160 research outputs found

    What explains continuance intention in smartwatches?

    Get PDF
    Nascimento, B., Oliveira, T., & Tam, C. (2018). Wearable technology: What explains continuance intention in smartwatches? Journal of Retailing and Consumer Services, 43, 157-169. DOI: 10.1016/j.jretconser.2018.03.017Smartwatch is a recent and significant development in the domain of wearable technology. We study continuance intention and its determinants, using a combination of the expectation-confirmation model (ECM) with habit, perceived usability, and perceived enjoyment, to explain the continuance intention of smartwatches. Based on a sample of 574 individuals collected from the USA, we show that relationships of ECM enhance the continuance intention, such as confirmation, perceived usefulness, and satisfaction, and also the role of habit and perceived usability. Additionally, we find that habit was the most important feature to explain the continuance intention of smartwatches. The paper ends with a discussion of the study's limitations and implications.authorsversionpublishe

    Smart Sensing Technologies for Personalised Coaching

    Get PDF
    People living in both developed and developing countries face serious health challenges related to sedentary lifestyles. It is therefore essential to find new ways to improve health so that people can live longer and can age well. With an ever-growing number of smart sensing systems developed and deployed across the globe, experts are primed to help coach people toward healthier behaviors. The increasing accountability associated with app- and device-based behavior tracking not only provides timely and personalized information and support but also gives us an incentive to set goals and to do more. This book presents some of the recent efforts made towards automatic and autonomous identification and coaching of troublesome behaviors to procure lasting, beneficial behavioral changes

    Tracking in the wild: exploring the everyday use of physical activity trackers

    Get PDF
    As the rates of chronical diseases, such as obesity, cardiovascular disease and diabetes continue to increase, the development of tools that support people in achieving healthier habits is becoming ever more important. Personal tracking systems, such as activity trackers, have emerged as a promising class of tools to support people in managing their everyday health. However, for this promise to be fulfilled, these systems need to be well designed, not only in terms of how they implement specific behavior change techniques, but also in how they integrate into people’s daily lives and address their daily needs. My dissertations provides evidence that accounting for people’s daily practices and needs can help to design activity tracking systems that help people get more value from their tracking practices. To understand how people derive value from their activity tracking practices, I have conducted two inquiries into people’s daily uses of activity tracking systems. In a fist attempt, I led a 10-month study of the adoption of Habito, our own activity tracking mobile app. Habito logged not only users’ physical activity, but also their interactions with the app. This data was used to acquire an estimate of the adoption rate of Habito, and understanding of how adoption is affected by users’ ‘readiness’, i.e., their attitude towards behavior change. In a follow-up study, I turned to the use of video methods and direct, in-situ observations of users’ interactions to understand what motivates people to engage with these tools in their everyday life, and how the surrounding environment shapes their use. These studies revealed some of the complexities of tracking, while extending some of the underlying ideas of behavior change. Among key results: (1) people’s use of activity trackers was found to be predominantly impulsive, where they simultaneously reflect, learn and change their behaviors as they collect data; (2) people’s use of trackers is deeply entangled with their daily routines and practices, and; (3) people use of trackers often is not in line with the traditional vision of these tools as mediators of change – trackers are also commonly used to simply learn about behaviors and engage in moments of self-discovery. Examining how to design activity tracking interfaces that best support people’s different needs , my dissertation further describes an inquiry into the design space of behavioral feedback interfaces. Through a iterative process of synthesis and analysis of research on activity tracking, I devise six design qualities for creating feedback that supports people in their interactions with physical activity data. Through the development and field deployment of four concepts in a field study, I show the potential of these displays for highlighting opportunities for action and learning.À medida que a prevalência de doenças crónicas como a obesidade, doenças cardiovasculares e diabetes continua a aumentar, o desenvolvimento de ferramentas que suportam pessoas a atingir mudanças de comportamento tem-se tornado essencial. Ferramentas de monitorização de comportamentos, tais como monitores de atividade física, têm surgido com a promessa de encorajar um dia a dia mais saudável. Contudo, para que essa promessa seja cumprida, torna-se essencial que estas ferramentas sejam bem concebidas, não só na forma como implementam determinadas estratégias de mudança de comportamento, mas também na forma como são integradas no dia-a-dia das pessoas. A minha dissertação demonstra a importância de considerar as necessidades e práticas diárias dos utilizadores destas ferramentas, de forma a ajudá-las a tirar melhor proveito da sua monitorização de atividade física. De modo a entender como é que os utilizadores destas ferramentas derivam valor das suas práticas de monitorização, a minha dissertação começa por explorar as práticas diárias associadas ao uso de monitores de atividade física. A minha dissertação contribui com duas investigações ao uso diário destas ferramentas. Primeiro, é apresentada uma investigação da adoção de Habito, uma aplicação para monitorização de atividade física. Habito não só registou as instâncias de atividade física dos seus utilizadores, mas também as suas interações com a própria aplicação. Estes dados foram utilizados para adquirir uma taxa de adopção de Habito e entender como é que essa adopção é afetada pela “prontidão” dos utilizadores, i.e., a sua atitude em relação à mudança de comportamento. Num segundo estudo, recorrendo a métodos de vídeo e observações diretas e in-situ da utilização de monitores de atividade física, explorei as motivações associadas ao uso diário destas ferramentas. Estes estudos expandiram algumas das ideias subjacentes ao uso das ferramentas para mudanças de comportamento. Entre resultados principais: (1) o uso de monitores de atividade física é predominantemente impulsivo, onde pessoas refletem, aprendem e alteram os seus comportamentos à medida que recolhem dados sobe estes mesmos comportamentos; (2) o uso de monitores de atividade física está profundamente interligado com as rotinas e práticas dos seus utilizadores, e; (3) o uso de monitores de atividade física nem sempre está ligado a mudanças de comportamento – estas ferramentas também são utilizadas para divertimento e aprendizagem. A minha dissertação contribui ainda com uma exploração do design de interfaces para a monitorização de atividade física. Através de um processo iterativo de síntese e análise de literatura, seis qualidades para a criação de interfaces são derivadas. Através de um estudo de campo, a minha dissertação demonstro o potencial dessas interfaces para ajudar pessoas a aprender e gerir a sua saúde diária

