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Abstract iii

ABSTRACT

In today’s information society, knowledge is created at an ever-increasing pace.
As a result, most of us face a constant pressure to consume information and
acquire new knowledge. But information gain and learning require time and
mental resources. While the proliferation of ubiquitous computing devices,
such as smartphones, enables us to consume information anytime and anywhere,
technologies are often disruptive rather than sensitive to the current user context.
For example, mobile applications trigger a plethora of notifications throughout the
day, which often causes interruptions and breaks users’ concentration. In addition,
people exhibit different levels of concentration and cognitive capacity over the
course of the day. During phases of low performance, the ability to concentrate
is very limited, which negatively affects the effectiveness of information intake.
Mobile applications do not take these variations in performance into account and
often overburden the user with information or cause boredom due to a lack of
stimulation.

In this thesis, we investigate how ubiquitous computing technologies can be
used to help people deal with information intake and learning tasks through
cognitive context-awareness. By harvesting sensor and usage data from mobile
devices, we elicit people’s levels of attentiveness, receptiveness, and cognitive
performance. We subsequently use this cognition-awareness in applications to
help users process information more effectively. Through a series of lab studies,
online surveys, and field experiments we explore and quantify users’ attention and
cognitive performance during interaction with ubiquitous technologies. In our
research we address three types of context awareness: (1) the user’s momentary
situational context by detecting what information content the user engages with,
(2) the cognitive context exhibited by the user’s momentary levels of attentiveness
and engagement with technology, and (3) the user’s patterns of general alertness
and cognitive performance, which the user exhibits over the course of the day.
We use these context factors to enhance systems with cognition-awareness and
apply them to applications that support information intake and learning tasks.

In the course of this thesis, we develop three research probes with which we
investigate how to build cognition- and content-aware systems. We provide
empirical evidence for people being highly attentive to mobile phones, which
is why we chose smartphones as the main platform for our probes. We further
use context-awareness to detect moments of idleness and boredom, during which
users engage with their mobile device to actively seek stimulation. More regular
patterns are exhibited in users’ circadian rhythms of alertness and cognitive
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performance, which describe systematic fluctuations because they depend on the
user’s internal body clock. We show how such chronobiological patterns can be
elicited by conducting alertness tasks at different times of the day.

To validate our claim that such systems can support information intake and
learning scenarios we develop and test four other research probes showing the fea-
sibility of using information about the user’s context to trigger content suggestions
during opportune moments and adjust UIs in real-time to support reading tasks.
Content suggestions in detected opportune moments (e.g., bored states) lead to
higher user acceptance and engagement than suggestions at random times. The
success of these algorithms strongly depends on the content type and respective
user state. Hence, we present and validate a conceptual framework, which we use
to create algorithms that derive and classify cognitive user states based on phone
usage patterns. Since people in high-alert states have more cognitive capacities,
complex tasks can be handled more effectively. To explore direct applications of
this hypothesis we build adaptive reading UIs that superimpose higher reading
speeds and therefore cause higher cognitive load while allowing for quicker task
completion time.

The tools and concepts described in this thesis allow researchers and applica-
tion designers to build systems with cognition-awareness. Awareness of user’s
variations in levels of attention, receptiveness, and cognitive performance allows
systems to trigger appropriate content suggestions, manage user interruptions,
and adapt UIs in real-time to match tasks to the user’s cognitive capacities. While
we focus in our work on applications of these systems to support effective in-
formation intake and processing throughout the day, our tools can prospectively
be applied to a broad range of applications ranging from schedule alignment
according to the user’s internal body clock, stress prevention through sleep/wake
regulation, to recommending alertness-inducing activities.
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ZUSAMMENFASSUNG

Die Geschwindigkeit, mit der sich Wissen vermehrt, nimmt immer mehr zu. In der
heutigen Informationsgesellschaft nimmt der Druck stetig zu, dieser Entwicklung
nachzukommen und sich ständig neue Informationen und Wissen anzueignen.
Jedoch erfordert Informationsgewinn und Lernen Zeit sowie mentale Anstrengung.
Während die Verbreitung von mobilen Endgeräten, wie etwa der Smartphones,
es uns ermöglicht, Informationen jederzeit und überall zu konsumieren, sind es
dieselben Geräte, die uns oftmals durch Benachrichtigungen aus unserer aktuellen
Beschäftigung reißen und uns somit in unserer Konzentration stören. Darüber
hinaus unterliegt unsere Konzentrations- und Aufnahmefähigkeit im Tagesverlauf
stärkeren Schwankungen. Solche Leistungsschwankungen werden von mobilen
Anwendungen derzeit nicht mit ins Kalkül gezogen. Vielmehr wird der Benutzer
oftmals mit einer Fülle von Informationen überfordert oder im Gegenteil durch
einen Mangel von Anregung schlichtweg gelangweilt.

Die vorliegende wissenschaftliche Arbeit befasst sich mit der Nutzung von
ubiquitären Computertechnologien zur Unterstützung von Informationsauf-
nahme und Lerntätigkeiten mittels kognitivem Kontextbewusstsein. Aufgrund
von Nutzungs- und Sensorendaten von mobilen Geräten untersuchen wir die
Möglichkeit, das Aufmerksamkeits-, Aufnahmefähigkeits-, und kognitive Leis-
tungsniveau des Benutzers zu erfassen. Anschließend beschäftigen wir uns mit
Anwendungen, welche Nutzern helfen, Informationen effektiver zu verarbeiten.
In einer Reihe von Laborstudien, Online-Umfragen und Feldversuchen erforschen
wir das Aufmerksamkeitsniveau sowie die kognitive Leistungsfähigkeit von Be-
nutzern während sie mit ubiquitären Computertechnologien interagieren. Dabei
beschäftigen wir uns in unserer Forschung mit drei Arten von Kontextbewusstsein:
(1) dem momentanen Situationskontext des Nutzers durch Erfassung des Inhalts,
mit dem sich der Benutzer auseinandersetzt, (2) dem kognitiven Kontext, gemes-
sen an der Aufmerksamkeit, welche der Nutzer den Geräten schenkt, und (3)
den allgemeinen Wachsamkeitsschwankungen des Nutzers über den Tag. Mittels
dieser Kontextfaktoren sind wir in der Lage, Technologien mit Kognitionsbe-
wusstsein auszustatten, welche diese wiederum nutzen können, um Nutzer bei
Informationsaufnahme und Lerntätigkeiten zu unterstützen.

Im Verlauf dieser Forschungsarbeit haben wir drei Prototypen entwickelt, anhand
derer wir die Realisierbarkeit von kognitions- und inhaltsbewussten Geräten un-
tersuchen. Wir liefern einen empirischen Beleg für die hohe Aufmerksamkeit,
die Nutzer ihren mobilen Geräten entgegenbringen. Des Weitern zeigen wir,
wie wir aus der Auswertung von Kontextdaten Einsichten in Situationen gewin-
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nen, in denen Benutzer auf der Suche nach Anreizen zu ihren Geräten greifen.
Weitaus systematischere Muster ergeben sich aus den circadianen Rhythmen
der Wachsamkeit und kognitiven Leistungsfähigkeit, welche die regelmäßigen
Fluktuationen beschreiben, die sich aus der inneren Uhr des Nutzers ergeben. In
unserer Arbeit zeigen wir auf, wie solche chronobiologischen Regelmäßigkeiten
durch Vigilanztests auf mobilen Endgeräten über den Tag verteilt gemessen
werden können.

Um die Anwendbarkeit solcher Systeme im Hinblick auf effektive Informations-
aufnahme und Lernszenarien zu untersuchen haben wir vier weitere Prototypen
entwickelt und getestet, welche dem Nutzer in geeigneten Momenten Inhalte vor-
schlagen und Nutzerschnittstellen in Echtzeit so anzupassen, dass Lesetätigkeiten
unterstützt werden. Inhalte, die zu geeigneten Momenten—z.B. wenn der Nutzer
gelangweilt ist—vorgeschlagen wurden, führten dazu, dass Nutzer diese eher
annahmen und sich länger mit ihnen beschäftigen, als wenn diese zu willkürlichen
Zeiten vorgeschlagen wurden. Die Erfolgsrate solcher Erkennungsalgorithmen
hängt stark von der Art des Inhalts und dem aktuellen Nutzerkontexts statt. Hierfür
stellen wir ein konzeptionelles Rahmenwerk zur Entwicklung von Algorithmen
vor, welche in der Lage sind, bestimmte kognitive Nutzerzustände anhand von
der Gerätenutzung zu erkennen und vorherzusagen. Weil Menschen in Zuständen
von hoher Wachsamkeit mehr kognitive Kapazitäten aufweisen, können komple-
xe Aufgaben effektiver abgearbeitet werden. Um direkte Anwendungen dieser
Hypothese zu untersuchen, haben wir eine Reihe von adaptiven, elektronischen
Leseoberflächen entwickelt, welche dem Nutzer höhere Lesegeschwindigkeiten
vorgeben und ihn somit kognitiv mehr fordern. Im Gegenzug wird somit die
Lesezeit verkürzt.

Die in dieser Forschungsarbeit vorgestellten Werkzeuge und Konzepte
ermöglichen es Forschern und Systementwicklern, kognitionsbewusste Systeme
zu entwickeln. Kenntnisse über die momentane kognitive Leistungsfähigkeit des
Nutzers befähigen solche Systeme, geeignete Inhalte vorzuschlagen, Unterbre-
chungen durch Benachrichtigungen zu vermeiden, und die Komplexität der Nut-
zerschnittstelle an die aktuellen kognitiven Leistungsfähigkeiten des Nutzers an-
zupassen. Während sich die vorliegende Arbeit auf die Anwendung der entwickel-
ten Systeme zur Verbesserung der Informationsaufnahme und -verarbeitung über
den Tagesverlauf konzentriert, können diese Systeme zukünftig in einer großen
Bandbreite von Anwendungsszenarien Einsatz finden—von Terminplanung im
Einklang mit der inneren Uhr des Nutzers über Vermeidung von Stressaufkommen
durch Schlafregulation bis hin zu Empfehlungen von aktivierenden Tätigkeiten.
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Chapter1
Introduction

In recent decades we have undergone remarkable changes towards today’s infor-
mation society. In 1981 Buckminster coined the theory of the knowledge doubling
curve: since the beginning of mankind the speed at which information doubles
has been getting increasingly faster [105]. From the invention of writing and then
of printing all the way to the advent of the World Wide Web, this development has
been accelerating.

The transition into a knowledge society requires us to effectively deal with
this information growth and constantly advance our learning. But acquiring
new knowledge, skills, and practices requires significant investments in time
and mental resources. People develop their innate strategies for taking in and
processing new information: while self-driven learners, for example, cope very
well with learning tasks on their own, others prefer a more structured approach
through regular courses and dedicated learning sessions. Information intake
and knowledge acquisition is a highly personal process, there is no one-size fits
all approach: people exhibit differences in aptitude, interest, and background
knowledge, which requires learning processes to become more customized to the
individual.

The National Academy of Engineering lists “Advance Personalized Learning” as
one of 14 grand challenges for engineering in the 21st Century1. Current efforts
to take into account individual learning styles make use of computer-supported

1 http://www.engineeringchallenges.org/

http://www.engineeringchallenges.org/
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instructions, often in the classroom or via the Web. An increasing supply of
learning platforms is available online, such as self-directed learning through
software, web-based resources, and Massive Open Online Courses (MOOCs).
Learning platforms adjust curricula to the individual’s needs and learning state:
knowledge management systems, such as kahnacademy.org allow learners to
keep track of their progress and facilitate the interaction between learners and
instructors. Based on the personal learning history such platforms also employ
recommender systems to suggest relevant learning content. Personalized learning
has attracted research, philanthropic, and commercial interest. According to a
report from EdTechXGlobal and IBIS Capital, the global education technology
market will grow 17% per year to 252bn USD by 20202, which further sparks the
number of emanating online offerings.

Meanwhile, information has become more accessible through the proliferation
of ubiquitous computing devices, such as laptops, phones, tablets, watches, and
smart eye-wear. Two Billion consumers have smartphones3 and wearable devices
are increasingly being commercialized, including wristbands, smart garments,
watches and other fitness monitors: in 2016, 274.6 million wearable electronic
devices will presumably be sold worldwide, which constitutes an 18.4% growth
rate compared to 2015 [139]. Mobile devices possess rich multimedia output capa-
bilities and make information available to their users anytime, anywhere. Hence,
information can be consumed and learning sessions can take place throughout the
day even while people are on-the-go. Mobile applications have become popular
for reading (e.g., Kindle app), following the news (e.g., Feedly), and also as
learning tools for language vocabulary (e.g., Duolingo), digital flashcards (e.g.,
Anki), and taking online courses (e.g., Udemy).

However, while these tools are being constantly available, users find themselves
highly receptive at some times during the day and unable to concentrate at other
times. People exhibit different attentional phases throughout the day varying
between focused states, in which cognitive activities can be performed with
ease, and rather inattentive states, during which perception is constricted and
cognitive processes run slower. While systems that assess users’ cognitive states
exist, for example, in automobiles where eye movements are tracked to monitor
driver’s fatigue levels, they are limited to specific application scenarios. Mobile
applications on consumer devices do not take into account the user’s different
attentional phases and current cognitive context, thus either rely on explicit user

2 http://techcitynews.com/2016/05/26/report-edtech-spend-will-reach-252bn-2020/

3 http://www.emarketer.com/Article/
2-Billion-Consumers-Worldwide-Smartphones-by-2016/1011694

http://techcitynews.com/2016/05/26/report-edtech-spend-will-reach-252bn-2020/
http://www.emarketer.com/Article/2-Billion-Consumers-Worldwide-Smartphones-by-2016/1011694
http://www.emarketer.com/Article/2-Billion-Consumers-Worldwide-Smartphones-by-2016/1011694
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action (e.g., waiting for the user to launch the app), or trigger reminders regardless
of the cognitive state the user is in, hence often causing interruptions. Similarly,
interfaces on such devices do not automatically adapt to the cognitive capacities
available and rather require users to explicitly customize the interface.

This thesis investigates how ubiquitous technologies can be used to help people
deal with information processing and adapt learning tasks to the user through
awareness of users’ situational and cognitive context. Equipped with rich sensing
capabilities, ubiquitous devices can make sense of user context and adjust their
output in ways to provide cognitive support to users throughout the day. Therefore,
we focus on how systems gain cognition-awareness in the first place and explore
applications to facilitate information intake: how detecting cognitive context
can be applied to making use of opportune moments for engaging users with
information and learning tasks, and to adjusting information interfaces in real-
time.

Awareness of cognitive capacities allows applications to match the user’s current
state with the complexity and presentation of a task at hand. By helping users
deal with tasks in opportune moments where their performance levels match
the task requirements, such systems enable quick and effective task handling.
Therefore, cognition-awareness allows systems to suggest and schedule learning
activities: for example, prompting users to repeat foreign language vocabulary or
engage in reading activities when they are most receptive and likely to memorize
consumed content. Further, User Interfaces (UIs) that adapt to the user’s cogni-
tive context can balance interface complexity and task efficiency: by increasing
task complexity (e.g., speeding up tasks) during phases of high cognitive per-
formance interfaces can prevent users getting bored, while reducing complexity
(e.g., slowing down tasks) during phases of low cognitive capacity can prevent
frustration.

To build cognition-aware systems to facilitate information intake and learning
we first focus on the underlying cognitive phenomena of effective information
processing. At its core lies the notion of human attention, which is crucial for per-
ceiving, processing, and memorizing information. In the course of this thesis, we
present a series of studies, in which we quantify people’s attention throughout the
day to identify opportune moments for information intake. Therefore, we explore
characteristics of these moments and how to detect them based on smartphone
usage patterns. Using machine-learning techniques we develop algorithms to
assess the user’s momentary attentiveness. But attention and receptiveness does
not only depend on the user’s current situation but is also impacted by diurnal
rhythms. Following a sinusoidal pattern, our internal body clock determines
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hours of the day when we experience a particularly low or particularly strong
sleep drive, which has a direct impact on our ability to focus. Hence, the second
aspect of cognition-aware systems is the detection of general patterns across the
day—the so-called circadian rhythm of alertness and cognitive performance.

In the course of this research, we develop tools that can be used and applied by
researchers and system engineers to develop technologies capable of detecting
users’ cognitive context. Therefore, we create algorithms for detecting current
levels of attentiveness and general patterns of alertness. We present cognition-
awareness as an additional variable of context-aware computing. Further, we
develop and test direct applications for such systems: the concepts and implemen-
tations presented in this thesis enable users to engage with learning and reading
activities in opportune moments. We further explore dynamic reading interfaces
whose mental demand on the user can be adjusted by balancing reading speed,
cognitive load, and comprehension. Thus, cognition-aware systems can suggest
users different reading modes according to different cognitive states. By adjusting
when to engage users and how to present information processing tasks according
to cognitive capacities, such systems customize information intake and learning
on a deeply personal level.

1.1 Research Questions

To investigate the use of ubiquitous technologies to facilitate information intake
and learning three main aspects need to be considered, namely the user, the user
context, and the application. Table 1.1 lists the corresponding research questions,
which have driven the research presented in this thesis.

Attention is a crucial factor for effective information intake and digestion. There-
fore, we first focus on human attention in a technology context and how it can be
quantified across the day (Research Question (RQ)1). With the goal of identifying
opportune moments for information intake, we investigate the kind of states, in
which users turn to their devices to seek stimulation. Here, we focus on the notion
of boredom in a mobile context and whether such states can be detected based on
phone usage patterns (RQ2).

Awareness of user states and intentions is a context dimension we further explore
from two perspectives: first, we look at the current content the user engages with
and how awareness of it can be used in multi-device environments to facilitate
information intake and enrich the user experience (RQ3). The second context
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RQ Research Question Chapter
Human Attention

RQ1 How can users’ attentiveness be quantified across the day and reliably predicted from phone usage patterns? 3
RQ2 Does boredom measurably affect phone usage and which usage characteristics are most prevalent during such states? 3

Context Awareness
RQ3 How can awareness of the content which the user is currently exposed to be used to augment the user experience? 4
RQ4 How can technology be used to elicit the user’s circadian rhythm of alertness and cognitive performance? 5

Applications
RQ5 How can opportune moments for content delivery be used to foster information intake and learning? 6
RQ6 How can reading UIs be adjusted in real-time to decrease or increase information bandwidth? 7

Table 1.1: Overview of research questions that build the base of this thesis.

dimension we look at is the user’s variations of diurnal alertness patterns across
the day. Depending on sleep routines and an innate bio-rhythm people exhibit
changing phases of high and low phases of alertness. Awareness of these phases
can inform technologies when to expect receptive user states and feed informa-
tion accordingly. Hence, we investigate ways to elicit these diurnal changes of
alertness, also called circadian rhythms (RQ4). The combination of predicted
attention levels based on device usage patterns and the knowledge of user’s circa-
dian rhythms of cognitive performance adds cognition-awareness as an additional
layer to context-aware systems.

In the final part of this thesis, we focus on the application layer. Considering
cognition awareness as viable context dimension when users engage with tech-
nology and in information consumption, we focus on the type of adjustments
technologies can undergo based on such awareness. First, we investigate how
opportune moments for technology-triggered content delivery can help to suggest
different types of content (RQ5). Here, we focus on a language learning scenario
and information intake through reading. Since reading is the most predominant
way of acquiring information on mobile devices, we further look at how UIs
can dynamically adjust to the attentional and cognitive state of the user (RQ6).
Besides studying different ways of adjusting information bandwidth while reading
we focus on providing user controls beyond mere cognition awareness. Here, we
investigate implicit mechanisms to control the reading flow of a reading technique
called Rapid Serial Visual Presentation (RSVP).

1.2 Vision: Cognition-aware Systems

Education and continued learning are now more important than ever while we
face challenges, such as moving towards a knowledge society, changing work
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environments, globalization, and the need for mutual tolerance and understanding.
Meanwhile, technology is becoming more intertwined with our lives as devices,
clothes, our environment and even our bodies become more and more equipped
with it. In the work presented here, we investigate how ubiquitous technologies
can be used to help people cope with the information growth and advance per-
sonalized learning. We believe that such technologies can help people meet the
rising demands of our knowledge society, in which constant learning is crucial.
In the following, we map out our vision of cognition-aware systems and how they
can facilitate information intake and learning throughout the day.

Technology’s ultimate goal is to support its users. The more a device knows about
its user in terms of physical as well as psychological constraints and capabilities,
the better it can provide assistance. A fully integrated device environment knows
when to approach the user and how to do that in order to help users consume,
process, and memorize information. It starts by detecting user states and iden-
tifying opportune moments (the when) for technologies to actively approach
users and suggest different types of content (the what). The next step takes
into consideration the current device environment, its capabilities and display
parameters and adjusts the presentation of content so that it optimally fits the
user’s current physical and cognitive context (the how). An integrated system
keeps track of information encountered and processed. This knowledge can help
adjust the presentation of new information items to build associations between
related information. Then, repetition sessions can be scheduled in accordance
with learning theories to commit that information to long-term memory.

A holistically aware system, therefore, needs information on the user’s knowledge
background, preferences, pending tasks, and cognitive states (across time), but
also about the environment (devices nearby) and the world (relevant information).
It further provides mechanisms that allow users to customize the system and make
manual adjustments. The idea behind context-aware computing is to support users
in-situ according to their current situation. Cognition-aware systems focus on the
user’s mental state and current information processing capabilities to complement
this trend towards a holistic context awareness. Systems that know about high
and low attention phases throughout the day are able to support and enhance
cognition and human memory in multiple ways:

Task Scheduling

Knowledge about the user’s diurnal attention rhythms can inform systems to
schedule tasks respectively across the day. By analyzing tasks and their cognitive
requirements they can be matched with the user’s attention phases. Matching is
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done with the goal of increasing the overall productivity of the user: complex
tasks are met with phases of higher concentration and can, therefore, be mastered
more effectively or in shorter amount of time; phases of lower concentration,
on the other hand, can still be useful to perform daily chores, such as grocery
shopping or answering routine emails, without wasting precious performance
capacity. Keeping task requirements and available cognitive capacities in balance
can help reduce boredom (in case of high capacity and low task demand) and
frustration (low capacity and high demand). Further, smart scheduling of tasks
can help users to experience so-called flow states in a systematic way. Such flow
states have been described by Csikszentmihalyi [52] as situations in which the
user is fully immersed in the task at hand.

UI Adaption

Knowing about the user’s current cognitive capacity can further influence the
presentation of a task. The higher the user’s attention the more complexity could
be displayed to allow a more efficient completion of the task. Reading activities,
for example, can be sped up according to the user’s ability to concentrate while
making compromises on comprehension levels. A reading UI that adapts to the
current capacity to absorb information could allow users to effectively take in,
process, and retain more information in a shorter amount of time. On the other
hand, an adaptive UI could also hide functionality during a design task when the
user is detected to be tired. In such a state decreased UI complexity could help
the user focus on the task at hand.

Disruption Management

Cognition-aware systems could be further used to manage external interruptions
by keeping a tab on the user’s current state and the importance of incoming
notifications or alerts. In moments of high focus or task immersion notifications,
incoming phone calls and other disruptions can be effectively delayed to more
opportune moments to not disturb the user’s flow. This can be beneficial for tasks
that need an uninterrupted string of thoughts, but also for situations, in which
interruptions through technology are merely inappropriate, for example when
immersed in a conversation with a friend or loved one. Distractions could further
be proactively prevented by blocking access to potentially distracting websites or
applications to protect periods of high focus.
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Self-Awareness

Self-awareness is the first step towards self-improvement. By eliciting diurnal
attention patterns users can become aware of their own productive phases and
hence make more informed decisions about their own task scheduling. For
instance, when it comes to deciding when to schedule a reading session or when
to deal with daily chores, such as doing laundry. Awareness of the potential lack
of synchronicity between timetables and optimal cognitive performance can help
users avoid frustration. Kreitzman and Foster [163] showed that working out of
sync with our individual circadian rhythms of performance can even be harmful
with negative long-term consequences for our health and well-being.

Personal Assistance

Cognition-aware systems become truly personal assistants, which learn about
users’ patterns and schedule their days in their best interests. Such assistants,
therefore, become the connective tissue between user, devices and the world
around. High profile characters, such as top managers or head of states often
have access to an entire staff that focuses on managing their daily routines and
structuring their day as effective as possible. The resulting daily agenda entails
appointments and completion of tasks, but also sleep, nutrition, workout routine,
information consumption, and other daily chores. By enabling technology to learn
about the habits, activities, and cognitive states of an individual user, we can build
systems that go beyond simple context-aware applications. Cognition-awareness
allows us to build mobile personal assistants that accompany users throughout
their day, detect their cognitive states and structure their task lists in a way so that
each task is matched by the optimal user state. Such systems have the potential
to help users be more effective at their tasks, increase their overall productivity,
happiness (through reduced levels of frustration), and eventual well-being.

1.3 Challenges and Contribution

The life of today’s information workers requires people to keep up with an
abundance of information on a daily basis. Meanwhile, our knowledge society
demands us to employ a habit of constant learning. While our time and resources
are generally limited we need to look for ways to efficiently acquire new knowl-
edge, skills, and practices. With the ubiquity of mobile devices, learning can
take place on-the-go—anytime and anywhere. Hence, we tackle the question
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of how technology can help us in dealing with effective information intake and
learning throughout the day. In the course of this thesis we focus on three major
challenges:

1. Technologies—even though becoming increasingly context-aware—do
rarely consider users’ attention levels, receptiveness or cognitive capacities,
all of which can change significantly across the day. The circadian rhythm
of alertness and performance exhibits phases, in which people are more
concentrated and can, therefore, be more productive than during other
times of the day. However, technology does not take this into account and
opportunities for effective knowledge transfer are missed. Instead, while
being unaware of potentially productive states, people often spend idle
moments looking for stimulation by aimlessly hopping between apps and
services. The challenge is how technology can extract diurnal user patterns
and therefore gain awareness of circadian rhythms of attention in order to
predict productive phases.

2. Reminders and alerts often do not consider the user’s current context. De-
spite an existing body of research in delaying notifications, little of these
algorithms have made it into consumer-level products. Hence, technology
often exhibits a distracting nature where users are at risk of getting inter-
rupted in their task flow or where they neglect their social environment.
There is a clear dichotomy between the near-constant availability of and
through mobile devices and the imminent disruptions that come with this
device ubiquity. Disruptions have been shown to have negative effects on
productivity [180], which raises the challenge of detecting and utilizing
opportune moments for content delivery.

3. Little research has been conducted on how to increase or decrease infor-
mation bandwidth according to users’ available cognitive capacities. For
instance, in phases of high concentration, more information can be pro-
cessed effectively, which in turn can lead to quicker task completion. In
low concentration phases, on the other hand, decreased complexity can
prevent frustration. Current UIs do rarely accommodate for adapting UI
complexity to accommodate different cognitive states. Users have little
means to adjust interfaces to their cognitive capacities in order to get tasks
done more efficiently. Hence, the challenge lies in identifying possible UI
adjustments as well as designing and developing effective user controls.

In this thesis, we tackle these challenges by bringing together theories from
the field of cognitive psychology with technological capabilities. By applying
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memory and learning theories, utilizing ubiquitous sensing, near-constant device
availability and adjustable output capabilities we set out with the goal of:

1. Quantifying human attention and identifying cognitive performance pat-
terns in a technological context to enhancing context-aware systems by
adding a cognitive dimension.

2. Identifying opportune moments for content delivery and providing content
that is relevant to the user’s context.

3. Creating adjustable information interfaces for users’ varying cognitive
capacities to absorb information more effectively and increase overall user
productivity.

Our work focuses on the application layer and has its roots in the field of human-
computer interaction (Human-Computer Interaction (HCI)), cognitive psychology
and algorithms (Machine Learning (ML)). Therefore, we take a human-centered
research approach by conducting formative studies, lab, and field experiments.
In the course of this thesis, we present a series of user studies that allowed us to
collect meaningful feedback from users, as well as develop and test algorithms
and prototypes. Table 1.2 gives a summary of the prototypes created in the course
of this thesis. Towards achieving the aforementioned goals our experimental
approach yields the following contribution, an overview of which is depicted in
Figure 1.1:

(a) Quantification and Assessment of Users’ Attentiveness

In a field study, we collected ground truth for quantifying people’s attentiveness
and receptiveness to interruptions. By applying a machine learning model to
predict users’ attentiveness throughout the day we found that people are highly
attentive to messaging for most of their waking hours [79]. While phases of
inattentiveness only last for a few minutes, delay strategies for notifications or
alerts are applicable without much risk of missing timely information. Therefore,
alerts are often not required to regain user attention. In idle moments people
tend to turn to their phones seeking stimulation, hence we developed a detection
algorithm to identify and predict these moments [214]. We used experience
sampling to identify times during the day, in which people are generally bored.
We analyzed corresponding phone usage patterns and found features, such as
the recency of communication, usage intensity, time of day, and demographic
information to be prominent indicators for bored vs. non-bored user states.
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Figure 1.1: Contribution overview: research in human attention and context-
aware systems build the bases for the creation of tools for cognition-aware
systems and applications.

Awareness of attentional states can be used for benign interventions, such as
triggering content recommendations in form of reading or learning materials.

(b) Tools for Researching and Building Cognition-aware Systems

In-situ attention detection is helpful for delaying interruptions. However, in order
to effectively schedule tasks, technologies need to gain a more holistic awareness
of attentional patterns across the day. Therefore, we look into circadian rhythms
of alertness and performance and adopt a series of assessment tasks for being
completed on a mobile platform. We validate these tasks in a user study and
show how they can be used to extract a general model of the circadian rhythm of
alertness [85]. We release a mobile toolkit for eliciting that rhythm as an open
source library for HCI and psychology researchers for future work on building
cognition-aware systems. We further present a framework for correlating tech-
nology usage patterns to cognitive states in three steps: ground truth collection,
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feature extraction, and model training [68]. In subsequent studies, we validate the
approach to identify opportune moments for learning tasks and reading activities.

(c) Identification and Characterization of Opportune Moments for
Content Delivery

Based on user context we set out to investigate opportune moments for information
intake and so-called microlearning tasks. Therefore, we look at language learning
throughout the day while people are on-the-go [87]. Being in transit and during
idle moments, reviewing foreign language vocabulary is well received and shows
the feasibility of scheduling learning tasks throughout the day without requiring
users to dedicate big chunks of time. We further apply our boredom detection
algorithm to suggest reading content in opportune moments leading to more
articles being clicked and more time spent reading in states of boredom [214].

