid through the 
turbine(s) toward the onshore bladder.  
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Coastal regions along most of the East and Gulf Coasts of the United States, and many 

other areas around the world, are located where (1) topographic slopes are very low for substantial 

distances inland, (2) wind speeds are quite low, and (3) tidal energy is presently not considered 

economically feasible. Thus, coastal regions are typically only able to utilize solar photovoltaic 

sources to generate renewable energy.  The proposed system has the potential to solve this long-

felt but unresolved need and provide these coastal regions with much needed additional options 

for renewable power generation. 

The current proposed tidal energy concept is a closed system that utilizes closed bladders 

in an offshore tidal area, where closed bladders are used on both ends of the head-driven system. 

Using a closed system containing a specific volume of liquid within connected, symbiotic onshore-

offshore, compliant bladders that include a hydropower turbine located between them, the system 

captures potential energy within the “head differentials” over a tidal cycle.  These compliant 

bladders can be scaled from small, residential-sized systems up to commercial applications to 

accommodate local needs and meet a diverse set of applications. They can also be designed to 

conform to specific local environmental conditions and constraints. 

The onshore bladder location lends itself to being placed in a shallow excavated basin to 

allow for multiple land uses above it (e.g., parking garage, pier, port offloading area, etc.). In 

addition to the on-land, in-water setup, the system can use bladders that both reside under the 

surface of the water as long as sufficient “head differential” exists between the locations. Pressure-

sensing valves can be included within such a cyclic system to optimize flow rates. Site selection 

will be an important aspect of the overall construction costs and minimizing adverse environmental 

impacts related to land loss.  
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The current tidal system can include bladder designs that are oversized such that each can 

contain at least the total volume of fluid in the entire system. The onshore system should be located 

at local mean sea level and allow for the variation of local sea level on scales longer than typical 

tidal cycles. The extra material allows each bladder to expand upward and contract downward at 

appropriate rates, maximizing utilization of the pressure differential. The tidal system further 

includes connections between the onshore and offshore containers, which include a number high-

efficiency hydro-turbines.   

The system can further include a network of valves and convergence to increase the flow 

rate from the available head (typically less than about 1-2 feet at any given tide phase) to the flow 

rate of an equivalently much higher natural head. This flow rate is optimized to allow maximum 

power to be generated by any specific hydro-turbine system for a specific volume of water passing 

through the system. Increasing the available energy density enables the application of this system 

to include locations with low tidal ranges. 

Overall, the control system can accelerate flows to optimal velocities, as will be particularly 

important for applications in areas with relatively small tidal ranges. The extra compliant material 

in each bladder allows water to flow in and out of the system with minimal lost energy from the 

head-differential. 

It is an object of the current proposed design to provide a closed volume tidal power 

generation system that minimizes many of the ecological concerns and system biofouling issues 

that arise when mechanisms are exposed to harsh saltwater conditions. Because the mechanical 

hardware is kept in a controlled fluid environment, the life of these parts can be prolonged much 

longer than those exposed to a natural environment. To avoid biofouling and maintenance 
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problems, the system concept should use water from which all organisms and debris have been 

removed and which has been de-salinized to prevent the occurrence of significant corrosion. This 

provides both improved maintainability and environmental compatibility. 

An example of the mechanics of the current system is now discussed herein. Starting at 

zero tide level on a rising tide, the water level above the offshore bladder is allowed to increase 

until the pressure differential is capable of generating optimal power from flow through the 

generator. At that time (expected to be less than about 1 hour from the zero-differential time), the 

shutoff valve is automatically opened, and head-driven flow will flow through the generator. These 

bladders are designed manifold/converging sections on each side of the generator that greatly 

increase the flow velocity as the generator is approached. This control system maintains flow rates 

in the optimal velocity range for a given hydropower turbine, enabling maximum energy extraction 

within the design constraint of the contained volumes – even in areas small tidal ranges.  

When the offshore tide begins to fall, the pressure differential eventually drops below the 

optimal value for power generation; and the cutoff valve will again be closed, until the lowering 

water above the offshore bladder attains a potential pressure differential capable of producing the 

optimal negative flow for power generation in the offshore direction (again expected to be less 

than about a 1-hour duration). In this operation, semi-diurnal tides typical along the East Coast of 

the United States can generate dependable, optimal power for about 4 hours out of every ~6 hours 

of available time. 

The proposed system can include but is not limited to the following:  1) A tidal energy 

system, substantially as shown and described herein.  2) A system for optimal extraction of head-

driven tidal energy with minimal or no adverse environmental effects, substantially as shown and 
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described herein.  3) A method of generating tidal energy from tides, substantially as shown and 

described herein.  4) A closed tidal energy system, comprising:  a) a closed, compliant onshore 

bladder located at a local mean sea level; b) a closed, compliant offshore bladder in communication 

with the onshore bladder; c) a turbine housing disposed between the onshore bladder and the 

offshore bladder; d) a high-efficiency hydropower turbine disposed within the turbine housing, 

wherein the turbine captures head differentials over a tidal cycle between the onshore bladder and 

the offshore bladder; e) a generator in communication with the hydropower turbine; f) a pressure-

sensing shut-off valve in communication with the offshore bladder, wherein the shut-off valve is 

opened when a pressure differential of a water level above the offshore bladder is sufficient to 

generate optional power from the flow through the generator, wherein opening the shut-off valve 

permits head-driven flow to flow through the generator, wherein the offshore and onshore bladders 

include manifolds on each side of the generator to cause flow velocity to increase as the flow 

approaches the generator; g) a control system, optionally including the manifolds, that maintains 

the flow velocity in an optimal velocity range for the hydropower turbine, thus enabling maximum 

energy extraction, wherein the shut-off valve is closed when the pressure differential above the 

offshore bladder reduces to a value that is insufficient for optimal power generation, wherein the 

shut-off valve remains closed until the lowering water above the offshore bladder attains a potential 

pressure differential capable of producing optimal negative flow for power generation in the 

offshore direction. 

This work initiated the work to test the hypothesis that the proposed system is both 

physically and economically viable as a new source of renewable energy.  
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5. METHODOLOGY 

This research was comprised of the following steps in order to test the given hypothesis for 

the proposed tidal capture energy system:  1) a proof of concept experiment was conducted using 

a small-scale physical model of the proposed tidal energy system.  This allowed for testing the 

hypothesis that a fluid can be driven against gravity in a closed system.  2) small-scale tests 

using a physical model to test the effect of convergent pipes and nozzles for optimizing fluid 

velocity through the proposed system.  3) a simplistic numerical model of the tidal system was 

created to estimate its behavior and investigate theoretical fluid velocity and associated power 

output.  4) an economic study of the system was conducted to estimate the Levelized Cost of 

Energy (LCOE) to predict the economic viability and compare it to other renewable energy 

systems.  5) Provision and Utility Patents were created and submitted through the University of 

North Florida’s Office of Sponsored Research to protect the intellectual property be 

investigated.  6) as part of the potential transition to an operational system, intermediate scale 

testing of the system was conducted. 
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6. TIDAL ENERGY CONCEPTS 

As previously noted, because water is 800 times denser than air, you can expect greater energy 

output for lower velocities in tidal power applications. Therefore, at low speeds, they have kinetic 

energy per unit area comparable to that of winds of speed nearly an order of magnitude higher.  

Because of this physical property, tidal currents contain an enormous amount of energy that can 

be captured.  

This cubic relationship between velocity and power is the same as that for the power curves 

relating to wind turbines, but there are practical limits to the amount of power that can be extracted 

from tidal streams. Some of these limits relate to the design of the tidal stream turbines and the 

characteristics of the underwater resource (Using the Power of Tidal Streams to Generate 

Electricity , 2017) 

6.1 Governing Equations for Proposed Tidal System 

In 1920, A. Betz predicted the ideal frictionless efficiency of a propeller windmill using a 

simulation shown in the figure below.  Because incompressible flow was assumed, we can transfer 

these concepts from horizontal axial wind turbines to those used in a comparable manner in the 

tides.  

 The propeller is represented by an actuator disk, which creates a pressure discontinuity 

across the plane of the propeller.  These values are represented by area 𝐴 and local velocity  𝑉. The 

wind or tidal stream is represented by a stream tube of approach velocity 𝑉1  and a slower 

downstream wake velocity 𝑉2.  The pressure rises to 𝑝𝑏 at the point before the disk and drops to 

𝑝𝑏 at the point just after the disk, and then returning to free-stream pressure in the far wake.   
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A control-volume horizontal momentum relationship can be applied to relate sections 1 

and 2 and gives: 

∑ 𝐹𝑥 = −𝐹 = �̇�(𝑉2 − 𝑉1) 

 

A similar relation for a control volume encompassing points just before and after the disk 

gives: 

∑ 𝐹𝑥 = −𝐹 + (𝑝𝑏 + 𝑝𝑎)𝐴 = �̇�(𝑉𝑎 − 𝑉𝑏) = 0 

 

Equating these above relationships will yield the propeller force: 

 

𝐹 = (𝑝𝑏 − 𝑝𝑎)𝐴 = �̇�(𝑉1 − 𝑉2) 

 

Using the assumption of ideal flow within the system, the pressures can be found by 

applying the incompressible Bernoulli relation up to the disk: 

𝑝∞ +
1

2
𝜌𝑉1

2 = 𝑝𝑏 +
1

2
𝜌𝑉2 

𝑝𝑎 +
1

2
𝜌𝑉2

2 = 𝑝∞ +
1

2
𝜌𝑉2

2 

Subtracting these equations and noting that �̇� = 𝜌𝐴𝑉 through the propeller, then 𝑝𝑏 − 𝑝𝑎 

can be substituted into the above propeller force equation to yield: 

 

𝑝𝑏 − 𝑝𝑎 =
1

2
𝜌(𝑉1

2 − 𝑉2
2) = 𝜌𝑉(𝑉1 − 𝑉2) 
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Which can be simplified to: 

𝑉 =
1

2
(𝑉1 + 𝑉2) 

 

Continuity and momentum require that the velocity 𝑉 through the disk equal the average 

of the wind/tidal and far-wake speeds.  Therefore, the power extracted by the dick can be rewritten 

in terms of velocities 𝑉1  and 𝑉2  by the combination of the above simplified equation and the 

original propeller force equation to obtain: 

 

𝑃 = 𝐹𝑉 = 𝜌𝐴𝑉2(𝑉1 − 𝑉2) =
1

4
𝜌𝐴(𝑉1

2 − 𝑉2
2)(𝑉1 + 𝑉2) 

 

For a given wind or tidal speed 𝑉1 , we can find the maximum possible power by 

differentiating 𝑃 with respect to 𝑉2 and setting this equal to 0, which results in: 

 

𝑃 = 𝑃𝑚𝑎𝑥 =
8

27
𝜌𝐴𝑉1

3 

at 

𝑉2 =
1

3
𝑉1 

The maximum available power to the propeller is the mass flow through the propeller times 

the total kinetic energy of the wind or tide: 
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𝑃𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 =
1

2
�̇�𝑉1

2 =
1

2
𝜌𝐴𝑉1

3 

or 

𝑃 =
1

2
𝜌𝐴𝑉3 

 

Where ρ is the water density that interacts with the turbine (fresh water in our tidal design 

specifications), A is the rotor area and V is velocity that acts on the rotor.   

However, for reasons such as the Betz limit, rotor design, blade profile, and losses, only a 

percentage of this power can be retrieved by any converter.  This maximum possible efficiency of 

an ideal frictionless system is usually stated in term of the power coefficient.  As found here: 

 

𝐶𝑃 =
𝑃

1
2 𝜌𝐴𝑉1

3
 

Which then yields: 

𝐶𝑝,𝑚𝑎𝑥 =
16

27
= 0.593 

This number is called Betz limit and is a theoretical upper limit on the ability of turbine 

technology to convert raw energy into useful electrical output energy.  This limiting factor is 

referred to as the power coefficient 𝐶𝑝 , and is estimated to be 59.3%.  The use of a power 

coefficient 𝐶𝑝 is necessary to consider for these factors inherent to the conversion of energy from 

mechanical to electrical.  This power equation then becomes: 

𝑃 =
1

2
𝐶𝑝𝜌𝐴𝑉3 
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The efficiency, 𝜂, of the system turbine, must also be included in this equation to give: 

𝑃 =
1

2
𝐶𝑝𝜂𝜌𝐴𝑉3 

 

(Manhar Dhanak, 2016), (White, 2008) 

6.2 Governing Equations for Fluid in Pipes 

In order to study flow through pipes, we first assume frictionless flow and utilize the 

Bernoulli Equation:  

 

∫
𝜕𝑉

𝜕𝑡
𝑑𝑠 +

2

1

∫
𝑑𝑝

𝜌
+

1

2

2

1

(𝑉2
2 − 𝑉1

2) + 𝑔(𝑧2 − 𝑧1) = 0 

 

To evaluate the two remaining integrals, one must estimate the unsteady effect 𝜕𝑉

𝜕𝑡
 and the 

variation of density with pressure.  At this time, we consider only steady  𝜕𝑉

𝜕𝑡
= 0 which implies 

incompressible flow or a fluid with a constant density.  With these assumptions, the equation then 

becomes: 

𝑝2−𝑝1

𝜌
+

1

2
(𝑉2

2 − 𝑉1
2) + 𝑔(𝑧2 − 𝑧1) = 0 

 

𝑝1

𝜌
+

1

2
(𝑉2

2 − 𝑉1
2) + 𝑔(𝑧2 − 𝑧1) = 0 
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Under the assumptions of an incompressible fluid with negligible viscosity, Bernoulli's 

principle states that: 

 

𝑉2

2
+ 𝑔ℎ +

𝑝

𝜌
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

where v is fluid speed, g is the gravitational acceleration 9.81 m/s2, h is the fluid's height above a 

reference point, p is pressure, and ρ is density. Define the opening to be at h=0. At the top of the 

tank, p is equal to the atmospheric pressure. v can be considered 0 because the fluid surface drops 

in height extremely slowly compared to the speed at which fluid exits the tank. At the opening, 

h=0 and p is again atmospheric pressure. Eliminating the constant and solving gives:  

 

𝑔ℎ +
𝑝𝑎𝑡𝑚

𝜌
=

𝑉2

2
+

𝑝𝑎𝑡𝑚

𝜌
 

 

Solving for 𝑣 gives Torricelli’s idealization of efflux from a hole in the side of a tank. 