    Design and Effect of Continuous Wearable Tactile Displays

    Get PDF
    Our sense of touch is one of our core senses and while not as information rich as sight and hearing, it tethers us to reality. Our skin is the largest sensory organ in our body and we rely on it so much that we don\u27t think about it most of the time. Tactile displays - with the exception of actuators for notifications on smartphones and smartwatches - are currently understudied and underused. Currently tactile cues are mostly used in smartphones and smartwatches to notify the user of an incoming call or text message. Specifically continuous displays - displays that do not just send one notification but stay active for an extended period of time and continuously communicate information - are rarely studied. This thesis aims at exploring the utilization of our vibration perception to create continuous tactile displays. Transmitting a continuous stream of tactile information to a user in a wearable format can help elevate tactile displays from being mostly used for notifications to becoming more like additional senses enabling us to perceive our environment in new ways. This work provides a serious step forward in design, effect and use of continuous tactile displays and their use in human-computer interaction. The main contributions include: Exploration of Continuous Wearable Tactile Interfaces This thesis explores continuous tactile displays in different contexts and with different types of tactile information systems. The use-cases were explored in various domains for tactile displays - Sports, Gaming and Business applications. The different types of continuous tactile displays feature one- or multidimensional tactile patterns, temporal patterns and discrete tactile patterns. Automatic Generation of Personalized Vibration Patterns In this thesis a novel approach of designing vibrotactile patterns without expert knowledge by leveraging evolutionary algorithms to create personalized vibration patterns - is described. This thesis presents the design of an evolutionary algorithm with a human centered design generating abstract vibration patterns. The evolutionary algorithm was tested in a user study which offered evidence that interactive generation of abstract vibration patterns is possible and generates diverse sets of vibration patterns that can be recognized with high accuracy. Passive Haptic Learning for Vibration Patterns Previous studies in passive haptic learning have shown surprisingly strong results for learning Morse Code. If these findings could be confirmed and generalized, it would mean that learning a new tactile alphabet could be made easier and learned in passing. Therefore this claim was investigated in this thesis and needed to be corrected and contextualized. A user study was conducted to study the effects of the interaction design and distraction tasks on the capability to learn stimulus-stimulus-associations with Passive Haptic Learning. This thesis presents evidence that Passive Haptic Learning of vibration patterns induces only a marginal learning effect and is not a feasible and efficient way to learn vibration patterns that include more than two vibrations. Influence of Reference Frames for Spatial Tactile Stimuli Designing wearable tactile stimuli that contain spatial information can be a challenge due to the natural body movement of the wearer. An important consideration therefore is what reference frame to use for spatial cues. This thesis investigated allocentric versus egocentric reference frames on the wrist and compared them for induced cognitive load, reaction time and accuracy in a user study. This thesis presents evidence that using an allocentric reference frame drastically lowers cognitive load and slightly lowers reaction time while keeping the same accuracy as an egocentric reference frame, making a strong case for the utilization of allocentric reference frames in tactile bracelets with several tactile actuators