(d) Implications for Adaptive Reading

Phases of high concentration can be taken advantage of by either working on
more complex tasks or by tackling a task in a more efficient way. The higher the
user’s cognitive capacity, the more demanding a UI can be designed with the goal
of increasing task efficiency and prevent boredom. Since reading is a primary
channel for information intake, we present a series of studies, in which we look at
adaptive reading UIs. Therefore, we adapt speed reading techniques for electronic
reading devices and assess the feasibility of actively guiding the user through
text. Besides the established method of RSVP we introduce a kinetic stimulus
that effectively increases user’s reading speed while raising cognitive load and
making compromises on text comprehension [86]. We show that increasing the
reader’s information bandwidth in this way helps users to get through text faster
at moderate comprehension levels. Because a thorough understanding of a text is
not always essential, especially when it comes to the different types of readings,
such techniques can be used to sift through information effectively and deal
with the daily reading load. To enable users to control reading flow in dynamic
reading UIs we investigate implicit interaction through eye gaze. We show that
such reading support helps readers increase text comprehension as compared to
explicit touch controls [80].
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Prototype Description Chapter

Borapp is an Android app we released on Google Play.
The app records phone usage data and triggers ESM
surveys throughout the day, through which we collect
ground truth on users’ receptiveness towards mobile
messaging and self-assessed boredom states.

3

The Windows Phone app TVInsight proactively dis-
plays relevant content in sync with the current TV
program. By linking and retrieving additional con-
tent from Wikipedia and Google searches this second-
screen app enhances the user experience through
content-awareness.

4

Circog is a mobile toolkit we developed for the
Android platform and which triggers alertness tests
throughout the day. We validated and released the
toolkit as open source library to allow researchers and
app developers to elicit users’ circadian rhythm of
alertness and cognitive performance.

5

QuickLearn is an Android app for reviewing foreign
language vocabulary throughout the day. It triggers
interactive notifications in form of flashcards and mul-
tiple choice questions, which can be responded to di-
rectly in the notification drawer. We deployed this app
on Google Play to research opportune moments for
delivering learning content to users.

6

We implemented a kinetic stimulus as a web reading
interface that highlights the supposed reading posi-
tion line by line on electronic reading devices and
therefore guides the reader’s eyes across text. By dic-
tating reading speed of users cognitive load is induced,
which serves as application scenario for UI adjust-
ments based on user’s cognitive capacities. We com-
pare its effectiveness to reading with RSVP.

7

For reading with RSVP on smartwatches we created
an Android application that receives commands from a
Pupil eye tracker to control the reading flow implicitly
through the user’s eye gaze.

7

Table 1.2: Overview of prototypes created in the course of this thesis.
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1.4 Ethics

For most of the user studies described in this thesis, we followed the ethics process
derived from a previous EU project, namely the pd-net project [170]. This process
entails the submission of a detailed study plan document to a central platform
where it was reviewed by our project partners prior to the experiment. An example
document, which we used for the QuickLearn study described in Section 6.2
can be found in the Appendix. For so-called studies in-the-wild where we used
application stores to distribute our technology probes, we included a consent
form that would be shown after its installation. The respective probe would not
start collecting data until users had given explicit consent. We provided further
details with regard to the data types collected on accompanying websites (also see
Appendix). The studies depicted in Chapter 3 and 6 were conducted in a corporate
environment and therefore followed an internal examination process. However,
all studies reported here were conducted in accordance with the declaration of
Helsinki4.

Privacy

In the course of our research, we deployed a number of research probes that
collected a vast amount of data from the users’ devices. This was necessary
because many of the algorithms we developed required access to people’s phone
usage patterns. Getting people to agree to use apps and services that analyze
their phone usage can be tricky and raises a number of privacy concerns. In
general, algorithms that access such sensitive data to use them as a base for
recommendations and therefore influence user behavior need to be critically
viewed. The benefit of granting such insights needs to outweigh the risks. While
people are generally concerned about sharing their location information, the
gains of using navigation services, for example, make people compromise on
their private data policy. However, for many of the algorithms proposed in this
thesis data processing and ultimately state predictions can be done locally on the
user’s device. “Privacy by Design” has been proposed to ensure that attention
to privacy and security is paid throughout the engineering process of ubiquitous
systems [169]. One aspect of it is making sure that sensitive information does
not leave the user’s device, but is processed in-place. Such an approach could
certainly be applied by cognition-aware systems. For more power-intensive

4 http://www.wma.net/en/30publications/10policies/b3/index.html

http://www.wma.net/en/30publications/10policies/b3/index.html
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data analyses that exceed local device resources homomorphic encryption could
further be applied [109]. This scheme allows devices to encrypt data locally with
a secret key and send it off to a server where arbitrary functions can be performed
over it without description key. Hence, the user device is the only key holder and
therefore has sole access to its own data.

User Awareness

When technology tracks and accompanies our every step as well as thought, indi-
viduals trigger non-deliberate events just by being in a certain location or feeling
a certain way. The interaction with cognition-aware systems is not necessarily
clear from a user perspective. When a system behaves differently because of a
certain cognitive trigger, the user may be unaware of having triggered such a
change. Therefore, the classical user-centered design approach, where we follow
an iterative cycle comprising of studying, designing, building, and evaluating
a technology with the user, needs to be updated. Sellen et al. [242] speak of
“folding human values into the research and design cycle”. The user remains at
the center of the design model, but broader implications across time will need
to be considered as well. Storing personal data may be secure at the time, but
does not guarantee its inviolability for the time to come. Potential risks and
implications should, therefore, be considered already during the design cycle of
new technologies.

Developer Guidelines

Cognition-awareness and the resulting predictions can have an alienating effect
on users. In the physical world, we are very much used to being influenced. In
the digital world, this is still often controversial and considered manipulation.
Examples of search results are one example. The big difference in our view is
the visibility of the technologies and the understandability of how it influences
our behavior for things in the physical world. As more and more things around
us become computer controlled and more information we consume become
digital, we have to face the issue that our experiences are strongly determined by
software. For cognition-aware systems, it is important to be aware of this fact and
to understand that content suggestions may influence users. In order for users to
accept these systems, it is essential not to ’trick’ the user or manipulate them into
actions they would not want to do. The following basic rules give guidance on
designing such systems:
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• empower the user to explore WHY certain information is presented and
why other information is not presented

• make it apparent to WHAT contextual factors the information is adapting
and enable the user to personalize the adaptation

It is apparent that any information presented (or not presented) may impact the
user. At the same time providing information that is contextualized will ease
many cognitive tasks. There is no silver bullet here, but it is central for developers
to consciously make these decisions when creating the system and to make them
explicit in their system design.

1.5 Research Context

The work presented in this thesis was carried out over the course of about four
years in the Human-Computer Interaction and Cognitive Systems group at the
Institute for Visualization and Interactive Systems. The group is located at the
University of Stuttgart under the supervision of Prof. Albrecht Schmidt. Further
input came from the Graduate School of the Simulation Technology Program at
the University of Stuttgart, which provided the author with the opportunity to
gather interdisciplinary input from both technical, but also humanistic fields, such
as philosophy. Several collaborations with experts from the field resulted in joint
publications that contributed to this thesis.

RECALL

The major part of this work was conducted within the EU project RECALL5 with
funding through the Future and Emerging Technologies (FET) programme within
the 7th Framework Programme for Research of the European Commission, under
FET grant number: 612933. In RECALL, four partner universities (University of
Lancaster, University of Essex, Università della Svizzera italiana, and University
of Stuttgart) set out to re-define the notion of memory augmentation through
ubiquitous technologies. By combining technological interventions with basic
research questions in memory psychology, this 3-year research project (Nov.
2013 - Oct. 2016) focused on investigating and enhancing the way people use

5 http://recall-fet.eu/

http://recall-fet.eu/
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technology to remember and to externalize memory. The collaboration between
project partners resulted in conjoint publications [69, 6], among others at the CHI
2016 conference [172]. Further, we jointly created and organized a workshop
on “Mobile Cognition” at the International Conference on Human-Computer
Interaction with Mobile Devices and Services [72] in 2015.

Telefónica R&D

In 2014, the author spent four months as an intern at Telefónica R&D in Barcelona,
Spain. There, he worked together with Martin Pielot under the supervision of
the scientific director at Telefónica, Nuria Oliver. The work conducted there was
related to human attention research and is reflected in Section 3.3 and 6.3 of this
thesis. The collaboration resulted in a number of publications [79, 214] as well
as a patent filing.

Keio University, Japan

In the context of investigating knowledge acquisition points, the design and ex-
ploration of interactive reading UIs became prevalent. The author of this thesis
worked closely together with experts in the field of reading and eye tracking
including Kai Kunze and Susana Sanchez from Keio University in Tokyo, Japan.
Mutual visits throughout the four years of conducting this research lead to a num-
ber of conjoint publications [86, 168, 231, 233, 145]. Together we successfully
launched a continuing series of workshops on “Augmenting the Human Mind” at
the ACM International Joint Conference on Pervasive and Ubiquitous Computing
[84, 167, 77].

1.6 Distribution of Work

Parts of this thesis have been published in scientific conferences, and workshops:
[68], [79], [80], [85], [86], [87], [160], and [214].

Other publications in scientific journals, conferences, and workshops by the
author that go beyond the scope of this thesis include topics, such as lifelogging [6,
70, 172, 277], memory augmentation [69, 72, 76, 77, 81, 84, 167], reading on
electronic devices [8, 145, 168, 233], peripheral displays [71, 74, 75, 83, 267],
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context awareness [106, 231, 232], auditory displays [73, 78, 264], and others [82,
164, 165, 166, 176, 240, 278].

In the following, the collaborative efforts and publications are listed that have
lead to the respective research probes and user studies described in this thesis:

Chapter 3 - Human Attention. The study described in this chapter, which
lead to two publications at MobileHCI’15 [79] and Ubicomp’15 [214] respec-
tively, was conducted during the author’s research internship in 2014 at Telefónica
R&D in Barcelona, Spain. Idea, concept, implementation, and data collection
stemmed from the two main paper authors Martin Pielot and Tilman Dingler
under the general supervision of Nuria Olivier. For the data analysis and the
training of the machine-learning model, we received significant support from Jose
San Pedro.

Section 4.2 - Context-Aware Information Delivery. This chapter is based
on the Master thesis project of Johannes Knittel [159] whom the author supervised
at the time and which resulted in a publication at TVX’16 [160]. Design and
implementation of the apparatus were lead by the student who ended up applying
the resulting algorithm in his startup FlickStuff 6, which he co-founded right after
completing his thesis.

Section 5.2 - Eliciting the Circadian Rhythm of Alertness. This project
was mainly driven by the author in collaboration with Tonja Machulla whose
input regarding concept and study design were invaluable and who played a major
role in the study evaluation and data analysis. Valuable input for concept and
framing by Albrecht Schmidt resulted in a paper, which was published in the
IMWUT’17 journal [85].

Section 6.2 - Micro-Learning Sessions Throughout the Day. App and study
design were supported by the visiting researchers Jennifer Sykes and Chun-Cheng
Chang whose stay was funded by the National Science Foundation (NSF). The
author mainly drove the concept, development, study, data analysis, and feature
elicitation. Dominik Weber contributed his experience in Android programming
and Martin Pielot trained the machine-learning model to elicit the feature rank-
ing. With the help of Niels Henze, the project resulted in a paper presented at
MobileHCI’17 [87].

6 http://flickstuff.de/

http://flickstuff.de/
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Section 6.3 - Using Predicted Boredom to Suggest Reading Content. The
study was designed and main parts of the apparatus were developed during the
author’s internship at Telefónica R&D. While the study was conducted by Martin
Pielot after the author had completed his internship, the data collection happened
in collaboration. Martin Pielot then finished the data analysis together with Jose
San Pedro under the supervision of Nuria Olivier. The results were published in a
conjoint conference paper at Ubicomp’15 [214].

Section 7.2 - Dynamic Reading Interfaces to Increase Reading Speed. The
research around speed reading was mainly driven by the author under the supervi-
sion of Albrecht Schmidt and with concept refinements by Kai Kunze. Alireza
Sahami contributed significant parts of the data analysis, while Thomas Kosch
helped with the implementation of the study apparatus. Results were published at
AH’15 [86].

Section 7.3 - Implicit Reading Support Through Eye Tracking. This
project was conjointly conducted by all co-authors and resulted in a publica-
tion at ISWC’16 [80].

1.7 Thesis Outline

This thesis comprises eight chapters and is divided into six parts, the last two
of which contain the bibliography and the appendix. The structure of the thesis
closely follows the emergence of contributions as they are depicted in Figure 1.1.
In the first part, we motivate the work, point out the greater vision of cognition-
aware systems, their importance for information intake, state our contribution in
this field, and describe the context, in which this research was carried out. The
second part contains the research we conducted with regard to the quantification
and detection of people’s attentional states. Here, we describe the studies that
lead to the presented tools and framework for building cognition-aware systems.
In the third part, we apply these tools and concepts to applications to validate our
approach and explore different application scenarios of cognition-aware systems
with regard to information intake and learning. The fourth part contains an overall
summary of the research contribution and discusses the overall approach and
implications of this thesis.
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Part I: Introduction and Background

Chapter 1 - Introduction The first chapter describes the motivation and vision
for cognition-aware systems, states the context, in which this thesis was conducted,
lists the research questions, and summarizes the key challenges and contribution
we faced throughout our research.

Chapter 2 - Foundations In the second chapter, we introduce key concepts of
cognition and memory that shaped this research. Also, we present the most rele-
vant related work, which is mainly situated in the field of ubiquitous computing,
learning applications, and context-aware systems. Finally, we briefly map out our
approach and methods used.

Part II: Attention Research

Chapter 3 - Human Attention Attention is crucial for effective information
intake and retention, which is why we first focus on how attention levels can be
quantified, differentiated, and detected in a technology context. Therefore, we
present a field study, in which we assessed states of engagement and boredom.

Chapter 4 - Context- and Content-awareness In this chapter, we focus on
people’s situational context and how to detect and support activities, during
which people consume information. In a lab study, we investigate how content-
awareness across devices can help enhance information intake and learning tasks.

Chapter 5 - Cognition-awareness People’s ability to focus varies throughout
the day. This chapter describes our approach to elicit users’ circadian rhythms of
alertness and cognitive performance. We develop and validate a mobile toolkit
and propose a conceptual framework for building cognition-aware systems.

Part III: Applications

Chapter 6 - Opportune Content Delivery In this chapter, we apply the
tools and concepts developed in our research to implement and test applications
that identify opportune moments for content delivery throughout the day. Here,
we specifically focus on delivering language learning and entertaining reading
content.
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Chapter 7 - Adaptive Reading Interfaces This chapter describes the concept
of an application scenario for cognition-aware systems. By adjusting reading UIs
in real-time we investigate the interplay between cognitive load and reading task
efficiency. Therefore, we adapt speed reading techniques to reading on electronic
devices and explore implicit control of reading flow through eye gaze tracking.

Part IV: Conclusion and Future Work

Chapter 8 - Conclusion and Future Work In this chapter, we summarize
the findings and contribution of this thesis with regard to the research questions
posed in the beginning. We conclude with a reflection on our approach, point out
future work, and reflect on implications of cognition-aware systems.
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Chapter2
Foundations

The research presented in this thesis is rooted in the field of ubiquitous comput-
ing and context-aware systems in the discipline of computer science. To build
cognition-aware systems and technologies that support information intake and
learning, we apply concepts and theories form the field of cognitive psychology
with a focus on perception, cognition, and memory.

2.1 Ubiquitous Computing

The most profound technologies are those that disappear. They
weave themselves into the fabric of everyday life until they are
indistinguishable from it.

Marc Weiser [268]

Ubiquitous computing is commonly described as the third wave of computing.
In the late 1950s, the era of mainframes began, where one computer was shared
by several people. Only with the introduction of the Altair 8800 by MITS
in 1975, personal computing started becoming prevalent, in which one person
was handling one computer. Nowadays, this has changed into a many-to-one
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relationship, where one user has a number of personal devices available, such
as laptops, phones, tablets, watches, eye-wear, or other devices with processing
capabilities. The ubiquity of these devices, that surrounds us marks the era of
Ubiquitous Computing. Its very notion entails computing to appear anytime and
anywhere.

As the inevitable consequence of the ubiquitous computing era, Weiser and Brown
foresaw the coming age of calm technology: since we would soon be constantly
surrounded by technology - in walls, chairs, clothing, light switches, and cars
- it will be futile to ”get them out of the way” [269]. This calmness would
then allow people to focus on being human. However, in an environment filled
with ubiquitous computing devices, various appliances compete for our attention.
This can have detrimental effects on our ability to focus. In the following, we
will summarize previous work and challenges that arise from attention-seeking
devices.

Interruptions and Disruptions

Interruptions generally occur when a person is detracted from a current primary
task to another activity. Interruptions can occur in any setting, be it at work when
focusing on a task, at home immersed in reading, or in transit when looking up
the quickest route to a destination. Some interruptions only require temporary
attention switches, while others—such as a colleague entering the office—can
completely deter from the task at hand. This can go as far as forgetting about the
resumption point of the primary task, which results in considerable time spent
trying to get back into the previous task. In other cases, an interrupted task may
even never be resumed at all.

Distractions or disruptions that lead to an interrupted task can be caused by
external (e.g., an incoming phone call) but also internal stimuli, i.e., through
self-interruptions. Self-interruptions occur in the absence of external triggers and
are often a result of multitasking. While people who choose to self-interrupt were
found to assess their productivity higher at the end of the day than those who
get interrupted by notifications [181], frequent self-interruptions result in lower
task accuracy [4]. A study by Iqbal et al. [143] found that it takes people up to
15 minutes to resume an activity after being interrupted by an incoming email
or instant messaging notification. However, another study found that 64% of
workplace interruptions are indeed beneficial [202], so they can not be dismissed
easily.
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Especially in the workplace, attentional states have been found to be related to
mood and job performance. Mark et al. [180] investigated states, which make
people more susceptible to distractions. Their results suggest that distractions
depend on the user’s current state of mind where certain attentional states precede
their susceptibility to distracting stimuli. People immersed in rote work (i.e.,
engaged but not challenged) are more likely to be distracted by Facebook or
face-to-face interactions, whereas focused states are often followed by more
time spent on email. They also found a connection between the number of
application switches and prolonged communication behavior: the more people
hopped between applications, the longer time they spent on Facebook and email.
And the more task switches, the more opportunities presented themselves for this
kind of distractions.

In mobile situations, additional environmental factors add to the list of possible
distractions while performing a task. Oulasvirta et al. [207] found that on mobile
devices users’ task-directed attention can become fragmented into spans lasting
only a few seconds. They proposed the Resource Competition Framework (RCF)
to design for mobile user’s limited cognitive resources. Building on Wickens’
Multiple Resource Theory [273] their framework puts mobile task demands in
relation to users’ cognitive resources. Such a framework is useful to consult
before designing applications that require user interactions in mobile settings.

Despite their distracting nature the proliferation of ubiquitous computing de-
vices allows us to engage with information throughout the day and location-
independently. Information consumption and processing are therefore deeply
intertwined with our everyday life. However, we have limited time and resources
to engage with the information available. There is simply too much information
out, but furthermore, our cognitive resources are generally limited.

2.2 Cognitive Psychology

In this Section, we give a brief overview of the most important concepts with
regard to mental processes as they are important for effective information intake
and learning.
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2.2.1 Perception

We perceive and process information from our environment through our five
senses of sight, hearing, smell, taste, and touch. Information is passed in the
form of signals in the nervous system resulting from physical or chemical stimu-
lation from these senses. Perception does not only entail the passive receipt of
these signals but is impacted by other cognitive functions, such as memory and
attention.

Attention

Everyone knows what attention is. It is taking possession of the mind,
in clear and vivid form, of one out of what seems several simultaneously
possible objects or trains of thought. Focalization, the concentration of
consciousness are of its essence. It implies a withdrawal from some
things in order to deal effectively with others.

William James [274]

James’ essential attribute of attention is the mind’s ability to concentrate on one
stimulus. Numerous sensations reach our sensors in every second we go about our
day: we hear the voice of our conversation partner over the street noise coming
in through the window. Meanwhile, we focus our eyes on our partner’s facial
expression and make out details about gestures and mimics that elude to the
emotional aspect of what she is saying. All this is happening while our senses
also take in the temperature in the room, the positioning of our arms on the
table, our regular breathing, and incidental thoughts and associations coming
to our mind. Each piece of this incoming information passes through a series
of processing steps between its first perception to its processing and eventual
consolidation in long-term memory. The stages of sensual perception to focused
attention are connected to the three types of memory or memory functions:
1) sensory buffers, 2) short-term or working memory, and 3) long-term memory.
Each function is discussed in detail by Baddeley [12]. In each of these stages,
information is selected or discarded, so only a small fraction of the original scene
makes it into our long-term memory [208]. Filtering is done through attention,
where only the information is passed through that is of interest at a given time.
Therefore, information that is not attended to, is lost. Schacter [234] called it
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absent-mindedness, where attention is focused on any other stimulus but one
information. Hence, that information is not encoded correctly and later retrieval
of it from memory is rendered impossible.

Attentional States

Mark et al. [182] presented a framework for classifying different attentional
states in the context of work environments. They identified four distinct states,
which can be aligned along the following two dimensions: engagement as the
mental state of absorption in an activity [235] and challenge as the amount of
mental effort being exerted to perform a task [131]. Figure 2.1 lists the four
resulting areas where the upper right quadrant one describes ’focus’ as a state
of high engagement and high challenge, the upper left quadrant two describes
the attentional state of ’rote’, where high engagement but little challenge come
together (e.g. mechanical type of work or thinking), the lower left quadrant three
indicates the state of being ’bored’, i.e. low engagement and low challenge,
and the lower right quadrant four shows situations of high challenge but low
engagement lead to a state of ’frustration’. In a study with 32 knowledge workers
they found that their focus peaked during mid-afternoon (2-3 p.m.) and boredom
was highest at the beginning of the day (9 a.m.) and early in the afternoon (1
p.m.). These attentional states were associated with certain emotions or valences.
Here, participants were happiest during rote work and happy but also stressed
when being focused.

Concepts related to attentional states include cognitive absorption, mindfulness,
or flow. Absorption refers to when people feel deeply immersed in an activity,
which comes with enjoyment, a feeling of control, curiosity, and with being
oblivious to time passing [5]. Mindfulness is a psychological state with a strong
focus on the present moment [57]. Flow is described as being totally immersed
in an activity where “nothing else seems to matter” [52]. It refers to a pleasant
but highly productive state, in which people feel challenged and stay within the
boundaries of their skills.

Because perception and attention are vital for encoding and memorizing informa-
tion, our memory is highly dependent on our attentional states.
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Figure 2.1: Theoretical framework of different attentional states by Mark et
al. [182]

2.2.2 Memory

Neuroscience has made significant progress on revealing how the brain works,
but there is still no complete understanding of how human memory functions.
Information in the brain is stored in clusters of neurons, however, we do not know
how, precisely, it is stored or encoded. In the following memory and its workings
will be presented as it is most commonly and simply understood [12].

While being responsible for encoding, storing, and retrieving information, mem-
ory is also responsible for processing and acting on that data. Commonly, there
are three main types of memory:

1. Sensory Memory: originating from sensory organs, such as eyes and ears,
the brain receives this raw information and typically retains it for less than
500 milliseconds, but can store it for about 1 to 3 seconds. Sensory memory
again is subdivided into iconic (visual), echoic (auditory), and haptic (touch)
memory. Sensory memories decay quickly and are usually processed
without conscious effort, which is also called preattentive processing (i.e.,
prior to paying attention to the information). Here, only a subset of the
information is made sense of, such as colors or shapes.
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2. Short-term Memory: information is passed from sensory to short-term
memory where it can be processed for up to several minutes, through
rehearsal even up to several hours. Short-term memory is limited in its
capacity; Miller found that between 5 and 9 items can generally be kept in
short-term memory at a time [188]. This number can be increased, however,
by a process called chunking, where items are grouped and remembered as
chunks.

3. Long-term Memory: information in short-term memory is either thrown
out or transferred to long-term memory where it is retained up to a lifetime.
By rehearsing that information it becomes more likely that it will end up
here. Emotions, meaningful, and multiple associations can further increase
that chance.

A model of the brain and the distinction between implicit and explicit memory
was by Larry Ryan Squire [249]. He categorized memory into two distinct parts:
implicit and explicit or declarative memory, where implicit refers to motor skills
which reflect in performance rather than through remembering (e.g., riding a
bike or playing the guitar) and explicit refers to knowledge that we can describe
and reflect on (e.g., knowing that eggs contain a high amount of protein). Endel
Tulving further proposed the distinction in explicit memory between episodic and
semantic memory [253] (see. Fig.2.2):

1. Episodic Memory: Episodic memory concerns personal experiences. Infor-
mation stored here relate to a particular context, such as a time and place.
”I remember the day writing up my thesis while watching the kitesurfers
go by,” is a statement that resembles a personal memory, which can trigger
associations to sensations, emotions, and other personal associations. Re-
trieval of information stored in the episodic memory system can also affect
and modify the memory system.

2. Semantic Memory: Semantic memory refers to principles and, such as the
shape of a guitar, and therefore holds abstract knowledge about the world
independent of its context.

Information processing takes place in three stages: 1) receiving and encoding
information through sensory systems, 2) storing that information in long-term
memory and 3) retrieval of that information in the form of memories later on.
Failure in one of these areas leads to what we call forgetting. With regard to
knowledge acquisition and retention, forgetting is an undesirable trade, whose
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Memory

Declarative Implicit

Episodic Semantic

Figure 2.2: Types of memory and their relationship to each other.

root Schacter broke down into seven main causes [234], two of which are most
relevant to our work:

1. Transience: information gets less accessible over time.

2. Absent-mindedness: due to a lack of attention, information when encoun-
tered is not encoded correctly and therefore later memory retrieval is being
compromised.

Memory holds the information through which we understand the world. It,
therefore, affects our perception and also our cognitive processes.

2.2.3 Cognition

Cognition has been defined as those processes by which the sensory input is
transformed, reduced, elaborated, stored, recovered, and used [198]. It, therefore,
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entails the entirety of mental processing including incoming perceptual infor-
mation, understanding, acquiring knowledge, memorizing, thought processing,
retrieval, and thus the inner workings of our mind. Therefore, cognition com-
prises the more specific cognitive processes of perception, attention, and memory
mentioned above, and further encompasses the use of existing knowledge and
also the generation of new knowledge, hence learning.

Cognition and the workings of the mind have been studied as early as by the
Greek philosophers, such as Aristotle. The term “cognition” goes back to the
15th century where it depicted “thinking and awareness” [228]. In the era of
behaviorism (early 20th century) the focus of investigations lied on observable
behavior. The mind was seen as a black box, where only input stimuli and output
behavior could be observed and measured. Hence, in order to understand the
mind’s workings psychology studies attempted to establish a relationship between
inputs and outputs.

A paradigm shift occurred between 1950 and 1960 where cognitivism was intro-
duced. In response to behaviorism and the introduction of the computer, cogni-
tivism focused on mental processes. The mind was viewed as a computer where
terms to describe internal processes were borrowed from the field of computer
science (e.g., memory, attentional bottleneck, perceptive capacity).

Another paradigm shift occurred from 1980 to 1990 with the rise of neuroscience.
Computer usage had become commonplace in psychology and neuroimaging
techniques had undergone significant improvements. Scientists were now able
to focus on the brain’s activities. Since mental activity is a result of processes
in the brain, neuroscientists focus on brain activities to gain insights into mental
processes. Today, a variety of methods exist to measure electrical activity, some
of which we present later in this chapter. These methods help us draw conclusions
on underlying cognitive processes, including attention and learning.

2.3 Learning

Learning is generally defined as the acquisition of knowledge and skills through
study, experience, or being taught. While there is a great number of learning
theories about information intake, processing, and memorization, we will briefly
focus on a few concepts most relevant to our work. Baddeley et al. [12] and
Revlin [228] give an in-depth overview of the topic.

Learning activities are often grouped into two categories [196]:
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• intentional learning: comprises activities specifically taken up for the
purpose of learning.

• incidental learning: learning happens without explicit intent, such as
while watching a movie with a foreign language character in from whom
the viewer incidentally learns some phrases, for example.

Ubiquitous computing devices allow us to engage with information repetition
anytime, anywhere. Cai et al. [38], for instance, created an Instant Message web
application where users can learn words during wait times of an ongoing chat.
Trusty & Troung [252] built a browser extension that replaces a selected set of
English words with their foreign translation. Their examples show the feasibility
of building learning applications with the specific goal of invoking incidental
learning sessions throughout the day.

Ebbinghaus [90] famously investigated the nature of forgetting. Hence, the
memory of information declines exponentially if no attempt is made to retain
it. To prevent such rapid decline, repetitions need to be spaced out in a way
that the information is encountered just when it is about to be forgotten [194].
Emotions and other associations can strengthen the memory of an information
and therefore prolong the process of forgetting. Since people keep their mobile
devices commonly at arm’s reach for about 53% and within the same room for
88% of the time [65], these devices offer great potential for spacing out learning
sessions throughout the day, week, and month.

Microlearning

Microlearning is the technique of breaking down a learning task into a series of
quick learning interactions [20]. The, for example, daunting task of learning a
foreign language could be broken down into numerous vocabulary learning units,
grammar practices, pronunciation exercises, and so on. To yield optimal learning
results, these units need not only be frequent but also spaced out in a favorable
way [111]. Spaced repetition is crucial since people exhibit—as aforementioned—
a negatively exponential forgetting curve [90], which is why repetitions need
to occur at increasingly spaced intervals. By displaying learning items just as
they are about to be forgotten we can make sure those items eventually end up
and are accessible in long-term memory. Through microlearning these items
become manageable and spaced repetition becomes feasible through the ubiquity
of mobile devices.
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Mobile devices provide a powerful platform for some forms of learning where
individualization (or personalization) of learning content with ubiquitous access
is critical [161]. The portability of the mobile device along with the low cost of
retrieval makes them a great platform for microlearning. Ashbrook [9] demon-
strated the importance of microinteractions, explaining that quick and easy access
to a device is important for promoting frequent use. Prior to the ubiquity of smart-
phones, Cavus and Ibrahim sent SMS messages of English vocabulary words [42].
Edge et al. [92] created a mobile app that takes advantage of GPS location sensors
to deliver contextual relevant vocabulary words. To ensure repeated exposure to
a vocabulary word, Dearman & Truong [61] created a mobile app that displays
the vocabulary word on the wallpaper of the phone. Especially vocabulary-based
microlearning experiments have shown to improve vocabulary acquisition and
recall [38, 92, 252]. Further, microlearning on a mobile device has accomplished
high user acceptance [32, 42].

Concluding, mobile applications provide numerous opportunities to engage with
learning content throughout the day. By spacing out learning content and repe-
titions, they can counteract the effects of forgetting and provide quick learning
sessions in between activities through microlearning units. Incidental learning
can further be fostered by learning in context: while mobile applications allow
users to learn anytime and anywhere, consuming contextually relevant learning
content can be triggered by the user’s surrounding context [20].

2.4 Context-Aware Computing

A widely accepted definition of context was given by Anind Dey:

Context is any information that can be used to characterize the situation
of an entity. An entity is a person, place, or object that is considered
relevant to the interaction between a user and an application, including
the user and application themselves.

Anind Dey [64]

By providing context information to computers Bowd et al. [3] state that we
can effectively “increase the richness of communication in human-computer
interaction and make it possible to produce more useful computational services”.
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In general, services support the user’s task. Dey [64] describes such tasks in
themselves as vital parts of context characterizing the user’s situation: “A system
is context-aware if it uses context to provide relevant information and/or services
to the user, where relevancy depends on the user’s task.” Dey further includes the
user’s emotional and mental state (i.e., focus of attention) in his understanding
of context [63]. Schmidt [238] regards the entity as part of a feedback loop: “A
change in the application will inevitably lead to a change in the context, perhaps
as reaction to a changing situation.” This reciprocal relationship implies that a
change in the application can lead to a change in the context. Thus, such changes
can be invoked in users as well.