 

𝑉2 = 2𝑔ℎ 

𝑉 = √2𝑔ℎ 

For a parallel flow case, consider three pipes diverging at point A and converging back at point B, 

the pressure drop is the same in each pipe and the total flow is the sum of the individual flows: 

 

∆ℎ𝐴→𝐵 = ∆ℎ1 = ∆ℎ2 = ∆ℎ3 

https://en.wikipedia.org/wiki/Incompressible_flow
https://en.wikipedia.org/wiki/Viscosity
https://en.wikipedia.org/wiki/Bernoulli%27s_principle
https://en.wikipedia.org/wiki/Bernoulli%27s_principle
https://en.wikipedia.org/wiki/Gravitational_acceleration
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𝑄 = 𝑄1 + 𝑄2 + 𝑄3 

 

(Frank M White, Fluid Mechanics) 

This is the most ideal case; however, we must take head losses throughout the system.  Care must 

be given to the design of the system entrance, any convergence or divergence, pipe bends, valves, 

and inner pipe walls, and length since these will all affect the head losses experienced by the system.  

If an inlet consists of sharp corners, flow separation can occur at this location and vena contracta 

is formed. 
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7. INITIAL EXPERIMENT OF TIDAL SYSTEM USING A PHYSICAL MODEL 

The proposed tidal energy system aimed to deploy a system of closed compliant bladders 

to contain a fluid that will move onshore and offshore with the ebb and flood tides.  With the 

onshore bladder emptying by the force of gravity and the offshore bladder emptying by the force 

of the water column increasing above and forcing this contained fluid up to the elevation of the 

onshore bladder.   

A small-scale test was created to test the concept that conservation of mass will allow for 

an equal return of the fluid as the pressure in the form of a water column is applied to the offshore 

portion of the system.  Note:  Throughout the experimental discussion the onshore bladder will 

refer to the higher elevation bladder while the offshore bladder will refer to the one at a lower 

elevation. 

To simulate the system on a very simplified and small scale, two 250-gallon portable water 

containment bladders from “HUSKY” brand with part number BT-250V30 were utilitzed.  These 

water containment bladder tanks are also referred to as pillow tanks and area widely used in the 

following industries: agricultural, industrial, commercial, marine, oil, and military and are 

Figure 6: Small Scale Physical Model AutoCAD Drawings (Side View) 
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available at www.huskyportable.com.  The bladder tanks are constructed out of urethane with PVC 

connections.  The two tanks utilized for this small-scale physical model experiment measured 60 

inches by 84 inches by 14 inches.  These bladders represented the onshore and offshore systems.  

The onshore bladder was raised on a platform to an elevation of 19.2 inches while the offshore 

bladder was placed on an industrial scale at ground level.  These bladders were then connected via 

PVC flange and pipes to each other.  One round of testing allowed the fluid to pass back and forth 

through an unobstructed pipe, while a second test implemented the use of a turbine and generator 

to test the viability of the concept with this addition. 

To initiate testing, the onshore bladder was filled with water with the exit valve closed.  

The scale was initialized and then the valve was opened.  By using the industrial scale and the pipe 

geometries within the system, the volumetric flow rates and velocities could be determined through 

the pipes from one bladder to another.  Once the onshore bladder was empty, the valve was closed 

and the scale reset.   

The next step consisted of applying ten 60-pound sand bags to the top of the offshore 

bladder to simulate the applied tidal range to the system. This applied weight of 600 pounds would 

Figure 7: Small Scale Physical Model AutoCAD Drawings (Plan View) 
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be roughly equivalent to 71.90 gallons or 9.61 ft3 of water to simulate the column of water since 

one gallon of water weighs approximately 8.3454 pounds and 1ft3 is equivalent to 7.48 gallons.  

Once the weight was fully applied, the scale was initialized, and the valve between the bladders 

was opened allowing the fluid to flow from the offshore bladder to the onshore bladder.  Again, 

the change is volume of the offshore bladder was recorded in order to calculate the velocity and 

flow rate through the system. 

The following equations govern the proposed design of the closed system for optimal extraction 

of head-driven tidal energy.  Since the system is first limited by bladder volume, it is important to 

create parameters using the following equations to define geometry: 

 

𝐴𝐵 = 𝐿𝐵𝑊𝐵                𝑉𝐵 = 𝐴𝐵𝐻𝐵 

 

Where  𝐴𝐵 is the bladder area, 𝐿𝐵 length, 𝑊𝐵 is width, 𝐻𝐵 height, and 𝑉𝐵 volume of bladder.  For 

simplification of design, a rectangular cross-sectional area has been used.  It is important to note 

that the bladder shape can be designed to fit any environment. 

 In order to optimize available power capture, it is necessary to select pipe and convergent 

nozzle dimensions that increase velocity of constrained fluid while reduces losses that the system 

experiences during convergence. 

 

𝐴𝑝 = 𝜋𝑟𝑝
2              𝐴𝑛 = 𝜋𝑟𝑛

2  
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Where 𝐴𝑝 is the cross-sectional area of the pipe, 𝑟𝑝 is the exit pipe radius, 𝐴𝑛 is the cross-sectional 

area of the convergent nozzle at the exit, and 𝑟𝑛 is the radius of the convergent nozzle at the exit. 

 

𝑈𝑝 = √2𝑔(𝐻𝐿,𝑡 − 𝐻𝐿,𝑡+∆𝑡)                 𝑄 = 𝐴𝑝𝑈𝑝                  𝐻𝐿,𝑡+∆𝑡 = 𝐻𝐿,𝑡 −
𝑄∆𝑡

𝐴𝐵
 

    

𝑈𝑝 = √2𝑔(𝐻𝑊,𝑡 − 𝐻𝑊,𝑡+∆𝑡)                  𝑄 = 𝐴𝑝𝑈𝑝               𝐻𝐿,𝑡+∆𝑡 = 𝐻𝐿,𝑡 −
𝑄∆𝑡

𝐴𝐵
 

 

(White, 2008) 
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7.1 Analysis of Initial Experimental Results of Tidal System Physical Model 

The outlined steps were repeated multiple times for the physical model of the system with and 

without a turbine applied to the pipes that connect the bladders.  The results from this 

experimental testing are as follows: 
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Figure 9: Small Scale Closed Convergent Tidal System Experimental Testing Power Derived 
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By utilizing this simplistic physical model to mimic the proposed system at a micro scale, 

we were able to conclude the following: 1) Utilizing sandbags to model the weight of a water 

column did apply enough force to push the fluid contained within the bladders against gravity 

and up to a higher elevation.  2)  We can assume that water weight will create the same effects on 

the system.  3)   Power can be derived from a closed system such as the one modeled in the 

experiment.   

During this experiment at a small scale, we were able to observe some events that can be 

considered a learning experience and collected as we move into larger scale systems.  These 

observations include: 1) Creating a seal between a compliant urethane bladder and rigid PVC 

flange connection and valve proved very difficult.  In larger experiments and builds, these 
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Figure 11: Theoretical power outputs for fluid velocity present in small scale experiment 
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connection points need to be considered.  2) When the valves were opened the fluid velocity 

within the system crenates a wave of momentum within the bladder that creates a reflection of 

water on the backside of the receiving bladder.  As the system is designed to be larger, this wave 

may also grow and could overwhelm the system.  4) The use of ‘fabric’ nozzles for convergence 

from the bladder to the turbine rotor was overwhelmed by the reduction in pressure within the 

system as the velocity increased.  This pressure drop caused the unrigid nozzle to fail. 
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8. CONVERGENT PIPES AND NOZZLES FOR AMPLIFIED FLUID VELOCITY 

An important component of the proposed tidal energy capture technology was the 

application of the conservation of momentum through the use of convergent pipes and or nozzles 

to increase and optimize the fluid velocity through the turbine sections of the systems.  The 

hypothesis that drives this portion of experimental data is the equation: 

𝑄𝑖𝑛 = 𝑄𝑜𝑢𝑡 = 𝐴𝑉 

Where 𝑄 is the volumetric flow rate in and out of the system or pipes, 𝐴 is the effective area the 

fluid passed through within the pipe, and 𝑉 is the fluid velocity.  In addition, for the case of pipes 

in parallel flow the equation: 

𝑄𝑡𝑜𝑡𝑎𝑙 = 𝑄1 + 𝑄2 + 𝑄3 + ⋯ 𝑄𝑛 

Can be utilized to solve for an idealized flow rate for a system of convergent pipes (White, 2008).   

It should be noted that to decrease frictional losses within the exit of the system as the flow 

is contracted, the reducer or nozzle was constructed using a gradual contraction from entrance 

diameter to exit diameter.  Utilizing this gradual contraction can substantially decrease the energy 

loss experienced in the system.  As the proposed tidal system scales, it will be of importance to 

monitor and reduce frictional losses where possible. 

This experiment tested the hypothesis that the fluid velocity within the pipes could simply 

be amplified by converging pipes and/or constricting the flow rate using a nozzle.  First, the 

idealized flow rates were calculated using the simplistic equation that states the volumetric flow 

rate into the system must be equal to the volumetric flow rate out of the system.  The planned 

experiment compares eight different cases of convergence: 1) one pipe with no nozzle, 2) two 

convergent pipes with no nozzle, 3) three convergent pipes with no nozzle, 4) four convergent 
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pipes with no nozzle, 5) one pipe with nozzle, 6) two convergent pipes with nozzle, 7) three 

convergent pipes with nozzle, and 8) four convergent pipes with nozzle.  The pipes used for the 

experiment were 2-inch Schedule 40 PVC, 2-inch WYE connectors, and a manufactured nozzle  

with gradual slope to minimize turbulence and losses at this connection.   

Figure 13: Manufactured PVC and Resin Epoxy Nozzle for Convergence Experiment 

Figure 12: Convergent Flow Experiment Set Up (Side View) 
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Figure 14: Convergent Flow Experiment Set Up (Plan View) 
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8.1 Analysis and Results of Convergent Pipes and Nozzle for Amplified Fluid Velocity 

The following graph shows the expected theoretical outcomes for the experiment: 

As expected, the condition that yields the highest fluid velocity is the four convergent pipes with 

a nozzle, since this relationship simply relies on the conservation of mass. 
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However, during experimental application, losses within the flow due to sharp edges of the 

pipe at the fluid exits, joints, contraction, and friction along the pipe walls were expected.  The 

experiment aimed to determine how loss affects the rate of convergence within the system.   

To test this, a simple experiment was designed using the previously mentioned series of 

pipes.  These pipes were the connection point between two containers of fluid.  One container was 

filled while the pipes were closed using sluice valves at each open orifice.  Once the container was 

filled to the test height with fluid, the valves were opened allowing the fluid to move from the 

higher head container, through a pipe or serious of pipes, and a nozzle or open pipe into the lower 

head receptacle.  A scale was placed under this lower receptacle to measure the change of weight 

of water in the container over time.  This data was then used to calculate the volumetric flow rate 

experienced by the system and converted into fluid velocity at the entrance point of the lower 

receptacle. 
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Figure 16: Idealized Flow Rates Through Convergent Pipes and Nozzle System 

0.0

0.5

1.0

1.5

2.0

2.5

0.38 0.31 0.24 0.19 0.15 0.12 0.11

Fl
u

id
 V

el
o

ci
ty

 m
/s

Head Height (m)

Convergent Flow Experiemental Data w/ No Nozzle  

1 Pipe w/ No Nozzle

2 Pipes w/ No Nozzle

3 Pipes w/ No Nozzle

4 Pipes w/ No Nozzle

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0.38 0.34 0.31 0.28 0.24 0.22 0.19 0.17 0.15 0.14 0.13 0.12 0.11 0.11

Fl
u

id
 V

el
o

ci
ty

 m
/s

Head Height (m)

Convergent Flow Experiemental Data w/ Nozzle  

4 Convergent Pipes w/ Nozzle

3 Convergent Pipes w/ Nozzle

2 Convergent Pipes w/ Nozzle

1 Pipes w/ Nozzle

Figure 18: Convergent flow experimental data without nozzle 
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9.  NUMERICAL MODEL SIMULATION OF TIDAL ENERGY SYSTEM 

In order to understand how the proposed tidal energy capture system performs at a larger 

scale, a numerical simulation was created in MATLAB to model a simplistic version.  The model 

takes advantage of the laws of conservation of the volume of fluid and conservation of fluid 

momentum.  In addition, since the tides are being considered for powering the system, a simple 

relationship of the tidal constituent was be implemented: 

𝑌(𝑡) = 𝐻𝑐𝑜𝑠(𝜔𝑡 − 𝜙) 

where 𝐻 is the amplitude, 𝜔 is the speed of rotation, 𝑡 is the time elapsed since the selected starting 

point and 𝜙 is the phase lag.  It is important to note that in a specific system model, the tidal 

relationship would require a more detailed analysis that takes into consideration mean spring tides 

and mean neap tides and multiple tidal constituents for the focus location (Sean Petley, 2015) 

 The design length, width, and height of the compliant bladders were treated as system 

inputs as well as the tidal amplitude.   The system also allowed for design inputs for pipe diameter 

and nozzle diameter to optimize the fluid velocity through the turbine(s) within the system.  The 

number of pipes and turbines can also be adjusted within the model to create the desired power 

output.  After the design components were applied, the system ran over the period of one half of a 

semidiurnal tidal cycle that encompasses a high and low tide peak within 12.41 hours or 44,676 

seconds.  It is important to note that semidiurnal, diurnal, and mixed semidiurnal tidal conditions 

can be presented in varying regions (NOAA, 2017). 

The simulation then returns the corresponding fluid velocities within the pipe(s) and 

through the nozzle section(s) along with a power output curve over the high and low tide conditions.  
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These results are used later in this research to analyse the economic viability of the system 

compared to other available renewable energy systems. 

In order to use data that is specific to the areas of low tidal range, the east coast of Florida, 

specifically Jacksonville was investigated to use as tidal inputs for the numerical model of the 

system.  Off the coast of Northeast Florida, the tide ranges from approximately 2 meters at high 

tides and approximately -0.3 meters at low tide.    In order to approximate the effective tidal range 

on the proposed closed convergent system that is being modeled, a tidal range of 1m will be 

assumed in the model runs for this research.  However, the model can be used in future research 

to determine fluid velocities and power outputs for a variety of tidal ranges. 