    Cognition-aware systems to support information intake and learning

    Get PDF
    Knowledge is created at an ever-increasing pace putting us under constant pressure to consume and acquire new information. Information gain and learning, however, require time and mental resources. While the proliferation of ubiquitous computing devices, such as smartphones, enables us to consume information anytime and anywhere, technologies are often disruptive rather than sensitive to the current user context. While people exhibit different levels of concentration and cognitive capacity throughout the day, applications rarely take these performance variations into account and often overburden their users with information or fail to stimulate. This work investigates how technology can be used to help people effectively deal with information intake and learning tasks through cognitive context-awareness. By harvesting sensor and usage data from mobile devices, we obtain people's levels of attentiveness, receptiveness, and cognitive performance. We subsequently use this cognition-awareness in applications to help users process information more effectively. Through a series of lab studies, online surveys, and field experiments we follow six research questions to investigate how to build cognition-aware systems. Awareness of user's variations in levels of attention, receptiveness, and cognitive performance allows systems to trigger appropriate content suggestions, manage user interruptions, and adapt User Interfaces in real-time to match tasks to the user's cognitive capacities. The tools, insights, and concepts described in this book allow researchers and application designers to build systems with an awareness of momentary user states and general circadian rhythms of alertness and cognitive performance

    Evaluating the impact of physical activity apps and wearables: interdisciplinary review

    Get PDF
    Background: Although many smartphone apps and wearables have been designed to improve physical activity, their rapidly evolving nature and complexity present challenges for evaluating their impact. Traditional methodologies, such as randomized controlled trials (RCTs), can be slow. To keep pace with rapid technological development, evaluations of mobile health technologies must be efficient. Rapid alternative research designs have been proposed, and efficient in-app data collection methods, including in-device sensors and device-generated logs, are available. Along with effectiveness, it is important to measure engagement (ie, users’ interaction and usage behavior) and acceptability (ie, users’ subjective perceptions and experiences) to help explain how and why apps and wearables work. Objectives: This study aimed to (1) explore the extent to which evaluations of physical activity apps and wearables: employ rapid research designs; assess engagement, acceptability, as well as effectiveness; use efficient data collection methods; and (2) describe which dimensions of engagement and acceptability are assessed. Method: An interdisciplinary scoping review using 8 databases from health and computing sciences. Included studies measured physical activity, and evaluated physical activity apps or wearables that provided sensor-based feedback. Results were analyzed using descriptive numerical summaries, chi-square testing, and qualitative thematic analysis. Results: A total of 1829 abstracts were screened, and 858 articles read in full. Of 111 included studies, 61 (55.0%) were published between 2015 and 2017. Most (55.0%, 61/111) were RCTs, and only 2 studies (1.8%) used rapid research designs: 1 single-case design and 1 multiphase optimization strategy. Other research designs included 23 (22.5%) repeated measures designs, 11 (9.9%) nonrandomized group designs, 10 (9.0%) case studies, and 4 (3.6%) observational studies. Less than one-third of the studies (32.0%, 35/111) investigated effectiveness, engagement, and acceptability together. To measure physical activity, most studies (90.1%, 101/111) employed sensors (either in-device [67.6%, 75/111] or external [23.4%, 26/111]). RCTs were more likely to employ external sensors (accelerometers: P=.005). Studies that assessed engagement (52.3%, 58/111) mostly used device-generated logs (91%, 53/58) to measure the frequency, depth, and length of engagement. Studies that assessed acceptability (57.7%, 64/111) most often used questionnaires (64%, 42/64) and/or qualitative methods (53%, 34/64) to explore appreciation, perceived effectiveness and usefulness, satisfaction, intention to continue use, and social acceptability. Some studies (14.4%, 16/111) assessed dimensions more closely related to usability (ie, burden of sensor wear and use, interface complexity, and perceived technical performance). Conclusions: The rapid increase of research into the impact of physical activity apps and wearables means that evaluation guidelines are urgently needed to promote efficiency through the use of rapid research designs, in-device sensors and user-logs to assess effectiveness, engagement, and acceptability. Screening articles was time-consuming because reporting across health and computing sciences lacked standardization. Reporting guidelines are therefore needed to facilitate the synthesis of evidence across disciplines