A primary concern of context-awareness for mobile systems is awareness of the
physical environment surrounding users and their devices. The key challenge of
these systems is to record and make sense of contextual information. Advances in
sensing, inferring, and using context information have been made by looking at
different context dimensions, such as detecting people’s locations [265], but also
physical activities [243], and affective states [127]. Based on the users’ location,
for example, a navigation system can suggest routes to the nearest restaurant.
Considering the time of day and lighting conditions, the device automatically
adjusts the display’s brightness to make content more readable. In order to
enter the restaurant the user simply steps in front of the motion detector of the
automatic door, which then slides open. These examples describe a network of
context-aware systems that surround us in our daily life.

In their work Schmidt et al. [239] explore various aspects of usage context and
propose a working model for context taking into account not only the physical
environment, but also human factors, such as information about the user, her
social environment, and current task at hand. For learning tasks, it has been
proposed to consider various aspects of context to enable efficient acquisition
of skills and knowledge. Merriam et al. [187] proclaimed that “learning does
not occur in a vacuum”, but is rather shaped by the context, culture, and tools.
Wilson [275] proposed the notion of learning in context, also described as situated
cognition. He emphasized the importance of interaction among people, tools, and
context within a learning situation. Lave [171] conducted ethnographic studies
on situated learning, in which she found that learning is a reoccurring process,
in which learners act and interact within their social situations. She looked at
how mathematical equations were applied and solved in the real world, especially
during grocery shopping. There, grocery items, coupons, and social interactions
with other shoppers and store workers built the learning context and helped the
understanding of concepts. Thus, real-world context with social relationships and
tools at hand have a positive impact on learning.
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Such insights from contextual learning suggest that using information from the
real world and taking advantage of devices in our environment as tools could
foster learning. With the ubiquity of mobile devices and an increasing amount of
content consumed on electronic devices, new learning scenarios arise.

2.5 Cognition-Awareness

Context-aware computing traditionally entails input dimensions, such as the user’s
location, physical activity, task, and device environment. In this Section, we focus
on related work that considers the cognitive context as part of the user context.
Such context comprises aspects related to mental information processing, such
as attention, perception, memory, knowledge, or learning. Awareness of such
processes can help systems to adjust to users in different ways:

1. Increase information bandwidth: phases of high attention and receptiveness
can be utilized to push an optimized amount of content through a number of
modality channels. Being highly alert allows people, for example, to moni-
tor both visual and auditory channels and take advantage of simultaneous
information streams.

2. Increase retention of information: by aligning information intake with
phases of high concentration chances rise that this information makes it
into long-term memory. Absent-mindedness is one of the main reasons why
a piece of information is not retained [234]. By tracking attention phases
and making information systems aware of these phases, they can adjust their
presentation, information selection, and density accordingly. Detecting
cognitive events, such as confusion, frustration, or realizations, such as “aha”
moments, can help interface adjust in a way that they provide feedback
or guidance on task focus, and suggest strategies in training scenarios.
For learning, such supportive systems could increase understanding and
retention.

3. Notification management: based on the user’s cognitive states, interruptions
can be deferred [201]. In phases of high user focus, the system could advise
applications to refrain from interrupting the user. Email alerts and phone
calls may be held back in such phases and the user’s flow state can be
preserved [52] to allow working in an effective manner.
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4. Preserving mental health: stress occurs when there is a mismatch between
task requirements and the user’s cognitive capabilities [258]. Chronically
high levels of mental load at the workplace can cause various health prob-
lems, such as stress, depression, or burnout. Circadian disruptions can
further have devastating consequences for the emergence of schizophre-
nia [49] and diabetes [254].

In the following, we will give an overview of how cognitive states are commonly
detected and what challenges arise from these techniques.

Detecting Cognitive Activities

To provide a “window into our mind” [261] technologies need to be able to
sense and infer cognitive activities, which naturally take place inside of the
user. Monitoring bio-signals with the help of sensors can give us indirect clues
about different cognitive states. So-called bio-sensors can be highly specialized
and are therefore only applicable under lab conditions, while others can be
easily integrated into personal devices. Such sensors typically fall in one of two
categories: invasive vs. non-invasive sensing, with invasive methods being mainly
found in a medical context and hardly applicable in everyday consumer situations.
Hence, we focus on non-invasive sensors with regard to their feasibility to inform
context-aware systems.

In the following we briefly summarize the most commonly applied bio-sensors in
HCI research:

Electroencephalography (EEG)

Brain cells communicate via electrical impulses which can be detected through
electrodes placed on people’s scalp. Since these impulses make up the brain’s
activity, they are commonly used in HCI especially for building Brain-Computer
Interfaces (BCIs). From these measures, we can assess which brain regions are
active during which kinds of tasks and also quantify the task workload. How-
ever, Electroencephalography (EEG) requires rather expensive equipment and
is tedious to set up. Low-cost devices with basic functionality and a reasonable
form factor, such as the Emotiv7, are currently becoming more commercialized.
BCIs are used in three major application areas [201]: (1) for interaction with

7 http://emotiv.com/

http://emotiv.com/
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computers with thought input, (2) for evaluating interfaces and systems (based on
how hard someone has to work on a particular set of tasks), and (3) for adapting
user interfaces according to brain activity measurements.

Functional Magnetic Resonance Imaging (fMRI)

Another way of detecting brain activity is using functional neuroimaging: during
cerebral activity, neurons require nutrients to generate energy and produce action
potentials. Glucose, oxygen and other substances are therefore transported to
active neurons by means of blood perfusion. Hence, when a region of the brain is
in use, blood flow to that area increases. Using a strong magnetic field Functional
Magnetic Resonance Imaging (fMRIs) measure these changes in oxygenated
blood flow and display activated regions accordingly. Activated regions allow us
to infer the type of cognitive activity associated with them. However, fMRIs are
bulky machines and therefore not applicable for being used in everyday mobile
settings.

Functional Near-Infrared Spectroscopy (fNIR or fNIRS)

This technique is also based on the basic mechanism of functional neuroimag-
ing. In contrast to magnetic resonance imaging, it uses light in the near-infrared
spectrum to measure localized changes in oxygenated blood volume in the brain.
Therefore, a ray of light is emitted at the scalp, half of which is absorbed by
chromophores found in the nervous tissue. The compound of these chromophores
and therefore their light absorption depends on the current saturation with oxy-
gen and other nutrients (hemoglobin is a strong light absorber). A receiving
photo detector captures the light wave resulting from the interaction with the
chromophores. With respect to the original emitted, the characteristics of the light
wave received differ due to the absorption in the nervous tissue. Methods like
Functional Near-Infrared Spectroscopy (fNIR) present a non-invasive, low-risk
method for studying cerebral processes. In contrast to fMRIs, fNIRs devices are
less bulky and can be integrated into wearables.

Eye Movements

Sensing cognition is not necessarily limited to observing what happens in the
brain. A number of physiological phenomena are caused by certain cognitive
activities, which is why we can infer these activities by monitoring bio-signals
that are not directly linked to the brain. Visual behavior, for example, is closely
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associated with cognitive processes, such as attention [177], relational mem-
ory [120], and learning [129]. There are two common ways of sensing eye
movements, namely 1) via video-based computer vision techniques, and 2) via
Electrooculography (EOG). Video-based eye trackers generally use the eye’s
reflection of infrared illumination combined with high-resolution cameras and
computer vision techniques for pupil detection and movement tracking. EOG,
on the other hand, uses electrodes to measure changes in the electrical potential
field surrounding the eyes, introduced by eye movements. Both techniques are
capable of measuring the most important eye movement characteristics: fixations,
saccades, and blinks. Early studies have shown the relationship between eye
fixations and cognitive processes [149]. Others have focused on how saccadic
eye movements and blinking are related to different levels of cognitive load [251].
Eye blinks can be further influenced by environmental factors, such as humid-
ity, temperature or brightness, but also be an indicator of physical activity [35]
and fatigue [237]. Rayner [223] investigated eye movements with regard to the
underlying cognitive processes in reading and information processing. Other
works have looked at inferring reader engagement, which is closely linked to
attention [168]. Bulling et al. [33, 34] introduced eye movement analysis as a
new modality for activity and recall recognition.

Physiological Sensors for Affective Computing

Although not necessarily directly related to cognitive activities, a range of physio-
logical sensors can provide hints about a person’s affect, fatigue, or stress levels.
In the following, we will briefly discuss the ones that are most commonly used
in HCI research and why they may make a valuable addition to cognition-aware
systems.

Early studies found that systematic changes in body temperature correlate
with diurnal variations in cognitive performance [157]. Spontaneous or induced
changes in body temperature seem to have an inverse effect on reaction times,
where an increase in body temperature leads to a decrease in reaction time. Kleit-
man [158] based his findings on metabolic activity of the cells of the cerebral
cortex and suggested that by increasing body temperature, thought processes
could be indirectly sped up as well: he assessed people’s performance on card
sorting, mirror drawing, code transcription, and multiplication speed. Wever [272]
later suggested that those diurnal rhythms were related to the circadian system in
humans. Influence of body temperature and internal biological time were found
to affect performance and alertness [190]. Since changes in body temperature
can be very subtle, measurements were required through a rectal sensor. Later in
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this Chapter, we will propose a less invasive technique to gather information on
performance and the circadian rhythm associated.

One of the most indicative measures for a person’s physiological state is the
heart activity and performance. The heart rate is the number of times the heart
contracts in one minute and is usually reported in Beats per Minute (BPM). It can
be measured through a variety of methods: manually (i.e., by feeling a person’s
pulse on an artery), with a photocell sensor (e.g., photoreflectance or infrared
sensor monitor), through video footage and video-processing algorithms [280], or
by measuring the heart’s activation pulse through electrodes placed on the body
(i.e., Electrocardiography (ECG)). If we take measures over a period of time
we can calculate a person’s Heart Rate Variability (HRV), which describes
changes in heart performance indicating how calm, excited, or exhausted that
person is. The variability is often used to assess stress levels and mental load.
Sensors can be placed on different body parts, such as on fingers, wrists, or on the
chest, and is therefore feasible to be integrated into wearable devices. Similarly,
electrodes placed along the body can also be used to measure electrical activity in
muscles and assess muscle tension (Electromyography (EMG)), which elicits
symptoms of excitement or stress.

Similar to heart rate, a person’s respiratory rate can be a measure of the current
physiological state. It counts the breaths a person takes per minute, which can
differ across age groups and according to the general current health state (the
respiratory rate for a healthy adult at rest ranges between 12 and 20 breaths per
minute). Measured across a period of time the respiratory rate variability can
be an indication of stress levels. Respiration can be estimated from wearable
sensor data, such as from ECG, but also elicited from video footage [280] or
accelerometer data.

Another strong indicator for stress or excitement levels is a person’s
Electrodermal Activity (EDA) or skin conductance, which describes the ability
of the skin to conduct an electrical current. The sympathetic nervous system
basically controls the amount of sweat emitted, which causes variations in skin
conductance. Sweat glands can be measured and used as an indication for
psychological or physiological arousal: if a person gets stressed, for example,
the autonomic nervous system becomes aroused and causes an increased sweat
gland activity, which in turn increases skin conductance. This technique is often
used in lie-detectors. Skin conductance is also described as Galvanic Skin Re-
sponse (GSR) and is fairly straight-forward to measure on different body parts.
Hence, GSR sensors are feasible to be integrated into wearable devices and can,
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therefore, be used to assess emotional and sympathetic responses throughout the
day.

Self-reports

Although not being a sensor in the literal sense, a lot of information about
inner user state can be easily elicited by simply letting users assess their own
situation. Daily diaries, for example, are used as a research methodology to
make people describe their impressions, feelings, and general environment. For
more in-situ feedback, experience sampling has been proposed and advanced
with the ubiquity of mobile devices and the possibility to record short statements
throughout the day [50]. Hence, participants are asked to stop at certain times
during the day and report on an experience in real-time. A convenient tool to
assess cognitive load, which is more often used in lab settings, is the NASA
Task Load Index (NASA-TLX) [124]. In its original form, the NASA-TLX
questionnaire contains a workload assessment on six subscales with regard to
mental demand, physical demand, temporal demand, performance, effort, and
frustration. These subscales are then individually weighted against each other by
the participant based on their perceived importance. However, for most cases, the
assessment on the subscales is sufficient though and also individual subscales can
be dropped if they are less relevant to the task at hand. In these cases, the test is
generally referred to as “Raw TLX” [123].

In-situ Elicitation of Cognitive States

As some of these cognitive assessment techniques show there are crucial chal-
lenges in trying to obtain the cognitive context in an unobtrusive manner. On
top of that, the neural dynamics of the brain are generally complex processes,
which are hardly accessible for non-invasive measurement techniques. Most of
the sensors described above need to be attached either to the human body (e.g.,
EEG) or be placed in the environment (e.g., video cameras). In many cases such
devices are bulky, which limits their portability and therefore their applicability
in a mobile context. Another factor to consider is social acceptance. An fNIR
sensor can be integrated into a headband placed on a person’s forehead, but that
does not necessarily make for an aesthetic appearance. Meanwhile, other sensors,
such as rectal temperature sensors, are simply uncomfortable to wear throughout
the day. An alternative approach is to associate observable activities with cog-
nitive processes. Here, ubiquitous computing devices, such as the smartphone,
can be used to track a wide range of activities. Such devices are also in close
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proximity to their users for most time of the day and therefore can deliver quite
an in-situ picture of a person’s daily doings. In our work, we investigate the use
of ubiquitous computing devices to assess cognitive states on-the-fly by analyzing
phone usage data. We show how such assessments can be made within a relatively
short time window. More regular patterns of attention are exhibited by diurnal
fluctuations of alertness—so-called circadian rhythms.

Circadian Computing

People’s alertness, attention, and vigilance are highly variable and subject to
systematic changes across the day [112, 156]. These fluctuations—in part caused
by circadian rhythms—impact higher level cognitive capacities, including per-
ception, memory, and executive functions. During phases of high alertness, we
are able to perform tasks efficiently while during phases of low alertness we have
trouble concentrating.

According to the prevalent theory on sleep/wake regulation, variations in alertness
and sleep propensity are generated by two underlying processes: the sleep/wake
homeostasis and a circadian process [28]. The homeostatic process manifests
itself as a gradual decrease in alertness during wake periods. The longer we are
awake, the stronger becomes the need for sleep. Alertness is further modulated by
a circadian biological clock with a period length of about 24 hours. Following a si-
nusoidal pattern, it determines hours of the day when we experience a particularly
low or particularly strong sleep drive. For many people, the alerting capability of
the circadian process peaks in the late afternoon, thus partially counterbalancing
the accumulated sleep pressure from the homeostatic process. This is commonly
experienced as heightened alertness towards the evening after a post-lunch dip in
alertness and concentration.

These rhythms can be different from person to person, however, they occur in
individual, but distinct patterns. Figure 2.3 shows an exemplary curve with phases
of high attention in the morning, a decline in the early and a performance recovery
in the late afternoon, for example. The circadian rhythm of alertness and cognitive
performance depends on a range of individual factors, such as sleep, nutrition,
stress levels, or general health. Traditional methods to assess the circadian rhythm
include extensive lab experiments, which can take weeks of being in controlled
environments. Other methods can be equally cumbersome or even unpleasant,
such as sleep-wake protocols or physiological markers (e.g., dim light melatonin
onset, rectal temperature monitoring, cortisol level measurements [135, 158]).
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Figure 2.3: The circadian rhythm describes systematic performance changes
across the day showing in our ability to concentrate and focus.

Current systems do not adapt to individuals’ variations in sleep/wake cycles
and the related diurnal patterns of alertness and cognitive performance. Instead,
systems generally assume a constant level of cognitive performance and rarely
accommodate for variations. In an attempt to reconstruct this rhythm in a more
convenient and externally valid way, we will focus in this thesis on mobile devices
and their capabilities to collect alertness data in-the-wild.

2.6 Methodology

In this Section, we describe our approach to build, apply, and evaluate cognition-
aware systems. In each step, we follow the user-centered research approach [88]
by conducting a combination of formative studies, lab, and field experiments with
people using our research probes being at the center of this process.
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2.6.1 Quantification and Analysis of Attention

At the core of information perception, processing, and memorization lie the ability
to focus and pay attention. Because mobile devices, such as smartphones, are
near-constantly available and have rich sensor capabilities, we start by measuring
people’s attentiveness towards these devices. To capture phone usage and mea-
sures of attentiveness throughout the day we conduct field studies because this
data needs to be collected in-the-wild, where participants follow their everyday
schedules and are not confined to an artificial experiment setting. Therefore, we
release our data collectors as mobile apps on Google Play and invite participants
to download and install them. Informed consent is given through the app and the
collected data is securely transmitted to our servers.

Besides phone usage data we collect subjective user assessments in the form of
Experience Sampling. Thus, the app prompts users throughout the day to fill in
a quick survey about their current inclination towards boredom and other states.
Again, these measures need to be collected in-the-wild, since we are interested in
these assessments in the context of participants’ everyday life.

2.6.2 Content-awareness between Devices

With the hypothesis that not only the attentive state but also knowledge about
the content that is currently being consumed by the user, can help to facilitate
information intake, we investigate ways to enhance information intake through
content-awareness. Since TV consumption is a major form of information acquisi-
tion, we investigate the use of second-screen apps to enrich information intake. To
elicit app features we first conduct an online survey, especially because it has the
potential to reach a large number of people from different geographical regions
to find out about TV watching habits and current use of second-screen apps. We
further consulted the literature regarding this topic and combine our results to
elicit a feature backlog for the eventual application. Therefore, we develop a
system that harvests subtitles from TV programs in real-time to automatically
create additional content. We needed to develop a system that records streams of
subtitles, performs keyword extractions, and gathers additional relevant content
through entity linking. Because the utility of this tool is highly dependent on the
quality of the content generation, we evaluate the system with a pre-recorded,
but real-world TV program. However, because we compare the use of the app
to the traditional way of looking up information online, we conduct a controlled
lab study with a repeated-measure design to limit the possibility of confounding
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variables, such as program content differences and user distractions. Measures
are not limited to the relevancy of the generated content but include subjective
user impressions and objective comprehension tests.

2.6.3 Tools for Building Cognition-Aware Systems

While we investigate the feasibility of analyzing the user’s momentary attentive-
ness based on phone sensor data, there are also patterns in attention differences
determined by people’s internal body clocks. Knowledge of these diurnal pat-
terns could inform cognition-aware systems about re-occurring productive phases
across the day. Because these patterns occur in people’s everyday life we need
to deploy our research probe in the field. Hence, we install our apparatus on
people’s phone and collect quantitative alertness measures throughout the day.
We further trigger surveys about the recent consumption of caffeinated drinks to
be able to account for the influence of caffeine on the alertness measures. We
conclude the study with a semi-structured interview where we ask participants
to rate the different app tasks according to their subjective impression regarding
likeability measures.

2.6.4 Proof-of-Concept Applications

To validate the tools developed in the first part of this thesis we integrate them
into two applications which suggest different types of content (learning and
reading) in moments classified as opportune (i.e., bored). Because validation
entails external validity we deploy our prototypes in the field. To collect more
detailed feedback we recruit a number of participants to download and use these
apps while collecting usage data and conducting interviews in between. Since we
set out to train machine learning models on collected ground truth data we need
to collect big amounts of phone usage data in order to get reliable results. Hence,
we release the app on Google Play to the public, hence launch an in-the-wild
experiment.

In another application scenario, we envision cognition-aware systems to also
be able to align their interfaces with the users’ current cognitive capacities. To
explore potential interfaces for such adjustments we created dynamic reading
UIs with the ability to superimpose variable reading speeds on the user. To
measure cognitive load and effects on eye movements we use the NASA TLX
questionnaire and a stationary eye tracker. Also, we measure text comprehension
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and subjective user assessments. To avoid distractions during the experiment
we conduct a controlled lab study, where participants come in and read with the
different reading UIs. To avoid confounds through differing reading skill or text
difficulty, we employ a repeated-measure design and counterbalance not only
the two conditions (i.e., the reading stimuli) but also the allocation of text to the
condition. Further, to make sure comprehension questions are validated, we use
texts from an official corpus used by foreign language speakers to be tested on
reading comprehension.

For the last study reported in this thesis, we investigate differences in implicit vs.
explicit controls for adaptive reading UIs. Therefore we created an apparatus that
uses eye gaze tracking to determine whether a user looks at a smartwatch to read
or not. To test our two conditions we conduct a repeated-measure lab study where
people wear the eye tracker and are asked to read different texts throughout the
study. Again, we are interested in differences in text comprehension, which is
why we need to control for confounding variables, such as distractions from the
environment and text bias. However, because possible applications for implicit
control of reading flow through eye tracking include a reading-while-walking
scenario we introduce an artificial secondary task whose goal it is to introduce
controlled reading interruptions.

Concluding, the first part of the thesis resembles our approach to build technolo-
gies for assessing and predicting cognitive states. Because these states occur
mostly throughout the day and outside of the confinements of our lab, we conduct
these studies in the field. The last part of the study comprises the application of
these technologies for validation purposes and for investigating their feasibility
and utility. Here, we apply a mixed method approach of controlled lab studies,
controlled user groups as well as public experiments in-the-wild.
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II
ATTENTION RESEARCH





Chapter3
Human Attention

Attention is generally described as the ability to concentrate on a specific stimulus
while ignoring other perceivable information. It shows in our skill to focus on a
conversation, a thought or a piece of text while blending out background noises,
tactile impressions, and visual stimuli in our periphery. Hence, attention in itself
is the process of selecting one over a range of competing stimuli [114].

Despite being focused on one specific channel of information we are still able
to process competing channels in the background. Cherry [45] first defined the
Cocktail-Party Effect as the ability to switch attention between multiple auditory
streams, which allows people to ’tune into’ one channel while ’tuning out’ all
others. The effect gained its name from the scenario of a cocktail party where
people are focused on a single conversation while being able to make out the
mentioning one’s name in a nearby conversation.

We live in a world full of competing stimuli. In addition to our current physical
environment, we are subject to a range of technologies that constantly try to
grab our attention. The sheer amount of devices and services providing access
to information as well as making requests for attention poses challenges to our
cognitive processing capacities. In our current age of information technology
information is produced and disseminated more quickly and more broadly than
ever leading to what has become known as ’Information Overload’. The term first
introduced in 1964 by social scientist Bertram Gross [118] describes an effect
where the amount of input exceeds the processing capacity of an actor. Due to
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the limited cognitive capability of a decision maker, for example, information
overload can have detrimental effects on the quality of decisions [247].

However, we are drawn to our devices. Mobile phones, smartwatches, tablets,
laptops, or connected TVs provide stimulation which is constantly available,
even while on the go. Such devices are notorious for trying to grab our attention
through various alerts in form of auditory beeps, visual notifications, and haptic
vibrations. But even when we are not interrupted, according to Nielsen, 45%
of our smartphone usage time is devoted to self-stimulation by engaging with
news, entertainment, games, and social media8. This conditioning goes as far
as that being alone with one’s own thoughts for longer periods of time has been
shown to cause aversive reactions. Being deterred from external stimulation has
even lead participants in a study to rather self-administer electric shocks than to
”just think” [276]. Technology companies profit from and actively encourage this
conditioning since they monetize on users’ attention. Hence, in today’s so-called

’attention economy’ user attention has become a scarce resource [59].

With all these competing stimuli from services, technologies, and our environ-
ment it becomes increasingly challenging to focus on the right kind of stimulus.
The ability to focus is crucial for memory tasks. A lack of attention while being
exposed to incoming information is one of the main reasons for a bad mem-
ory, because information is perceived, but can not be committed to long-term
memory [234]. Attention is influenced by a range of factors, such as the cur-
rent environment, motivation, but also physical, cognitive, emotional, and social
conditions [271].

In this Chapter, we investigate the nature of attention in a technology context
as it is a crucial component for effective information intake. We first set out
to understand how attention can be quantified in a mobile context. We further
present an approach to identify idle, but attentive states. Therefore, we built a
system that automatically detects moments, in which people actively seek out
stimulation.

The two research questions we target with our investigation in attention are:

• RQ1: How can users’ attentiveness be quantified across the day and reliably
predicted from phone usage patterns?

• RQ2: Does boredom measurably affect phone usage and which usage
characteristics are most prevalent during such states?

8 http://www.nielsen.com/us/en/insights/news/2014/
how-smartphones-are-changing-consumers-daily-routines-around-the-globe.html

http://www.nielsen.com/us/en/insights/news/2014/how-smartphones-are-changing-consumers-daily-routines-around-the-globe.html
http://www.nielsen.com/us/en/insights/news/2014/how-smartphones-are-changing-consumers-daily-routines-around-the-globe.html
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Parts of this Chapter are based on the following publications:

• T. Dingler and M. Pielot. I’ll be there for you: Quantifying attentiveness
towards mobile messaging. In Proceedings of the 17th International
Conference on Human-Computer Interaction with Mobile Devices and
Services, MobileHCI ’15, pages 1–5, New York, NY, USA, 2015. ACM

• M. Pielot, T. Dingler, J. S. Pedro, and N. Oliver. When attention is not
scarce - detecting boredom from mobile phone usage. In Proceedings
of the 2015 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, UbiComp ’15, pages 825–836, New York, NY,
USA, 2015. ACM

3.1 Related Work

The work described in this Chapter is based on principles of perception and
attention as described in Section 2.2, and more specifically on interruption man-
agement and attentiveness towards devices.

3.1.1 Attention to Devices

In ubiquitous computing environments we are surrounded by a variety of devices:
public displays, desktop computers, laptops, mobile phones, and increasingly
wearable devices, such as smart watches and eyewear. Throughout the day we use
these technologies to communicate, access, create and disseminate information,
be it in the office, at home, or on the go. The consequence of constantly being
surrounded by such devices is that they compete for our attention: we continually
switch our attention between different devices and sources of information while
doing different types of tasks. Especially the activity of information workers is
characterized by frequent attention switches throughout the day.

A study by Dey et al. [65] found that people keep their smartphones within arm’s
reach for about 53% and within the same room for 88% of the time. On daily
basis, users interact with their phones on average 58 times where 60% of these
interactions constitute to quick glances since the phone remains locked [133].
A study by Böhmer et al. [27] found that users spend about an hour a day on
their phone just using apps. Meanwhile, they use an app on average for less
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than 72 seconds at a time. Ferreira et al. [97] report that approximately 40% of
application launches last less than 15 seconds showing that interaction happens in
brief bursts of micro-usages. Such usage behavior shows the highly fragmented
attention users pay to their devices.

Interruption Management

Interruptions negatively affect people’s focus as they find it difficult to return to the
activity prior to a distraction [56, 141]. Depending on the current task condition,
people may either ignore an interruption, delay attending or immediately turn to it.
Interruptions occur in our salient physical environment but increasingly emanate
from our digital devices, especially in the form of alerts and notifications [55].

Hence, different notification-delivery strategies have been proposed to minimize
the impact of interruptions: Horvitz et al. [137] proposed bounded deferral: if
a user is predicted to be busy, alerts are being held back until a more suitable
moment, but only for a maximum amount of time. In the context of mobile phones,
Fischer et al. [99] found that opportune moments for delivering notifications occur
right after the user has finished a task, such as writing a message. Previous work
[209, 215, 216] has explored the use of mobile phone sensors and usage patterns,
such as the user’s location or recency of interactions, to automatically predict such
opportune moments. Rosenthal et al. [230] created a classifier that learned from
the user’s behavior when to mute the phone for incoming calls or notifications
in order to avoid embarrassing interruptions. After a learning period lasting two
weeks, the application applied the learned preferences and changed the ringer
volume proactively based on the trained classifier.

However, bounded-deferral strategies may not work if there are many long phases
without opportune moments. It can be considered an ideal strategy only when
users are typically attentive, and when phases of inattentiveness are brief. To see
whether this is the case, we conducted the first study described in this chapter to
determine the attentiveness of mobile phone users throughout the day. We then
investigated the characteristics of opportune moments and how to identify them,
which brought us to the notion of boredom.

Boredom and Stimuli-Seeking Moments

Fenichel [95] described boredom as a displeasure caused by a “lack of stimulation
or inability to be stimulated thereto”. It often comes with a “pervasive lack of
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interest and difficulty concentrating on the current activity” [100]. Eastwood [89]
highlights that “a bored person is not just someone who does not have anything
to do; it’s someone who is actively looking for stimulation but it is unable to
do so”. When perceived as an undesirable state, boredom can instill an urge to
escape the current situation [113]. This urge can cause people to actively seek out
stimulation. Detecting these situations could lead us to such opportune moments,
in which interruptions might be welcomed by users.

Boredom detection has been the focus of previous work. Bixler and D’Mello [24],
for example, assessed boredom during writing tasks by logging keystrokes. They
collected affect judgments from participants, in which boredom was named in
26.4% of the cases, second most often after engagement (35.4%). They were
able to distinguish engagement-neutral and boredom-neutral states by looking at
keystrokes together with participants’ stable traits. Guo et al. [119] connected
users’ web activities to their general susceptibility to distractions. They found
mouse movements, clicks, page scrolls, and other fine-grained interaction events
to be indicators for boredom. Mark et al. [182] further showed how the type
of digital activity can be a strong predictor for the attentional state of a person,
such as being focused or bored. They found that boredom was related to frequent
window switches, surfing the Web, and the time of day. People using Facebook
generally did not report being in a focused state. However, online communication
activities, such as Facebook visits, can function as a quick break when people are
engaged in work [179]. These brief moments of often self-induced distraction can
help people to maintain emotional homeostasis while multitasking [180]. Home-
ostasis defined as the ability of an organism to maintain an internal equilibrium
is challenged as people get stressed, bored or frustrated. Hence, the attempt to
move to another activity is aimed at getting back to a balanced state. So people
sometimes actively seek out distractions even during work. Such distractions are
considered low cost in terms of cognitive resources required, they promise to be
fun, and leave the user in control over the duration of the interaction [179]. The
day of the week also seems to play a role when it comes to bored and focused
states. Here, Mark et al. [182] found that people were both most focused and
bored on Mondays compared to the rest of the week. Most rote work was done
on Thursdays.

Other work investigated affect detection based on device usage. Mobile social
interactions and application usage seem to be closely linked to people’s mood.
LiKamWa et al. [175] inferred mood (valence and arousal) from SMS, email,
and call interactions, as well as from applications routinely used. Bogomolov et
al. derived daily happiness [26] and stress [25] based on mobile phone usage,
personality traits, and weather data. As formulated by Marks et al. [180] certain
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attentional states are more susceptible to distractions than others. This openness
to interruptions was further shown to be related to the following device usage
patterns:

• time since recent device usage [10, 102]

• use of mobile phone messengers and the phone’s notification center [213]

• activity levels, such as switching windows [142, 182]

• use of keyboard and mouse [102, 142]

• ambient noise level as a proxy for activity levels around the user [102]

• semantic location (i.e. home or work) [211, 230]

• ringer mode as an indicator for how people want to manage interrup-
tions [211, 230]

• time-dependent variables, such as the hour of the day or the day of the
week [10, 102, 138]

• proximity as an indicator for whether the phone’s screen is covered (i.e.,
stowed away) or not [211, 213].