 

 

Figure 19: Figure 20: Tidal range data from NOAA station 8720214 (National Oceanic and Atmospheric 
Administration (NOAA), 2018) 
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Figure 21:  Google map location of NOAA station 8720214 (Google, 2018) 
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9.1 Analysis and Results and Numerical Model Simulation 

The following results were derived from a running a MATLAB numerical simulation of 

the proposed system:  

 The above graph illustrates the behavior of a small scale closed convergent tidal system 

with bladder dimensions 10 m length, 10 m width, and 2 m heights.  The nozzle radiuses were 0.2 

m and 0.1 m respectively. The tidal amplitude was 1 m and there was 1 turbine in the system.  Over 

the period of a tidal cycle, the system theoretically would produce 354,755 Kilowatt hours or 354 

Megawatt hours. 

Figure 22: MATLAB Simulation of the proposed tidal system (1) 
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The above graph illustrates the behavior of a small scale closed convergent tidal system 

with bladder dimensions 30 m height, 30 m width, and 2 m heights.  The nozzle radiuses were 

0.23m and 0.1 m respectively. The tidal amplitude was 1 m and there were 2 turbines designed in 

the system.  Over the period of a tidal cycle, the system theoretically would produce 619,318 

Kilowatt hours or 619 Megawatt hours. 

 

 

 

Figure 23: MATLAB Simulation of the proposed tidal system (2) 
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The above graph illustrates the behavior of an intermediate scale closed convergent tidal 

system with bladder dimensions 50 m height, 50 m width, and 2 m heights.  The nozzle radiuses a 

were 0.2 m and 0.1 m respectively. The tidal amplitude was 1 m and there were 5 turbines designed 

in the system.  Over the period of a tidal cycle, the system theoretically would produce 713,253 

Kilowatt hours or 713 Megawatt hours. 

 

Figure 24: MATLAB Simulation of the proposed tidal system (3) 
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The above graph illustrates the behavior of an intermediate to large scale closed convergent 

tidal system with bladder dimensions 100 m height, 100 m width, and 2 m heights.  The nozzle 

radiuses were 0.25 m and 0.15 m respectively. The tidal amplitude was 1 m and there were 10 

turbines designed in the system.  Over the period of a tidal cycle, the system theoretically would 

produce 1,001,216 Kilowatt hours or 1,001 Megawatt hours. 

It is important to note that this is the first version of a simplistic model to estimate power 

potentials of the proposed system.  The current numerical model assumes an ideal case with turbine 

efficiency at 100%.  When a turbine is selected for an actual system, these values can be added to 

Figure 25: MATLAB Simulation of the proposed tidal system (4) 
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the model.  In addition, major and minor friction losses are not accounted for in this model.  Again, 

as a system is being designed, this specific data can be calculated, and the power output can be 

adjusted. 
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10. ECONOMIC ANALYSIS OF PROPOSED TIDAL SYSTEM 

Although many factors must be assessed when determining the viability of a possible new 

source of electric, the factor that typically governs the success of a system long term is cost.  Using 

the equation below for the Levelized Cost of Electricity or LCOE, an estimated average cost of 

electricity can be calculated over a lifetime of a system. 

 

 

 

 

 

Where 𝐼𝑡  is the investment expenditures in the year 𝑡 , 𝑀𝑡  are the operation and 

maintenance expenditure in year 𝑡 , 𝐹𝑡  are the fuel expenditures in the year 𝑡  (not that with 

renewable technologies the fuel expenditures are zero, 𝐸𝑡 is the electrical energy generated in the 

year 𝑡, 𝑟 is the discount rate applied to the technology, and 𝑛 is the expected lifetime of  the system 

(U.S. Energy Information Administration, 2017). 

𝐿𝐶𝑂𝐸 =
𝑆𝑢𝑚 𝑜𝑓 𝐶𝑜𝑠𝑡 𝑂𝑣𝑒𝑟 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒

𝑆𝑢𝑚 𝑜𝑓 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑂𝑣𝑒𝑟 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒
=

∑
𝐼𝑡 + 𝑀𝑡 + 𝐹𝑡

(1 + 𝑟)𝑡
𝑛
𝑡=1

∑
𝐸𝑡

(1 + 𝑟)𝑡
𝑛
𝑡=1
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10.1 Analysis and Results of Economic Analysis of Proposed Tidal System 

This estimated LCOE of the proposed closed convergent tidal system was estimated using 

figures from the numerical simulation.  These values were then scaled down by estimated 

appropriate turbine efficiencies and capacity factors to determine an estimated annual energy 

output for a semidiurnal tidal region.  These calculations were then estimated over several tidal 

ranges to account for the different possible applications of the renewable energy system.  The 

initial costs to the system were also estimated and include fabric, turbines, and installation.  A more 

Table 1: Economic analysis of proposed tidal energy system 
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in-depth cost analysis would be necessary in the future that includes land, and land development, 

operation and maintenance.   

This initial estimation of the LCOE of the proposed closed convergent tidal energy system 

was estimated to show there is a great possibility that the technology could compete with other 

renewable energy systems and even fossil fuels.  The graph below is a representation of energy 

costs across the sector and gives an approximation on where the proposed system would rank 

among other competitors.  

Table 2: Economic analysis of proposed tidal energy system (cont.) 
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Although the cost analysis is preliminary and would require years of energy production 

data and more site location costs included, the proposed tidal energy system appears to rank on par 

with conventional hydropower dams and even comes in as an equal to onshore wind and natural 

gas.   

10 PROVISIONAL AND UTILITY PATENTS FOR PROPOSED ENERGY SYSTEM 

The proposed closed convergent tidal energy system takes concepts that have been utilized 

in past systems and then incorporates novel ideas that allow it to be implemented in low tidal range 

$0.13

$0.24

$0.07

$0.20

$0.10 $0.10

$0.14

$0.07

$0.12

$0.10
$0.08

$0.07

Energy Cost per kWh

Figure 26: LCOE cost comparison of proposed tidal system to other energy systems (Institute for 
Energy Research, 2009) 
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regions that would not be viable locations for traditional and current hydropower and tidal energy 

applications.  In addition, the proposed system overcomes many of the pitfalls of present systems.  

For these reasons, it was necessary to protect the intellectual property being investigated through 

the creation of a Provision and then subsequent Utility Patent through the University of North 

Florida’s Office of Sponsored Research.   

This process included identifying the patentable ideas associated with the proposed tidal 

system and identifying how the system is different from the previous systems.   

Although the patent has been submitted for international protection, it is not yet submitted 

to any nation’s patent office for review.  Until this process is complete, it is imperative for the 

patent draft to be kept from the public record.  However, a confirmation of international submittal 

has been included for record in APPENDIX 21. 
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11 PLAN FOR INTERMEDIATE SCALE TESTING OF TIDAL SYSTEM 

As a final step, of this body of work and part of the potential transition to an operational 

system, an intermediate scale testing of the system was designed, constructed and minimally 

tested.  The aim of this last work was to initiate tests at a larger scale and inspire more research 

and investigation into specific pieces of the system that required in-depth study.   

11.1 Intermediate Scale Testing Head-Driven Test 

The following diagram illustrates an experiment that was created in order to test the 

effectiveness of a weight in the form of a column of water acting on a compliant structure.   

 

Figure 27: Intermediate testing experiment to demonstrate flow against gravity forced by water column 
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The aforementioned “HUSKY” brand bladders with part number BT-250V30 were again 

utilized in this experiment.  In order to mimic a tidal head differential, the offshore bladder was 

placed inside of an above ground pool. This allowed the experimenter to manipulate the tidal head 

and then measure its effective forcing on the compliant structure.  Again, an industrial scale was 

utilized under the onshore bladder.  This allowed for measurements of change of weight of water 

over time and then results in a conversion to fluid velocity through the entrance pipe via these 

calculations.  The setup also gave the experimenter the ability to change onshore bladder elevations 

and adjust the slope of the pipe to study the effects on the system. 

11.2 Results and Analysis of Intermediate Scale Testing Head-Driven Test 

The following data was collected after conducting one field test on the experimental set up 

with an approximate water of 36 inches from the bottom of the pool.  The offshore bladder was 

filled with water to it approximate maximum fill height of 12 inches, resulting in an effective head 

height of 24 inches applying force to the bladder.  Note that during this experiment, the buoyancy 

of the fabric bladder caused the bladder to rise to the top of the water column.  To overcome this 

force, 4 ten-pound weights were attached to the top of the bladder.  This experiment revealed the 

necessity for a well-designed mooring system when deployed that overcomes the system buoyancy 

forces. 
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As the data reveals, the forcing of the water column does indeed drive the fluid within the 

offshore bladder up to the onshore bladder against gravity.  More experiments are required to 

understand the relationship between applied head height, pipe distance, pipe slope, and onshore 

bladder height differential and their effect on fluid velocity as it moves through the system. To 

limit variables, convergence is neglected in this experiment but could be added and studied more 

fully. 

4" Schedule 40 PVC Test Segment 

Time Step Weight Adj Wt Weight Flow Rate Flow rate Area of exit Velocity =q/a velocity

s lb lb gal gal/s in3/s in2 in/s m/s

0.00 5 0 0.00 0.00 0.0 12.6 0.0 0.00

0.02 6 1 0.12 0.06 13.9 12.6 1.1 0.03

0.05 12 7 0.84 0.24 55.5 12.6 4.4 0.11

0.07 19 14 1.68 0.42 97.1 12.6 7.7 0.20

0.10 26 21 2.52 0.28 64.7 12.6 5.1 0.13

0.12 42 37 4.44 0.96 221.8 12.6 17.7 0.45

0.15 76 71 8.52 1.36 314.3 12.6 25.0 0.64

0.17 109 104 12.48 1.98 457.6 12.6 36.4 0.92

0.20 175 170 20.41 2.64 610.1 12.6 48.5 1.23

0.22 210 205 24.61 2.10 485.3 12.6 38.6 0.98

0.25 289 284 34.09 3.16 730.3 12.6 58.1 1.48

0.27 321 316 37.94 1.92 443.7 12.6 35.3 0.90

0.30 401 396 47.54 3.20 739.5 12.6 58.8 1.49

0.32 469 464 55.70 4.08 942.9 12.6 75.0 1.91

0.35 534 529 63.51 2.60 600.8 12.6 47.8 1.21

0.37 585 580 69.63 3.06 707.1 12.6 56.3 1.43

0.40 650 645 77.43 2.60 600.8 12.6 47.8 1.21

0.42 778 773 92.80 7.68 1774.8 12.6 141.2 3.59

0.45 875 870 104.44 3.88 896.6 12.6 71.4 1.81

0.47 927 922 110.68 3.12 721.0 12.6 57.4 1.46

0.50 995 990 118.85 2.72 628.6 12.6 50.0 1.27

0.52 1051 1046 125.57 3.36 776.5 12.6 61.8 1.57

0.55 1121 1116 133.97 2.80 647.1 12.6 51.5 1.31

Table 3: Initial results from head driven closed convergent tidal experiment 
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11.3 Intermediate Scale Test to Investigate Convergence on a Turbine 

In an attempt to understand the effects of convergence of fluid and it interfaces with a 

turbine to produce electricity, one more experiment was created.  This setup was created with the 

hopes of more research encompassing the specific physics of convergence on a turbine, how to 

maximize and optimize the effective fluid velocity, and how to minimize losses within the system 

at this point of convergence. 

In this experimental setup, an above ground pool was utilized to mimic one of the system 

bladders.  As pipe was fixed to the perimeter wall to allow water to flow out.  This 12-inch Schedule 

40 PVC connected to a 12 inch to 10-inch PVC pipe reducer.  The purpose of the reducer is to 

lower the exit area and then, in turn, increase the fluid velocity as it meets the hydro turbine that 

is installed within the following 10-inch Schedule 40 PVC pipe.  This final length of pipe empties 

into a catch pool that allows for the water to be recycled between experimental runs.  The following 

diagram illustrates the experimental set up: 
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Figure 29: Intermediate scale test of convergence into a turbine (Plan View) 

Figure 28: Intermediate scale test of convergence into a turbine (Side View) 
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To test possible power outputs from the system with a hydro turbine, an off the shelf model 

was selected that could work at the current experimental scale.  The Watt & Sea brand POD 600 

was selected for its size and available power outputs.  More information about this and other 

available hydro generators can be found at www.wattandsea.com. 

The associated power output curves were available for the Watt & Sea tubine and utilized 

for system optimization.  The 240-millimeter propeller was selected in order to match the pipe 

inner diameter with the propeller diameter as closely as possible.  This output curve implies that 

at a water velocity of 11 knots or 5.65 meters per second the turbine will deliver a power output of 

its maximum at 600 Watts.   

The hydro turbine includes an alternating current (AC) generator with a permanent magnet 

attached to an optimum converter.  For the experimental setup, the system will require an additional 

power source that is responsible for controlling the output voltage because the product is designed 

for power to be stored in a 12 Volt or 24 Volt battery.  A current meter was required on the converter 

and the power supply to tell who is providing what power to the load.  To match the load as it 

increases or decreases due to the fluid velocity impacting the rotors, three load diverters that could 

be activated according to speed were added to the electrical configuration.  The finished product 

is illustrated in the figure below.  Note that all electrical engineering was researched, designed, and 

built by Dr. Brian Kopp to ensure experiment safety and accuracy. 

http://www.wattandsea.com/
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For a preliminary test of this system:  1) the system was set up will all electrical connections  

2) a 10 inch PVC pipe was placed in the 10 to 12 inch reducer  3) a 12-inch pipe was valved using 

an inflatable plug  4) a water pump was then utilized to pump water from the onsite wave pool to 

the tidal test pool, this process took up to an hour depending on desired water level in the tidal 

pool  5) once the water was at the desired level, one person was required to release the valve within 

the pool and another was necessary to read and adjust the turbine reading station and/or record the 

total empty time.  These steps were repeated with a 10-inch test section that included the turbine 

as well.   