    14 Years of Self-Tracking Technology for mHealth -- Literature Review: Lessons Learnt and the PAST SELF Framework

    Full text link
    In today's connected society, many people rely on mHealth and self-tracking (ST) technology to help them adopt healthier habits with a focus on breaking their sedentary lifestyle and staying fit. However, there is scarce evidence of such technological interventions' effectiveness, and there are no standardized methods to evaluate their impact on people's physical activity (PA) and health. This work aims to help ST practitioners and researchers by empowering them with systematic guidelines and a framework for designing and evaluating technological interventions to facilitate health behavior change (HBC) and user engagement (UE), focusing on increasing PA and decreasing sedentariness. To this end, we conduct a literature review of 129 papers between 2008 and 2022, which identifies the core ST HCI design methods and their efficacy, as well as the most comprehensive list to date of UE evaluation metrics for ST. Based on the review's findings, we propose PAST SELF, a framework to guide the design and evaluation of ST technology that has potential applications in industrial and scientific settings. Finally, to facilitate researchers and practitioners, we complement this paper with an open corpus and an online, adaptive exploration tool for the PAST SELF data.Comment: 40 pages, 10 figure

    Blending the Material and Digital World for Hybrid Interfaces

    Get PDF
    The development of digital technologies in the 21st century is progressing continuously and new device classes such as tablets, smartphones or smartwatches are finding their way into our everyday lives. However, this development also poses problems, as these prevailing touch and gestural interfaces often lack tangibility, take little account of haptic qualities and therefore require full attention from their users. Compared to traditional tools and analog interfaces, the human skills to experience and manipulate material in its natural environment and context remain unexploited. To combine the best of both, a key question is how it is possible to blend the material world and digital world to design and realize novel hybrid interfaces in a meaningful way. Research on Tangible User Interfaces (TUIs) investigates the coupling between physical objects and virtual data. In contrast, hybrid interfaces, which specifically aim to digitally enrich analog artifacts of everyday work, have not yet been sufficiently researched and systematically discussed. Therefore, this doctoral thesis rethinks how user interfaces can provide useful digital functionality while maintaining their physical properties and familiar patterns of use in the real world. However, the development of such hybrid interfaces raises overarching research questions about the design: Which kind of physical interfaces are worth exploring? What type of digital enhancement will improve existing interfaces? How can hybrid interfaces retain their physical properties while enabling new digital functions? What are suitable methods to explore different design? And how to support technology-enthusiast users in prototyping? For a systematic investigation, the thesis builds on a design-oriented, exploratory and iterative development process using digital fabrication methods and novel materials. As a main contribution, four specific research projects are presented that apply and discuss different visual and interactive augmentation principles along real-world applications. The applications range from digitally-enhanced paper, interactive cords over visual watch strap extensions to novel prototyping tools for