Previous work shows how attentional states, openness to interruption, and bore-
dom measurably affect the way people pay attention to their devices. In this
Chapter, we present two studies looking at how attention can be quantified across
the day and how we can identify such moments, in which users turn to their
device in search for stimulation. By understanding attention better in a technol-
ogy context we aim to inform the design of attention-aware systems that adjust
information delivery to the user’s current state. By knowing about opportune
moments to deliver content, interruptions can be mitigated and information is
presented at times when the recipient’s attention allows for active perception and
processing of that information.

3.2 Quantifying Attention

Mobile devices, applications, and services require and attract people’s attention.
But attention is generally limited and therefore valuable. Hence, in today’s
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attention economy human attention is treated as a scarce commodity [59]. We
set out to investigate how scarce it really is in a technology context and whether
it can be assessed in a quantified manner. Therefore, we looked at people’s
attentiveness to their mobile phone across the day, and more specifically at their
mobile messaging behavior.

3.2.1 Motivation

People predominantly use their mobile phones for communication purposes by
sending out SMS and using various types of messengers. In a 2011 survey,
teenagers were found to exchange a median number of 60 messages per day [174].
Due to these frequent interactions, people tend to expect responses to their
messages within minutes [47]. To meet these expectations, people need to be
attentive to their phones, which means checking and triaging new messages
quickly upon arrival. Usually, people do so within a few minutes [19, 215, 232],
but such behavior ends up often interrupting current activities. Such interruptions
can exhibit negative effects, as it can be difficult to return to an activity prior
to the interruption [56, 141]. Previous work has, therefore, proposed different
notification-delivery strategies, such as bounded deferral [137], through which
alerts are not delivered immediately, but rather delayed until a more opportune
moment. These strategies only work, however, if sufficient opportune moments
present themselves throughout the day. If messages are delayed for too long,
the message content may become irrelevant and response times will increase,
which in turn may violate expectations. If the maximum delay, on the other
hand, is too short, messages may be delivered too frequently leading again to
interruptions. Bounded deferral will, therefore, only be a viable strategy when
users are generally attentive, and when phases of inattentiveness are kept brief.

To determine general attentiveness of smartphone users throughout the day, we
conducted a study during which we collected phone-usage data from 42 mobile
phone over the course of two weeks.

3.2.2 User Study

To be able to predict people’s general attentiveness to mobile messages, we
conducted a study in which we assessed how quickly users triaged incoming
messages throughout the day. We, therefore, released a mobile app in 2014,
through which we collected ground truth on the arrival time of messages and the
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time until users attended to incoming messages. Additionally, the app recorded
contextual and phone usage data. Over the course of two consecutive weeks,
we collected both ground truth and contextual data in order to train a machine-
learning algorithm, with which we were able to determine users’ attentiveness
to mobile messaging throughout the day. From the context data collected, we
extracted 16 features, with which we trained our model. For each minute of the
day, we predicted how quickly a user would attend to a message by applying the
model. Thus, the model helped us fill the gaps for all those moments where users
did not actually receive any messages.

Participants

Through university mailing lists and from a study participant pool of Telefónica
R&D in Spain, we recruited 42 participants (45.2% male, 23.8% female, 31%
did not report their gender) who reported their age to be on average 28.7 years
(SD = 5.9). The majority of participants was living in Europe based on the
devices’ language and timezone settings.

Data Collection

Our Android app was designed as a background service that ran on participants’
phones and collected data from sensor and phone events, such as the status of the
screen (on/off), data from the proximity sensor, access to the notification center,
the ringer mode, the app in the foreground, and incoming notifications. Addition-
ally, the app recorded Whenever an incoming message triggered a notification and
when a notification was removed, including instances, in which messages were
read on another device. We focused on notifications from messenger applications
filtering out other types of notifications. Notifications that came in while the
related app was already in the foreground, were ignored as well. The ground truth
instances and the contextual data was recorded, stored locally, and sent to a server
whenever a WIFI connection was available.

Procedure

After downloading and installing the app from Google Play participants were
asked to sign an informed consent form when the app was first launched. In it, we
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provided information on the study’s background and on the type of information
being collected. The app then instructed participants how to explicitly grant
access to notifications data. For two consecutive weeks of data collection, we
compensated participants with a 20 EUR Amazon gift card.

Results

We collected a total of 55,824 messages from 42 participants. Figure 3.1 gives an
overview of the total number of messages received during the different hours of
the day.
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Figure 3.1: Total number of notifications per hour of the day (’0’ indicates
notifications arrived between 0:00 and 1:00 o’clock, for example).

Participants received on average 66.8 (Mdn = 40) messages per day. Figure 3.2
shows the distribution between different messenger apps. With 77.7% of the
messages, WhatsApp dominated other messenger apps, while only 1.8% of
received messages constituted text messages. In Europe, WhatsApp has mostly
substituted SMS messaging.

Attentiveness

Responsiveness is merely an indicator of when users actually respond to an
incoming message. Attentiveness, on the other hand, includes the user being
aware of a message and having decided whether to act on or ignore it at the current
time, a behavior also known as triaging. Because receivers’ actual responses also
depend on factors, such as the sender-receiver relationship, or the importance
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Figure 3.2: Messages by messenger service.

and urgency of the content, we focused on modeling attentiveness rather than
responsiveness. Incoming messages could, therefore, be attended in three ways:

1. by checking the notification center, which shows sender and excerpt of the
message

2. by opening the corresponding messenger application and

3. by reading the message on a different device (e.g., WhatsApp messages
can be read in a browser window rather than on the phone).

The dataset we collected contained 38,180 (68.4%) messages that were first
attended to through the notification center and 14,134 (25.3%) that were attended
to through another device. The remaining 3,510 (6.3%) messages were first
attended to by opening the app they belonged to. Our participants attended to
messages within a median time of 2.08 minutes, 25% of the messages within 12.0
seconds, 75% within 12.3 minutes, and 95% within 80.0 minutes.

We analyzed the time within which messages were attended to depending on
whether this was done through the notification center, the respective app, or
through another device using a Kruskal-Wallis test. The test revealed a statistically
significant difference (X 2(2) = 2505.139, p < 0.001). Pairwise Mann-Whitney
tests (Bonferroni-corrected) showed that messages were attended to quicker
through the app (Mdn = 0.47 min, p < .001) or another device (Mdn = 0.75 min,
p < .001) than through the notification center (Mdn = 3.2 min).
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3.2.3 Phone-Usage Patterns

To predict people’s attentiveness to mobile messaging throughout the day, we
created a model similar to the one presented by Pielot et al. [215]. The model
uses 16 features based on the mobile phone sensor and event data: the screen
status (on/off) and when this status last changed, the status of the proximity sensor
(screen covered/not covered) and when it last changed, the time since the phone
was last unlocked, the time since the last message arrived, the number of pending
messages, the time since the user last opened the notification center, the hour of
the day, the day of the week, and the ringer mode.

We used the median delay (2.08 min.) between arrival and attendance of a
message for classifying attentiveness in a binary manner. We, therefore, labeled
users attentive when they triaged messages within these 2.08 minutes, otherwise
we labeled them as non-attentive. We then trained a Random Forest resulting in
a 79.29% accuracy and k = .586. Precision and recall for being attentive were
.771 and .828 respectively.

Attentiveness Throughout the Day

We applied the trained model to computationally estimate the times that people
were attentive throughout the day, minute by minute. We, therefore, went through
all sensor data and computed the state of each of the features for the beginning of
each minute of the day, which constituted 86,400 states per day. We then applied
the classifier for each state to predict participants’ attentiveness.

The model predicted participants to be attentive to messages on average for 50.5%
(SD = 14.6%) of the full 24-hours of the day. The quartiles were 40% (1stQ),
49% (median), and 55% (3rdQ). The majority of participants, therefore, attended
to messages within 2 minutes for 12.1 hours per day or 84.8 hours per week,
which corresponds to 75.8% of the hours typically spent awake (if we assume an
average of 8 hours of sleep).

Figure 3.3 depicts the average attentiveness throughout all days of the week.
We found a statistically significant difference between the days of the week
(F(6,20802) = 41.07, p < .001). Bonferroni-corrected pair-wise t-tests showed
that there were statistically significant differences between the weekdays and the
days of the weekend (p < .001): participants were, therefore, significantly more
attentive to incoming messages during the week (Mon - Fri) than during weekends
(Sat, Sun). During the week, participants were predicted to be attentive 62%-67%



62 3 Human Attention

0

5

10

15

20

Mon Tue Wed Thu Fri Sat Sun

At
te

nt
ive

ne
ss

 (h
ou

rs
)

Figure 3.3: Average attentiveness by day. Dashes indicate the median,
diamonds the mean levels of attentiveness. A value of, e.g., 12 indicates that,
on average, users are attentive to messages during 12 hours of the given day.

of the day, whereas on the weekend these numbers dropped to 45%-50%. The
average attentiveness for each hour of the day is shown in Figure 3.4. The median
predicted attentiveness ranges from 0% at 4:00 am to a maximum of 83% at
09:00 pm. Tests revealed a statistically significant differences (F(23,20875) =
189.6, p < .001) as well: We found attentiveness to be highest during the evening,
i.e., between 6:00 and 9:00 pm. With a median attentiveness of at least 80%, this
was significantly higher than during the rest of the day (pair-wise comparisons
yielding at least p < .01, Bonferroni-corrected). Further, we found a statistically
significant difference between night time (0:00 - 8:00 am) and day time (10:00
am - 11:00 pm) (all pair-wise comparisons yielding at least p < .001, Bonferroni-
corrected). During nights and early mornings, median attentiveness was always
below 50%, whereas during the day, median attentiveness was always above 67%.

We then looked at the duration of periods in which participants were predicted not
to be attentive to messages, i.e. inattentive. Calculating the quartiles, participants
were predicted to be back in an attentive state after 1, 2, and 5 minutes, in 25%,
50%, and 75% of the cases respectively. When entering a state of being inattentive
to messages, participants, therefore, returned to a state of attentiveness most of
the time after only a few minutes.
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Figure 3.4: Average attentiveness by hour. The dash indicates the median,
the cross the mean level of attentiveness. A value of .50 indicates that, on
average, users would attend to messages within 2 minutes in 50% of the cases
at a given hour.

3.2.4 Discussion

Based on the ground truth data we collected we trained a model that allowed
us to predict people’s attentiveness towards mobile messaging throughout the
day. It showed that people are attentive to messages 12.1 hours of the day, while
attentiveness is higher during week days than on weekends and people tend to
be more attentive during evenings. Phases of inattentiveness seem to last for
a relatively short amount of time since our participants returned to attentive
states within 1-5 minutes in the majority (75% quantile) of cases. The model of
attentiveness we constructed performed with around 80% accuracy significantly
better than the 70.6% reported in previous work by Pielot et al. [215] due to a
substantially larger data set (55,824 vs. 6,423 messages).

In 2006, a similar approach was taken by Avrahami and Hudson [11], who devel-
oped statistical models to predict users’ responsiveness to incoming messages,
which they used to compute the likelihood of receivers to respond to messages
within a certain time period. They used a similar set of features, but the algorithm
they presented was limited to Desktop usage, which did not take into account
people’s messaging behavior while being mobile and was, therefore, limited to
only a subset of people’s day. Other researchers attempted to determine the time
interval between the arrival and acting on incoming messages/notifications with 6
minutes (average) for replying to SMS [19], 6 minutes (median) for attending to
messages [215], and 30 seconds (median) until a notification is clicked (if it is
clicked) [232]. With a median of two minutes delay until attending to messages,
the work presented here is in line with these findings and stresses that people
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tend to attend to messages promptly. Most previous studies, however, only report
measures of central tendency. The findings presented here, in contrast, give a
more detailed estimation of people’s attentiveness throughout the day. Hence,
we provide insights into when people are more or less attentive and how long
these phases of inattentiveness last. Our finding that people spend about 12 hours
per day in highly attentive states further advances results reported by Dey et
al. [65], who found in 2011 that phone users kept their within arm’s reach for
about 53% and in the same room for about 88% of the time. Keeping the phone
close, therefore, also seems to lead to people attending new messages promptly
for most parts of the day.

In 2013, Church and de Oliveira [47] reported that people exhibit high expecta-
tions towards the responsiveness of their conversation partners in mobile mes-
saging. Strategies to deliver notifications in opportune moments [137, 141, 209,
216]—such as bounded-deferral, which may delay the delivery of messages—
therefore, only work without violating expectations, if there is a sufficient number
such moments. Our findings suggest that this is, indeed, the case: we found
our participants to be attentive for large parts of their wake time and phases of
estimated non-attentiveness during daytime typically lasted for only 1-5 minutes.
In a majority of the cases, there will hence be a suitable amount of opportune mo-
ments sufficiently stacked together. Whether these moments are truly opportune
or whether people simply give their phones priority over other activities, such as
meetings or being out with friends, needs to be further investigated.

3.2.5 Study Conclusion

Our study on people’s attentiveness provides quantitative evidence for people’s
tendency to exhibit high levels of attentiveness towards mobile messaging during
large parts of the day: during 73.5% of their waking hours, people are highly
attentive, while phases of inattentiveness tend to last only for a few minutes.
Our findings, therefore, inform the design and development of such applications
as any method for intelligent notification delivery can expect a generally high
level of attentiveness from their users. The concept of bounded deferral would,
therefore, work well in 75% of the cases with a bound of 5 minutes.

We do, however, need a better understanding of the underlying causes for such
high levels of attentiveness, such as social pressure and positive reward loops.
Therefore, we need ask questions, such as: how can we overcome such social
mechanisms in order to create spaces where phone users can retreat to and feel
free to think and reflect without external pressures? With being attentive to mobile
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messaging for 12.1 hours per day, people spend a great deal paying attention
to their mobile devices. This made us wonder whether besides serving a need
for communication the mobile phone may be picked up as a distraction. And if
so, whether these moments, in which people turn to their phone to actively seek
stimulation, could be predicted.

3.3 Detecting Stimulus-Seeking Moments

Despite the fact that the mobile phone is a major source of incoming distractions
through alerts and notifications, people seem to also actively seek out stimulation
in idle moments. Situations in which people are, for example, waiting (e.g., for
the bus, in a supermarket queue) and turn to their phone to kill time are unique in
a sense that they actively seek out information to be consumed often without a
specific goal in mind. Such behavior is especially common to battle temporary
states of boredom. We were interested if such behavior might show certain
patterns in phone usage characterized by, for example, frequent app switches
or briefly checking social media sites. Hence, we set out to explore how such
behavior could be detected automatically by the phone’s sensors. Awareness of
states, in which users actively seek out stimulation, could open up new ways of
delivering and recommending content proactively.

In the following, we describe the design, implementation, and results of a two-
week in-the-wild study, in which we collected over 40,000,000 phone usage
logs and 4398 boredom self-reports of 54 mobile phone users. From this vast
amount of data, we were able to train a machine-learning model to predict states
of boredom with an accuracy of up to 82.9%

The research question we set out to answer was:

• RQ2: Does boredom measurably affect phone usage and which usage
characteristics are most prevalent during such states?

3.3.1 User Study

To investigate whether states of boredom could be detected by analyzing mobile
phone usage, we conducted an in-the-wild user study. A total of 54 participants
installed an app called Borapp on their mobile phones, which we developed
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to collect data over the course of two weeks. Besides phone usage, the app
recorded ground truth data about users’ self-assessed states of boredom by using
the Experience Sampling Method [50]. Our goal was to relate the phone’s usage
data to the boredom states reported by the users.

Method

Experience sampling entails prompting the user several times throughout the
day to provide a subjective assessment of current activities or feelings. We used
mobile phone notifications to trigger mini surveys throughout the day asking about
the user’s current state of boredom. On a 5-item Likert-type scale (0=disagree,
4=agree) participants answered the question: “To what extend do you agree to the
following statement: ’Right now, I feel bored.’?” (see Figure 3.7). Taking these
self-assessments as ground truth we analyzed phone usage data recorded around
the time of filling in these surveys. By extracting 35 features from phone sensor
data we trained a machine-learning model which would allow us to predict bored
vs. non-bored states.

Apparatus

To be able to prompt participants throughout the day we created Borapp, an app
for Android phones with OS 4.0 or newer. The app consisted of a data collection
service, a notification trigger service, and the main view. The data collector
recorded various phone sensor data, the background service was responsible
for scheduling and triggering the ESM surveys, and the main view allowed
participants to track their study progress.

To reduce battery drain we divided the sensor data collected into two groups:
1) those that were permanently collected even when the screen was switched
off, and 2) those that were only collected when the phone was in use, i.e., the
screen was on and unlocked. Table 3.5 shows the list of sensor data permanently
collected, whereas sensors whose data was collected only when the phone was
unlocked is displayed in Table 3.6.

To allow these sensors to collect the data listed, participants had to explicitly grant
information access to the Android Accessibility Services, to notifications, and to
location information. Due to privacy restrictions, these sensors are not exposed
by the standard Android API. Through the accessibility service, foreground
applications could be monitored, while notification access let us track which
applications post notifications and when.
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Sensor Description
Battery Status Battery level ranging from 0-100%
Notifications Time and type (app) of notification
Screen Events Screen turned on, off, and unlocked
Phone Events Time of incoming and outgoing calls
Proximity Screen covered or not
Ringer Mode Silent, Vibration, Normal
SMS Time of receiving, reading, and sending SMS

Figure 3.5: List of sensors permanently collected.

Sensor Description
Airplane Mode Whether phone in airplane mode
Ambient Noise Noise in dB as sensed by the microphone
Audio Jack Phone connected to headphones or speakers
Cell Tower The cell tower the phone is connected to
Data Activity Number of bytes up/downloaded
Foreground app Package name of the app in foreground
Light Ambient light level in SI lux units
Screen Orient Portrait or Landscape mode
Wifi Infos The WiFi network the phone is connected to

Figure 3.6: List of sensors only collected when the phone was unlocked.

Throughout the day a notification trigger service would fire notifications at semi-
regular intervals. By clicking on these notifications users were taken to the
mini-survey shown in Figure 3.7. Notifications were fired on average six times a
day. Probes were only triggered during the day to avoid disturbance and more
so when the phone was in use. Between probes answered we made sure at least
60 minutes had passed. Each survey response was recorded with the current
timestamp in order to be later connected to the phone usage logs.

Borapp provided the main view for participants to be able to track their progress
throughout the study. For successfully completing the study, the app needed to
collect 14 days of data and 84 (14x6) questionnaires had to be filled in. Figure 3.8
depicts a screenshot of that view where the number of days and surveys completed
were listed.
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Figure 3.7: Screenshot of the ESM probe to assess bored states throughout
the day.

Figure 3.8: Screenshot of the progress view indicating participant’s study
completion status.
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The app further provided detailed instructions about the study and device setup
procedure. This included an explanation of the data collected, the purpose of the
study, a consent form, and voluntary survey collecting demographic data.

Collected sensor data was written to a log file on the mobile phone’s local storage.
In regular intervals, the app checked whether the phone was connected to a Wifi
network in order to upload the logs to our server and to avoid draining users’ data
plans.

Participants

After making the app available on Google Play, we distributed the link via a
university mailing list as well as through a list containing volunteers from Spain
who had indicated their general interest in research studies. The study was
further disseminated through social network channels. We promoted the study
by advertising a 20 EUR reward for each participant who completed the study,
which entailed 14 days of data collection.

After about one month of running the study, we stopped collecting data and
created a snapshot of the data of those participants who had completed the study
until then. The raw dataset contained 43,342,860 data points from phone sensors
and 4,826 survey responses from 61 unique mobile devices. In seven cases survey
responses barely varied, which we interpreted as participants who had not taken
the study seriously. After removing the data from these devices, we ended up
with 54 remaining participants and 4,398 valid self-reports. Participants provided
between 84 and 173 (M = 110.3,SD = 25.8) self-reports each. 39 participants
reported their age in a range between 21 and 57 (M = 31.0,SD = 7.9) and to
be female in 11 and male in 23 cases. The remaining 19 participants either
chose the ‘other’ option or simply did not disclose their gender, since providing
demographic information was optional. According to device locales (52% es ES,
18% de DE, 13% en US) and timezones (79% UTC+1, 6% UTC+0 and 5%
UTC+8), most participants were from Spain, Germany, and the United States.

Procedure

In June of 2014 we made Borapp publicly available for download on Google
Play. The app was free to download and advertised through the email lists and
social channels described. Since we were giving out money for successful study
participation we limited the maximum number of sign-ups to a 100. To ensure
that a participant was eligible for receiving the reward, the server conducted a
participant count when the app was installed and first launched to check whether
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the new user was among the first 100 signing up for the study. The eligibility
status was then directly communicated to the respective participant. However,
people who were not eligible for the reward were informed by the app, but could
nevertheless take part in the study.

Upon installation and eligibility check the app led users through the setup process.
The first screen explained the purpose and procedure of the study, detailed the data
collection process, provided contact information, and asked for explicit consent.
The text explicitly stated what kind of personally identifiable information we
would collect, namely device location. In the next step, participants were asked
to grant access to the Android Accessibility Services as well as to notifications
and provided detailed information on how to do that. The setup process was
completed by an optional survey where participants could specify their age,
gender, and leave their email address for reward collection. Once setup was
complete the app started collecting sensor data and began triggering ESM probes
via the notification scheduler.

Upon completion of the study participants eligible to collect their reward were
sent a 20 EUR Amazon voucher. Successful completion required users to enable
accessibility service and notification access, to keep the app running in the
background for at least two weeks, and answer at least 84 ESM questionnaires.

Results

With 4398 filled in ESM questionnaires serving as ground truth and more than
40,000,000 phone usage logs, we conducted the data analysis in form of a machine-
learning classification task. This approach enabled us to explore the relationship
between different phone usage patterns and reported boredom and further allowed
us to quantify the degree of which boredom can be inferred from mobile phone
usage.

Feature Elicitation

We identified 35 features related to phone-usage patterns in the following seven
categories:

1. Context: features relating to the phone’s current context.

2. Demographics: explicitly collected features relating to the user.

3. Time since last activity: features relating to activities and their last occur-
rences.
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4. Usage intensity: features based on direct phone usage.

5. External triggers: features related to phone events triggered from the
outside.

6. “Idling” : features related to short, but frequent interactions with the phone
hinting towards less goal-oriented activities.

7. Usage type: features related to direct user interactions with intent.

Detailed descriptions of each feature are listed in Table 3.1 and Table 3.2 under
their respective categories. Features, such as time since last phone call, or ringer
mode state, could be retrieved discretely at the time of the ground truth collection.
Other features, such as battery drain or most used app, needed to be computed
over a certain time window prior to the user submitting the subjective rating. To
chose a time window we experimented with different window sizes of 1, 5, 10,
30, and 60 minutes in length. Here, we managed to achieve the best classification
results with a 5-minute time window, i.e., for all feature we took into account how
the phone had been used five minutes before the respective ESM questionnaire
was filled in.

For features related to the applications in the foreground or notifications triggered
we used an app blacklist, that prevented, for example, system services from being
taken into consideration (on some devices a notification event was triggered
every time the keyboard was brought to the front, which we thereby effectively
excluded from our analysis). Linear models are highly sensitive to outliers, which
is why we checked numeric features for whether they required saturation, thereby
removing outliers beyond a certain threshold. However, we ended up with the
numeric features all having long-tail distributions, which means there were only
positive outliers. Based on the skewness of each feature, we chose the appropriate
percentile out of 90%, 95%, and 99%, and used that as an upper limit. A number
of entries for features related to specific apps (e.g. last app in the foreground,
most-used app, last notification) were sparse due to the fact that many of the
recorded apps appeared only a few times or once in our overall dataset. That
made it difficult to properly learn the meaning of sparse elements. Hence, we
reduced the dimensionality of these features by assigning rarely used apps to
the ‘other’ category. Again, this distribution was heavily skewed, which is why
we kept the ten most frequent applications and mapped the rest into the ‘other’
category. For features describing application categories, we kept the three major
categories (i.e., communication, productivity, and society) which accounted for
two-thirds of entries.
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Feature Description

audio
Indicates whether the phone is connected to a headphone 
or a bluetooth speaker

charging Whether the phone is connected to a charger or not
day_of_week Day of the week (0-6)
hour_of_day Hour of the day (0-23)
light Light level in lux measured by the proximity sensor
proximity Flag whether screen is covered or not
ringer_mode Ringer mode (silent, vibrate, normal)
semantic_location Home, work, other, or unknown

age The participant's age in years
gender The participant's gender

time_last_incoming_call Time since last incoming phone call
time_last_notif Time since last notification (excluding Borapp probe)
time_last_outgoing_call Time since the user last made a phone call
time_last_SMS_read Time since the last SMS was read
time_last_SMS_received Time since the last SMS was received
time_last_SMS_sent Time since the last SMS was sent

Context

Demographics

Last Communication Activity

Table 3.1: List of elicited features related to context, demographics, and time
since last communication activity.

Ground Truth

Predicting whether a person is in a bored or non-bored state is a binary clas-
sification. We collected the ground truth for these states through the ESM
probes, in which participants were asked: “To what extend do you agree to
the following statement: ’Right now, I feel bored.’?” (see Figure 3.7). These self-
assessments were answered on a 5-item Likert-type scale (0=disagree, 4=agree),
which resulted in an average boredom rating of M = 1.17 and Mdn = 1. Hence,
participants tended to generally disagree with the statement, as Figure 3.9 shows.

We classified participants as being bored whenever they tended to agree with
the statement (scores 3 and 4), which we will refer to as absolute ground truth.
However, we discovered that many participants had different anchor points:
some rated themselves to be more bored on average than the rest. In previous
work by Farmer and Sundberg [94] different predispositions of people towards
boredom were found, which may explain our observation that some participants
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Feature Description

battery_drain Average battery drain in time window
battery_level Battery change during the last session
bytes_received Number of bytes received during time window
bytes_transmitted Number of bytes transmitted during time window

time_in_comm_apps
Time spent in communication apps, categorized to none, 
micro session, and full session

num_notifs Number of notifications received in time window
last_notif Name of the app that created the last notification
last_notif_category Category of the app that created the last notification

apps_per_min
Number of apps used in time-window divided by time 
the screen was on

num_apps Number of apps launched in time window before probe
num_unlock Number of phone unlocks in time window prior to probe
time_last_notif_access Time since the user last opened the notification center
time_last_unlock Time since the user last unlocked the phone

screen_orient_changes
Flag whether there have been screen orientation changes 
in the time window

app_category_in_focus Category of the app in focus prior to the probe
app_in_focus App that was in focus prior to the probe
comm_notifs_in_tw

Number of notifications from communication apps 
received in the time window prior to the probe

most_used_app Name of the app used most in the time window
most_used_app_category Category of the app used most in the time window
prev_app_in_focus App in focus prior to app_in_focus

Usage (related to the type of usage)

Usage (related to usage intensity)

Usage (related to whether it was triggered externally)

Usage (related to the user being idling)

Table 3.2: List of elicited features related to usage intensity, external triggers,
idling and type.

had a different baseline level of boredom. Hence, we chose this personalized
ground truth to reflect whether participants were feeling more bored than usual.
Therefore, we transformed the absolute responses into personalized z-Scores,
where 0 indicates that the participant considered herself not bored as a baseline
boredom level during the study. Consequently, samples with values over +.25
were considered positive on this personalized scale, leaving us with a normalized
ground truth. This distinction allowed us to derive how well we could predict
whether people were more bored than usual (normalized) vs. how bored they
tended to be in general (absolute).
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Figure 3.9: Histogram of ESM questionnaire responses.

Thus, we ended up with two datasets depending on whether we considered
the ground truth to be absolute or normalized. Out of the total 4398 boredom
assessments using the normalized ground truth produced 1518 (34.5%) instances
classified as bored, and 2880 (65.5%) instances classified as baseline. This
distribution is in line with boredom assessments reported by Goetz et al. [113],
in which participants indicated to be bored in one-third of their responses. In
contrast, the dataset produced by using the absolute ground truth with its 446
(10.1%) instances classified as bored was less balanced.

As mentioned earlier there seemed to be a general predisposition of people to-
wards boredom, which affected their self-assessment scores. Bixler et al. [24]
investigated the detection of affect and came to the conclusion that detection
accuracy could be increased by taking users’ psychological traits into account.
Hence, we disseminated a post-hoc survey with a 28-item Boredom Proneness
Scale (BPS) [94] to participants who had volunteered to leave their email address.
Since this happened after the actual study had already been completed, we did
not receive responses from all participants. Out of 54, 22 participants completed
the survey. We added the resulting boredom proneness scores to participants’
demographics and listed them as an additional feature to their self-reports. How-
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ever, since our primary interest was in detecting moments, in which people used
their phone to kill time, i.e., their stimulation levels dropped, we chose the nor-
malized ground truth for our primary data analysis without boredom proneness
information. We were hoping this modeling choice would increase our model’s ap-
plicability in a sense that it would not require obtaining boredom proneness scores
before deployment and therefore was capable of detecting boredom deviations
even for people who were not prone to be bored.

Boredom Classification

For classifying user states into bored vs. non-bored, we used three different
classification methods and compared their respective performances:

1. A linear classifier: L2-regularized Logistic Regression (Logistic Regression
(LR)) [125].

2. A non-linear classifier: support Vector Machines with Radial Basis Func-
tions kernel (Support Vector Machines (SVM)) [260].

3. An Ensemble Learning technique: Random Forest (RF) [30].

For each classifier, we used the same model-building methodology: a nested
cross-validation approach [43]. Thereby an inner loop performs a grid search
over the space of model hyper-parameters and selects the best performing values.
At the same time, an outer loop measures the performance of the model found in
the inner loop. To prevent any positive bias when measuring the performance, the
fold, which is being evaluated in each step of the outer loop, is not used for the
training phase. In our analysis, we used 10-folds for the outer and 5-folds for the
inner loop.

We achieved the best results with the Random Forest (RF) classifier. Similar
to other ensemble learning methods, such as Boosting and Bagging, RFs use
multiple weak-learners and aggregate their results, thereby optimizing the bias-
variance trade-off. RF makes use of decision trees as base classifiers, which
introduce randomization in several stages: first, for each tree of the forest different
bootstrapped samples of the training data are used for its creation. Each node of
that tree is then greedily split based on the best feature for only a random subset
of all the variables. This process prevents a too strong influence of correlations
between the different trees in the forest and helps to reduce the risk of over-fitting.
The models created in this manner are inherently non-linear, tolerate outliers and
implicitly support categorical variables.
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Figure 3.10: Area Under the ROC Curve (AUCROC) performance of the RF
classifier for all four datasets.