Figure 30: Electrical configuration of turbine interface (Kopp, 2018) 
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11.4 Results and Analysis of Intermediate Scale Test to Investigate Convergence on a 

Turbine 

The preliminary test results are as follows: 

 

The pool for both experimental runs was filled to a height of 0.626618 meters.  In one case the 10-

inch pipe without the turbine was tested and the next run the 10-inch pipe that houses the turbine 

was tested.  To gauge the expected results, the numerical simulation of the proposed tidal system 

was tuned to the specific criteria of the experiment i.e.: length of bladder 5.0; width of bladder 5.0; 

height of bladder 0.72484, tidal amplitude 1, radius of pipe 0.1509903, radius of nozzle 0.1266952, 

and number of turbines 1.  The model estimated that the maximum velocity at the pipe would be 

3.7695 m/s and the maximum velocity at the nozzle 5.3534 m/s.  It also yielded an estimated power 

output of 568 Watts maximum that includes an estimated efficiency of the Watt and Sea POD 600 

of 0.1470 with a total expected run time of 190 seconds.  It should be noted that while running the 

experiment with the turbine, the output of the electricity never rose above 24 Watts on the meter.  

 Unfortunately, the projected results of the experiments did not align with the initial data 

we pulled from the preliminary experiments.  After taking a step back and investigating all of the 

variables that may be affecting the experiment, it has been determined that the following areas 

require more research to continue in the direction of intermediate scale testing:  1) nozzle geometry 

12" to 10" Schedule 40 PVC Test Segment 

Turbine Pool Radius Fill Height
Pipe Exit 

Area
Empty Time Pool Volume

Flow 

rate=ΔV/t

Velocity 

=Q/A

Theoretical 

Power

w or w/o m m m
2 s m3 m3/s m/s Watts

With Turbine 3.353 0.626618 0.05 234.84 22.13 0.094 1.869 97.60

Without Turbine 3.353 0.626618 0.05 176.18 22.13 0.126 2.491 231.14

Table 4: Preliminary result from intermediate scale testing of proposed tidal system 
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was limited by available resources and because of its lack of gradation and quick transition from 

12 inch to 10 inch the nozzle increased frictional losses during this transition that overwhelmed 

the system  2) limits on pipe sizing and challenges with working with large PVC pipes kept the 

experiment from using a greater step down in nozzle diameters, in future tests a larger step down 

in exit areas would be desired  3) performance of Watt and Sea turbine within a pipe requires more 

investigation since the principle application of this device is open water as used with a sailboat  4) 

further investigation of pressure differentials as the fluid moves from the pool through the turbine  

5) in-depth investigation of frictional losses through the whole system.  
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13 DISCUSSION 

During the investigation of the proposed closed convergent tidal energy system, we 

first conducted a proof of concept experiment using a small-scale physical model of the 

proposed tidal energy system.  This allowed for testing the hypothesis that a fluid can be 

driven against gravity in a closed system.  The experiment included using two closed 

compliant bladders with a simulated tide to force water back and forth through the system.  

Although this test was done on the small scale, all data pointed toward this posed hypothesis 

to be true.  This test was limited by size and should be done on a larger scale to unders tand the 

frictional losses associated with the proposed system as it scales in size.  

The results derived from the small-scale tests using a physical model to test the effect 

of convergent pipes and nozzles for optimizing fluid velocity through the proposed system 

showed that while using a nozzle for convergent flow, specific design is necessary to 

eliminate increases in frictional losses that overwhelm the fluid velocity increase within the 

system.  In addition, although theoretical calculations suggest that the use of convergent pipes 

can be used to increase fluid velocity through the system, frictional losses tend to overwhelm 

this type of design and negate most if not all gains.  Again, this test was limited by size an 

should be investigated either using a numerical model such as a computational fluid dynamics 

(CFD) model.  This would allow further investigation of numerical analysis and data structure 

i.e. nozzle. Using this type of simulation will allow narrowing the scope of viable nozzle 

geometry that would be best suited for this specific application. 

The development of a simplistic numerical model of the tidal system allowed for the 

estimation its behavior and investigation of theoretical fluid velocity and associated power 
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output.  The results of this portion of research showed that, although directly related to 

volume, the amount of theoretical power generated by the system is on a level that indicated 

potential commercial scalability for energy production.  This study was limited to a simplistic 

model and should include site-specific data i.e.: system volume, distance, elevation, tidal 

range and variability, and also consider frictional losses, and turbine efficiency. 

The results from the economic study of the system that yielded an estimated Levelized 

Cost of Energy (LCOE) showed that at this preliminary analysis the proposed tidal energy 

system has the potential to comparable to other renewable energy systems as well as other 

current fossil fuel energy systems.  Again, it is important to note that an economic analysis is 

site specific for a system such as the one proposed and a more robust LCOE would need to be 

conducted using system variable and site requirements.  However, it is important to note that 

the proposed tidal system not only performs well economically but offers other intangible 

benefits when compared to other energy systems that cannot always be measured directly by 

monetary gains.  Below is a chart that allows comparisons across the board of many available 

energy systems against the proposed tidal system.  It is the hope that the continued research 

finds value not only in the economic potential but also some of the other attribute this 

technology has to offer, specifically the ability to generate electricity with a low carbon 

footprint and little environmental impact. 



 

 

83 

 

 

The final portion of hypothesis testing associated with this body of work included 

intermediate scale testing of the system with hopes of an eventual transition to an operational 

system.  Again, the results point towards a viable system, but also shows that more robust 

testing of component parts of the tidal system require more in-depth research and testing.   
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Figure 31: Multi factor assessment by electricity generation technologies 
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14 CONCLUSIONS 

The potential of generating electricity from the global tidal range is vast.  This type of 

renewable energy has the potential to disrupt the current electricity generation portfolio due to its 

availability and predictability, especially because this form of energy is CO2 emission free.  Add 

to the equation that fossil fuels have a limited abundance, and it is apparent that tidal energy has 

the potential to be a dominant contender in the energy markets as new technologies are researched 

and developed.  With available potential energy being estimated at 15.6 Terawatt hours, this 

research into tidal energy system is immensely important. 

After investigating the hypothesis that set out to determine the viability of a proposed 

closed convergent tidal energy capture system that utilizes convergent nozzles as the contained 

fluid approaches the turbine/turbines that set out to achieve: 1) tidal energy driven by the 

potential energy of the weight of the water column that is then converted to kinetic energy as 

the contained fluid is forced through a nozzle that optimizes fluid velocity; 2) a closed system 

that eliminates biofouling by avoiding exposure to water with high levels of salinity i.e. 

seawater; 3) a closed system that eliminates potential propeller impact on marine life; 4) on 

land turbine housing that allows for ease of operation and maintenance.  It is the conclusion of 

this research that the initial investigations point to a system that has the potential to meet all of 

the above design criteria while also generating enough electricity to also be economically viable 

and competitive with existing energy sources, it has been determined through this research that 

the proposed system presents itself as viable and deserves further investigation to move it into 

a future operational system   
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15 FUTURE WORK 

This exploratory work was just the beginning of demonstrating the viability of the 

proposed closed convergent tidal system.  In order to continue research of the system the 

following future work is suggested: 1) In-depth modeling of the convergent flow between the 

closed compliant bladders through a convergent section with a subsequent physical model to 

validate the findings.  2) Research or development of turbine for this specific application to 

locate the most efficient working assembly.  3) Robust study of the potential environmental 

impacts created by installing a footprint of urethane compliant fabric bladder on the seafloor and 

associated hydrological changed in the installation area.  4) Research on the most viable fabrics 

and fittings for a system that is resistant to harsh environmental exposures.  5) Investigation of a 

mooring and protection system for the offshore portion of compliant bladders.  6) Modeling of 

proposed auxiliary bladder configuration to allow consistent generation of electricity or 

generation that meets at power demand curve.  7) In-depth study of LCOE that utilizes site-

specific data.  8) Research on power transmission from the proposed system to the grid, storage 

system, home, or community.  

As research on this proposed system continues, it is my hope that this initial work will 

eventually lead to large-scale commercial systems that can supply power to many cities. 
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APPENDIX 

 

 

 

 

 

4.5" Test without turbine Simulated Head Gravity Return
Time Step Weight Adj Wt Weight Flow Rate Time Step Weight Adj Wt Weight Flow Rate Time Step Weight Adj Wt Weight Flow Rate

s lb lb gal gal/s s lb lb gal gal/s s lb lb gal gal/s

0.00 3668 0 0.00 0 0.00 2342 0 0.00 0 0.00 3386 0 0.00 0

0.02 3646 -22 2.64 1.32 0.02 2353 11 1.32 0.66 0.02 3372 -14 1.68 0.84

0.05 3585 -83 9.96 2.44 0.05 2386 44 5.28 1.32 0.05 3340 -46 5.52 1.28

0.07 3549 -119 14.29 2.16 0.07 2414 72 8.64 1.68 0.07 3321 -65 7.80 1.14

0.10 3491 -177 21.25 2.32 0.10 2454 112 13.45 1.60 0.10 3276 -110 13.21 1.80

0.12 3454 -214 25.69 2.22 0.12 2479 137 16.45 1.50 0.12 3261 -125 15.01 0.90

0.15 3415 -253 30.37 1.56 0.15 2507 165 19.81 1.12 0.15 3226 -160 19.21 1.40

0.17 3382 -286 34.33 1.98 0.17 2529 187 22.45 1.32 0.17 3208 -178 21.37 1.08

0.20 3340 -328 39.38 1.68 0.20 2557 215 25.81 1.12 0.20 3186 -200 24.01 0.88

0.22 3318 -350 42.02 1.32 0.22 2572 230 27.61 0.90 0.22 3157 -229 27.49 1.74

0.25 3277 -391 46.94 1.64 0.25 2593 251 30.13 0.84 0.25 3137 -249 29.89 0.80

0.27 3254 -414 49.70 1.38 0.27 2609 267 32.05 0.96 0.27 3117 -269 32.29 1.20

0.30 3218 -450 54.02 1.44 0.30 2630 288 34.57 0.84 0.30 3093 -293 35.17 0.96

0.32 3194 -474 56.90 1.44 0.32 2642 300 36.01 0.72 0.32 3077 -309 37.09 0.96

0.35 3177 -491 58.94 0.68 0.35 2656 314 37.70 0.56 0.35 3064 -322 38.66 0.52

0.37 3179 -489 58.70 -0.12 0.37 2663 321 38.54 0.42 0.37 3050 -336 40.34 0.84

0.40 3196 -472 56.66 -0.68 0.40 2676 334 40.10 0.52 0.40 3041 -345 41.42 0.36

0.42 3191 -477 57.26 0.30 0.42 2682 340 40.82 0.36 0.42 3037 -349 41.90 0.24

0.45 3161 -507 60.86 1.20 0.45 2691 349 41.90 0.36 0.45 3031 -355 42.62 0.24

0.47 3093 -575 69.03 4.08 0.47 2696 354 42.50 0.30 0.47 3026 -360 43.22 0.30

0.50 3084 -584 70.11 0.36 0.50 2697 355 42.62 0.04 0.50 3024 -362 43.46 0.08

0.52 3074 -594 71.31 0.60 0.52 2701 359 43.10 0.24 0.52 3027 -359 43.10 -0.18

0.55 3065 -603 72.39 0.36 0.55 2705 363 43.58 0.16 0.55 3028 -358 42.98 -0.04

0.57 3064 -604 72.51 0.06 0.57 2703 361 43.34 -0.12 0.57 3032 -354 42.50 -0.24

0.60 3058 -610 73.23 0.24 0.60 2701 359 43.10 -0.08 0.60 3035 -351 42.14 -0.12

0.62 3057 -611 73.35 0.06 0.62 2700 358 42.98 -0.06 0.62 3036 -350 42.02 -0.06

0.65 3057 -611 73.35 0.00 0.65 2695 353 42.38 -0.20 0.65 3033 -353 42.38 0.12

0.67 3059 -609 73.11 -0.12 0.67 2692 350 42.02 -0.18 0.67 3030 -356 42.74 0.18

0.70 3062 -606 72.75 -0.12 0.70 2689 347 41.66 -0.12 0.70 3022 -364 43.70 0.32

0.72 3065 -603 72.39 -0.18 0.72 2688 346 41.54 -0.06 0.72 3023 -363 43.58 -0.06

0.75 3067 -601 72.15 -0.08 0.75 2684 342 41.06 -0.16 0.75 3019 -367 44.06 0.16

0.77 3067 -601 72.15 0.00 0.77 2685 343 41.18 0.06 0.77 3021 -365 43.82 -0.12

2686 344 41.30 0.00 3018 -368 44.18 0.00

3016 -370 44.42

3024 -362 43.46

3032 -354 42.50

3036 -350 42.02

3036 -350 42.02

3032 -354 42.50

Appendix 1: Analysis of Initial Experimental Results of Tidal System (Physical Model Closed Convergent 
Tidal System Test with 4.5" section without Turbine) 
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Simulated Head Gravity Return Simulated Head
Time Step Weight Adj Wt Weight Flow Rate Time Step Weight Adj Wt Weight Flow Rate Weight Adj Wt

s lb lb gal gal/s s lb lb gal gal/s lb lb

0.00 2289 0 0.00 0 0.00 3367 0 0.00 0 Corrupted Data

0.02 2295 6 0.72 0.36 0.02 3358 -9 1.08 0.54 Corrupted Data

0.05 2330 41 4.92 1.40 0.05 3309 -58 6.96 1.96 Corrupted Data

0.07 2362 73 8.76 1.92 0.07 3284 -83 9.96 1.50 Corrupted Data

0.10 2393 104 12.48 1.24 0.10 3244 -123 14.77 1.60 Corrupted Data

0.12 2418 129 15.49 1.50 0.12 3209 -158 18.97 2.10 Corrupted Data

0.15 2461 172 20.65 1.72 0.15 3180 -187 22.45 1.16 Corrupted Data

0.17 2484 195 23.41 1.38 0.17 3156 -211 25.33 1.44 Corrupted Data

0.20 2504 215 25.81 0.80 0.20 3128 -239 28.69 1.12 Corrupted Data

0.22 2520 231 27.73 0.96 0.22 3108 -259 31.09 1.20 Corrupted Data

0.25 2553 264 31.69 1.32 0.25 3092 -275 33.01 0.64 Corrupted Data

0.27 2565 276 33.13 0.72 0.27 3078 -289 34.69 0.84 Corrupted Data

0.30 2581 292 35.05 0.64 0.30 3055 -312 37.45 0.92 Corrupted Data

0.32 2602 313 37.58 1.26 0.32 3044 -323 38.78 0.66 Corrupted Data

0.35 2621 332 39.86 0.76 0.35 3031 -336 40.34 0.52 Corrupted Data

0.37 2637 348 41.78 0.96 0.37 3022 -345 41.42 0.54 Corrupted Data

0.40 2643 354 42.50 0.24 0.40 3015 -352 42.26 0.28 Corrupted Data

0.42 2654 365 43.82 0.66 0.42 3009 -358 42.98 0.36 Corrupted Data

0.45 2663 374 44.90 0.36 0.45 3004 -363 43.58 0.20 Corrupted Data

0.47 2674 385 46.22 0.66 0.47 3001 -366 43.94 0.18 Corrupted Data

0.50 2679 390 46.82 0.20 0.50 3001 -366 43.94 0.00 Corrupted Data

0.52 2681 392 47.06 0.12 0.52 3003 -364 43.70 -0.12 Corrupted Data

0.55 2682 393 47.18 0.04 0.55 3003 -364 43.70 0.00 Corrupted Data

0.57 2685 396 47.54 0.18 0.57 3003 -364 43.70 0.00 Corrupted Data

0.60 2679 390 46.82 -0.24 0.60 3005 -362 43.46 -0.08 Corrupted Data

0.62 2678 389 46.70 -0.06 0.62 3005 -362 43.46 0.00 Corrupted Data

0.65 2671 382 45.86 -0.28 0.65 3002 -365 43.82 0.12

0.67 2665 376 45.14 -0.36 0.67

0.70 2660 371 44.54 -0.20 0.70

0.72 2656 367 44.06 -0.24 0.72

0.75 2651 362 43.46 -0.20 0.75

0.77 2649 360 43.22 -0.12 0.77

2645 356 42.74 0.01

2645 356 42.74 #DIV/0!