smart garments. While almost all of them integrate visual feedback and haptic input, none of them are built on rigid, rectangular pixel screens or use standard input modalities, as they all aim to reveal new design approaches. The dissertation shows how valuable it can be to rethink familiar, analog applications while thoughtfully extending them digitally. Finally, this thesis’ extensive work of engineering versatile research platforms is accompanied by overarching conceptual work, user evaluations and technical experiments, as well as literature reviews.Die Durchdringung digitaler Technologien im 21. Jahrhundert schreitet stetig voran und neue Geräteklassen wie Tablets, Smartphones oder Smartwatches erobern unseren Alltag. Diese Entwicklung birgt aber auch Probleme, denn die vorherrschenden berührungsempfindlichen Oberflächen berücksichtigen kaum haptische Qualitäten und erfordern daher die volle Aufmerksamkeit ihrer Nutzer:innen. Im Vergleich zu traditionellen Werkzeugen und analogen Schnittstellen bleiben die menschlichen Fähigkeiten ungenutzt, die Umwelt mit allen Sinnen zu begreifen und wahrzunehmen. Um das Beste aus beiden Welten zu vereinen, stellt sich daher die Frage, wie neuartige hybride Schnittstellen sinnvoll gestaltet und realisiert werden können, um die materielle und die digitale Welt zu verschmelzen. In der Forschung zu Tangible User Interfaces (TUIs) wird die Verbindung zwischen physischen Objekten und virtuellen Daten untersucht. Noch nicht ausreichend erforscht wurden hingegen hybride Schnittstellen, die speziell darauf abzielen, physische Gegenstände des Alltags digital zu erweitern und anhand geeigneter Designparameter und Entwurfsräume systematisch zu untersuchen. In dieser Dissertation wird daher untersucht, wie Materialität und Digitalität nahtlos ineinander übergehen können. Es soll erforscht werden, wie künftige Benutzungsschnittstellen nützliche digitale Funktionen bereitstellen können, ohne ihre physischen Eigenschaften und vertrauten Nutzungsmuster in der realen Welt zu verlieren. Die Entwicklung solcher hybriden Ansätze wirft jedoch übergreifende Forschungsfragen zum Design auf: Welche Arten von physischen Schnittstellen sind es wert, betrachtet zu werden? Welche Art von digitaler Erweiterung verbessert das Bestehende? Wie können hybride Konzepte ihre physischen Eigenschaften beibehalten und gleichzeitig neue digitale Funktionen ermöglichen? Was sind geeignete Methoden, um verschiedene Designs zu erforschen? Wie kann man Technologiebegeisterte bei der Erstellung von Prototypen unterstützen? Für eine systematische Untersuchung stützt sich die Arbeit auf einen designorientierten, explorativen und iterativen Entwicklungsprozess unter Verwendung digitaler Fabrikationsmethoden und neuartiger Materialien. Im Hauptteil werden vier Forschungsprojekte vorgestellt, die verschiedene visuelle und interaktive Prinzipien entlang realer Anwendungen diskutieren. Die Szenarien reichen von digital angereichertem Papier, interaktiven Kordeln über visuelle Erweiterungen von Uhrarmbändern bis hin zu neuartigen Prototyping-Tools für intelligente Kleidungsstücke. Um neue Designansätze aufzuzeigen, integrieren nahezu alle visuelles Feedback und haptische Eingaben, um Alternativen zu Standard-Eingabemodalitäten auf starren Pixelbildschirmen zu schaffen. Die Dissertation hat gezeigt, wie wertvoll es sein kann, bekannte, analoge Anwendungen zu überdenken und sie dabei gleichzeitig mit Bedacht digital zu erweitern. Dabei umfasst die vorliegende Arbeit sowohl realisierte technische Forschungsplattformen als auch übergreifende konzeptionelle Arbeiten, Nutzerstudien und technische Experimente sowie die Analyse existierender Forschungsarbeiten
    corecore