With about two-thirds of participants’ self-assessments being classified as not
bored, we had to deal with an unbalanced dataset. The Area under a ROC
curve (AUCROC) is an accuracy metric that can handle such asymmetrical data
sets, whereby ROC stands for Receiver Operating Characteristic. Considering
boredom proneness and the absolute as well as normalized ground truth we ended
up with 4 datasets. Figure 3.10 shows the resulting classification performances
of RF for all of these datasets in comparison. Using the absolute ground truth
produced consistently better performance than using the normalized ground truth.
Boredom proneness slightly reduced the variance.

Figure 3.11 depicts the precision-recall curve for our primary data set, i.e., nor-
malized ground truth without boredom proneness. The model shows a high
flexibility for choosing different classification thresholds in order to trade preci-
sion for recall, which depends on the characteristics of the application setting.
Scenarios, in which boredom detection is used to actively probe users, should
prioritize precision to minimize the number of false positives, which may annoy
users. Here, precision levels of 70.1% (for over 30% recall), or 62.4% (for 50%
recall) in less restrictive scenarios can be reached.
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Figure 3.11: Precision-recall plot for the primary data set (normalized ground
truth, no proneness).

Feature Analysis

Next, we set out to analyze which features were most meaningful to predict bored
vs. non-bored states. Therefore, we used the RF to rank features according to
their importance for the classification by using a measure called Mean Impurity
Decrease. Since RFs consist of a number of decision trees, every tree node is a
condition on a single feature, which effectively splits the dataset into two so that
similar response values end up in the same set. Impurity is the measure based on
which the (locally) optimal condition is chosen. When training a tree, we can,
therefore, compute how much each feature decreases the weighted impurity in a
tree. The impurity decrease from each feature can then be averaged across the
forest and the features ranked according to this measure [30].

By applying this method, we computed the importance of each feature of our
primary data set. The top 20 features and their importance measure are listed
in Table 3.3 (Column: Import). By clustering these features into our groups
depicted in Figure 3.1 and 3.2, we end up with the following most important
feature categories:

• Recency of communication activity: last time a communication happened
via phone or SMS and the last time a notification arrived (notifications were
largely generated by applications from the communication category).
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• Intensity of recent usage: e.g., volume of internet traffic, number of phone
unlocks, and level of interactions with applications in the last five minutes.

• General usage intensity reflected by, e.g., battery drain, proximity sensor
states (i.e., phone screen covered or not), or time since last phone use.

• Context / time of day indicated by the hour of the day and light sensor
data9.

• Demographics: participants’ age and gender.

Feature Import Correlation The more bored, the ..
time_last_outgoing_call 0.0607 -0.143 less time passed
time_last_incoming_call 0.0580 0.088 more time passed
time_last_notif 0.0564 0.091 more time passed
time_last_SMS_received 0.0483 0.053 more time passed
time_last_SMS_sent 0.0405 -0.090 less time passed
time_last_SMS_read 0.0388 -0.013 less time passed
light 0.0537 -0.010 darker
hour_of_day 0.0411 0.038 later
proximity 0.0153 -0.186 less covered
gender (0=f, 1=m) 0.0128 0.099 more male (1)
age 0.0093 n.a. +20s/40s, -30s

num_notifs 0.0123 0.061 more notifications
time_last_notif_cntr_acc 0.0486 -0.015 less time passed
time_last_unlock 0.0400 -0.007 less time passed
apps_per_min 0.0199 0.024 more apps per minute
num_apps 0.0124 0.049 more apps
bytes_received 0.0546 -0.012 less bytes received
bytes_transmitted 0.0500 0.039 more bytes sent
battery_level 0.0268 0.012 the higher
battery_drain 0.0249 -0.014 the lower

Table 3.3: Most important features in the primary data set sorted by their
Mean Impurity Decrease score. The bigger (i.e. more blue) the value, the
more predictive the feature is for boredom.

To analyze the relationship between phone usage patterns and boredom, we
focused on the top 20 features. Therefore, we trained a Linear-Regression Model
to yield the sign (positive or negative) for each feature, which is depicted in the

9 The same physical sensor returns the ambient light levels and whether the phone screen is covered
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Correlation column of Table 3.3. From these correlations we were able to draw
the following conclusions:

• Communication: participants tended to be more bored the more time had
passed since having received the last phone call, SMS, or notification, and
the less time had passed since placing a phone call or sending an SMS.

• Notifications: the volume of notifications received in the last five minutes
was likely to be higher when being bored.

• Fiddling with the phone: boredom was found to be correlated with more
phone usage: the phone screen was less likely to be covered (which, for ex-
ample, happens when the phone is stowed away), more apps were used, the
last unlocking and checking for new notifications happened more recently,
and the volume of data uploaded was higher when participants were bored.

• Data download and battery drain were lower when people were bored.

• Gender: men tended to be more bored than women.

• Age: for participants in their 20s and 40s boredom was higher than for
participants in their 30s.

• Time of day: boredom was more likely the later it was in the day and the
darker the ambient lighting conditions.

Looking at how app usage correlated with boredom we found that applications,
such as Instagram, email, settings, the built-in browser, and apps in the ’other’
category were correlated most strongly with being bored. In contrast, commu-
nication apps, such as Facebook, SMS, and Google Chrome, correlated with
non-bored states.

3.3.2 Discussion

Our goal was to investigate different states of user attention and whether we could
identify situations, in which users explicitly turned to their mobile phone to kill
time and actively seek stimulation. Our field study described provides empirical
evidence that 1) there are measurable phone usage patterns that allow us to infer
boredom with acceptable accuracy and 2) states of boredom are especially related
to communication activity, usage intensity, hour of the day, and demographics
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Inferring Boredom

We trained a machine-learning model based on phone usage data from 54 partic-
ipants that allowed us to distinguish bored vs. non-bored user states. Thereby,
we investigated the impact of additional factors, namely whether we based our
analysis on a normalized or absolute ground truth computed from participants’
self-assessment scores. Our primary dataset produced a 74.6% AUCROC perfor-
mance accuracy with normalized ground truth and without boredom proneness
features. Using the absolute ground truth and the boredom proneness data our
model even reached 82.9% accuracy with the absolute ground truth data perform-
ing consistently higher. This can be explained by the notion that higher boredom
levels lead to a higher agreement with the provided statement of feeling bored
(scores of 3 and 4). In contrast, normalized boredom lowered the model’s detec-
tion performance but allowed detection when people deviated from their baseline
state. To infer normalized boredom, user-dependent modeling was necessary
since people had different anchor points regarding their perceived boredom levels.

Adding boredom proneness had a minor effect on the prediction results, namely
that it decreased variance, i.e., it helped to make the model more stable. We found
the effect to be not as pronounced as in related work by Biller and D’Mellos [24],
which could be caused by our relatively small sample size of 22 (40.7% of
our participants). Matic et al. [185], however, recently presented a model for
estimating boredom proneness based on phone usage, which could render a
dedicated questionnaire obsolete and be a means to reasonably include boredom
proneness data in prediction models.

The caveat of such in-the-wild studies—like the one we conducted here—is the
lack of control over the participant’s environment. While striving for ecological
validity, possibly confounding factors are often overlooked or can simply not be
identified. In our case, participants filled in the ESM questionnaires throughout
the day, but in convenient moments. While we asked them to deliver 84 responses
in total, participants were free to dismiss ESM probes of their own choosing. How
they chose when to fill in a questionnaire might have introduced a bias we cannot
detect for certain: probes might have been rejected whenever users were deeply
focused on other tasks, for example. Especially using the absolute ground truth
data may have amplified the effect of moments, in which the user was bored.

Our model’s accuracy, however, proved significant. Related work focused on
detecting happiness [26] and stress levels [25] throughout the day based on phone
usage data. To achieve reasonable results they needed to include additional
information about the user’s personality traits and external sources, such as
weather, which was not needed for our model.
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Indicators of Boredom

With the hypothesis that boredom is reflected in the way people use their mobile
phones, we looked into specific usage patterns. Therefore, we analyzed the top
20 indicative features, which were mostly related to five aspects, namely: recency
of communication activity, recent and general usage intensity, usage context,
and basic demographics. Essentially, the more time had passed since a last
incoming communication and the more recently the user had reached out through
communication channels, such as placed a phone call or sent a message, the more
evidence accrued towards being bored. Hence, being reached out to seemed to
mitigate, while conspicuously reaching out to people might have been a sign of
boredom. We were also able to relate boredom to common “fiddling with the
phone” activities in the form of phone usage intensity, which confirms previous
work [31, 206] stating that people turn to their phones to kill time. With our work,
we provide empirical evidence to solidify these claims and advance their findings
showing that increased phone usage contributes to boredom detection.

We were further able to show that daytime had an effect on phases of boredom.
Work by Mark et al. [182] showed that boredom levels vary throughout the day
and that boredom is generally lower during late working hours. Based on features,
such as time of day and lighting conditions, we were able to corroborate this
finding and show that states of boredom tend to become more frequent as the day
progresses. Also, demographics including age and gender seem to play a role.
We found boredom to be higher in men participating in our study. Age groups in
their 20s and 40s seem to show more signs of boredom than those in their 30s.
Previous work has looked at the effect of age [270] and gender [16] as predictors
for boredom in leisure time, which our findings are in line with.

The analysis described in our study is, however, limited to direct correlations
of features and boredom. There may not be any direct correlation between
some features and the respective levels of boredom, but features may rather
become indicative when combined with others. Further, correlation does not
imply causation: due to our observational approach, causal interpretations, such
as incoming messages relieving us from boredom, are of rather speculative nature.
Phone usage is not the sole predictor of boredom states, however. Contextual
factors and demographics generally play into the mix.
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3.3.3 Study Conclusion

We developed an approach to detect boredom based on how people use their
phone throughout the day. Therefore, we conducted an in-the-wild study with
54 participants using the Experience Sampling Method to collect ground truth
on boredom states and explore related phone usage context. The most indicative
features for predicting states of boredom were recency of communication, usage
intensity, time of day, and demographic information. By using machine-learning
we created a model that was able to predict moments, in which users where bored
vs. non-bored with an accuracy between 74.6% and 82.9%.

Such moments could be used for benign interventions, such as sending proactive
recommendations. Boredom as a trigger could inform the design of mobile
recommender systems with a better understanding of when and how to engage
users:

• Providing content suggestions in moments of boredom: e.g., articles to
read or videos to watch.

• Making boredom-curing activity suggestions, such as contacting friends.

• Instead of suggesting killing time activities users could also be reminded
to (re-)engage with planned activities: e.g., clear the backlog of a todo or
read-later list.

• Helping people make use of boredom beyond online recommendations by
fostering introspection, reflection, and creativity. A possible suggestion, for
example, could be to leave the phone alone for a while or even automatically
switch it off.

• Preventing interruptions by, for example, blocking incoming communica-
tion requests in situations in which people are not bored, but focused.

Future investigations could focus on mapping out the numerous possibilities that
boredom or engagement detection can provide. Technology could help make
the best of these moments or attempt to intervene. In fact, we will come back
to this idea in chapter 6, where we will discuss delivering content in opportune
moments.
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3.4 Chapter Summary

In this Chapter, we investigated people’s attention in a technological context.
Attention is a crucial factor for effective information intake and digestion. There-
fore, we focused on how people attend to their mobile phones throughout the day
and whether we can detect usage patterns that reveal underlying cognitive states,
such as focus or boredom.

In a first step, we analyzed people’s attentiveness towards mobile messaging as
communication is one of the most prevalent mobile phone activities. Results
show that people are highly attentive to messages for more than 12 hours of the
day, which is most of the waking time. We further found that attentiveness is
higher during the week than on weekends, as well as during the evening hours.
Even when people are being found to be inattentive, they tend to return to an
attentive state within 1-5 minutes in the majority (75% quantile) of cases. Our
data shows that intelligent notification delivery, such as bounded deferral, is
thus applicable. On the one hand, holding back messages in inattentive states
prevents users from being interrupted from a current task at hand. And on the
other hand, there seem to be sufficient opportune moments, in which users bring
their attention back to the phone so that delayed delivery will not negatively
impact the handling of urgent messages. We base this insight on a classification
model we developed, which performed with almost 80% accuracy to reliably
predict users’ attentiveness from phone usage patterns, which confirms RQ1.

With incoming messages and notifications being external stimuli that try to grab
the user’s attention we were further interested in situations, in which people
pick up their phones to actively seek stimulation. Such moments stem from
internal triggers and may be characterized by a general susceptibility and desire
for targeted distractions. We found these situations being generally associated
with boredom. Hence, we investigated whether these specific states could be
detected based on phone usage patterns. We combined the logging of phone
usage data of 54 participants over the course of two weeks with the collection of
self-reports on momentary boredom levels. By training a Random Forest classifier
with data on 35 features related to phone usage we were able to predict bored vs.
non-bored user states with up to 82.9% accuracy, which allowed us to endorse
RQ2.

An analysis of the top 20 predictive features yielded that most phone usage
patterns were mostly related to recency of communication activities, phone usage
intensity, time of day, and demographic information. Hence, we found usage
characteristics that could be linked to users being in a bored or stimulus-seeking
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state. Table 3.3 summarizes the most indicative 20 features and therefore answers
the second part of RQ2.

There is a certain temptation to constantly refer to our mobile devices that connect
us with the pulse of available information. Whether it is a good idea to be
constantly connected, is the basis of broad discussions. Before electronic devices
became ubiquitous it was possible for us to disconnect from online information
spaces, but now we find ourselves being inevitably alerted by our devices. In
a previous study [232] we investigated the nature of notifications on mobile
phones and analyzed which types were highly valued or easily dismissed. We
found notifications related to messaging, people, and upcoming events to be
most appreciated. The resulting design guidelines advise developers on how
to balance the informing and disruptive nature of notifications. But even when
mobile devices remain silent, our studies show that people are drawn to check
various information sources in all kinds of situations. Whether this is considered a
bliss for productivity or the beginning of an unruly attention fragmentation makes
for a controversial debate. Our studies have shown that attention is literally not
scarce and people frequently check and re-check the information delivered by
their devices. Whether we can make positive use of this behavior and nudge users
towards more productive or mindful activities will be an interesting challenge for
future applications. “The cure to boredom is curiosity” –a quote by the American
writer Dorothy Parker- points toward an important function of boredom: boredom
is an innate indicator for a state, which is not sufficiently satisfying and therefore
nudges us to leap to action. Hence, boredom can urge us to initiate creative
processes and self-reflection [263].

In our attention economy, however, there is a commercial value in knowing when
people are receptive to stimulation. Pushing advertisements in situations where
users are willing to absorb their content, creates interesting business cases. Ad
networks could charge advertisers according to the recipients’ attention levels.
Users, on the other hand, might be more willing to skim through ads when
downtime occurs and might welcome the idea of being left alone when they are
focused on other things.

Engagement studies, such as our boredom study, show how attentional states
are linked to people’s current activities. Insights into when a person is bored
or focused can provide us with a better understanding of when people are more
productive and when downtime occurs. This can also be used to inform the design
of tools and interfaces to promote a better experience when mobile, but also in
the workplace. During highly focused states, for example, devices in the user’s
environment could be advised to prevent interruptions, unless they are of high
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priority or contribute to the current strand of work. An uninterrupted focus is cru-
cial for learning tasks as absent-mindedness is fatal for successfully committing
information to long-term memory. Proactive and situated recommendations could
advise users to engage with information optimizing for receptiveness.

Such systems could push the user to work on yet another todo-list item even
during idle times. They could also remind users to use these minutes to call up an
old friend. Or maybe, the device could recommend being switched off entirely.
Sometimes being with ourselves and with our innate thoughts might create the
kind of calm we need to escape our busy daily routines and re-charge our mental
capacities.
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Chapter4
Content-Awareness

In Chapter 3 we investigated to what extent users pay attention to their phones
and analyzed the context in which they seek stimulation through their devices. In
this Chapter we focus on the specific content people currently engage with and
how awareness of such content can be used to support information intake.

While people often seek out information on their mobile phones in parallel to
other activities, such behavior has become especially prevalent when watching
TV. Most of the so-called second-screen apps provide additional information and
services for a specific TV program and app content is mostly manually curated
by the program or app publishers. On the one hand manual content curation is
costly for publishers, and on the other hand dedicated apps need to be installed
before usage and leave the user with a fragmented app landscape. In this Chapter
we assess the feasibility of creating a single application that detects the current
content being watched and delivers automatically generated relevant information
to improve the TV experience in real-time. Thus, we eliminate the need for
manual content curation and users are no longer required to install a dedicated
app for each program or show. Therefore, we developed an extended entity
linking algorithm to extract important keywords from subtitle streams, which
we link to highly relevant Wikipedia articles and Google search results. These
automatically generated contents are then delivered through our second-screen
app called TVInsight (Fig. 4.1), which displays this additional information in a
context-sensitive way, namely in line with the program and program position
that is currently being watched. In a user study, we evaluated our system with
regard to its effects on the user’s TV experience, comprehension of the program’s
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Figure 4.1: TVInsight is a second-screen app that shows additional program
information by triggering web searches and Wikipedia look-ups in real-time
and in line with the current program being watched. Left: general program
information. Right: Wikipedia content according to people appearance.

content, and level of distraction as compared to conventional look-ups performed
on a second device.

In this chapter we address the following research question:

• RQ3: How can awareness of the content which the user is currently exposed
to be used to augment the user experience?

This chapter is based on the following publication:

• J. Knittel and T. Dingler. Mining subtitles for real-time content gen-
eration for second-screen applications. In Proceedings of the ACM
International Conference on Interactive Experiences for TV and Online
Video, TVX ’16, pages 93–103, New York, NY, USA, 2016. ACM
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4.1 Related Work

The work described in this chapter is generally rooted in the field of context-aware
computing, and more specifically related to research regarding second-screen
apps and entity linking.

Second-screen Apps

Some first guidelines for second-screen apps were formulated by Robertson et
al. [229] who introduced a system connecting a Personal Digital Assistant (PDA)
with a television device, where the TV was used more as an additional screen real
estate. Utilizing the hardware of each connected device creates synergy effects
that extend the experience of each device by itself. Cruickshank et al. [51] also
looked at using a PDA as a second-screen device for browsing the TV program
and changing channels.

In recent years a multitude of second-screen apps have commercially entered the
market. They provide additional content, invite users to participate in real-time
surveys, or comprise social features, such as social check-ins or sharing content.
The market is fragmented with numerous shows and channels offering their
proprietary second-screen app, mostly tailored to run on mobile devices. Geerts et
al. [108] found that a general second-screen app is preferable with regard to every
show providing its innate application while barriers to find additional program
information should be kept at a minimum. Second-screen content should not
solely mirror the program’s content, but provide additional information. Further,
the program progress should be taken into account.

By splitting functionality across devices the issue of diverting attention became
more prevalent. Fleury et al. [101] found that users generally appreciate second-
screen apps to draw their attention to additional content, but this should be done in
unobtrusive ways. Van Cauwenberge et al. [257] looked into media multitasking
and how using a search engine to answer questions while watching a documentary
affects comprehension. They found that the increased cognitive load by using
the search engine as a secondary task caused participants to not being able to
comprehensively recite the facts of the documentary and performed worse on
comprehension tests. A study by Google reported that 22% of second-screen
usage was complementary to the current program [115].

According to a survey conducted by Nandakumar et al. [195] about 27% of TV
show-related searches concern the characters and their relations, closely followed
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by searches about the plot with 23%. With a companion second screen prototype
they showed synchronized and context-sensitive information mainly about the
characters and found that this enhanced comprehension when used by first-time
viewers of a late-season episode.

Content Linking

To reduce distractions, attempts have been made to automatically detect the TV
program currently running in the background. Chuang et al. [46] developed
a smartphone app using audio fingerprinting to recognize the current show in
order to provide additional content by analyzing the video- and audio stream.
While most additional content is manually curated, especially for canned user
studies, Castillo et al. [41] presented an approach for automatically analyzing
subtitles to find relevant news articles for a news program as well as music
titles through mining song lyrics. Their algorithm was used in Yahoo!’s service
IntoNow which was discontinued in 2014. Additional content can further be
created by linking existing and relevant content together. Allan [7] formulated
the need for automated procedures to link paragraphs to relevant documents in
an automated way. Redondo et al. [226] performed named entity recognition on
subtitles for news broadcasts and used structured data from DBpedia to generate
a comprehensive set of relevant context items.

A comprehensive overview of common entity linking features was given by
Shen et al. [244] who came to the conclusion that most algorithms were highly
domain specific. Mihalecea et al. [53] presented a linking model integrating
Wikipedia articles. To increase recall and precision values, other works have
included PageRank values [178], the number of incoming links, or a combination
of different features and classifiers [96]. Odijk et al. [203] made specific use
of subtitles for linking Wikipedia articles by using a context graph based on the
dynamic assembly of anchor phrases. However, the analysis of their approach
was based on a curated set of well-defined topics but lacked an evaluation ’in the
wild’.

Subtitles are traditionally used to make content accessible to people with hearing
impairments. They have increasingly been subject to research focusing on word
frequency analysis [147, 154, 199] showing that subtitles approximate spoken
language. Hayati et al. [126] showed that displaying subtitles in foreign language
movies improves auditory comprehension when shown in native as well as in
foreign languages. Similarly, Mitterer et al. [189] found that subtitles in a foreign
language support language perception and strengthen vocabulary. Kovacs et
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al. [162] developed a video player for foreign language learners which enhanced
the traditional subtitles display by allowing users to jump back and forth through
the video by clicking on the corresponding subtitle. Brasel et al. [29] investigated
displaying advertisements in users’ native language with subtitles and their effects
on eye movements and recall showing that participants were able to recall more
of the advertisement brands shown. However, they also showed a negative effect
for recalling visual program elements.

Concluding, people seem to use a great number of apps and browser-based
strategies to look up information based on the TV program they currently watch.
But at this point, there is not a comprehensive solution proactively providing
relevant content across TV programs. Manual curation would be unfeasible,
which is why we focus on automated content generation techniques. By harvesting
the availability of subtitles we present an approach in this Chapter for an entity
linking algorithm for automatically generating additional program content. The
solution we propose is independent of any particular channel or show. It prevents
the user from having to download a variety of apps, but at the same time offers
highly topic-relevant content. By proactively retrieving content, users have the
information at their fingertips as they launch the app rather than having to actively
look for content. This reduces potential diversion from the actual TV program.
Limited distractions should benefit the TV experience—e.g., through immersion—
and improve content comprehension. Inspired by previous work in language
learning we explore learning scenarios as application cases for context-sensitive
second-screen apps.

4.2 Context-Aware Information Delivery

The ubiquity of mobile devices increasingly affects our TV experience. 90% of
smartphone owners use their mobile device while watching TV, about 50% of this
group browses the web while 30% use it for looking up additional information
about the show, topic, and people involved [200]. People often use a second
device, i.e., phone or tablet, for looking up keywords online and gather additional
information with relevance to the current TV program. In 2012 the PEW Research
Center assessed the parallel usage of second-screen devices while watching TV
and the relevance of that activity to the current program [245]: from almost 2000
participants, 22% used their cell phone to check facts mentioned in the program,
35% visited a related website, 20% looked up relevant social comments, and 19%
posted their own comments about the program they were watching. However, the
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process of looking up relevant information can be quite slow, cumbersome and is
error-prone; coming up with appropriate search keywords, getting the spelling
right, and individually evaluating each search result can be time-consuming and
requires mental effort, which diverts attention away from the current show.

The majority of commercial second-screen apps focus on one particular show
or program. These apps are often hosted by the TV station itself or by an
exclusive partner, so access to content is restricted to the particular app. Users
who follow more than one show end up with a fragmented collection of apps on
their devices. For content providers, on the other hand, curation can be expensive
while content can be extracted in an automated way by intelligently linking
existing resources together. Such an approach is cheaper and further allows
live-shows to be augmented with additional information.

An increasing number of TV stations broadcast subtitles alongside their program.
These subtitles bear great potential for content extraction algorithms since they
contain crucial information about topics and people involved. Such contents
can be used to augment the TV experience independent of the channel users
are watching. Additional information can be purely informative, but can also
be of educational use, especially while consuming foreign language shows, as
they are often watched with the goal of language acquisition. Castillo et al. [41],
for example, proposed a system that automatically analyzed subtitles to find
relevant news articles for a given news program. Most systems and studies,
however, are based on a very topic-specific domain, therefore limiting their
general applicability in a diverse TV program environment.

In the following we report on an online survey we conducted to gather user
requirements, the development of the application, and a final comprehensive
user study assessing the effects on users’ TV experience, comprehension of the
program’s content, and potential distractions compared to conventional look-ups
performed on a second device.

4.2.1 Survey on Device Usage during TV Shows

To elicit features for a second-screen app we conducted an online survey in
February of 2015 focusing on how people go about web searches while watching
TV. We set out to analyze what type of information are looked up, on which
devices and the timing of these searches. We were further interested in how
people took advantage of subtitles, how frequently they used them, why and for
which type of shows.
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Figure 4.2: Types of devices used for web searches and the timing of the
searches relative to the show watched.

We, therefore, set up an online survey using LimeSurvey10 running on one of
our university servers. After a brief explanation of the purpose of the survey
and granting consent for the data collection, participants were redirected to three
blocks of questions focusing on demographics, TV information search, and usage
of subtitles. The survey was announced through university mailing lists and
social networks. Over the course of two weeks, we recorded responses from 136
participants (60 females) with a mean age of 27 (SD = 8.4). 54% indicated to be
students while 41% were working professionals. 40% stated they watched TV
on daily basis, 88% at least once per week. Filling in the survey took less than 5
minutes.

Results

The data collected provides insights into how people search the web while watch-
ing TV as well as in what way they make use of subtitles.

Web Search

Of our survey participants, 19.9% stated they had looked up something online
related to a TV show in the last 24 hours, 58% within the last week, and 80%
within the last month. As to what they were searching for, 48.5% named people
that were mentioned in the program, 28.7% searched for a terminology or had
a specific question, and 10.3% looked up the current show’s topic. Figure 4.2
depicts the device types used during triggering searches and at which point in

10 http://limesurvey.org/
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time: most people used their Smartphone (42.6%) or Laptop/PC (41.9%) to look
up information, mostly while watching the show (56.6%). Figure 4.3 shows the
program types in which participants usually use web searches according to what
search category (terminology/question, people, topic) they look for. Participants
indicated to mostly search the web during TV shows (33.5%), movies (19.1%) and
documentaries (11.8%). Especially during shows and movies, people seem to look
up people, during documentaries, there is a tendency to look up terminologies.
As to where people end up when looking up such information, 61% indicated
Wikipedia as number one while 10.3% named movie portals, such as IMDb11,
and only about 3% end up on the direct website of the TV channel or program.
Most survey participants agreed that searches would not take too much time and
usually satisfied their information need.

Subtitle Usage

Direct usage of subtitles was rather uncommon among participants. In Germany,
where most survey participants resided, foreign media content is usually dubbed,
which might explain this practice. More than 40% indicated to have never or more
than a year ago made use of subtitles. 33% stated they had activated subtitles
within the last month, only 8.8% within the last 24 hours. Subtitles seemed
to be mostly used in movies (45.4%) and TV shows (38%), sometimes during
documentaries (9.3%). In 84% of the usage cases, the program watched contained
foreign language content, in 40% they were explicitly used for language learning
purposes, the same amount accounted for a better understanding of acoustics.

Discussion and Feature Elicitation

Many consumers use secondary devices while watching TV for looking up
additional program information mostly concerning people and the corresponding
topic. Smartphones and Laptops seem to be the preferred devices, which confirms
previous findings. The majority of web searches leads to Wikipedia where
additional information about people and topics is to be found. It makes sense then
to populate a second screen app with contents from or direct links to Wikipedia.
Participants noted that they often did not launch web searches due to not having
correctly heard a name or not knowing the wording of a topic. Thus, a second
screen app should be aware of the program context including content specifics
so that additional information can be provided as it becomes relevant to the
current program position. Not surprisingly, subtitles seem to be mainly used to

11 http://www.imdb.com/
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Figure 4.3: Types of shows according to search categories.
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support comprehension of foreign language content. As related research states,
subtitles often distract from the visuals. They do, however, provide important
content keywords, which can be used as a starting point for web searches. A
second-screen app can take advantage of the information contained in subtitles to
automatically collect and provide additional information in real-time.

4.2.2 System Overview

Based on the insights from the online survey, we designed and implemented the
second-screen app TVInsight. It provides additional information to the current
TV program independent from the type of program or channel. Therefore, it
needs to be aware of the current program context, i.e., its content, the position,
trigger automated web searches, and compile the resulting information into a
comprehensive and easily accessible second screen experience.

Content Generation

An increasing amount of TV programs are broadcast with subtitle streams to make
content accessible for people with hearing impairments. Our goal was to develop
an entity linking algorithm specifically designed for real-time analysis of subtitles
that works across a wide range of different TV-programs and genres. There are
publicly available subtitle databases, such as opensubtitles.org12, but they usually
focus on movies and TV series and miss out on popular TV-program formats,
such as live shows, chat shows, news broadcast, or documentaries. Hence, we
developed a software which directly receives data streams from a TV tuner to
decode and store subtitles broadcast via Teletext. Our system taps into cable TV
streams using a Digital Video Broadcasting - Cable (DVB-C) extension card. For
each transponder, the respective MPEG-2 transport stream multiplexes various
data, video, and audio streams. We decode the Teletext streams and filter out
packets containing subtitles. We further receive the Electronic Program Guide
(EPG), which our software uses to associate subtitles with the corresponding TV
program and store additional meta data.

Our software is written in C# and runs on a server which currently receives 30
TV channels. An admin interface (see Fig.4.4) shows current TV programs and
most recently extracted subtitles. Here we can also tune to different frequencies
or scan the transponder to list available channels.

12 https://www.opensubtitles.org

https://www.opensubtitles.org
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Figure 4.4: Admin view of the server software showing current TV programs
and most recently extracted subtitles.

We intended to train our algorithm on a broad spectrum of TV programs. Hence,
we let our server collect data over the course of four months, which resulted in
45.000 hours of programs with subtitles from 30 channels and a corpus of 136
million words in total. A word frequency analysis yielded about one million
unique words (no stemming applied) and more than 200.000 words that appeared
more than ten times. We focused on German channels, but similar corpora can be
created using channels in other languages.

Entity Linking

Entity Linking describes the process of retrieving and linking phrases to respective
counterparts in knowledge databases. We created an algorithm that continuously
analyzes incoming subtitles in real-time and finds corresponding content on
Wikipedia. To do this, we downloaded the publicly available german Wikipedia
content13 (˜14GB), from which we extracted the links between articles, cleared
out redundancies, extracted titles, definitions, images, and marked people entities.
We wrote the algorithm from scratch in C#. Our approach is made up of three
consecutive steps:

13 http://dumps.wikimedia.org/dewiki/latest
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1. Extracting Candidates

Similar to previous approaches like that of Odijk et al. [203], we used the col-
lection of anchor texts (the displayed text linked to a specific page) to extract
potential candidates. This step produced quite a number of candidates since
commonly used words like ’this’ and ’here’ are often used as anchor texts within
Wikipedia. On the other hand, anchor texts provide an extensive and high-quality
list of synonyms and variant spellings of the same topic. We used stop words to
immediately reduce the number of very unspecific candidates.