Appendix 2: Analysis of Initial Experimental Results of Tidal System (Physical Model Closed Convergent 
Tidal System Test with 4.5" section without Turbine) 
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Gravity Return Simulated Head
Time Step Weight Adj Wt Weight Flow Rate Time Step Weight Adj Wt Weight Flow Rate

s lb lb gal gal/s s lb lb gal gal/s

0.00 3290 0 0.00 0 0.00 2263 0 0.00 0

0.02 3276 -14 1.68 0.84 0.02 2284 21 2.52 1.26

0.05 3232 -58 6.96 1.76 0.05 2320 57 6.84 1.44

0.07 3202 -88 10.56 1.80 0.07 2348 85 10.20 1.68

0.10 3171 -119 14.29 1.24 0.10 2384 121 14.53 1.44

0.12 3142 -148 17.77 1.74 0.12 2408 145 17.41 1.44

0.15 3113 -177 21.25 1.16 0.15 2427 164 19.69 0.76

0.17 3095 -195 23.41 1.08 0.17 2444 181 21.73 1.02

0.20 3067 -223 26.77 1.12 0.20 2466 203 24.37 0.88

0.22 3050 -240 28.81 1.02 0.22 2480 217 26.05 0.84

0.25 3027 -263 31.57 0.92 0.25 2504 241 28.93 0.96

0.27 3012 -278 33.37 0.90 0.27 2512 249 29.89 0.48

0.30 2994 -296 35.53 0.72 0.30 2533 270 32.41 0.84

0.32 2980 -310 37.21 0.84 0.32 2538 275 33.01 0.30

0.35 2964 -326 39.14 0.64 0.35 2556 293 35.17 0.72

0.37 2953 -337 40.46 0.66 0.37 2567 304 36.49 0.66

0.40 2937 -353 42.38 0.64 0.40 2578 315 37.82 0.44

0.42 2935 -355 42.62 0.12 0.42 2584 321 38.54 0.36

0.45 2936 -354 42.50 -0.04 0.45 2592 329 39.50 0.32

0.47 2931 -359 43.10 0.30 0.47 2602 339 40.70 0.60

0.50 2937 -353 42.38 -0.24 0.50 2607 344 41.30 0.20

0.52 2940 -350 42.02 -0.18 0.52 2608 345 41.42 0.06

0.55 2939 -351 42.14 0.04 0.55 2608 345 41.42 0.00

0.57 0.57 2609 346 41.54 0.06

0.60 0.60

0.62 0.62

0.65 0.65

0.67 0.67

0.70 0.70

0.72 0.72

0.75 0.75

0.77 0.77

Appendix 3: Analysis of Initial Experimental Results of Tidal System (Physical Model 
Closed Convergent Tidal System Test with 4.5" section without Turbine) 
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4.5" Test Segment w/ Turbine Simulated Head

Time Step Weight Adj Wt Weight Flow Rate
Power 

Reading
Power Time Step Weight Adj Wt Weight Flow Rate

Power 

Reading
Power

s lb lb gal gal/s Volts Watts s lb lb gal gal/s Volts Watts

0.00 3256 0 0.00 0.00 0 0 0.00 2171 0 0.00 0.00 0.0049 4.8E-06

0.02 3250 -6 0.72 0.36 2.096 0.87864 0.02 2189 18 2.16 1.08 1.596 0.50944

0.05 3218 -38 4.56 1.28 2.322 1.07834 0.05 2217 46 5.52 1.12 1.352 0.36558

0.07 3199 -57 6.84 1.14 2.276 1.03604 0.07 2234 63 7.56 1.02 1.361 0.37046

0.10 3162 -94 11.28 1.48 1.993 0.79441 0.10 2258 87 10.44 0.96 1.173 0.27519

0.12 3137 -119 14.29 1.50 1.793 0.64297 0.12 2274 103 12.36 0.96 1.028 0.21136

0.15 3102 -154 18.49 1.40 1.585 0.50245 0.15 3201 1030 14.50 0.71 0.0015 4.5E-07

0.17 3084 -172 20.65 1.08 1.704 0.58072 0.17 2329 158 18.97 2.23 0.0001 2E-09

0.20 3054 -202 24.25 1.20 1.344 0.36127 0.20 2345 174 20.89 0.64 0

0.22 3036 -220 26.41 1.08 1.365 0.37265 0.22 2358 187 22.45 0.78 0

0.25 3011 -245 29.41 1.00 0.922 0.17002 0.25 2375 204 24.49 0.68 0

0.27 2998 -258 30.97 0.78 0.509 0.05182 0.27 2386 215 25.81 0.66 0

0.30 2976 -280 33.61 0.88 0.0022 9.7E-07 0.30 2401 230 27.61 0.60 0

0.32 2951 -305 36.61 1.50 0.003 1.8E-06 0.32 2414 243 29.17 0.78 0

0.35 2945 -311 37.33 0.24 0 0 0.35 2429 258 30.97 0.60 0

0.37 2937 -319 38.30 0.48 0 0 0.37 2436 265 31.81 0.42 0

0.40 2923 -333 39.98 0.56 0 0 0.40 2451 280 33.61 0.60 0

0.42 2914 -342 41.06 0.54 0 0 0.42 2460 289 34.69 0.54 0

0.45 2901 -355 42.62 0.52 0 0 0.45 2472 301 36.13 0.48 0

0.47 2894 -362 43.46 0.42 0 0 0.47 2477 306 36.73 0.30 0

0.50 2886 -370 44.42 0.32 0 0 0.50 2484 313 37.58 0.28 0

0.52 2882 -374 44.90 0.24 0 0 0.52 2487 316 37.94 0.18 0

0.55 2875 -381 45.74 0.28 0 0 0.55 2494 323 38.78 0.28 0

0.57 2874 -382 45.86 0.06 0 0 0.57 2498 327 39.26 0.24 0

0.60 2878 -378 45.38 -0.16 0 0 0.60 2503 332 39.86 0.20 0

0.62 2874 -382 45.86 0.24 0 0 0.62 2507 336 40.34 0.24 0

0.65 0.65 2507 336 40.34 0.00 0

0.67 0.67

0.70 0.70

0.72 0.72

0.75 0.75

0.77 0.77

Appendix 4: Analysis of Initial Experimental Results of Tidal System (Physical Model Closed  Convergent 
Tidal System Test with 4.5" section with Turbine)  
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Gravity Return Simulated Head

Time Step Weight Adj Wt Weight Flow Rate
Power 

Reading
Power Time Step Weight Adj Wt Weight Flow Rate

Power 

Reading
Power

s lb lb gal gal/s Volts Watts s lb lb gal gal/s Volts Watts

0.00 3346 0 0.00 0.00 0.0231 0.00011 0.00 2150 0 0.00 0.00 0 0

0.02 3324 -22 2.64 1.32 3.104 1.92696 0.02 2163 13 1.56 0.78 1.163 0.27051

0.05 3291 -55 6.60 1.32 2.965 1.75825 0.05 2192 42 5.04 1.16 1.537 0.47247

0.07 3257 -89 10.68 2.04 2.868 1.64508 0.07 2204 54 6.48 0.72 1.528 0.46696

0.10 3219 -127 15.25 1.52 2.085 0.86945 0.10 2233 83 9.96 1.16 1.263 0.31903

0.12 3176 -170 20.41 2.58 1.596 0.50944 0.12 2254 104 12.48 1.26 1.072 0.22984

0.15 3159 -187 22.45 0.68 1.195 0.28561 0.15 2274 124 14.89 0.80 0.0012 2.9E-07

0.17 3140 -206 24.73 1.14 1.283 0.32922 0.17 2290 140 16.81 0.96 0.003 1.8E-06

0.20 3100 -246 29.53 1.60 0.926 0.1715 0.20 2311 161 19.33 0.84 0 0

0.22 3087 -259 31.09 0.78 1.578 0.49802 0.22 2322 172 20.65 0.66 0 0

0.25 3057 -289 34.69 1.20 1.689 0.57054 0.25 2343 193 23.17 0.84 0 0

0.27 3039 -307 36.85 1.08 1.482 0.43926 0.27 2352 202 24.25 0.54 0 0

0.30 3021 -325 39.02 0.72 1.072 0.22984 0.30 2369 219 26.29 0.68 0 0

0.32 3003 -343 41.18 1.08 0.75 0.1125 0.32 2383 233 27.97 0.84 0 0

0.35 3976 -362 43.46 0.76 1.247 0.311 0.35 2395 245 29.41 0.48 0 0

0.37 2962 -384 46.10 1.32 0.0019 7.2E-07 0.37 2406 256 30.73 0.66 0 0

0.40 2947 -399 47.90 0.60 0.001 2E-07 0.40 2419 269 32.29 0.52 0 0

0.42 2935 -411 49.34 0.72 0 0 0.42 2432 282 33.85 0.78 0 0

0.45 2918 -428 51.38 0.68 0 0 0.45 2442 292 35.05 0.40 0 0

0.47 2907 -439 52.70 0.66 0 0 0.47 2454 304 36.49 0.72 0 0

0.50 2897 -449 53.90 0.40 0 0 0.50 2459 309 37.09 0.20 0 0

0.52 2876 -470 56.42 1.26 0 0 0.52 2465 315 37.82 0.36 0 0

0.55 2867 -479 57.50 0.36 0 0 0.55 2469 319 38.30 0.16 0 0

0.57 2850 -496 59.54 1.02 0 0 0.57 2473 323 38.78 0.24 0 0

0.60 2857 -489 58.70 -0.28 0 0 0.60 2477 327 39.26 0.16 0 0

0.62 2851 -495 59.42 0.36 0 0 0.62 2481 331 39.74 0.24 0 0

0.65 2847 -499 59.90 0.16 0 0 0.65 2483 333 39.98 0.08 0 0

0.67 2843 -503 60.38 0.24 0 0 0.67 2491 341 40.94 0.48 0 0

0.70 2851 -495 59.42 -0.32 0 0 0.70 2498 348 41.78 0.28 0 0

0.72 2849 -497 59.66 0.12 0 0 0.72 2497 347 41.66 -0.06 0 0

0.75 2846 -500 60.02 0.12 0 0 0.75

0.77 2841 -505 60.62 0.30 0 0 0.77

2841 -505 60.62 0.00 0 0

Appendix 5: Analysis of Initial Experimental Results of Tidal System (Physical Model Closed Convergent 
Tidal System Test with 4.5" section with Turbine) 
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Gravity Return Simulated Head

Time Step Weight Adj Wt Weight Flow Rate
Power 

Reading
Power Time Step Weight Adj Wt Weight Flow Rate

Power 

Reading
Power

s lb lb gal gal/s Volts Watts s lb lb gal gal/s Volts Watts

0.00 3311 0 0.00 0.00 0 0 0.00 2149 0 0.00 0.00 0.0205 8.4E-05

0.02 3296 -15 1.80 0.90 2.987 1.78443 0.02 2163 14 1.68 0.84 1.285 0.33025

0.05 3252 -59 7.08 1.76 2.872 1.64968 0.05 2190 41 4.92 1.08 1.365 0.37265

0.07 3224 -87 10.44 1.68 2.729 1.48949 0.07 2212 63 7.56 1.32 1.351 0.36504

0.10 3190 -121 14.53 1.36 2.294 1.05249 0.10 2237 88 10.56 1.00 1.099 0.24156

0.12 3161 -150 18.01 1.74 2.127 0.90483 0.12 2256 107 12.85 1.14 1.098 0.24112

0.15 3125 -186 22.33 1.44 2.055 0.84461 0.15 2281 132 15.85 1.00 0.0019 7.2E-07

0.17 3107 -204 24.49 1.08 1.768 0.62516 0.17 2295 146 17.53 0.84 0.0002 8E-09

0.20 3075 -236 28.33 1.28 1.79 0.64082 0.20 2321 172 20.65 1.04 0 0

0.22 3051 -260 31.21 1.44 1.495 0.44701 0.22 2335 186 22.33 0.84 0 0

0.25 3022 -289 34.69 1.16 1.015 0.20605 0.25 2357 208 24.97 0.88 0 0

0.27 3004 -307 36.85 1.08 0.0906 0.00164 0.27 2369 220 26.41 0.72 0 0

0.30 2981 -330 39.62 0.92 1.086 0.23588 0.30 2386 237 28.45 0.68 0 0

0.32 2968 -343 41.18 0.78 1.527 0.46635 0.32 2398 249 29.89 0.72 0 0

0.35 2943 -368 44.18 1.00 0.0011 2.4E-07 0.35 2408 259 31.09 0.40 0 0

0.37 2931 -380 45.62 0.72 0.002 8E-07 0.37 2418 269 32.29 0.60 0 0

0.40 2910 -401 48.14 0.84 0 0 0.40 2431 282 33.85 0.52 0 0

0.42 2905 -406 48.74 0.30 0 0 0.42 2442 293 35.17 0.66 0 0

0.45 2893 -418 50.18 0.48 0 0 0.45 2447 298 35.77 0.20 0 0

0.47 2885 -426 51.14 0.48 0 0 0.47 2456 307 36.85 0.54 0 0

0.50 2879 -432 51.86 0.24 0 0 0.50 2465 316 37.94 0.36 0 0

0.52 2872 -439 52.70 0.42 0 0 0.52 2470 321 38.54 0.30 0 0

0.55 2863 -448 53.78 0.36 0 0 0.55 2473 324 38.90 0.12 0 0

0.57 2858 -453 54.38 0.30 0 0 0.57 2476 327 39.26 0.18 0 0

0.60 2852 -459 55.10 0.24 0 0 0.60 2477 328 39.38 0.04 0 0

0.62 2846 -465 55.82 0.36 0 0 0.62 2477 328 39.38 0.00 0 0

0.65 2844 -467 56.06 0.08 0 0 0.65

0.67 2843 -468 56.18 0.06 0 0 0.67

0.70 2840 -471 56.54 0.12 0 0 0.70

0.72 2840 -471 56.54 0.00 0 0 0.72

0.75 2842 -469 56.30 -0.08 0 0 0.75

0.77 0.77

Appendix 6: Analysis of Initial Experimental Results of Tidal System (Physical Model Closed Convergent 
Tidal System Test with 4.5" section with Turbine) 
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Gravity Return Simulated Head