2. Selecting Target Page

For each candidate, there may be multiple possible destination pages. The page to
which the corresponding anchor text was most often linked to within Wikipedia,
was picked as the first-page candidate. In most cases, this was already the best
target page. Garcia et al. [96] achieved a combined accuracy of 75% on several
ambiguous data sets this way. To improve this, we took into account contextual
information: to determine the second page candidate we intersected the context
sets, comprised of the words of the first paragraph of the article on the one side,
and the most recent words in the subtitle stream (sliding window approach) on
the other side (ignoring stop words). The page whose intersection contained the
least common words was considered the second candidate (if applicable). We
used the word frequency of the generated subtitle or Wikipedia corpus, whichever
was higher, to determine the least common word. In case there was a second-page
candidate, a neural network decided which one was more relevant. To train the
network, we manually annotated a set of about 2000 items which were randomly
picked instances from our recorded set. Thus, we first extracted the candidates
from our vast subtitle database, selected those with two-page candidates, filtered
out very common anchor texts like ’this’, and manually annotated a subset of
randomly picked candidates.

3. Determining Candidates To Be Linked

For each candidate and its chosen target page, we used a second neural network to
decide whether an annotation between candidate and target site should take place.
As stated before, the number of candidates extracted in the first step was rather
large, thus, we had to narrow it down to items that were considered particularly
relevant to the respective scene. Again, to train the network we randomly picked
about 3500 candidates from our subtitle collection, performed the disambiguation
and manually marked the items that should be linked.
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Features

For the neural network classifiers, we elicited the following set of features based
on previous work by Odijk et al. [203] and Fernandez et al. [96]. We further added
some features to make the algorithm better suited for the analysis of subtitles.

• Word frequencies of anchor text and context intersection based on our
subtitle corpus and Wikipedia.

• Probability that anchor text is linked to this page.

• Probability that anchor text is an anchor within Wikipedia.

• Indegree: how often the page is being linked within Wikipedia.

• Outdegree: number of anchor links on the page.

• Is the TV program mentioned on the page?

• Is the anchor text equal to the page name?

• Does the first paragraph contain the anchor text?

• Similarity metrics between anchor text and page title as well as context
words and page title.

Performance

Our approach produced an in-memory directed word graph to efficiently extract
the candidates and retrieve target page candidates. The run time of the classifier
was negligible. Our implementation needed approximately 25GB of memory, but
processed subtitles extremely fast since the time complexity lied in approximately
O(1) per word. We optimized for performance rather than memory usage since
available memory was less of an issue running the system in a cloud environment.

Results

To the best of our knowledge, our approach is the first one based on a compre-
hensive dataset taken from subtitles of a great variety of TV program genres.
In contrast to previous work, we made heavy use of domain knowledge about
subtitles, including relative word frequencies of the subtitle corpus and meta
information about the corresponding TV program. Our approach for processing
subtitles outperformed the one by Odijk et al. [203] with precision= 0.79 and
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recall= 0.77 vs. R-Precision= 0.71. The reported precision and recall values
of our approach were the respective means of the 5-fold cross-validation runs.
Further limitations of Odijk et al. are the presentation of multiple possible desti-
nation sites rather than definite decisions and the fact that their training data is
solely based on manually annotated and topic-separated content from talkshows,
which generally limits the external validity of their approach.

The Second-Screen App: TVInsight

The purpose of the entity linking algorithm described is to provide relevant
Wikipedia articles based on an analysis of the current TV program’s subtitles.
The resulting articles are delivered through a second-screen app - which we
called TVInsight - with the goal of supporting web-based searches during TV
consumption. Therefore, we created a native Windows Phone 8.1 application
which proactively displays relevant content (see Figure 4.1.

The front-end contains four menu items where consumers can choose between
different categories of information (see Fig.4.1 and 4.5):

• Info: general information about the current TV program including channel,
program times and a short description (as provided by the EPG).

• People: Wikipedia articles regarding people entities including an article
preview and portrait picture. A tap opens the corresponding Wikipedia
page in a browser view.

• Wiki: topic-relevant Wikipedia articles including an article preview.

• Google: keyword suggestions relevant to the current program. A tap opens
up a browser view showing a list of corresponding Google results.

As subtitles are broadcast and received by our server, they are processed in real-
time and the generated content is timestamped. The keyword search suggestions
are based on the anchor texts of the detected annotations. Our goal is to offer a
feed of articles that convey a much richer and more content-focused experience
compared to traditional program information services (e.g. mobile EPG solutions),
since we extract people and topic entities from the program and not just from
official cast listings and shortened summaries. For synchronizing the app content
with the currently watched TV channel, Chuang et al. [46] proposed audio
fingerprinting. To ensure stable and equal conditions among all study sessions of
our study, however, we recorded the documentaries in advance and synchronized
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Figure 4.5: TVInsight shows Wikipedia articles relevant to the current TV
topic (left) and extracted keywords to launch a corresponding Google search
(right).

the video player with the app content according to the current viewing position
through the network connection. As incoming subtitles were processed in real-
time by the server, content was pushed out to the app synchronously.

Scenarios

Here we want to depict two scenarios showing how additional content delivered
through our second-screen app can be used to augment TV programs and the user
experience. By providing background information, the TV content shown can be
better put into context by the user. Such context helps to build mental associations
between new and existing information and increases the chance for long-term
retention. The following scenarios explore this idea with an educational purpose
in mind.
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Language Learning

Learning language vocabulary is very much topic-driven. The vocabulary re-
quired to go grocery shopping is different from the vocabulary of a geopolitical
discussion. An obvious extension of our second-screen app is using the keywords
extracted from subtitles of foreign TV shows to compile a word list that reflects
the topic of the show and can be used in-situ or post-hoc for studying.

General Knowledge Acquisition

The information need of regular TV consumers is pronounced [37, 200]. Results
from our online study also show that users often act on cues provided by the
TV program to trigger further searches. The conventional approach is to try to
remember, for example, the name of a person in order to start a web search at
some point bearing the risk of either forgetting to actually perform the search later
on or misspelling the keyword. Previous work showed an increased cognitive
load when search tasks were performed while watching, which made people miss
important information [257]. Our second-screen app based on automated keyword
extraction from subtitles allows us to retrieve and display or store important
entities for later look-up. While the app proactively triggers web searches and
retrieves, for example, relevant Wikipedia articles, contents displayed can be
bookmarked for later review while minimizing interruptions in the current TV
experience.

4.2.3 System Evaluation

To evaluate the utility of our approach and quantify the effects on consumers’ TV
experience, we conducted a user study in which we applied our entity linking
approach to automatically display relevant contents from Wikipedia in synchro-
nization with the current TV program. We were especially interested in objective
as well as subjective effects on program comprehension and the utility of a proac-
tive provision of additional content. In contrast to previous works we did not
manually select the content stream but used the actual output of our content
generation algorithm applied on an actual TV broadcast. We conducted this user
study with the following four hypotheses in mind:

• H1: Using TVInsight leads to better comprehension of the current pro-
gram’s contents based on objective assessments.
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• H2: Using TVInsight leads to better comprehension of the current pro-
gram’s contents based on subjective assessments.

• H3: Using TVInsight is less distracting than manually searching the web
using the Smartphone browser app.

• H4: Using TVInsight leads to a better user experience than using the
Smartphone browser app for look-ups.

To compare our approach we tested TVInsight against a baseline (no tools avail-
able) and the smartphone’s browser search capabilities. Participants were asked
to watch different documentaries while being able to use the available tools for
additional content retrieval.

Method

For this study we employed a repeated-measure design with the tool available for
web searches as the independent variable, which resulted in the following three
conditions:

• A: No tools available (baseline): participants watching a documentary
without a secondary device.

• B: Smartphone browser: participants were given a Smartphone with In-
ternet access and asked to use web searches as they saw fit to retrieve
additional information.

• C: TVInsight app: participants were given a Smartphone equipped with our
prototype and asked to use it as they saw fit.

To avoid learning effects between conditions we counterbalanced the sequence of
conditions between participant. Furthermore, the order of the documentaries, ad
breaks and questions were randomized to mitigate the influence of participants’
preferences and reduce learning effects.

In each condition, participants were asked to watch a documentary. As dependent
variables, we measured comprehension in the shape of multiple-choice ques-
tionnaires about the documentary content and applied a memory test up to a
week after the study. Comprehension questions were designed with regard to
testing literal (recalling what has been explicitly stated in the text) and inferential
comprehension (requires readers to understand relationships that are not explicitly
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stated in the text) [17]. Each test consisted of 15 questions with three levels
of difficulty: easy, intermediate, and advanced questions, which we asserted
during pilot studies. The memory test consisted of statements which required
simple true/false responses. Further, we collected subjective feedback through
a questionnaire after each study condition as well as through a semi-structured
interview at the end of the study.

Participants

We recruited 30 participants (9 female) with a mean age of 22.5 (SD = 4.0) years
through university mailing lists and social networks. From our participants, 93%
indicated German to be their first language, 76% reported to at least occasion-
ally watch TV. The total study took about an hour, for which we compensated
participants with 10 EUR.

Apparatus

During the study, all participants were seated in the same room in front of a
22-inch monitor connected to a notebook on which they watched the documen-
taries, answered the questionnaires and provided subjective feedback. Therefore,
we created a proprietary .NET program through which we made sure that the
allocation between documentaries, condition, and the viewing sequence was
counterbalanced. Questionnaires were directly applied to that same software. For
the app and browser condition, we handed out a Microsoft Lumia 640 on which
our TVInsight prototype was running as described above. The software further
took care of the time synchronization between the played documentary video and
delivering the content to the mobile app in real-time to avoid glitches and ensure
equally stable conditions for all participants.

Procedure

After participants signed the consent form, we explained the nature of the study
and sat them down in front of the screen where we collected basic demographic
information through an opening questionnaire. To give an idea of how the com-
prehension test will look like, three sample questions not related to the following
topics were shown. Before each condition we made sure participants could famil-
iarize themselves with the tool at hand and were instructed to use the tool as they
saw fit during the documentary in order to improve their comprehension score
later on. In each condition participants were asked to watch a 10 min documentary
in which we embedded two commercial breaks, 1 min each, in order to simulate
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Figure 4.6: Percentage of correctly answered comprehension questions,
segmented by condition and documentary.

a somewhat realistic TV experience. Ad blocks were equally spaced throughout
the documentary. The content of the ad breaks had nothing to do with the respec-
tive documentary and solely served as a time break for participants to use the
second-screen device. The documentaries were in German and included topics
about birds of prey, a recent naval accident, and about the history of a publishing
house. They all aired on the same TV channel several weeks ago. We made sure
that no participant had watched any of them before. At the end of a documentary
participants had a 30-second window to finish their current web or app search
before the comprehension test started. Comprehension questions were designed
solely based on the content of the respective documentaries and before the entity
linking algorithm was applied to generate the actual second-screen content. The
output of the algorithm was deliberately left unmodified to simulate a real-time
content extraction setting, thus, some of the articles and search suggestions were
evidently irrelevant. The content of the app was synchronized with the viewing
experience based on the display time of the respective subtitle lines. We did
not allow the use of the app or browser while filling in the comprehension test.
After each comprehension test participants were asked to provide a subjective
assessment of their comprehension and experience with the tool at hand in form of
a 5-point Likert-type scale as depicted in Figure 4.8. After having completed all
three condition blocks, we asked participants to provide feedback on the overall
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Figure 4.7: App and browser usage across time including advertisement
breaks.

experience, what they liked and didn’t like about the TVinsight App and for which
types of programs they could imagine using it. After seven to eight days time we
called participants via phone to answer 18 quick questions taken from the pool of
comprehension test questions, but this time the questions were transformed into
true/false statements.

Results

Figure 4.8: Subjective assessment after each condition in form of 5-scale
Likert-type scales with I totally agree on the left and I don’t agree on the
right. The orange color depicts the median, yellow the interquatile area.

The selected documentaries contained a mean number of 839 words (SD = 54),
from which our entity linking algorithm extracted a total of 67 (M = 22.3,SD =
2.5) relevant and 9 (M = 3,SD = 1) irrelevant Wikipedia articles, resulting in a
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88.2% hit rate. The Benjamini-Hochberg procedure [134] was applied with a
false discovery rate level of 0.05 to account for multiple testing.

Device Usage

Figure 4.7 shows the usage of both smartphone browser and TVInsight app
split in content blocks, ad breaks, and post-documentary searches across all
documentaries. TVinsight was used continuously more often than the browser
(c2 = 25.7, p< 0.001, Pearson’s chi-squared test) which is statistically significant.
During ad breaks the usage of the TVinsight app is significantly more pronounced
than during the documentary (c2 = 7.1, p < 0.01, Pearson’s chi-squared test),
the same holds for using the browser. Participants used TVInsight in 97% of ad
breaks whereas only 80% used the browser during the first ad and 60% during
the second.

Comprehension Scores

Figure 4.6 gives a detailed overview of the comprehension scores for each condi-
tion and documentary. Using the TVInsight app results in a statistically significant
decrease in performance on the comprehension tests compared to no device
usage (t = 3.05, p < 0.003, paired Student’s t test) and to using the browser
(t = 2.57, p < 0.008). Using the browser had no impact on the test scores com-
pared to the baseline. Looking at the results by documentary, participants did not
differ significantly between the three conditions, whereas the scores of the app
users dropped significantly on the other two conditions.

Subjective Feedback

Figure 4.8 lists the results of the Likert-scale statements with participants’ sub-
jective feedback with regard to the tool available (Browser or TVInsight). When
using TVInsight participants reported a better subjective comprehension of the
program content than when using the smartphone’s browser for searches. This
difference was statistically significant (Mann-Whitney U = 679, p < 0.001). As
with regard to ease of use, the app was rated significantly better than using the
browser (Mann-Whitney U = 782, p < 0.001). Perceived distraction was sig-
nificantly higher when using TVInsight than when the browser (Mann-Whitney
U = 829, p < 0.001). When asked at the end of the study which tool (or no tool
at all) they preferred for being able to answer the comprehension questions, 40%
chose TVInsight and just 7% the browser.
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Memory Test

Most participants left us their phone number with a preferred timeslot for being
called for the final memory test a week after the study. We reached 20 out of
30 participants. The percentage of correctly answered questions on the baseline
condition dropped from 78% to 73% compared to a slight increase from 64% to
66% on condition C (TVinsight app). However, neither change in the memory
scores was statistically significant.

Qualitative Assessment

Overall, participants agreed that using real-time look-ups contributes to the user
experience while watching TV. Especially the mechanism of delivering content
right in time when the respective topic or person was mentioned on the program
was positively mentioned in the interviews by 9 participants, while 6 explicitly
stated they liked that the app ”allows for quick results/access”. The majority
rated the app content as informative and well fitting, only 7% disagreed. The
user interface was described by 12 participants as ”clearly structured” and

“easy to use”. “Inappropriate topics” and “too few people entities” were the
most common negative remarks made about the content. As things to improve
participants mentioned a stronger integration of contents with regard to the Google
search keywords. Instead of routing the user to the external browser application,
search results should be directly integrated into the app, similar to the Wikipedia
articles. Also, there is room for improvement with regard to personalization,
e.g., through dynamic bookmarks or a customizable entity menu. As to which
types of programs participants could imagine TVInsight to be especially useful,
documentaries were mentioned 21 times, quiz shows or news 8 times respectively,
sports 4 times, and movies and entertainment 3 times. Rather inappropriate TV
formats would be movies (mentioned 15 times), entertainment shows (3) or TV
series (2).

4.2.4 Discussion

Due to the size of our data corpus and our extended entity linking approach,
articles extracted from Wikipedia were relevant, which our hit rate of 88% con-
firmed. Also, participants overwhelmingly stated that articles were a good fit
for the documentaries. Further, the real-time aspect of proactively showing ad-
ditional content with the current program was well received, which created an
overall positive TV experience when using TVInsight. Also, the content of the
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documentary turned out to be more relevant in order to answer the comprehension
questions. Compared to traditional web searches with the smartphone browser,
our second-screen app scored higher both in objective usage measure, but also in
subjective ratings.

The extent of how to use the available tools, however, was up to participants in
order to self-select an optimal strategy for multitasking. This lead to an imbalance
between the browser and app usage with our app ending up being much more
frequently used. Some participants barely used the browser for web searches
which is why there are few measured differences between the use of no tools and
the browser. One reason for rejecting the browser may be the fact that search
keywords need to be formulated by the user whereas TVInsight continuously
presented new keywords along with the current program. Hence, extended usage
of TVInsight also took effect in the comprehension scores, which is why we need
to reject our first hypothesis (H1). The objective comprehension scores, therefore,
confirm the distracting nature of second-screen applications.

TVInsight was perceived as more distracting than the browser. However, this does
not allow us to fully reject H3, especially due to the relative imbalance between
app and browser usage. When there is no need to actively type and search for
keywords, more time is spent in browsing available contents. Furthermore, users
were not alerted to new second-screen content, it just appeared. Neate et al. [197]
found that users would like to be actively notified of new content, preferably with
an auditory icon or visual indicator on the TV itself. However, both methods are
not feasible for independent second-screen apps with automatically generated
content. The extensive usage may also be due to some novelty effect, which
causes the app to be more appealing than the actual documentary. Long-term
studies in real-world scenarios will be able to give more insights into the nature
of distraction.

Since there was a tendency of increasing subjective comprehension of the TV
content through our TVInsight app, we were able to find evidence in favor of
H2. This is certainly a reason why many participants found the app was helpful
for completing the comprehension test. The well-received app usability and the
positive feedback regarding the real-time feature of proactively pushing additional
content to the second-screen benefited the overall user experience, which allows
us to confirm H4; the content relevance and the notion of real-time delivery of
additional content lead to a better user experience than using the smartphone
browser for look-ups.

We performed the study on documentaries since they are a natural fit to observe
learning effects from an educational standpoint. It should be noted, however, that
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our content extraction algorithm was not specifically optimized for documentaries.
Rather, the training set was sourced from a variety of different program genres.
Hence, it is reasonable to assume that the participants’ ratings and opinions
towards the displayed information generalize to other types of programs.

The perceived distraction varied greatly which suggests that the capacity to
multitask strongly depended on the individual. Hence, users should be in control
of adjusting information density and focus.

While many participants criticized irrelevant content, there was hardly any com-
ment about missing topics. This indicates that precision is more important than
recall when evaluating content retrieval algorithms for second screen use cases.

We were not able to detect any statistically significant differences between condi-
tions with regard to the memory scores, but users of TVInsight tended to perform
equally well in the direct comprehension tests and the memory test a week later.
Participants using the browser or no tool at all, on the other hand, tended to
perform worse in the memory than in the comprehension test. Further studies
will need to be conducted to assess the long-term utility of TVInsight, especially
when equipped with bookmarking features, where users could save or even share
content as they watch it. We are further in the process of developing TVInsight
with another focus on integrating audio fingerprinting for automatic channel
recognition. This feature will be vital before further studies in the large can be
conducted by releasing TVInsight on mobile app stores.

Concluding, based on insights from our study we derived the following five design
guidelines for context-aware second-screen applications:

1. Synchronization: second-screen content should be sensitive to the current
program context and be delivered in real-time.

2. Bookmarks: in order to strengthen memory and support learning scenarios,
users should be given the chance to save content for later retrieval. The
real-time aspect allows users to bookmark content while watching rather
than pushing it to later where it is potentially already forgotten.

3. Less is more: too much information distracts users, which is why a second-
screen app user interface should be clearly structured with a focus on
essential information, but with the option to have users look for deeper
content if they so wish.

4. Precision > Recall: irrelevant content distracts users and harms the overall
user experience more than possibly missing information.
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5. Personalization: the need for information and the capacity to multitask
strongly depend on the individual. Hence, users should be in control of
adjusting information density and focus.

4.2.5 Study Conclusion

Second-screen apps have become increasingly popular in recent years. Instead of
requiring users to install numerous different apps tailored to each of their favorite
TV shows, we proposed a context-sensitive second-screen app that creates addi-
tional content automatically by linking existing resources and pushing that content
to the user in real-time when it is most relevant. We, therefore, described an entity
linking algorithm that extracts keywords from live subtitles and uses Wikipedia
to provide additional program information. Having built a large database with
data from 30 TV stations over the course of four months, we were able to ex-
tract particularly relevant content. The utility of the prototype was confirmed in
our user study where we investigated its effect on user experience and content
comprehension. The resulting insights can be used by app developers to create
second-screen apps that take advantage of existing content resources, and bear the
potential to keep user distraction at a minimum by proactively providing content
in a context-sensitive way. By expanding the number of TV stations recorded by
the server the subtitle corpus can be refined in order to improve the entity linking
and therefore the relevancy of the provided contents. Additional resources, such
as social network chatter, historical archives, current news articles, or product
databases can further be linked to provide users with a holistic second-screen
experience.

Our prototype shows the feasibility of a technology that picks up contextual
clues from the environment and augments the user’s current experience with
relevant information. We believe such techniques could be used to augment not
only TV experiences, but also lectures, meetings, and conversations, wherever
technology can access real-time audio or another type of content stream in order
to trigger contextual queries. The study described in this chapter focused on
external context, i.e., information from the environment, in order to support
information intake. Another way of thinking about context is taking into account
the user’s internal processes. In Chapter 3 we already discussed how attention
can be tracked and predicted in a technology context. In the next section, we
describe our approach to go one step further and investigate how technology can
detect and make use of users’ cognitive states. By considering both external (e.g.,
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content options) and internal (e.g., receptiveness) context, technology can help
bring the two together and optimize for efficient information intake.

4.3 Chapter Summary

In this chapter we investigated the use of knowledge about the content, which
the user is currently engaged with, to support people absorbing information.
Awareness of the content at the time of exposure allows systems to provide
relevant services. Our motivation was to investigate whether providing additional
background information helps people put content better into context. Such
context linking allows users to create mental associations between existing and
new information, which increases the probability for long-term retention.

We set out to test our assumption by developing a system for augmenting the
TV experience. While watching TV people often turn towards so-called second-
screen applications to look up additional information about the current program.
By making use of subtitles our system extracts keywords through an advanced
entity linking algorithm. These keywords are then linked to additional online
resources, such as relevant articles on Wikipedia, which are sent to and displayed
by a corresponding mobile app. We assessed the utility of using such an app
in a lab study. With 88% of the automatically generated content being highly
relevant, our entity linking algorithm outperformed previous approaches. Besides
using neural networks for linking entities such performance was due to the high
volume corpus of 45,000 hours of TV shows which we collected over the course
of four months. The lab study yielded effects on user experience and content
comprehension, which demonstrates the feasibility of using content awareness as
a context dimension to enhance information intake (RQ3). We derived a set of
guidelines that can be used to build context-sensitive second-screen apps, whose
applicability is not necessarily limited to the special use case of TV consumption.
Real-time synchronization between content displayed, bookmarking capabilities,
and taking into account user preferences can help users create content associations
beyond what is displayed on a primary device. By providing additional services
in line with the content that users momentarily engage with, the research probe
we developed serves as an example of technologies that exhibit context- and
content-awareness.



Chapter5
Cognition-Awareness

So far we have investigated users’ context with regard to attentiveness towards
their mobile phones and to the content, they currently engage with. While such
factors allow us to infer information about people’s cognitive states at the time,
there are other aspects that influence cognitive performance. People’s alertness,
attention, and vigilance are highly variable and subject to systematic changes
across the day. These fluctuations—in part caused by circadian rhythms—impact
higher level cognitive capacities, such as perception, memory, and executive
functions.

In this Chapter, we investigate ways to measure these rhythms and introduce the
notion of considering the user’s cognitive states as part of the context. Cognition-
aware systems detect different aspects of mental information processing, such
as engagement, cognitive load, memory, knowledge, and learning [36]. For ef-
fective information intake, the cognitive state of the user is crucial. Whether
information is effectively processed and retained long-term or whether it is barely
brought to the user’s attention highly depends on the user’s current capability to
focus [234]. By identifying productive phases during the day, cognition-aware
systems can suggest times of the day to engage with information consumption.
Awareness of cognitive states can further be used for task scheduling to sup-
port work rhythms [21], preventing interruptions [138, 180], and inducing flow
states [52].

Typical methods that extract patterns from diurnal fluctuations in alertness levels
are time-intensive and take place in artificial lab settings. For less intrusive
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and time-consuming elicitation of these patterns, we created a toolkit that can
be deployed on mobile devices. In this Chapter, we present a study, in which
we elicit users’ circadian rhythm of alertness. To allow researchers and system
builders to create cognition-aware systems we released the toolkit as open source
library, that can be integrated into existing applications and games.

Patterns of alertness levels across the day provide systems with a general aware-
ness of diurnal fluctuations of users’ cognitive capacities. These patterns can be
combined with information about the momentary cognitive state based on the
current user context. In the second part of this Chapter, we present a conceptual
framework for building algorithms that detect users’ momentary states. The
framework is derived from our approach to detect bored states (Section 3.3), but
allows for more general applicability.

In this Chapter, we address the following research question:

• RQ4: How can technology be used to elicit the user’s circadian rhythm of
attention and cognitive performance?

Parts of this chapter are based on the following (pending) publications:

• T. Dingler, A. Schmidt, and T. Machulla. Building cognition-aware
systems: A mobile toolkit for extracting time-of-day fluctuations of
cognitive performance. volume 1, pages 47:1–47:15, New York, NY,
USA, Sept. 2017. ACM

• T. Dingler. Cognition-aware systems as mobile personal assistants. In
ACM, editor, Adjunct Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing and Proceedings
of the 2015 ACM International Symposium on Wearable Computers,
UbiComp/ISWC ’15 Adjunct, New York, NY, USA, 2016. ACM

5.1 Related Work

While an in-depth introduction to cognition-aware systems can be found in
Section 2.5, this Chapter more specifically refers to related work in sleep/wake
regulation and circadian rhythm elicitation.
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Human cognitive performance is affected by sleep-wake homeostatic and by an
internal circadian rhythm. Kleitman [156] was among the first to establish a
link between cognitive performance, chronobiology, and sleep. He found speed
and accuracy of cognitive performance to follow diurnal variations with highest
performances in the afternoon and poorest in the early morning. In later studies,
he noticed that performance is dependent on body temperature [158].

Traditional methods to assess the circadian rhythm include extensive lab experi-
ments, which can take weeks of being in controlled environments. Other methods
can be equally cumbersome or even unpleasant, such as sleep-wake protocols or
physiological markers (e.g., dim light melatonin onset, rectal temperature moni-
toring, cortisol level measurements [135, 158]). To measure people’s alertness
level in a less invasive way, the psychomotor vigilance task (PVT) has been
proposed [67]. It measures the simple reaction time to a visual stimulus. In its
original version, the task lasts ten minutes and is thus a test of vigilance (the
ability to sustain attention over time) as much as a test of psychomotor speed.
During the task a visual stimulus is presented randomly every two to six seconds.
While the original experiment setup uses a physical button [67] to provide a
response, an implementation for touchscreens using the touch down event has
been proposed by Kay et al. [152].

Abdullah et al. [2] recently demonstrated the general feasibility of using PVT
in-the-wild to measure diurnal alertness fluctuations. They showed alertness
fluctuations by harvesting mobile phone data with influencing factors being time,
body clock type, sleep, and caffeine intake. Murnane et al. [192] correlated these
same fluctuations with mobile app usage patterns.

To the best of our knowledge, our current work is the first to provide a robust
statistical model that specifies the contribution of time-of-day to different perfor-
mance measures and relates the measured fluctuations in alertness to prevalent
theories of sleep/wake regulation. We investigate an in-the-wild approach to elicit
performance variations based on three quick tasks performed on users’ smart-
phones, with which we aim to eliminate the need for extensive time and resources
spent on sleep labs studies or artificial tasks. By having created and released
a toolkit we allow measurements of cognitive performance to be included in a
wide range of applications and games, which allows researchers and application
builders to add cognition-awareness to their systems.
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5.2 Eliciting the Circadian Rhythm of Alert-
ness

To extract patterns of diurnal alertness fluctuations, we created and validated a
test battery that can be deployed on mobile devices. It consists of three sustained
attention tasks as described below (see Figure 5.1). To validate this test battery,
we built an Android app (Android version 4.1 or higher) that administers the tasks
as well as a number of short questionnaires concerning the users’ demographics,
sleep, and alertness self-assessment. The app prompts the user at random times
during the day through notifications to complete the test battery. The time between
task reminders is between 60 and 90 minutes. To respect sleep times notifications
are only scheduled between 8 am and 9 pm. We included a logging mechanism
that saves measurements locally on the device and transmits the logs to a remote
server when a WIFI connection is available.

We selected three tasks for inclusion into the toolkit - a psychomotor vigilance
task (PVT), a go/no-go task (GNG), and a multiple object tracking task (MOT).
We wanted to assess the tasks for their utility as quick measurement tools that
cause as little interruption to users’ daily routine as possible. We, therefore,
limited the first two tasks to about one minute each and the MOT to two minutes.
The PVT is the gold standard for assessing alertness levels. It measures the
simple reaction time to a visual stimulus. In its original version, the task lasts
ten minutes and is thus a test of vigilance (the ability to sustain attention over
time) as much as a test of psychomotor speed [67]. During the task a visual
stimulus is presented randomly every 2 to 6 seconds (see Figure 5.1, left). While
the original experiment setup uses a physical button [67] to provide a response,
our touchscreen implementation uses the touch down event as proposed by Kay
et al. [152]. The GNG task falls into the class of choice reaction time paradigms.
It uses two or more distinguishable stimuli, each associated with a unique answer
option - in our case, a plain green circle, for which the participant needs to perform
a speeded touch down gesture (”go” trial) and a patterned circle, for which this
behavior needs to be inhibited (”no-go” trial, shown in Figure 5.1, middle).
Hence, this task measures reaction time, as well as executive functioning. In our
implementation, we use between 8 and 12 stimuli, approximately half of which
are no-go stimuli, appearing at random intervals of 1 to 8 seconds. If ignored,
stimuli are shown for a maximum of three seconds. The MOT is a strenuous
sustained attention task that requires participants to divide their attention across
multiple moving objects [219]. In our implementation, eight blue circles are
shown. A subset of four target circles briefly flashes to indicate the objects to be
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Figure 5.1: Our toolkit comprises three tasks to measure alertness and cogni-
tive performance variations across the day: a Psychomotoric Vigilance Task
(left), a Go/No-Go task (middle), and a Multiple Object Tracking task (right).

tracked (see Figure 5.1, right). Then, all circles start moving in random, but linear
directions. After ten seconds the circles stop and the test person has to identify
the target circles. The task is repeated five times, the performance measure is the
number of correctly identified targets.

We released the app and the contained toolkit library under an open source license
on Github14. By including it in their source code, application builders can register
their application to collect performance measurements. These can either be
provided by their own application (i.e., reaction times in games) or, alternatively,
one of the toolkit tasks can be triggered to collect these measurements over time.
Their application can further request the user’s current performance state. If the
application has already collected enough measurements (usually across a week),
an individual assessment of the user’s performance is returned. As long as there
are not sufficient data points available to derive a robust individual model of the
user’s performance fluctuations, the library returns a generic version model (as
described in this paper) adapted to the user’s current timezone.

14 https://github.com/til-d/circog

https://github.com/til-d/circog
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5.2.1 User Study

We conducted a user study to validate the effectiveness of the three attention tasks
regarding their ability to measure systematic fluctuations in alertness within a
short duration of time. Since our goal was to measure fluctuations across the day
we opted for an in-the-wild study, where participants were asked to perform the
aforementioned tasks in their daily context. As dependent variables, we collected
task performances together with the time of day when the tasks were completed,
subjective sleep and alertness assessments, and task preferences.

Procedure

We recruited 12 participants (4 female, mean age: 24 (SD = 2.67)) through
university mailing lists. All participants were briefed about the purpose of the
study and provided informed consent. The task order was randomized each time
the app was opened. A service kept running in the background that managed
the posting of notifications to remind users to perform the task sequences from
time to time, up to six times a day. The prompts were shown in the notification
drawer until clicked or dismissed. A click on the notification launched the task
sequence. Before the first task sequence of the day, a survey was shown with
questions about the user’s wake-up time, the number of hours slept and rated the
quality of sleep (1=poor, 5=very good). Each task sequence was preceded by a
short self-assessment regarding “How alert are you feeling right now?” (1=super
sleepy, 5=super alert) and a checkbox labeled “I had a caffeinated drink within
the last hour”. The study ran for a total of 14 days; participants were free to
start at any time by installing the app and completing the tasks for at least seven
days. We awarded 50 cents for each task sequence completed at a maximum of
six sequences per day, resulting in up to 42 EUR. At the end of the study, we sent
out a questionnaire to assess participants’ subjective impressions of the different
task types. For each task, we collected Likert-style feedback on participants’
evaluation of task difficulty, exhaustion, and fun.

Results

In the following, we analyze each task according to its effectiveness to measure
systematic changes in cognitive performance across the day. We further provide
an assessment of the influence of caffeine, sleep and the accuracy of participants’
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self-assessments, where applicable. On average, participants performed the tasks
on nine days (SD = 3.9) with a minimum of 2 and a maximum of 13 days,
resulting in a total of 367 PVT, 364 GNG, and 367 MOT tasks. We removed
incomplete tasks and data points, for which the subjective alertness rating was
missing.

We examined all performance measures for the influence of the sleep/wake
homeostatic and the circadian process. The homeostatic process should manifest
itself in a performance deterioration with time spent awake. For instance, simple
reaction times in the PVT should increase throughout the day. Therefore, we first
examined the data for a linear trend over time. Trend analysis was performed
by fitting a linear mixed model to the raw data with the measure of interest as
the dependent variable and the fixed factors time of measurement, self-rated
alertness, consumption of a caffeinated drink in the previous hour, sleep duration,
and self-rated sleep quality as well as the random factor subject. p-values were
obtained by using a likelihood ratio test of the full model against a null model
without the fixed effect of interest. If this comparison was non-significant, the
fixed effect was excluded from further analysis. We did not find any significant
interaction effects between the studied factors.

If a linear trend of time was found, it was removed from the data before further
analysis. In a next step, we looked for variations in performance due to the
circadian process. The circadian process should result in non-linear variations of
cognitive performance across the day. For instance, performance should decline
in the early afternoon and improve towards the early evening. For this analysis,
we fitted a second linear mixed model with the ordered categorical predictor
variable hour of the day as a fixed factor and subject as a random factor. For
each fit, we report the results of an omnibus test (Analysis of Variance (ANOVA);
indicates whether performance differs between any two-hour slots of the day)
as well as contrasts between successive hours (indicate whether performance
changes between hour x and hour x + 1). The level of significance was adjusted
for multiple comparisons using the Holm-Bonferroni procedure. In the following,
we first report the influence of time/hour of day on the different measures of
performance, followed by an analysis of the influence of the control variables.

Variability of Performance Measures across the Day

Psychomotoric Vigilance Task (PVT). Figure 5.2 shows average reactions times
(Reaction Time (RT)) as a function of time. We find that participants’ RT increase
by 1.9 ms (± 0.7) per hour of day (time: c2(1) = 6.7, p = 0.009), a performance
deterioration reflecting the homeostatic process. After this linear relationship
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Figure 5.2: Performance variations across the day in blue: mean reaction
times from the Psychomotor Vigilance Task (PVT). Error bars indicate the
standard error of the mean. The red line depicts a linear fit to the data.
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Figure 5.3: Mean false alarm ratio from the the Go/No-Go (GNG)task.
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Figure 5.4: Percentage of correctly identified targets from the Multiple
Object Tracking (MOT) task.

is removed from the data, we find a significant effect of hour (F(16,3175.3) =
1.8, p = 0.016), indicating that there are further differences in RT performance
across the day. In particular, there is a significant increase of 54 ms from 1 to
2 pm (t(3173.6) = 3.3, p < 0.001). Mean RT are highest just after 2 pm and
lowest after 10 pm (399 ms vs. 316 ms). This agrees with previous reports
regarding a post-lunch dip in alertness and performance [259] as well as reports
of improved performance towards the evening in younger adults (which our
sample predominately consists of).

We further find that consuming a caffeinated drink decreased RT on average
by 17.6 ms (± 13.7 ms; c2(1) = 10.8, p = 0.001) and that subjective alertness
ratings are a significant predictor of PVT RT: RT decreases by 10.4 ms (± 4) per
level of alertness rating (c2(1) = 5.8, p = 0.015).

Go/No-Go-Task (GNG). For the GNG task we analyzed RT as well as false
alarm rates. False alarms are ”go” responses to ”no-go” stimuli. Both indices
show a pattern similar to the PVT RT. Figure 5.3 shows the average false alarm
(False Alarm (FA)) rate across the day. For the RT, there is a linear increase of
0.8 ms/hour throughout the day, resulting in an overall difference of about 13 ms
across a typical period awake. Additionally, there is a pronounced deterioration
of performance in the early afternoon. However, in contrast to the PVT, neither
the linear increase in RT is significant (c2(1) = 0.6, p = 0.44) nor are there any
significant differences in performance between consecutive hours.
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A possible reason for this finding is that the GNG task is subject to speed-accuracy
trade-offs. When participants are compromised in their alertness, they may either
decrease their reaction speed or compensate by keeping the same level of reactivity
but concede to making more false positive decisions – that is, reacting to non-
target stimuli. To test this hypothesis, we performed a linear mixed effect model
analysis with RT as the dependent variable and false positive rate as a fixed and
subject as a random factor. We find strong indication of a speed-accuracy trade-
off: as the false positive rate increases from 0 to 1, RT decreases by 129.6 ms
(c2(1) = 9.6, p = 0.002). Further, we find that participants become increasingly
likely to make a FA as the day progresses (c2(1) = 4.3, p = 0.038, FA increase
by 3% (± 2%) per hour of day). This reflects increasing impulsivity, that is, a
failure to inhibit wrong responses.

Fluctuations in the FA rate can result from changes in perceptual sensitivity or
from adjustments in participants’ answer patterns. To distinguish between these
two possibilities, we analyzed the data using signal detection theory [117], which
allows for the joined analysis of RT and the false positive rate in terms of two
measures: d-prime and criterion. d-prime measures sensitivity. It indicates how
well an observer discriminates between signal and noise (in our case, between
target and non-target stimuli). The criterion is a measure of response bias, or in
other words, the tendency to react over the tendency to not react. It is important
to note that a change in criterion is a purely behavioral adjustment with no
concomitant perceptual change.

Our analysis reveals that participants’ response tendency does not change sig-
nificantly over the day - neither is there a linear shift in criterion (c2(1) =
2.3, p = 0.129) nor does the criterion change within successive hours. How-
ever, we find that sensitivity varies: d-prime decreases by 0.015 per hour of day
(c2(1) = 4.2, p = 0.04). This means that participants loose in their ability to
discriminate between stimuli as homeostatic sleep pressure accumulates.

Multiple Object Tracking (MOT). Figure 5.4 shows the average proportion of
missed targets. We find no evidence for performance to worsen linearly through-
out the day (c2(1) = 0.01, p = 0.91). However, we find significant differences
between successive hour bins. In particular, there is a significant improvement in
performance between 3 and 4 pm (z(365) = �4.1, p < 0.001) just after perfor-
mance had reached its daily low, when 25.6% (±16.6%) of targets are misidenti-
fied. Performance is best in the morning at 8 am, when only 12.9% of the targets
are misidentified.
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Table 5.1: Subjective user ratings in 7 point likert-style: 0 = totally disagree,
6 = completely agree (median values with SD)

Subjective Feedback

For evaluating participants’ subjective assessments of the tasks regarding diffi-
culty, exhaustion, and fun (0 = totally disagree, 6 = completely agree) we applied
Friedman tests with post-hoc analyses using Wilcoxon signed-rank tests with a
Bonferroni-corrected significance level set at p < 0.017.

Table 5.1 gives an overview of participants’ subjective feedback. There was a sta-
tistically significant difference in perceived task difficulty (c2 = 10.7, p= 0.005)
with MOT (Mdn = 3.5,SD = 1.71) being rated more difficult than PVT (Mdn =
1,SD = 0.79,Z = �2.68, p = 0.007). With regard to perceived exhaustion,
we found a statistically significant difference (c2 = 6.9, p = 0.032) with MOT
(Mdn= 3,SD= 1.8) being rated as more exhausting than PVT (Mdn= 1.5,SD=
0.7,Z = �2.413, p = 0.016). As to which task was the most fun to complete
we did not find any statistically significant difference (c2 = 5.243, p = 0.073),
but MOT reached the highest rating (Mdn = 5,SD = 2.49). 90% of participants
explicitly stated to prefer the MOT task (GNG: 10%, PVT: 0%).

5.2.2 Discussion

Our validation study shows the tasks’ feasibility to extract circadian fluctuations
and a homeostatic decrease in performance across the day. To be as unobtrusive
as possible we limited all tasks to 1-2 minutes in duration, which at the same
time limited the amount of data collected. Nevertheless, using the PVT we found
both effects, while the GNG showed a linear decrease in performance and the
MOT resulted in circadian variations. As alertness decreases we find slower
processing speed in the PVT, the GNG shows poor target discrimination and
decreased response inhibition as evident in impulsive responding, and the MOT
shows a decrease in the ability to divide attention across space. We confirm that
PVT is most economical as it provides the most data in the shortest time. It
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is, however, subjectively rated worst, likely due to its monotonous and simple
nature. Adding GNG and MOT to our toolkit provides a more holistic assessment
of cognitive performance. They extend simple alertness assessments by adding
higher cognitive functions (such as executive control and divided attention).
Subjectively, participants preferred MOT and GNG as they are perceived to be
more challenging. In contrast to the PVT, their nature allows them to be adapted
in terms of their difficulty and the challenge they pose to the user. This makes
them attractive to be integrated into applications and even games. Their metrics
(hit/miss and reaction time) can be obtained through a variety of mechanisms, such
as game performance or typing behavior. Integration of such metric collection
in other applications will allow us to build implicit, cognition-aware systems,
where explicit measurement that requires users to interrupt ongoing activities may
become obsolete.

5.2.3 Study Conclusion

We developed a mobile toolkit for assessing alertness and cognitive performance
of users by using a combination of three tasks. The toolkit allows those tasks
to be performed in-the-wild and effectively extracts circadian fluctuations and a
homeostatic decrease in performance across the day. We show that with a small
dataset and with the sensitive statistical methods we applied we can reconstruct
users’ circadian rhythm of alertness and cognitive performance. We released the
toolkit as an open source library to allow researchers in psychology and medicine,
as well as application builders, to create cognition-aware systems. Systems that
are aware of users’ performance rhythms can adapt interface complexity and
information bandwidth to match the user’s current state. Due to the task variety,
similar metrics can be collected in games and applications and therefore make
data collection even less obtrusive.

In future work, we are planning on collecting phone usage data along with
cognitive alertness metrics. Using the performance assessments as ground truth
we can train models that predict the user’s alertness based on the individual’s
circadian rhythms. In the last part of this Chapter, we will present and discuss a
framework for obtaining cognitive states and building machine-learning models
to predict those states in-situ.
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5.3 A Conceptual Framework to Derive Cog-
nitive States

When measuring cognitive states and activities we need to rely on indirect observa-
tion, inference, and self-reports. Therefore, we adapted a classic machine-learning
approach to a framework for building algorithms capable of detecting and pre-
dicting cognitive states. This is basically done by correlating sensor data with
an observed user state through supervised machine-learning techniques. The
framework depicted in Figure 5.5 entails three steps:

1. Collecting ground truth together with context sensor data.

2. Extracting features from that sensor data.

3. Training and applying classification and prediction models.

In the following each of these three steps will be described in more detail along
with a few examples.

5.3.1 Ground Truth Collection

To be able to correlate context data gathered from ubiquitous sensors to cognitive
states, we need a labeled dataset. Such a dataset consists of feature entries and
a corresponding label containing the ground truth. The ground truth entails the
existent cognitive state of interest (e.g., current level alertness) at a certain time
with the simultaneous occurrence of feature characteristics. Such ground truth
in form of the user’s current cognitive state can be assessed in three ways: 1)
through self-reports, 2) direct observation, or 3) inference.

Self-reports

Self-assessments are a widely used way to collect information about users’ feel-
ings, thoughts, activities, and experiences without having to invest much time
and resources building a complex recognition system. Assessments can take
the form of daily diaries or users can be asked to stop at certain times during
the day to give an assessment of their momentary experience. This method is
also called the Experience Sampling Method (ESM) or Ecological Momentary
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Figure 5.5: Conceptual framework to derive cognitive states in three steps:
1) collecting ground truth together with sensor data, 2) extracting meaningful
features from the data collected to create a labeled dataset, and 3) training
prediction models that can be integrated in applications.

Assessment (EMA). Experience sampling is used to gather in-situ feedback
in the form of short statements. With the availability of mobile devices, such
statements can easily be collected throughout the day [50]. The immediacy of
these short self-assessments reduces the cognitive biases associated with other
recall-based self-report techniques, such as interviews, surveys, or diaries. Ex-
perience sampling has been shown to have both internal and external validity,
however, the interruptions caused by the sampling process have been recognized
as an issue [130].

In a ubiquitous computing setting, there are two general approaches to trigger
ESM probes: interval- and event-triggered. Self-assessment surveys can be
triggered through notifications, for example, in regular intervals, e.g., every
waking hour, or based on device events, such as phone unlocks or incoming
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Figure 5.6: Ground truth collection in form of experience sampling prompt-
ing users to provide self assessments.

phone calls. Intille et al. [140] recently presented an experience sampling method
for smartwatches, in which they found that interactions on the watch throughout
the day have a high compliance rate, but are also perceived as highly distractive.
Distractions and interruptions caused by triggered self-assessments should be kept
to a minimum, which is why on mobile devices an ESM probe should contain only
a limited number of questions. Likert-style ratings (e.g., “right now I feel bored”
(Figure 5.6)) and multiple choice questions are preferable to free text answers,
especially on mobile devices where text input is rather cumbersome. Also, self-
reports can be subject to individuals’ biases and (un-)intended falsifications.

Observation

A more reliant way of collecting ground truth without the risk of interrupting
the user is through direct observation. Since this technique is rarely feasible
when conducting field studies in-the-wild, we often need to resort to implicit
observation. Through logging user actions on mobile devices, for example, we can
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Figure 5.7: Ground truth collection in form of observing or logging what
users actually do (e.g. app interactions).

document user behavior in everyday context without interruptions. For example,
we can directly record app usage behavior on users’ mobile phones (Figure 5.7))
in order to gather information about what times during the day users consume
news, engage with games, or communicate with peers. Boehmer et al. [27]
describe an approach to analyze mobile app usage across the day by logging
user data and also taking into account contextual information, such as location.
However, many behaviors or intents are not directly observable. A lot of user
actions happen in the real world and are not directly captured by mobile sensors,
which is why we at times need to rely on inferences from sensor data rather than
from observable behavior.

Inference

As opposed to inferences from observable behavior, inferences from sensor data
are made on a lower level abstraction. Physical activity, for example, can be
derived from accelerometer data (Figure 5.8), where movement patterns can
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Figure 5.8: Ground truth collection in form of inferring user states or activi-
ties from raw data (e.g., accelerometer data showing sleep, walk or running
activities (src.: [221]).

be mapped to activities, such as standing, walking, running, climbing stairs,
and brushing teeth [221]. Therefore, classifiers are applied in order to extract
the ground truth in form of discrete states from raw sensor data. The AWARE
framework by Ferreira et al. [98] gives researchers a tool to obtain and pre-process
mobile phone sensor data to derive user activities. Similarly, Mathur et al. [184]
used EEG data to collect ground truth on user engagement to correlate it in a
second step to mobile phone usage. Thus, making inferences from sensor data
requires an intermediate step of pre-processing that data in order to extract ground
truth states.

When collecting ground truth data either through self-reports, observation, or
inference, we record additional context data through mobile sensors as they
are present in phones and wearables; these typically possess rich sensing capa-
bilities, are near-constantly available, and provide means through Application
Programming Interfaces (APIs), for example, to access sensor states, observe
user interactions, and use the device’s output capabilities to provide users with
feedback and prompt for explicit user input. Examples of sensor data can be
acceleration, lighting conditions, phone usage intensity, apps being used, or times-
tamps. So whenever the ground truth is collected by one of these three means, we
take a snapshot of the available sensor data at the point of collection. Sometimes
it makes sense to take into consideration the sensor data in a certain time interval
(e.g., 5 minutes) before or after the ground truth is being collected.
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5.3.2 Feature Extraction from Sensor Data

Sensor data provides us with contextual information, based on which we can
now define features that may be relevant to analyze in co-occurrence with the
ground truth collected, i.e., the cognitive state. A feature is described as an
individual measurable property of a phenomenon observed [23]. A phenomenon
as measured by sensors can be the source for multiple features: from a timestamp,
for example, we can extract multiple features, such as the month of the year, the
day of the week, or the hour of the day. Similarly, app usage data gives us insights
not only into the kind of app, used, but also contains information about the app
category (e.g., news, games, productivity apps), usage duration, sequence, and
frequency. Defining informative, discriminating and independent features is a vital
step for training effective models. It often requires experimenting with multiple
possibilities and combining automated techniques with intuition and domain
knowledge. The goal of defining and extracting features is to produce a labeled
dataset, in which each feature is listed in combination with the characteristics of
other features along with the co-occurring ground truth as a label.

5.3.3 Training and Applying Prediction Models

With this labeled data set we can now set out to build detection and prediction
models. By using machine-learning techniques we can reconstruct distinct usage
patterns that correlate with the user’s cognitive state as described by the ground
truth. For the work described in this thesis, we have achieved good results with
Random Forest classifiers or Decision Trees depending on the types of data
collected [87, 214]. Weka [136] has proven to be a powerful software offering a
variety of tools for analyzing data, training algorithms and exporting prediction
models. The more data available for training these models, the better the accuracy
of the prediction. Once the cognitive state in question can be detected and
distinguished with sufficient accuracy, we can export the prediction model and
integrate it into live systems (e.g., mobile phone apps) where its applicability can
be tested in the wild.

This overall procedure focuses on creating general prediction models, but once
we have a proof-of-concept of mapping ground truth to sensor data, the training
of the algorithm can also be conducted on the fly with users’ personal datasets.
Therefore, the system needs to continue collecting ground truth along with sensor
data in order to train these models in-situ. Hence, individual prediction models
are feasible to be created and applied directly on the user’s device, which has the
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additional advantage of privacy by design, since no data necessarily need to leave
the user’s device.

5.3.4 Applying the Framework: The Augmented Nar-
rative

We applied the aforementioned framework to an experiment in measuring reader
engagement while reading text [168]. Based on physiological sensors, such as
eye movements, skin temperature, heart rate, and GSR or EDA we investigated
whether it is possible to detect how immersed people were in the texts they were
reading. Not only could this give us valuable information about the current text
and the reader’s levels of interest, but also allow us to adapt the reading UI in
real-time by staging interventions to bring the reader’s diverted attention back to
the text. Reliable detection would allow electronic reading interfaces to take into
account readers’ engagement levels by providing, for example, additional textual
information in engaged states or try to bring back readers’ attention by adding
sound effects to trigger mental imagery.

Ground Truth and Sensor Data Collection

In the experiment we had five readers (3 female) with a mean age of 29 (SD = 3)
read six different texts of different presumed engagement levels. For ground truth
collection we assessed participants’ level of immersion in the text by applying
an immersion questionnaire after reading each text as proposed by Jennett et
al. [148]: in this questionnaire participants self-reported their subjective levels of
empathy, frustration, boredom, and enjoyment on a Likert-style rating scale from
1 to 5. Each text was further rated by participants according to their subjective
engagement. Along with the self-reports on immersion as ground truth, we
collected contextual data by equipping study participants with a temperature
sensor mounted on the nose and behind the ear, attaching a sensor to a finger
and a heart rate monitor to the wrist (see Figure 5.9). Additionally, we attached
a Tobii EyeX eye tracker to the bottom of the screen, on which the texts were
shown, in order to record eye movements.

Feature Extraction

Hence, for each of the six texts, we collected ground truth on readers’ immersion
and engagement along with contextual data in form of physiological sensor data.
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Figure 5.9: Study participant reading on tablet while collecting temperature,
GSR, heart rate, and eye movement data.

In the next step we extracted a range of features from the sensor data: for one,
we extracted nose temperature changes over time and calculated the slope of
the temperature curve using linear regression, which showed to be a significant
indicator for engaging vs. non-engaging texts over all users (p = 0.03,F = 0.84).
From the eye movement data we extracted blink frequencies and calculated the
frequency change over time, which also turned out to be a significant indicator
for engaging vs. non-engaging texts (p = 0.05,F = 0.96). Further features we
extracted and that looked promising were: number of fixations, the median of
fixation duration, variance of fixation duration, and the number of saccades that
were not in the main reading axis. Since we did not find strong correlations
between engagement levels and GSR or heart rate data, we did not use them as
features for the classification.

Classification

Based on the features extracted we trained a support vector machine (SVM) with
a radial basis kernel. Therefore we applied a leave-one-out user independent
strategy by training the model on the data provided by four users and testing it
on the remaining one. We approached the classification as a two-class problem:
engaging vs. non-engaging. Further, we trained a second SVM to assign an
engagement value from 1 to 6 (1=low, 6=high engagement) to each text by
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training on five texts and testing on the remaining. The goal was to automatically
sort the texts according to user preferences based on engagement scores.

In a leave-one-out cross-validation the SVM classifier was able to predict text
engagement correctly. The relative rating of texts according to predicted engage-
ment scores worked for 3 out of the 5 users (60%). The two users, for which
sorting did not work, had the most bored and most engaged ratings correctly
classified, but the remaining text ratings were falsely classified. Due to the sim-
plification of reading engagement and the small sample size we refrain from
claiming to have produced a reliable reading engagement predictor. However, the
experiment served as a proof-of-concept for the framework we applied.

5.4 Chapter Summary

In this Chapter, we considered the user’s cognitive state as an additional dimen-
sion of context. Being in a fatigued or in a highly focused mental state has an
impact on how information can be received, processed, and retained. By being
aware of users’ current states technology can adapt information selection and
presentation in ways to match users’ processing capacities. Inferring cognitive
states by using bio-signals is often invasive and cumbersome. In Chapter 3 we
discussed utilizing people’s near-constantly available mobile phones in order
to detect moments of low and high attention. In this Chapter we focused on
more long-term patterns of cognitive performance across the day, thereby lay-
ing the groundwork for RQ4: through alertness task tracking we were able to
reconstruct people’s circadian rhythm of alertness and cognitive performance,
which generally describes the diurnal changes in the ability to concentrate. We
argue that by providing technologies with an awareness of users’ cognitive states
applications can adapt to users’ current cognitive capacities. Information inter-
faces, for example, could be adjusted according to the user’s current cognitive
capacity: in phases of high concentration, complex information can be efficiently
displayed, whereas in phases of low concentration complexity can be removed
to prevent information overload and frustration. Systems that are aware of the
user’s circadian rhythms can provide support in scheduling tasks across the day,
manage interruptions, and help users become more self-aware of their diurnal
rhythms. Since circadian disruptions have shown to be related to the emergence
of schizophrenia and diabetes [49, 254], self-awareness through such systems
could help people take preventive measures.
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For supporting researchers and application builders to create cognition-aware
systems we presented two tools: 1) a mobile toolkit comprising a sequence
of tasks designed to elicit users’ circadian rhythm of alertness and cognitive
performance and 2) a conceptual framework comprising three steps for building
algorithms that detect cognitive states from contextual sensor data. In the next
part of this thesis, we present concepts and our applications of the presented tools
and show how they can be used to facilitate effective information intake.



III
APPLICATIONS





Chapter6
Opportune Content Delivery

In Chapter 3 and 4 we laid the groundwork for detecting attention levels as an
awareness dimension for context-aware systems. Technologies with the ability
to assess different user states, such as being alert, receptive, tired, or bored, can
use this information to facilitate information intake. While the user’s capacity to
focus influences the ability to process information effectively, current attention
levels can be used to determine the timing of when to deliver particular types
of information. In this Chapter, we present two research probes, in which we
investigate content delivery in opportune moments as a direct application for
systems with cognition-awareness.

We specifically focus on systems that proactively push content to the user. Based
on the user’s receptiveness to such content suggestions we gain insights into what
makes moments opportune for delivering different types of content. We apply the
prediction algorithm developed in Section 3.3 to establish links between different
cognitive states and the user’s openness to content suggestions.

While previous work has looked at making sense of users’ mobile phone activities
to predict human interruptibility [11, 102, 215], we focus on predicting people’s
general openness to different content suggestions, namely learning content in
form of foreign language vocabulary and articles to engage in reading activities.
Hence, we built a language learning app to trigger vocabulary reviews throughout
the day. This investigation indentifies opportune moments for delivering learning
content. We further report on a study conducted together with Pielot et al. [214],
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in which we applied our boredom prediction algorithm to suggest reading articles
of general interest in situations of detected boredom.

In this Chapter, we address the following research question:

• RQ5: How can opportune moments for content delivery used to foster
information intake and learning?

Parts of this chapter are based on the following (pending) publications:

• T. Dingler, D. Weber, M. Pielot, J. Cooper, C.-C. Chang, and N. Henze.
Language learning on-the-go: Opportune moments and design of mo-
bile microlearning sessions. In Proceedings of the 19th International
Conference on Human-Computer Interaction with Mobile Devices and
Services, MobileHCI ’17, pages 28:1–28:12, New York, NY, USA,
2017. ACM

• M. Pielot, T. Dingler, J. S. Pedro, and N. Oliver. When attention is not
scarce - detecting boredom from mobile phone usage. In Proceedings
of the 2015 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, UbiComp ’15, pages 825–836, New York, NY,
USA, 2015. ACM

6.1 Related Work

The work in this chapter is mainly inspired by and based on previous research
in learning theories (see Section 2.2), technology-mediated learning, and work
regarding user attention and interruptions.

The Effects of Repetition on Vocabulary Learning

Research has shown that the extent to which vocabulary gains are made is posi-
tively related to the number of times language learners encountered each vocab-
ulary word [266]. Incidental vocabulary learning is a gradual process in which
gains are made in small increments with repeated encounters needed to achieve
full knowledge of a word [193]. In addition to repetition, word review can be
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enhanced with proper spacing. Spacing effects refer to the retention advantage for
information that is repeated in a distributed fashion relative to information that
is repeated in a massed fashion [39]. Dempster [62] demonstrated that language
learners retained a greater number of vocabulary words when words presented
were distributed and spaced apart instead of being presented in succession. Spac-
ing effects not only apply within a learning session but also between sessions.
Bahrick & Phelps [13] demonstrated that words were better retained when studied
and re-learned at 30-day intervals when compared to 1-day or 0-day intervals.

The use of computers greatly enhances spaced repetition vocabulary learning. It
is a lot easier for a computer to keep a record of individual learner’s performance
and control the sequencing of vocabulary words appropriately. Language learners
who study with physical flashcards need to monitor their own learning progress,
in turn running the risk of inefficient learning [194]. A study conducted by
Nakata [194] has shown that students were able to recall more vocabulary words
using the computer when compared to word lists.

Flashcard and Multiple Choice Learning

Unlike lesson-oriented learning, flashcards operate at the granularity of facts (e.g.,
word translation) and measure the learner’s ability to provide the correct response
in the presence of a stimulus [92]. The use of flashcard is a common way to learn
vocabulary as it allows the user to group difficult words together and allow them
to be reviewed more frequently than easy words [194]. Furthermore, flashcards
enhance vocabulary learning by reducing the list effect where learners tend to
recall words more easily due to the order they appear on the word list.

Numerous researchers have explored microlearning applications based on flash-
card presentation. Basoglu and Akdemir [18] had students use a mobile phone
with a flashcard vocabulary application. Results indicated that using mobile
phones as a vocabulary learning tool is more effective than one of the traditional
vocabulary learning tools. Edge et al. [91] created a mobile flashcard application
with an adaptive spaced repetition algorithm.

Multiple choice learning has not been extensively applied to mobile devices.
Vocabulary skills, however, are commonly assessed through multiple choice
tests [225]. Primarily, multiple choice quizzes highlight deficiencies in language
acquisition, thereby providing a similar baseline as flashcard learning.
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Notifications & Interruptions

Microlearning mobile applications have shown a lot of promise and potential to
improve vocabulary learning, however, microlearning research studies typically
are not optimized for sustained or continuous use. One way to promote sustained
use of the app is through push notifications, however, the language learning app
must also compete with numerous notifications pushed by other apps. There is
research suggesting that frequent push notifications cause interruptions and can
induce stress [281]. Increased number of notifications was also associated with
increased negative emotions [212].

The stress and frustration induced by frequent and interruptive push notifications
can be reduced. Studies have shown that pushing a notification during a breakpoint
reduces frustration [141] and are dealt with significantly more quickly [99].
Strategies, such as bounded deferral, have been proposed to hold beck alerts when
the user is predicted to be busy until more suitable moments [137]. Poppinga et
al. [216] collected data from smartphone sensors and applied machine learning
models to automatically predict and identify such opportune moments to trigger
notifications.

These studies show that learning gains can be made with repeated exposure and
learning sessions can be broken down into small chunks of quick interactions pre-
sented on a mobile device. Mobile applications geared toward learning, however,
need to compete for the attention of the user who may have hundreds of other
apps installed. This research investigates how to best design a mobile learning
application as well as systematic push notification in order to promote prolonged
and sustained mobile learning sessions.

6.2 Micro-Learning Sessions Throughout
the Day

Learning new skills, knowledge, and practices are often limited by a lack of
time, motivation, and resources. Quests, such as learning to program or a foreign
language, are daunting tasks that require learners to dedicate large chunks of time
on regular basis. According to The Foreign Service Institute (FSI) of the US
Department of State15, it can take up to 750 class hours (30 weeks) for a native

15 http://web.archive.org/web/20071014005901/http:
//www.nvtc.gov/lotw/months/november/learningExpectations.html

http://web.archive.org/web/20071014005901/http://www.nvtc.gov/lotw/months/november/learningExpectations.html
http://web.archive.org/web/20071014005901/http://www.nvtc.gov/lotw/months/november/learningExpectations.html
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English speaker to become proficient in German. Many language learners simply
cannot fulfill such time commitments or lack the motivation to spend such a great
deal of time and resources on intensive or immersive instructions.