Time Step Weight Adj Wt Weight Flow Rate
Power 

Reading
Power Time Step Weight Adj Wt Weight Flow Rate

Power 

Reading
Power

s lb lb gal gal/s Volts Watts s lb lb gal gal/s Volts Watts

0.00 3273 0 0.00 0.00 0.3785 0.02865 0.00 2113 0 0.00 0.00 0.1914 0.00733

0.02 3250 -23 2.76 1.38 2.944 1.73343 0.02 2130 17 2.04 1.02 1.963 0.77067

0.05 3211 -62 7.44 1.56 2.806 1.57473 0.05 2156 43 5.16 1.04 1.84 0.67712

0.07 3185 -88 10.56 1.56 2.54 1.29032 0.07 2176 63 7.56 1.20 1.674 0.56046

0.10 3148 -125 15.01 1.48 2.359 1.11298 0.10 2209 96 11.52 1.32 1.446 0.41818

0.12 3122 -151 18.13 1.56 2.055 0.84461 0.12 2227 114 13.69 1.08 0.852 0.14518

0.15 3089 -184 22.09 1.32 2.025 0.82013 0.15 2249 136 16.33 0.88 0.003 1.8E-06

0.17 3067 -206 24.73 1.32 1.709 0.58414 0.17 2267 154 18.49 1.08 0.001 2E-07

0.20 3044 -229 27.49 0.92 1.607 0.51649 0.20 2291 178 21.37 0.96 0 0

0.22 3018 -255 30.61 1.56 1.398 0.39088 0.22 2305 192 23.05 0.84 0 0

0.25 2992 -281 33.73 1.04 1.104 0.24376 0.25 2327 214 25.69 0.88 0 0

0.27 2974 -299 35.89 1.08 1.062 0.22557 0.27 2342 229 27.49 0.90 0 0

0.30 2950 -323 38.78 0.96 1.659 0.55046 0.30 2359 246 29.53 0.68 0 0

0.32 2934 -339 40.70 0.96 0.0045 4.1E-06 0.32 2370 257 30.85 0.66 0 0

0.35 2922 -351 42.14 0.48 0.001 2E-07 0.35 2387 274 32.89 0.68 0 0

0.37 2915 -358 42.98 0.42 0.001 2E-07 0.37 2393 280 33.61 0.36 0 0

0.40 2901 -372 44.66 0.56 0 0 0.40 2399 286 34.33 0.24 0 0

0.42 2889 -384 46.10 0.72 0 0 0.42 2403 290 34.81 0.24 0 0

0.45 2875 -398 47.78 0.56 0 0 0.45 2410 297 35.65 0.28 0 0

0.47 2862 -411 49.34 0.78 0 0 0.47 2416 303 36.37 0.36 0 0

0.50 2854 -419 50.30 0.32 0 0 0.50 2429 316 37.94 0.52 0 0

0.52 2847 -426 51.14 0.42 0 0 0.52 2434 321 38.54 0.30 0 0

0.55 2842 -431 51.74 0.20 0 0 0.55 2439 326 39.14 0.20 0 0

0.57 2835 -438 52.58 0.42 0 0 0.57 2443 330 39.62 0.24 0 0

0.60 2834 -439 52.70 0.04 0 0 0.60 2449 336 40.34 0.24 0 0

0.62 2831 -442 53.06 0.18 0 0 0.62 2452 339 40.70 0.18 0 0

0.65 2829 -444 53.30 0.08 0 0 0.65 2452 339 40.70 0.00 0 0

0.67 2825 -448 53.78 0.24 0 0 0.67 2452 339 40.70 0.00 0 0

0.70 2824 -449 53.90 0.04 0 0 0.70 2450 337 40.46 -0.08 0 0

0.72 0.72

0.75 0.75

0.77 0.77

Appendix 7: Analysis of Initial Experimental Results of Tidal System (Physical Model Closed Convergent 
Tidal System Test with 4.5" section with Turbine) 
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1 Pipe No Nozzle

Time Step 
ѵaverage=   

(∑ѵ/)n

Qaverage=   

(∑Q/)n

Qaverage=   

(∑Q/)n

Waverage=   

(∑W2/)n

W=W(gal/8.

33lb)

Δh2=W2/  

(AreaTUBρ)

Δh=Δh(12in

/ft)

Δh1=hstart-

Δh2

Δh1=hstart-

Δh2

Seconds m/s in3/s m3/s Weight (lb) gal ft in in m

0 0.00 0.00 0.00E+00 0.00 0.00 0.00 0.00 15.00 0.38

2 0.78 103.58 1.70E-03 14.94 1.79 0.06 0.77 14.23 0.36

4 1.63 215.19 3.53E-03 29.00 3.48 0.12 1.49 13.51 0.34

6 1.79 236.13 3.87E-03 46.96 5.64 0.20 2.42 12.58 0.32

8 1.85 244.45 4.01E-03 64.26 7.71 0.28 3.31 11.69 0.30

10 1.83 241.12 3.95E-03 81.74 9.81 0.35 4.21 10.79 0.27

12 1.74 230.17 3.77E-03 97.46 11.70 0.42 5.02 9.98 0.25

14 1.55 204.93 3.36E-03 111.30 13.36 0.48 5.73 9.27 0.24

16 1.48 195.37 3.20E-03 125.64 15.08 0.54 6.47 8.53 0.22

18 1.43 188.85 3.09E-03 138.54 16.63 0.59 7.14 7.86 0.20

20 1.26 166.53 2.73E-03 149.66 17.97 0.64 7.71 7.29 0.19

22 1.13 149.89 2.46E-03 160.16 19.23 0.69 8.25 6.75 0.17

24 1.11 146.14 2.39E-03 170.74 20.50 0.73 8.80 6.20 0.16

26 1.01 133.80 2.19E-03 179.46 21.54 0.77 9.25 5.75 0.15

28 0.93 122.85 2.01E-03 188.46 22.62 0.81 9.71 5.29 0.13

30 0.77 101.63 1.67E-03 194.12 23.30 0.83 10.00 5.00 0.13

32 0.56 73.35 1.20E-03 199.04 23.89 0.85 10.25 4.75 0.12

34 0.42 55.88 9.16E-04 202.18 24.27 0.87 10.42 4.58 0.12

36 0.28 37.30 6.11E-04 204.42 24.54 0.88 10.53 4.47 0.11

38 0.19 25.65 4.20E-04 205.88 24.72 0.88 10.61 4.39 0.11

40 0.16 21.35 3.50E-04 207.50 24.91 0.89 10.69 4.31 0.11

42 0.18 23.43 3.84E-04 209.26 25.12 0.90 10.78 4.22 0.11

44 0.14 18.30 3.00E-04 210.14 25.23 0.90 10.83 4.17 0.11

46 0.08 11.09 1.82E-04 210.86 25.31 0.91 10.86 4.14 0.11

48 0.06 8.32 1.36E-04 211.34 25.37 0.91 10.89 4.11 0.10

50 0.04 5.82 9.54E-05 211.70 25.41 0.91 10.91 4.09 0.10

Appendix 8: Analysis and Results of Convergent Pipes and Nozzle for Amplified Fluid 
Velocity 
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            Appendix 9: Analysis and Results of Convergent Pipes and Nozzle for Amplified Fluid Velocity  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 Converging Pipes No Nozzle

Time Step 
ѵaverage=   

(∑ѵ/)n

Qaverage=   

(∑Q/)n

Qaverage=   

(∑Q/)n

Waverage=   

(∑W2/)n

W=W(gal/8.

33lb)

Δh2=W2/  

(AreaTUBρ)

Δh=Δh(12in

/ft)

Δh1=hstart-

Δh2

Δh1=hstart-

Δh2

Seconds m/s in3/s m3/s Weight (lb) gal ft in in m

0 0.00 0.00 0.00E+00 0.00 0.00 0.00 0.00 15.00 0.38

2 0.58 76.26 1.25E-03 11.60 1.39 0.05 0.60 14.40 0.37

4 1.43 189.54 3.11E-03 25.36 3.04 0.11 1.31 13.69 0.35

6 1.81 239.32 3.92E-03 43.54 5.23 0.19 2.24 12.76 0.32

8 1.83 241.54 3.96E-03 60.20 7.23 0.26 3.10 11.90 0.30

10 1.74 230.31 3.77E-03 76.76 9.21 0.33 3.95 11.05 0.28

12 1.66 218.66 3.58E-03 91.74 11.01 0.39 4.73 10.27 0.26

14 1.55 204.38 3.35E-03 106.24 12.75 0.46 5.47 9.53 0.24

16 1.48 195.37 3.20E-03 119.92 14.40 0.51 6.18 8.82 0.22

18 1.34 177.06 2.90E-03 131.78 15.82 0.57 6.79 8.21 0.21

20 1.15 152.11 2.49E-03 141.86 17.03 0.61 7.31 7.69 0.20

22 1.00 132.55 2.17E-03 150.90 18.12 0.65 7.77 7.23 0.18

24 0.93 123.13 2.02E-03 159.62 19.16 0.69 8.22 6.78 0.17

26 0.84 111.06 1.82E-03 166.92 20.04 0.72 8.60 6.40 0.16

28 0.67 88.88 1.46E-03 172.44 20.70 0.74 8.88 6.12 0.16

30 0.59 77.37 1.27E-03 178.08 21.38 0.76 9.17 5.83 0.15

32 0.55 72.66 1.19E-03 182.92 21.96 0.79 9.42 5.58 0.14

34 0.48 63.50 1.04E-03 187.24 22.48 0.80 9.65 5.35 0.14

36 0.41 53.80 8.82E-04 190.68 22.89 0.82 9.82 5.18 0.13

38 0.31 41.04 6.73E-04 193.16 23.19 0.83 9.95 5.05 0.13

40 0.22 28.70 4.70E-04 194.82 23.39 0.84 10.04 4.96 0.13

42 0.15 19.41 3.18E-04 195.96 23.52 0.84 10.10 4.90 0.12

44 0.09 11.79 1.93E-04 196.52 23.59 0.84 10.13 4.87 0.12
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           Appendix 10: Analysis and Results of Convergent Pipes and Nozzle for Amplified Fluid Velocity: 

 

 

3 Converging Pipes No Nozzle

ѵaverage=   

(∑ѵ/)n

Qaverage=   

(∑Q/)n

Qaverage=   

(∑Q/)n

Waverage=   

(∑W2/)n

W=W(gal/8.

33lb)

Δh2=W2/  

(AreaTUBρ)

Δh=Δh(12in

/ft)

Δh1=hstart-

Δh2

Δh1=hstart-

Δh2

m/s in3/s m3/s Weight (lb) gal ft in in m

0.00 0.00 0.00E+00 0.00 0.00 0.00 0.00 15.00 0.38

0.83 109.95 1.80E-03 17.16 2.06 0.07 0.88 14.12 0.36

1.76 231.97 3.80E-03 32.98 3.96 0.14 1.70 13.30 0.34

1.80 238.35 3.91E-03 49.76 5.97 0.21 2.56 12.44 0.32

1.77 234.33 3.84E-03 66.78 8.02 0.29 3.44 11.56 0.29

1.80 238.07 3.90E-03 84.10 10.10 0.36 4.33 10.67 0.27

1.68 222.40 3.64E-03 98.86 11.87 0.42 5.09 9.91 0.25

1.56 206.04 3.38E-03 113.82 13.66 0.49 5.86 9.14 0.23

1.44 190.37 3.12E-03 126.32 15.16 0.54 6.51 8.49 0.22

1.31 173.60 2.84E-03 138.86 16.67 0.60 7.15 7.85 0.20

1.23 163.06 2.67E-03 149.84 17.99 0.64 7.72 7.28 0.18

1.17 154.32 2.53E-03 161.12 19.34 0.69 8.30 6.70 0.17

1.15 152.52 2.50E-03 171.84 20.63 0.74 8.85 6.15 0.16

1.02 134.50 2.20E-03 180.52 21.67 0.78 9.30 5.70 0.14

0.84 111.48 1.83E-03 187.92 22.56 0.81 9.68 5.32 0.14

0.74 97.20 1.59E-03 194.54 23.35 0.84 10.02 4.98 0.13

0.65 85.55 1.40E-03 200.26 24.04 0.86 10.32 4.68 0.12

0.52 68.08 1.12E-03 204.36 24.53 0.88 10.53 4.47 0.11

0.36 47.84 7.84E-04 207.16 24.87 0.89 10.67 4.33 0.11

0.25 32.45 5.32E-04 209.04 25.09 0.90 10.77 4.23 0.11
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           Appendix 11: Analysis and Results of Convergent Pipes and Nozzle for Amplified Fluid Velocity 

 

4 Converging Pipes No Nozzle

Time Step 
ѵaverage=   

(∑ѵ/)n

Qaverage=   

(∑Q/)n

Qaverage=   

(∑Q/)n

Waverage=   

(∑W2/)n

W=W(gal/8.

33lb)

Δh2=W2/  

(AreaTUBρ)

Δh=Δh(12in

/ft)

Δh1=hstart-

Δh2

Δh1=hstart-

Δh2

Seconds m/s in3/s m3/s Weight (lb) gal ft in in m

0 0.00 0.00 0.00E+00 0.00 0.00 0.00 0.00 15.00 0.38

2 0.86 113.00 1.85E-03 17.42 2.09 0.07 0.90 14.10 0.36

4 1.88 248.47 4.07E-03 36.02 4.32 0.15 1.86 13.14 0.33

6 2.04 269.55 4.42E-03 55.36 6.65 0.24 2.85 12.15 0.31

8 1.96 258.87 4.24E-03 73.36 8.81 0.31 3.78 11.22 0.28

10 1.83 241.68 3.96E-03 90.22 10.83 0.39 4.65 10.35 0.26

12 1.73 229.06 3.75E-03 106.40 12.77 0.46 5.48 9.52 0.24

14 1.67 220.46 3.61E-03 122.02 14.65 0.52 6.29 8.71 0.22

16 1.55 205.07 3.36E-03 135.98 16.32 0.58 7.01 7.99 0.20

18 1.39 183.44 3.01E-03 148.48 17.82 0.64 7.65 7.35 0.19

20 1.24 163.89 2.69E-03 159.62 19.16 0.69 8.22 6.78 0.17

22 1.08 142.12 2.33E-03 168.98 20.29 0.73 8.71 6.29 0.16

24 0.95 125.07 2.05E-03 177.66 21.33 0.76 9.15 5.85 0.15

26 0.89 117.86 1.93E-03 185.98 22.33 0.80 9.58 5.42 0.14

28 0.78 103.16 1.69E-03 192.54 23.11 0.83 9.92 5.08 0.13

30 0.61 81.11 1.33E-03 197.68 23.73 0.85 10.18 4.82 0.12

32 0.49 65.17 1.07E-03 201.94 24.24 0.87 10.40 4.60 0.12

34 0.38 50.47 8.27E-04 204.96 24.61 0.88 10.56 4.44 0.11

36 0.27 35.88 5.88E-04 207.00 24.85 0.89 10.66 4.34 0.11

38 0.15 19.41 3.18E-04 207.83 24.95 0.89 10.71 4.29 0.11

40 0.06 7.63 1.25E-04 208.73 25.06 0.90 10.75 4.25 0.11
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Appendix 12: Analysis and Results of Convergent Pipes and Nozzle for Amplified Fluid Velocity 

 

1 Pipe With Nozzle

Time Step 
ѵaverage=   

(∑ѵ/)n

Qaverage=   

(∑Q/)n

Qaverage=   

(∑Q/)n

Waverage=   

(∑W2/)n

W=W(gal/8.

33lb)

Δh2=W2/  

(AreaTUBρ)

Δh=Δh(12in

/ft)

Δh1=hstart-

Δh2

Δh1=hstart-

Δh2

Seconds m/s in3/s m3/s Weight (lb) gal ft in in m

0 0.00 0.00 0.00E+00 0.00 0.00 0.00 0.00 15.00 0.38

2 2.23 69.05 1.13E-03 9.86 1.18 0.04 0.51 14.49 0.37

4 5.02 155.16 2.54E-03 18.58 2.23 0.08 0.96 14.04 0.36

6 5.01 155.02 2.54E-03 28.52 3.42 0.12 1.47 13.53 0.34

8 4.26 131.58 2.16E-03 37.56 4.51 0.16 1.94 13.06 0.33

10 4.07 125.76 2.06E-03 46.66 5.60 0.20 2.40 12.60 0.32

12 4.08 126.18 2.07E-03 55.76 6.69 0.24 2.87 12.13 0.31

14 4.03 124.51 2.04E-03 64.62 7.76 0.28 3.33 11.67 0.30

16 3.96 122.29 2.00E-03 73.40 8.81 0.32 3.78 11.22 0.28

18 3.65 113.00 1.85E-03 80.92 9.71 0.35 4.17 10.83 0.28

20 3.61 111.48 1.83E-03 89.48 10.74 0.38 4.61 10.39 0.26

22 3.72 115.08 1.89E-03 97.52 11.71 0.42 5.02 9.98 0.25

24 3.51 108.43 1.78E-03 105.12 12.62 0.45 5.42 9.58 0.24

26 3.39 104.68 1.72E-03 112.62 13.52 0.48 5.80 9.20 0.23

28 3.24 100.25 1.64E-03 119.58 14.36 0.51 6.16 8.84 0.22

30 3.09 95.67 1.57E-03 126.42 15.18 0.54 6.51 8.49 0.22

32 3.05 94.42 1.55E-03 133.20 15.99 0.57 6.86 8.14 0.21

34 3.00 92.62 1.52E-03 139.78 16.78 0.60 7.20 7.80 0.20

36 2.73 84.30 1.38E-03 145.36 17.45 0.62 7.49 7.51 0.19

38 2.63 81.25 1.33E-03 151.50 18.19 0.65 7.81 7.19 0.18

40 2.66 82.36 1.35E-03 157.24 18.88 0.68 8.10 6.90 0.18

42 2.49 77.09 1.26E-03 162.62 19.52 0.70 8.38 6.62 0.17

44 2.42 74.74 1.22E-03 168.02 20.17 0.72 8.66 6.34 0.16

46 2.26 70.02 1.15E-03 172.72 20.73 0.74 8.90 6.10 0.15

48 2.06 63.64 1.04E-03 177.20 21.27 0.76 9.13 5.87 0.15

50 1.79 55.32 9.07E-04 180.70 21.69 0.78 9.31 5.69 0.14

52 1.49 0.38 6.18E-06 183.84 22.07 0.79 9.47 5.53 0.14

54 1.36 0.35 5.78E-06 186.78 22.42 0.80 9.62 5.38 0.14

56 1.24 0.31 5.08E-06 189.36 22.73 0.81 9.76 5.24 0.13

58 1.10 0.28 4.60E-06 191.70 23.01 0.82 9.88 5.12 0.13

60 1.06 0.29 4.72E-06 194.10 23.30 0.83 10.00 5.00 0.13

62 1.02 0.26 4.21E-06 196.24 23.56 0.84 10.11 4.89 0.12

64 0.99 0.27 4.45E-06 198.50 23.83 0.85 10.23 4.77 0.12

66 0.98 0.25 4.17E-06 200.62 24.08 0.86 10.34 4.66 0.12

68 0.77 0.16 2.60E-06 201.94 24.24 0.87 10.40 4.60 0.12

70 0.58 0.15 2.48E-06 203.20 24.39 0.87 10.47 4.53 0.12

72 0.55 0.14 2.32E-06 204.38 24.54 0.88 10.53 4.47 0.11

74 0.46 0.11 1.73E-06 205.26 24.64 0.88 10.58 4.42 0.11

76 0.38 0.10 1.61E-06 206.08 24.74 0.88 10.62 4.38 0.11

78 0.39 0.10 1.57E-06 203.90 24.48 0.88 10.51 4.49 0.11
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Appendix 13: Analysis and Results of Convergent Pipes and Nozzle for Amplified Fluid Velocity 

 

 

2 Converging Pipes with Nozzle

Time Step 
ѵaverage=   

(∑ѵ/)n

Qaverage=   

(∑Q/)n

Qaverage=   

(∑Q/)n

Waverage=   

(∑W2/)n

W=W(gal/8.

33lb)

Δh2=W2/  

(AreaTUBρ)

Δh=Δh(12in

/ft)

Δh1=hstart-

Δh2

Δh1=hstart-

Δh2

Seconds m/s in3/s m3/s Weight (lb) gal ft in in m

0 0.00 0.00 0.00E+00 0.00 0.00 0.00 0.00 15.00 0.38

2 2.16 66.83 1.10E-03 9.64 1.16 0.04 0.50 14.50 0.37

4 3.96 122.57 2.01E-03 17.68 2.12 0.08 0.91 14.09 0.36

6 4.09 126.45 2.07E-03 27.88 3.35 0.12 1.44 13.56 0.34

8 4.19 129.50 2.12E-03 36.36 4.36 0.16 1.87 13.13 0.33

10 4.08 126.04 2.07E-03 46.06 5.53 0.20 2.37 12.63 0.32

12 4.27 132.14 2.17E-03 55.42 6.65 0.24 2.86 12.14 0.31

14 4.09 126.45 2.07E-03 64.30 7.72 0.28 3.31 11.69 0.30

16 3.93 121.46 1.99E-03 72.94 8.76 0.31 3.76 11.24 0.29

18 3.62 112.03 1.84E-03 80.46 9.66 0.35 4.15 10.85 0.28

20 3.56 110.23 1.81E-03 88.84 10.67 0.38 4.58 10.42 0.26

22 3.74 115.64 1.89E-03 97.14 11.66 0.42 5.00 10.00 0.25

24 3.53 109.26 1.79E-03 104.60 12.56 0.45 5.39 9.61 0.24

26 3.40 105.24 1.72E-03 112.32 13.48 0.48 5.79 9.21 0.23

28 3.27 101.08 1.66E-03 119.18 14.31 0.51 6.14 8.86 0.23

30 3.08 95.26 1.56E-03 126.06 15.13 0.54 6.49 8.51 0.22

32 3.07 94.98 1.56E-03 132.88 15.95 0.57 6.85 8.15 0.21

34 3.02 93.32 1.53E-03 139.52 16.75 0.60 7.19 7.81 0.20

36 2.82 87.21 1.43E-03 145.46 17.46 0.62 7.49 7.51 0.19

38 2.65 82.08 1.35E-03 151.36 18.17 0.65 7.80 7.20 0.18

40 2.60 80.28 1.32E-03 157.04 18.85 0.67 8.09 6.91 0.18

42 2.46 76.12 1.25E-03 162.34 19.49 0.70 8.36 6.64 0.17

44 2.50 77.23 1.27E-03 168.18 20.19 0.72 8.66 6.34 0.16

46 2.40 74.18 1.22E-03 173.04 20.77 0.74 8.92 6.08 0.15

48 2.03 62.67 1.03E-03 177.22 21.27 0.76 9.13 5.87 0.15

50 1.76 54.49 8.93E-04 180.90 21.72 0.78 9.32 5.68 0.14

52 1.56 48.11 7.88E-04 184.16 22.11 0.79 9.49 5.51 0.14

54 1.27 39.38 6.45E-04 186.58 22.40 0.80 9.61 5.39 0.14

56 1.06 32.72 5.36E-04 188.88 22.67 0.81 9.73 5.27 0.13

58 1.04 32.17 5.27E-04 191.22 22.96 0.82 9.85 5.15 0.13

60 1.04 32.03 5.25E-04 193.50 23.23 0.83 9.97 5.03 0.13

62 0.94 29.12 4.77E-04 195.42 23.46 0.84 10.07 4.93 0.13

64 0.88 27.32 4.48E-04 197.44 23.70 0.85 10.17 4.83 0.12

66 0.91 28.01 4.59E-04 199.46 23.94 0.86 10.28 4.72 0.12

68 0.77 23.71 3.89E-04 200.86 24.11 0.86 10.35 4.65 0.12

70 0.59 18.16 2.98E-04 202.08 24.26 0.87 10.41 4.59 0.12

72 0.55 16.92 2.77E-04 203.30 24.41 0.87 10.47 4.53 0.11

74 0.48 14.97 2.45E-04 204.24 24.52 0.88 10.52 4.48 0.11

76 0.42 12.89 2.11E-04 205.16 24.63 0.88 10.57 4.43 0.11

78 0.38 11.65 1.91E-04 205.92 24.72 0.88 10.61 4.39 0.11
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     Appendix 14: Analysis and Results of Convergent Pipes and Nozzle for Amplified Fluid Velocity 

 

3 Converging Pipes With Nozzle

Time Step 
ѵaverage=   

(∑ѵ/)n

Qaverage=   

(∑Q/)n

Qaverage=   

(∑Q/)n

Waverage=   

(∑W2/)n

W=W(gal/8.

33lb)

Δh2=W2/  

(AreaTUBρ)

Δh=Δh(12in

/ft)

Δh1=hstart-

Δh2

Δh1=hstart-

Δh2

Seconds m/s in3/s m3/s Weight (lb) gal ft in in m

0 0.00 0.00 0.00E+00 0.00 0.00 0.00 0.00 15.00 0.38

2 2.32 71.82 1.18E-03 10.36 1.24 0.04 0.53 14.47 0.37

4 3.87 119.66 1.96E-03 17.26 2.07 0.07 0.89 14.11 0.36

6 3.68 113.84 1.87E-03 26.78 3.21 0.11 1.38 13.62 0.35

8 4.06 125.62 2.06E-03 35.38 4.25 0.15 1.82 13.18 0.33

10 3.68 113.70 1.86E-03 43.18 5.18 0.19 2.22 12.78 0.32

12 3.65 112.73 1.85E-03 51.64 6.20 0.22 2.66 12.34 0.31

14 3.78 117.03 1.92E-03 60.06 7.21 0.26 3.09 11.91 0.30

16 3.79 117.30 1.92E-03 68.56 8.23 0.29 3.53 11.47 0.29

18 3.59 110.92 1.82E-03 76.06 9.13 0.33 3.92 11.08 0.28

20 3.34 103.30 1.69E-03 83.46 10.02 0.36 4.30 10.70 0.27

22 3.34 103.30 1.69E-03 90.96 10.92 0.39 4.69 10.31 0.26

24 3.47 107.32 1.76E-03 98.94 11.88 0.42 5.10 9.90 0.25

26 3.33 102.88 1.69E-03 105.80 12.70 0.45 5.45 9.55 0.24

28 3.28 101.36 1.66E-03 113.56 13.63 0.49 5.85 9.15 0.23

30 3.14 97.20 1.59E-03 119.82 14.38 0.51 6.17 8.83 0.22

32 3.13 96.64 1.58E-03 127.50 15.31 0.55 6.57 8.43 0.21

34 3.23 99.97 1.64E-03 134.24 16.12 0.58 6.92 8.08 0.21

36 2.86 88.46 1.45E-03 140.26 16.84 0.60 7.23 7.77 0.20

38 2.75 85.13 1.40E-03 146.52 17.59 0.63 7.55 7.45 0.19

40 2.70 83.47 1.37E-03 152.30 18.28 0.65 7.85 7.15 0.18

42 2.54 78.62 1.29E-03 157.86 18.95 0.68 8.13 6.87 0.17

44 2.33 72.10 1.18E-03 162.70 19.53 0.70 8.38 6.62 0.17

46 2.45 75.71 1.24E-03 168.78 20.26 0.72 8.70 6.30 0.16

48 2.39 73.76 1.21E-03 173.34 20.81 0.74 8.93 6.07 0.15

50 1.96 60.45 9.91E-04 177.50 21.31 0.76 9.15 5.85 0.15

52 1.84 56.85 9.32E-04 181.54 21.79 0.78 9.35 5.65 0.14

54 1.75 54.08 8.86E-04 185.30 22.24 0.80 9.55 5.45 0.14

56 1.68 51.86 8.50E-04 189.02 22.69 0.81 9.74 5.26 0.13

58 1.63 50.33 8.25E-04 192.56 23.12 0.83 9.92 5.08 0.13

60 1.46 45.06 7.38E-04 195.52 23.47 0.84 10.07 4.93 0.13

62 1.29 39.93 6.54E-04 198.32 23.81 0.85 10.22 4.78 0.12

64 1.21 37.44 6.13E-04 200.92 24.12 0.86 10.35 4.65 0.12

66 1.13 34.94 5.73E-04 203.36 24.41 0.87 10.48 4.52 0.11

68 0.96 29.81 4.89E-04 205.22 24.64 0.88 10.57 4.43 0.11

70 0.82 25.37 4.16E-04 207.02 24.85 0.89 10.67 4.33 0.11

72 0.76 23.57 3.86E-04 208.62 25.04 0.90 10.75 4.25 0.11

74 0.66 20.38 3.34E-04 209.96 25.21 0.90 10.82 4.18 0.11

76 0.49 15.25 2.50E-04 210.82 25.31 0.91 10.86 4.14 0.11

78 0.36 11.23 1.84E-04 211.58 25.40 0.91 10.90 4.10 0.10

80 0.29 8.87 1.45E-04 212.10 25.46 0.91 10.93 4.07 0.10
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Appendix 15: Analysis and Results of Convergent Pipes and Nozzle for Amplified Fluid Velocity 

 

 

4 Converging Pipes With Nozzle

Time Step 
ѵaverage=   

(∑ѵ/)n

Qaverage=   

(∑Q/)n

Qaverage=   

(∑Q/)n

Waverage=   

(∑W2/)n

W=W(gal/8.

33lb)

Δh2=W2/  

(AreaTUBρ)

Δh=Δh(12in

/ft)

Δh1=hstart-

Δh2

Δh1=hstart-

Δh2

Seconds m/s in3/s m3/s Weight (lb) gal ft in in m

0 0.00 0.00 0.00E+00 0.00 0.00 0.00 0.00 15.00 0.38

2 2.45 75.71 1.24E-03 10.92 1.31 0.05 0.56 14.44 0.37

4 4.48 138.66 2.27E-03 20.00 2.40 0.09 1.03 13.97 0.35

6 4.16 128.53 2.11E-03 29.46 3.54 0.13 1.52 13.48 0.34

8 4.13 127.56 2.09E-03 38.40 4.61 0.16 1.98 13.02 0.33

10 4.11 127.01 2.08E-03 47.78 5.74 0.21 2.46 12.54 0.32

12 4.22 130.61 2.14E-03 57.24 6.87 0.25 2.95 12.05 0.31

14 4.09 126.45 2.07E-03 66.02 7.93 0.28 3.40 11.60 0.29

16 3.87 119.80 1.96E-03 74.52 8.95 0.32 3.84 11.16 0.28

18 3.96 122.29 2.00E-03 83.66 10.04 0.36 4.31 10.69 0.27

20 3.95 122.02 2.00E-03 92.12 11.06 0.40 4.75 10.25 0.26

22 3.66 113.14 1.85E-03 99.98 12.00 0.43 5.15 9.85 0.25

24 3.37 104.27 1.71E-03 107.16 12.86 0.46 5.52 9.48 0.24

26 3.19 98.72 1.62E-03 114.22 13.71 0.49 5.88 9.12 0.23

28 3.22 99.55 1.63E-03 121.52 14.59 0.52 6.26 8.74 0.22

30 3.07 94.84 1.55E-03 127.90 15.35 0.55 6.59 8.41 0.21

32 2.83 87.63 1.44E-03 134.16 16.11 0.58 6.91 8.09 0.21

34 2.95 91.24 1.50E-03 141.06 16.93 0.61 7.27 7.73 0.20

36 2.89 89.43 1.47E-03 147.06 17.65 0.63 7.58 7.42 0.19

38 2.48 76.54 1.25E-03 152.10 18.26 0.65 7.84 7.16 0.18

40 2.43 75.29 1.23E-03 157.92 18.96 0.68 8.14 6.86 0.17

42 2.39 73.76 1.21E-03 162.74 19.54 0.70 8.38 6.62 0.17

44 2.16 66.69 1.09E-03 167.54 20.11 0.72 8.63 6.37 0.16

46 2.11 65.31 1.07E-03 172.16 20.67 0.74 8.87 6.13 0.16

48 2.07 63.92 1.05E-03 176.76 21.22 0.76 9.11 5.89 0.15

50 1.89 58.51 9.59E-04 180.60 21.68 0.78 9.30 5.70 0.14

52 1.55 47.84 7.84E-04 184.70 22.17 0.79 9.52 5.48 0.14

54 1.35 41.87 6.86E-04 188.14 22.59 0.81 9.69 5.31 0.13

56 1.10 34.11 5.59E-04 190.82 22.91 0.82 9.83 5.17 0.13

58 1.01 31.34 5.14E-04 193.74 23.26 0.83 9.98 5.02 0.13

60 1.05 32.58 5.34E-04 196.64 23.61 0.84 10.13 4.87 0.12

62 1.04 32.17 5.27E-04 198.96 23.88 0.85 10.25 4.75 0.12

64 0.88 27.18 4.45E-04 201.00 24.13 0.86 10.36 4.64 0.12

66 0.70 21.63 3.54E-04 202.46 24.30 0.87 10.43 4.57 0.12

68 0.55 16.92 2.77E-04 203.70 24.45 0.87 10.49 4.51 0.11

70 0.45 13.87 2.27E-04 204.78 24.58 0.88 10.55 4.45 0.11

72 0.38 11.79 1.93E-04 205.66 24.69 0.88 10.60 4.40 0.11

74 0.27 8.46 1.39E-04 206.16 24.75 0.89 10.62 4.38 0.11

76 0.21 6.41 1.05E-04 205.75 24.70 0.88 10.60 4.40 0.11
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Convergent Closed System Tidal Renewable Energy 

% System Modeling 

% Power Calculations and Optimization 

% Michelle Vieira 

% 2017-2018 

% University of North Florida 

% Taylor Engineering Research Institute 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

clc; close all; clc; 

  

% Program prompts user to input desired design variables to output the 

% system power output 

  

% Constants used in calculations (Metric Units) 

  

p  = 1000;       % density of water (kg/m3)b 

g  = 9.8;        % gravity constant (m/s2) 

Cp = .593;       % betz limit turbine efficiency coefficient 

  

% Design inputs from user 

% Lb   = input('Enter the design length of bladder:') 

% Wb   = input('Enter the design width of bladder:') 

% Hb   = input('Enter the design height of bladder:') 

% TAmp = input('Enter the location tidal amplitude:') 

% rp   = input('Enter the design radius of pipe:') 

% rn   = input('Enter the design radius of nozzle:') 

% NT   = input('Enter the number of turbines:') 

  
Lb   = 100.; 

Wb   = 100.; 

Hb   = 2; 

TAmp = 1; 

rp   =0.25; 

rn   =0.15; 

NT   = 10; 

  

%set time interval 44676 seconds (full tidal cycle is seconds)  

itime=[1:44676]; 

  

% Calculate area of bladder, pipes, and nozzle, and volume of bladder 

 

Appendix 16: MATLAB script for simplistic numerical model (page 1) 
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Ab = Lb*Wb;      % area of bladder 

Vb = Ab*Hb;      % volume of bladder 

Ap = pi*rp^2;    % cross sectional area of pipe  

An = pi*rn^2;    % cross sectional area of nozzle 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Time for bladder to empty seconds 

SecondsToEmpty = (2*Ab*sqrt(Hb))/(An*NT*sqrt(2*g)); 

if SecondsToEmpty < 11169 

    display('Empty time not optimized to tidal cycle') 

end 

  

%    if t > 11169 

%        display ("""Run time exceeds tidal cycle:  Please change design 

%                  specifications ie:  decrease badder size or increase  

%                  pipe diameter""") 

%    end 

%     calculate emty time to check for optimums 

%     TimeEmptyPipe=2.*ab*sqrt(hb)/ap*sqrt(2.*g)     

%     TimeEmptyNozzle=2.*ab*sqrt(hb)/an*sqrt(2.*g)    

  

%Begin calculation loop of onshore condition (bladder on land) 

%Set initial conditions to zero 

% power=0; 

% volumebladderOFF=0; %volume of offshore bladder 

% Vpt=0; %velocity in the pipe 

% HbONSHORE=Hb; %set initial condition of onshore bladder height 

  

%Tidal constituents to find height of tide adjusted by 1 

htide=-TAmp*sin((itime-1)*2*pi/44676.); 

extent = length(htide); 

  

power=zeros(1,length(htide)); 

% power=(1:44676); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

% Looping while considering all governing conditions 

% 1.  Check SecondsToEmpty (this is the max amount of time the system can   

%     run to empty the bladder) 

% 2.  Check the tidal cycle time iteration (when itime equals 1-11169 the  

%     tide is outgoing and the onshore bladder will be emptying. 

% 3.  Check the tidal cycle time iteration (when itime equals 11170-22338 

 

 

Appendix 17: MATLAB script for simplistic numerical model (page 2) 
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%     the tide is slack/incoming and the a holding cycle should take place 

%     ie:  Hold volume and velocity until next cycle is reached. 

% 4.  Check SecondsToEmpty (this is the max amount of time the system can   

%     run to empty the bladder) 

% 2.  Check the tidal cycle time iteration (when itime equals 22339-33507 

%     the tide is incoming and the onshore bladder will be filling. 

% 3.  Check the tidal cycle time iteration (when itime equals 33508-44676 

%     the tide is slack/outgoing and the a holding cycle should take place 

%     ie:  Hold volume and velocity until next cycle is reached.    

     

% Save space for arrays and set values to zero; 

  

Hbt(extent) = zeros; 

Vpt(extent) = zeros; 

Vnt(extent) = zeros; 

     

for i=1:extent; 

   disp(i); 

   if (i >= 1) && (i <= 11169) 

        Hbt(i)=Hb+htide(i); 

        %Check system design empty time (Hbt is zero) 

        if i>=SecondsToEmpty; 

                Hbt(i)=0; 

                display('Empty time not optimized to tidal cycle'); 

        end 

  

        Vpt(i)=sqrt(2*g*Hbt(i)); 

        Vnt(i)=(Vpt(i)*rp^2)/rn^2; 

        power(i)=(0.5*Cp*p*An*NT*Vnt(i)^3); 

  

    elseif (i >= 11170) && (i <= 22338) 

        Hbt(i)=Hb-htide(i); 

%         Vpt(i)=sqrt(2*g*Hbt(i)); 

        Vnt(i)=(Vpt(i)*rp^2)/rn^2; 

        power(i)=(0.5*Cp*p*An*NT*Vnt(i)^3); 

  

    elseif (i >= 22339) && (i <= 33507) 

    %Check system design empty time (Hbt is zero) 

%         Hbt(i)=0; 

        Hbt(i)=Hb-htide(i); 

        if i>=SecondsToEmpty+22339; 

                Hbt(i)=0; 

                display('Empty time not optimized to tidal cycle'); 

        end 

        Vpt(i)=sqrt(2*g*Hbt(i)); 

        Vnt(i)=(Vpt(i)*rp^2)/rn^2; 

        power(i)=(0.5*Cp*p*An*NT*Vnt(i)^3); 

 

 

Appendix 18: MATLAB script for simplistic numerical model (page 3)  
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  elseif (i >= 33508) && (i <= 44676) 

        Hbt(i)=Hb+htide(i); 

%         Vpt(i)=sqrt(2*g*Hbt(i)); 

        Vpt(i)=0; 

        Vnt(i)=(Vpt(i)*rp^2)/rn^2; 

        power(i)=(0.5*Cp*p*An*NT*Vnt(i)^3); 

  

   end 

   if Hbt(i)<0 

       disp(i) 

       disp('ERROR') 

       break 

   end 

end 

  

TidalEnergy = sum(power)/12.41; 

KiloWattHrs=TidalEnergy/1000 

MegaWattHrs=TidalEnergy/1000000 

  

% Scaling for graphical display of Velocity 

if mean(power) > 1000; 

    MAG = 1000; 

elseif mean(power) > 50; 

    MAG = 100; 

else MAG=10;     

end 

  

figure(1) 

grid on 

plot(itime,(htide*100000),'--b','linewidth',1); hold on; 

plot(itime,(Vnt*MAG),'g','linewidth',2); 

plot(itime,(power),'--r','linewidth',1); hold off; 

xlabel('Tidal Cycle (seconds)') 

% ylabel(P) 

legend(['Tidal Cycle (sec)'],['Velocity (m/s) x ' num2str(MAG)],... 

    ['Power (watts)'],'location','southeast') 

grid minor 

WORDS   = sprintf([ 'Available Tidal Energy (KWatthrs) =' ... 

    num2str(KiloWattHrs) '\n'... 

    'Design Constraints (m) = ' num2str(Wb),', ' num2str(Lb),... 

    ',' num2str(Hb),', ' num2str(rp),', ' num2str(rn)]); 

  

% WORDS3  = [ 'Power(Watthrs) = ' num2str(TidalEnergy)] 

%     dx = 10; 

Pmax = max(power); 

dy= Pmax*.98; 

title([WORDS]) 

% text(50,dy,WORDS); 

% text(10,255,WORDS3); 

t(1).Fontsize = 8; 

 

 

Appendix 19: MATLAB script for simplistic numerical model (page 4) 
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Appendix 20: HUSKY brand bladder part number and specifications 
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Appendix 21: Notification of the international application number and of the international filing date 
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