While most products require learners to dedicate large chunks of time on a
regular basis, mobile apps are often designed to support microlearning sessions.
Microlearning sessions break down a learning task into a series of quick learning
interactions, thereby reducing learning units to more manageable chunks that can
be completed, for example, during idle moments, such as waiting for the bus or
standing in line at the supermarket. Since most people keep their smartphone in
reach most of the time, this opens up the possibility to engage in short learning
tasks spaced out throughout the day as users are on the go. In addition to enabling
people who cannot dedicate large chunks of time to learn a new language, research
in psychology found that repetitions are more effective than dedicated long streaks
of learning [54].

However, how to best design for such microlearning sessions is still an open
question. Due to the anytime-anywhere capabilities of mobile devices, researchers
commonly suggest that microlearning is a great tool to convert spare time into
something productive [22, 32, 262]. Further, since some people may need nudges
to keep learning a language, notifications can be used to turn users’ attention to
the device. Since notifications recently allowed for interactive content, they can
also allow users to quickly deal with short tasks [14], such as reviewing a few
words of foreign language vocabulary, hence engaging in microlearning sessions.
Yet, it remains unclear whether mobile users prefer learning a new language
during short transient moments like during their commute on a train. Also, it
remains unclear how such notification-triggered sessions should be designed,
specifically, when they should be triggered and how the interactive notifications
should look like.

We report on our development of QuickLearn, an app to explore and compare
different designs of microlearning sessions. Through interactive notifications, the
app invites learners to frequently review language content. Word exercises can
be attended to directly in the notification drawer or through self-initiated user
sessions (see Figure 6.1). We assess the feasibility of notification triggers, presen-
tation modes, and interaction modality with regard to microlearning sessions. In
this chapter we present our findings from a mixed method user study: a controlled
lab experiment and an in-the-wild study contributing the following:

1. Investigation of context factors of microlearning in mobile settings.
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2. Assessment of the feasibility of using interactive notifications for learning
sessions, which last shorter than app launches.

3. The comparison of two vocabulary review methods: flashcards vs. mul-
tiple choice, of which flashcards tend to be better suited for new word
acquisitions.

4. Exploration of using idle moments as an opportunity for learning and
memory strengthening.

6.2.1 System Design and Implementation

We developed a vocabulary trainer for Android devices. The application runs
on Android phones with OS 4.3 or newer and provides two distinct modes: one
allowed users to actively open the app and review vocabulary and the other
consisted of a background service that initiated notifications to remind users to
review vocabulary. On its first launch, the app shows a consent form explaining
what kind of data will be collected and for which purpose. After explicitly stating
their consent, users are guided through the permission granting process which
consists of giving access to the Android Accessibility Services and allowing the
app to access notifications. This is needed to inform the notification schedule
algorithm and take into account the users’ activities to trigger notifications. In
the final step, the app asks the user to specify age, gender, and optionally leave
an e-mail address. Users are also asked to indicate their mother tongue (L1), to
chose the language they want to learn (L2), and what their current proficiency
level in this language is. Since the application supports five languages, we asked
users to choose the language they are most comfortable with in case their mother
tongue is not available. Once the setup is completed, the background service is
started and the app shows the first set of vocabulary.

User-Initiated Learning Sessions

The application can be opened at any time by selecting the application icon. Upon
start, it launches an activity that shows words to review in sets of three. After
each set, users are asked if they want to continue with the next set of words or to
quit the application. The design intended to support the notion of short learning
sessions to give users the feeling of completion and accomplishment in minimum
time.
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System-Initiated Learning Sessions

While the application can be explicitly launched by the user, an additional service
running in the background that initiates learning sessions by triggering notifi-
cations. These notifications remind the user to review a set of vocabulary. The
review can be done directly in the notification area, thereby avoiding the need to
open the application and enforcing a context switch. By adding buttons to the
notification, users are able to interact with the notification’s content, which is why
we consider them interactive notifications. The app can also be directly launched
by clicking on the notification itself.

In Section 3.3 we identified moments, in which people tended to be bored and
correlated them with phone usage. In these bored or stimuli-seeking moments,
people may be more open to suggestions made by the phone and therefore more
open to external interruptions. Since the success of micro-learning strongly
depends on peoples’ willingness to engage in learning tasks during opportune
moments, boredom might be such an opportune state to study language vocabulary.
To examine this hypothesis, we applied the model described in Chapter 3.3 and
integrated the boredom classifier into the notification trigger algorithm. The
model uses features, such as the recency of communications, demographics, or
intensity of recent phone usage to estimate whether the phone user is boredom
with an accuracy of 74.5% AUCROC. The notification trigger mechanism works
as follows: whenever the user turns the phone’s screen on, the app service tried to
schedule a notification. Therefore, it checked whether a notification was already
scheduled or whether the minimum time of 20 minutes since the last posted
notification had elapsed. To not disturb users during the night, the notifications
are only posted between 11 pm and 7 am. If these conditions were met, a timeout
was scheduled with a random delay between 10 seconds and 5 minutes. When
the timeout runs out, the classifier estimates the user’s boredom state. In case the
user was detected to be bored, the notification is posted. If the boredom state is
predicted to be negative, the notification is only posted in 1 out of 9 cases. In pilot
tests, we found that this makes roughly sure that an equal amount of notifications
is posted for each of the two boredom states (bored and non-bored). In case the
app is already in the foreground, no notification is posted.

User Interface Design

Words are presented in two display modalities: flashcards and multiple choice.
The modality is randomly assigned when the app is first launched. The flashcard
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Figure 6.1: QuickLearn allows users to engage in microlearning sessions
(left) or nudges the user to re-visit vocabulary through system-initiated, inter-
active notifications (right).

method consists of a series of screens, beginning with the presentation of a foreign
noun with no translation (see Figure 6.2). Users can then click “translate” to
view the translation and are then instructed to acknowledge whether they had
already known the word (“knew it”) or had had no previous knowledge of the
word (“did not know”). This way, the words that are tagged as previously known
by the user can be separated from the words that needed additional practice.

In the multiple choice modality, a foreign word was shown to the user while
listing three suggestions for translation (see Figure 6.2): a random order of words
including the correct translation as well as two decoy translations randomly
retrieved from the vocabulary set. The three options are arranged in a random
order. Users then have to choose which translation they believe to be correct. The
application provides immediate feedback on whether the selection was correct
or wrong. Correctly guessed words are tagged accordingly and have a lower
frequency of repetition than those that were guessed wrong.

Word List

We used a vocabulary list consisting of common English nouns originally taken
from the British National Corpus16, similar to Cai et al. [38]. The list comprises
high-frequency English nouns since in second language learning nouns are typ-
ically acquired before verbs and are less context-dependent. We used Google
Translate to translate these words into Spanish, French, German, and Arabic. Fi-

16 http://www.natcorp.ox.ac.uk

http://www.natcorp.ox.ac.uk
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nally, two native speakers manually went through the list and corrected inaccurate
translations and flagged highly ambiguous words. The final word list consists of
476 nouns in each language. The translations are uni-directional, meaning that
a word was reviewed by being presented in its foreign translation (L2) before
revealing it in the user’s comfort language (L1).

Word Scheduling

Vocabulary words are delivered in sets of three, providing obvious stopping points
should the user feel inclined to stop. After each set of words, users are asked if
they wanted to continue or quit. A mechanism of spacing words for repetition was
employed using a variation of the Leitner style schedule [111]: this schedule is
based on the principle of spaced repetition. Given that humans exhibit a negatively
exponential forgetting curve [90], repetitions need to occur at increasingly spaced
intervals. Hence, new words are encountered just as they are about to be forgotten.
So, whenever the user reviews a word, it is tagged as either correctly or incorrectly
guessed. In the flashcard modality, this is done by admitting to having known
the word or not. In the multiple choice modality, this is automatically done by
evaluating the given answer. When the app is first launched, the word list is being
randomized. With every word review, the app goes sequentially through that list.
If a word is seen for the first time and guessed correctly it is appended to the
very end of the word list. If this word is guessed incorrectly, it is replicated and
spaced throughout the remaining wordlist in positions 4, 8, 16, 32, ... and so on
until the end of the word list is reached. Whenever a word is encountered that is
represented multiple times in the list, it is simply removed regardless of being
guessed correctly or incorrectly, hence making sure that the list does not grow
indefinitely.

6.2.2 Controlled User Study

To gain insights into the use of microlearning sessions for language acquisitions,
we conducted a user study where we explicitly recruited participants to use the
app over a course of two weeks.
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Figure 6.2: The multiple choice modality via app (top) and notification
(bottom) showing three possible answers and correct response (left), and
the flashcard modality via app and notification displaying initial screen and
translation screen (right).

Method

We collected usage data from 17 participants who installed the app under our
supervision and returned after each week to fill in a survey and being interviewed
about their experiences. Regarding the vocab review methods, we used a repeated
measure design with the review method being the independent variable. We
counterbalanced the starting condition so that half of the participants started using
the app with flashcards, and another half started out with using multiple choice
answers. After seven days, the method changed automatically. As dependent
variables, we collected app logs, general phone usage data as listed in Table 6.2,
and information about the notifications triggered by the app. We assessed lan-
guage learning effects by administering vocabulary tests after each week. Finally,
participants were asked to provide subjective user feedback and comprehensive
comments during the final semi-structured interview.

Participants

We initially recruited 19 participants (9 female) through university mailing lists
and personal connections with ages ranging between 22 and 44 (M = 28,SD =
5.2) years. One participant needed to be excluded from the quantitative analysis
due to technical reasons, and another because he had his phone stolen during the
study. Most of the remaining 17 participants were students, of which 9 indicated
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Language None Elementary Limited Professional Full

German 1 2 2 2 0
English 0 0 1 0 0
Spanish 1 3 0 0 0
French 2 2 1 0 0

Table 6.1: Number of participants and their selection of their target language
proficiency in the controlled user study.

German to be their first language, 1 French, 2 Arabic, 2 English, and 3 Spanish.
Table 6.1 shows an overview of their target languages and their current proficiency
levels. Three participants indicated to be currently enrolled in a second language
course.

Data Collection

Once the setup was complete, the app started the notification schedule service as
described above. It also included a log system where every app interaction was
tracked: whenever the app was opened by the user, how it was launched (clicking
the application icon, the notification, or direct interaction in the notification),
which words were reviewed and with which review method. Further, we collected
context parameters, such as time and location. Both sensor and usage data were
sent to our servers through a secure connection. To prevent straining users’
data plans, the app stored the collected data locally and transmitted only when
connected through WiFi. As for whenever a notification was triggered, interacted
with, dismissed or ignored, and whenever the app was explicitly launched, we
logged the current boredom state as predicted by the classifier.

Procedure

We invited participants to our lab, where we walked them through the purpose
of the study and had them fill in an initial survey collecting demographic data
as well as their language preferences and previous knowledge. We explained
the types of data that would be collected and how this data would be transmitted
and stored. Then, we installed the app on their phone, went through the setup
procedure and had them complete the first set of words. We explained about the
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Phone Context

ringer mode mute, vibration, ringer

charging mode unplugged, charging

battery status related to usage intensity

display orientation portrait or landscape mode, orientation changes

light sensor changes in lightness allow us to derive whether phone is covered (carried in a pocket or taken out)

proximity sensor phone in pocket

location GPS data allows the inference of locations visited, and in-place vs. on-the-go states

motion significant motion sensor, change of position

Phone Usage

Calls incoming, outgoing

SMS incoming, outgoing

Notifications received, dismissed, ignored, interacted with

Screen on/off events

Unlocks phone unlocks

Data usage upload/download

Applications applications in foreground, switches, usage duration

�1

Table 6.2: Context data collected from phone sensors.

app’s intention to post notifications and explicitly asked users to not feel obliged
to answer every incoming app notification, but rather deal with them as found
convenient. We counterbalanced the review mode to start with either the flashcard
or multiple choice mode. This first setup meeting took about 15 minutes, after
which participants used the app for seven consecutive days.

A week later we invited them back to take a vocabulary test and to fill in a survey.
The test was dynamically created for each participant and contained only words
that fulfilled the following condition: each word listed had been reviewed by
the user and had been guessed incorrectly when first encountered. This way
we tried to make sure that we tested only new words that were unknown to the
user before using the app. The test would list the word in the second language
(L2) and ask the participant to type in its translation (L1), thus employing a
recognition task. We specifically did not list multiple choices or had participants
self-assess their performance like in the flashcard review mode because we wanted
to test whether the words had actually been memorized irrespective of the review
mode. The survey consisted of the eleven 5-point Likert-style questions listed
in Table 6.3 asking about the subjective experience with the notifications, the
learning in general and its perceived effectiveness. The last part of the survey
was a text-based feedback form asking about what participants liked, disliked,
and would improve about the app. Depending on the number of words that had
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to be reviewed, filling in the survey took up to 15 minutes. The filling in of the
survey was done under the supervision of an experimenter, in some cases where
people could not come in after seven days, we sent them an online link to the
survey with the explicit request not to use any auxiliary sources for filling in the
vocabulary test. For the next seven days, the app changed its vocabulary review
mode to flashcard or multiple choice respectively.

After another seven days of app, usage had passed, we asked participants to come
in for a final wrap-up session where we applied another vocabulary test. Words
presented in this test fulfilled the same condition described above and were words
that had only been encountered in the second week of the study. This way we
made sure that each vocabulary test contained words reviewed in one review
mode respectively. Finally, participants attended a final semi-structured interview
containing 16 questions.

Hence, in total participants came in three times. For the initial setup and the
intermediate session after one week we compensated them with 5 EUR each, and
another 10 EUR for completing the study after two weeks, accumulating in a total
of 20 EUR for their entire participation in the study.

Results

In the following, we report the results with regard to the learning success, notifi-
cation interaction, user ratings and qualitative feedback as given by participants.

Learning

After two weeks of casual usage, each participant had encountered on average 523
words (Mdn = 331,SD = 477.14). Of those, on average 223 (Mdn = 196,SD =
127.2) words were unique (not repeat-words) and 55 previously unknown (Mdn=
39,SD = 53.91). We categorized words as new or unknown when they had been
marked as “did not know” or incorrectly answered when encountered for the first
time. Participants completed on average 56 learning sessions (Mdn = 45.5,SD =
31.26). In total we recorded 557 learning sessions with an average of 10 words
reviewed (Mdn= 3,SD= 19.31) in 3 word sets per session (Mdn= 1,SD= 6.43).
A learning sessions took between 1second and 20minutes (M = 48.8sec,Mdn =
19.2,SD = 1.62min). In the vocabulary tests, users translated 35 previously
unknown words (64%) correctly into the foreign language despite never having
had to type an actual word during the study. These 35 words (Mdn = 20,SD =
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26.3) account for about 18 new words learned per week. The user who was
exposed to the most new words (76) translated 32 correctly to L2.

Learning through notifications vs. through the app

Over the course of two weeks, participants reviewed on average 451 words
(Mdn = 257,SD = 473,7) through the app, and 72 words (Mdn = 70,SD = 40.3)
directly through notifications. On average, 39 (SD=25.08) learning sessions were
completed by actively launching the app and 21 (SD=19.5) sessions by interacting
through notifications. A Wilcoxon signed-rank test showed that statistically signif-
icant more reviews took place through an explicit app launch than through notifica-
tion interaction (Z =�2.510, p = 0.012). Similarly, significantly more sessions
were completed within the app than through notifications (Z = �2.476, p =
0.013). Participants spent on average 23.7 seconds (Mdn = 11.4,SD = 92.9) per
notification session vs. 59.8 seconds (Mdn = 27.5,SD = 97.3) per app session.
A Wilcoxon signed-rank test showed that notification sessions lasted significantly
shorter (Z = �2.510, p = 0.12). In notification sessions, participants reviewed
between 2 and 15 words (M = 3.5,Mdn = 3,SD = 1.6) and in app sessions be-
tween 1 and 216 words (M = 13.3,Mdn = 5,SD = 22.5) per learning session.
Significantly more words were reviewed per app session than per notification
session (Z =�2.746, p = 0.006).

Learning through flashcards vs. multiple choice

Participants reviewed on average 271 words (Mdn = 117,SD = 375.3) with
flashcards, and 252 words (Mdn = 137.5,SD = 255.3) directly through noti-
fications. On average, 27.8 learning sessions (Mdn = 22.5,SD = 20.7) were
completed with flashcards and 28.4 (Mdn = 28.5,SD = 16.2) sessions with mul-
tiple choice. A Wilcoxon signed-rank test showed no statistical significance
between the number of words reviewed (Z =�.784, p = 0.433), nor between the
number of learning sessions completed per condition (Z = �.550, p = 0.582).
Participants spent on average 51 seconds (Mdn = 17.8,SD = 115.3) per flash-
card session compared to 46 seconds (Mdn = 20.5,SD = 75.6) per multiple
choice session. In flashcard sessions, participants reviewed between 1 and
216 words (M = 10.3,Mdn = 3,SD = 21.4) and in multiple choice sessions
between 1 and 121 words (M = 10.3,Mdn = 3,SD = 17) per learning session.
A Wilcoxon signed-rank test showed no statistical significance for the average
session duration , nor for the average number of words reviewed per condition
(Z =�.863, p = 0.388). For the flashcard condition participants recalled a me-
dian of 10 (3 to 13) previously unknown words, and a median of 5 (1 to 12) in the
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multiple choice condition. A Wilcoxon signed-rank test yielded no statistically
significant differences between conditions, (Z = �1.023, p = 0.306), despite
a tendency of participants to perform better recalling words learned through
flashcards.

Learning Locations

Of in total 556 recorded learning sessions across two weeks, we registered 105
(18.9%) sessions having been completed at home, while 59 (10.6%) having
been completed at work, 209 (37.6%) took place at other and 183 (32.9%) at
unknown locations. Semantic locations were estimated based on where users
spent most of their time during waking/sleep hours. Participants reviewed on
average 257 (SD = 605.5) words at home, 57 (SD = 101.2) at work, and 219
(SD = 242.5) in transit (i.e. “other”). We applied a Friedman test with a post-
hoc analysis using a Wilcoxon signed-rank test with a Bonferroni-corrected
significance level set at p < 0.017. There was a statistically significant difference
in where participants reviewed the most words (c2 = 11.375, p = 0.003). The
post-hoc analysis revealed a statistically significant difference between the number
of words reviewed in transit compared to at work (Z =�2.937, p = 0.003), but
no significant difference between work and home (Z = �2.043, p = 0.041) or
home and transit (Z =�1.448, p = 0.148). However, there is a tendency towards
more words reviewed at home (MD = 48) than at work (MD = 23) and more
reviewed in transit (MD = 134) than at home or work. Users learned more words
in transit, regardless of the review type (flashcards vs. multiple choice).

We further looked at the locations, in which more words were reviewed through
notifications or in-app sessions: With regard to interactive notifications there
was a statistically significant difference in locations (c2 = 9.475, p = 0.009).
The post-hoc analysis revealed a statistically significant difference between the
number of words reviewed in transit compared to at work (Z =�2.585, p = 0.01),
but no significant difference between work and home (Z =�1.884, p = 0.06) or
home and transit (Z = 1.139, p = 0.255). There was a tendency towards more
words reviewed through notifications at home (MD = 5,SD = 35.8) than at work
(MD = 1,SD = 13.6) and more app reviews in transit (MD = 18,SD = 32.1)
than at home or work. Similarly, there was a statistically significant difference in
where participants used the app directly to review words (c2 = 11.460, p= 0.003).
The post-hoc analysis revealed a statistically significant difference between the
number of words reviewed through the app in transit compared to at work (Z =
�2.844, p = 0.004), but no significant difference between work and home (Z =
�1.578, p = 0.115) or home and transit (Z = �1.306, p = 0.191). Here, there
also was a tendency towards more words reviewed through in-app usage at home
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(MD = 13,SD = 507.6) than at work (MD = 12,SD = 94) and more app reviews
in transit (MD = 89,SD = 193) than at home or work.

Boredom as Trigger

To explore whether people are more open to learning vocabulary when they are
bored, we analyzed the data we collected in situations of presumed boredom and
non-boredom. We consider the boredom estimation as the independent variable
of a quasi-experimental design with two conditions: bored vs. normal. The
dependent variables were (1) click-through rate: the fraction of times that people
clicked on the notifications created by QuickLearn, and (2) words per session: the
number of words learned in a session. First, we cleaned up the data by removing
participants who received less than 20 notifications and/or who clicked on less
than 5 of them. For the lab study, 15 of the 19 participants passed this filter.

Click-Through Rates In the data set of the lab study, we did not find differ-
ences between the fraction of notifications that the participants clicked in each
condition. In the bored condition, scores ranged from 6% to 87% (M = 31.2,
SD = 22.4). In the normal condition, scores ranged from 2% to 88% (M = 35.2,
SD = 25.4). A Levene’s test showed that variance of the scores of the two condi-
tions was sufficiently equal to use parametric tests (F(1,28) = .17, p = .68). A
dependent t-test revealed no significant effect (t(14) =�.8, p = .43).

Words Per Session We did not find differences between the average word that
the participants learned per session. In the bored condition, scores ranged from 0
to 8 words (M = 6.07, SD = 4.33). In the normal condition, scores ranged from
3 to 74 words (M = 12.87, SD = 17.89). A Levene’s test showed that variance
of the scores of the two conditions was sufficiently equal to use parametric
tests (F(1,28) = 1.47, p = .20). A dependent t-test revealed no significant effect
(t(14) =�1.69, p = .11).

User Ratings

Table 6.3 contains the results from the intermediate and final survey taken af-
ter each week of app usage. Questions differed for each week except for the
assessment of how participants rated the current learning mode. The ratings
were given on a 5-point Likert-style scale with 0 indicating “I strongly dis-
agree” and 4 “I strongly agree”. Results show that the app was very well
received, in particular, the notifications acting as reminders to review vocab-
ulary (Mdn = 3,SD = 0.97) and the interaction possibility through the notifi-
cation drawer (Mdn = 3,SD = 1.22). Fig. 6.3 shows box plots for a selection
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Statement after 1st week Median SD

I feel the app helped me effectively improve my spanish vocabulary. 3 1

I liked that the app reminded me to review my vocabulary. 3 0.97

I liked learning words directly from the notification window. 3 1.22

I found the notifications well timed. 1 0.82

I found myself dismissing the notifications a lot. 2 1.01

The notifications interrupted my ongoing activities. 1 1.12

I liked being able to spend a few seconds on learning during the day. 4 0.42

I was able to review one set of words in a rather short amount of time. 3 0.73

The app allowed me to squeeze in reviewing vocabulary in between tasks. 3.5 0.84

I opened the app myself whenever I felt bored. 3 1.35

Statement after 2nd week Median SD

I think learning with MultipleChoice was very useful. 2 1.1

I think learning with FlashCards was very useful. 3 1.14

I preferred learning with MultipleChoice. 2 1.72

I preferred learning with FlashCards. 2.5 1.77

During this last week I noticed to get tired of the notifications. 2 1.2

During this last week I did not use the app as much. 2 1.29

I found myself learning with app at home a lot. 1.5 1.08

I found myself learning with app at work a lot. 1 1.4

I found myself learning with the app a lot when when I was on the go. 3 1.01

I found myself reviewing my vocabulary when other people were around. 1.5 0.99

I was very likely to review vocabulary when I found a notification was already there when I checked the 
phone.

3 1.17

I was very likely to review vocabulary when a notification was triggered while I was using the phone. 3 1.12

The app motivated me to use additional resources (e.g. books, courses, other apps,..) to improve my 
Spanish.

0.5 0.91

�1

Table 6.3: Subjective user ratings in 5 point Likert-style scales: 0 = strongly
disagree, 4 = strongly agree.

of questions participants were asked after the first week. Effective refers to
whether participants were able to effectively improve their second language skills,
notification-bar visualizes users’ overall affirmation of liking to learn words
directly through interactive notifications, thereby not being too interruptive. Par-
ticipants strongly agreed with the statement that they enjoyed being able to spend
a few seconds on learning during the day (Mdn = 4,SD = 0.42). Interaction time
was perceived as very low as words could be reviewed in a rather short amount of
time (Mdn = 3,SD = 0.73) and in-between tasks (Mdn = 3.5,SD = 0.84).

The novelty effect of introducing the app seems to be limited as participants
overly disagreed with the statement that they got tired of notifications (Mdn =
2,SD = 1.2), neither did they stop using the app as much (Mdn = 2,SD = 1.29).
Using the app on the go (Mdn = 3,SD = 1.01) seemed to be the preferred mode
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Figure 6.3: User ratings from 0 = strongly disagree to 4 = strongly agree
taken from the first week’s questionnaire, where we assessed learning effec-
tiveness, utility of learning through the notification bar, the notifications’
interruptiveness, learning in small chunks throughout the day, and being able
to schedule sessions in-between tasks.

Figure 6.4: Results from subjective user assessment of where they found
themselves engaging with microlearning sessions.

as compared to at home (Mdn = 1.5,SD = 1.08) or at work (Mdn = 1,SD = 1.4),
as depicted in Fig. 6.4.

There was a statistically significant difference in where participants reported
having used QuickLearn (c2 = 9.333, p = 0.009). No statistically significant
differences were detected between work and home (Z = �0.677, p = 0.498),
transit and home (Z =�1.840, p = 0.066), or transit and work (Z =�2.271, p =
0.023). However, there was a tendency of more people indicating transit to be the
preferred place where they found themselves reviewing vocabulary.
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Qualitative Measures

After each week, participants filled in a survey, which—besides testing vocabulary
recall and collecting the subjective user ratings—contained free-form questions,
where participants could leave qualitative feedback.

Most participants (N=9) positively commented on the ease of word access and
vocab interaction through the notification bar: P1 stated “I didn’t consciously
realize that I was learning. Since it was such short periods of time.” P6 com-
mented on the notifications’ reminder function: “I liked that it reminded me
to invest some time. A reminder to do something useful.” Eight participants
agreed on idle moments where notification interactions were welcome, e.g., while

“fooling around on my phone.” (P1), “after finishing a task on the phone” (P7) or
“whenever I was alone or doing something boring.” (P8). Most participant (N=9)
explicitly rejected the notion that notifications for microlearning were perceived
as a disruption. “It’s not disruptive and allows me to continue easily with what I
was doing” (P14) while another observed “you don’t have to leave the current
app, therefore you don’t lose the focus” (P7). Also, it was generally well received
to combine pro-active reminders with the possibility to launch the app explic-
itly: “I can open it whenever I want, but at the same time, it reminds me to keep
learning” (P16). Further, participants welcomed the brevity of the interactions:

“Takes pretty much no time to learn something new” (P18). The short interactions
seemed to convey a feeling of accomplishment: “I was motivated to use the app
because it was easy and not time-consuming” (P13) and “sets of three words
give me a sense of achievement” (P15). Participants found opportune moments
for learning when they were, for example, “pulling out the phone to just check
the time and there was a notification there, I would do a couple of words” (P1).
Also here it became clearer that users welcomed notifications while engaged
in information consumption rather than actively doing something on the phone:
“when the browser was opened and I was reading unspecifically, then it would fit.
It did not fit when I was concretely doing something, such as calendar entries”
(P10). With regards to the question where participants were most likely to review
vocabulary, a majority indicated public transportation and while in-transit to be
most fitting, also waiting situations, such as in between breaks at the gym or at
the bus stop.

Six participants found themselves explicitly opening the app in waiting situations:
“Mostly when I was on the train or when I was waiting. Wasting time.” (P5),
and “when I am on the lift alone. When I am waiting, queuing for some reason:
supermarket, doctor’s appointment [...]” (P8). Five participants welcomed the
reminders while they were using the phone (“While reading emails I was also
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Figure 6.5: Participants’ subjective rating of presentation modes: Flashcards
vs. MultpleChoice on a 0 - 4 Likert-style scale.

doing some words on the side” (P6)) while others (N=4) preferred reminders to
be triggered when they were not paying attention to their phone (“When I was
not using the phone, or right after I was using the phone” (P10)).

Multiple participants (N=5) complained about the battery drain of the app. Since
we collected a great variety of sensor data, this affected battery drainage in a
noticeable way. Multiple choice seemed to polarize participants’ opinions. Some
liked its “game-like character” (P10), but a majority (N=9) saw problems with
cognates, i.e. words that look similar in different languages, and the problem of
being able to guess a lot of the words: “My level of Spanish is not really high, but
multiple choice often allows me to guess the answer to words I have never seen
before, given my knowledge of French” (P14) and “Multiple choice options are
certainly not optimal to learn vocabulary, though okay for the quick interactions”
(P16). However, as Fig. 6.5 shows there was barely a difference between learners
preferring Flashcards over MultipleChoice. Some participants (N=4) commented
negatively on the timing of the notifications, for example when they had just
checked their phone only to be reminded to review their vocabulary after putting
it away: “sometimes notifications were delayed and came after I just checked the
time” (P17).

As for app improvements, six participants mentioned the limited choice of vo-
cabulary and how they would like to add custom words or choose their own
word topics. As for review modes, four participants requested text entry quizzes,
speech output for pronunciation, sentence examples, or adding articles to nouns.
One feature consistently requested was a way to track their learning progress.
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6.2.3 In-the-wild Study

To increase our body of context sensor data we released QuickLearn free to
download on Google Play. This part of the study comprises data from users in
the wild. We collected sensor data as well as boredom prediction results and
collected subjective app feedback through in-app surveys.

Participants

Besides releasing the app on Google Play, we launched a corresponding website
and Facebook page to be able to promote the app through social channels. One
year after the app release in September 2015, we registered 83 active users, 19
of which being lab-study participants, of which decided to keep using the app
for a while beyond the study. While 28 indicated to be female, 55 reported to
be male. The reported mean age was 31 (SD = 11.7) and according to the most
frequent device locales (35 en-US, 9 de-DE, 18 en-GB, 27 other) and timezones,
most users were accordingly from the U.S., Germany, and UK. While 20 selected
German as their mother tongue, 39 chose English, 11 Arabic, 7 French, and 6
Spanish. As a target language, 25 chose to study English, 23 Spanish, 13 German,
18 French, and 4 Arabic.

Procedure

After downloading the app users went through the setup procedure consisting of
agreeing to the terms on the consent form and granting the application access to
the Android Accessibility Service as well as to notifications. Users were asked
to provide their age, gender, language preference, and current proficiency. The
display modality was randomly assigned when the app was first launched. In
contrast to the controlled study, the modality changed every three days.

Results

In total, 14,632 notifications were triggered, of which 2765 (18.9%) were in-
teracted with. Further, we registered 1435 app launches resulting in more than
19,000 words reviewed.
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Boredom as Trigger

After cleaning up the data similar to the lab study we ended up with 16 participants
who provided valid data sets.

Click-Through Rates In the data set of the in-the-wild study, we neither found
differences between the click-through rates. In the bored condition, scores ranged
from 2% to 81% (M = 20.69, SD= 21.91). In the normal condition, scores ranged
from 0% to 50% (M = 18.75, SD = 15.92). A Levene’s test showed that variance
of the scores of the two conditions was sufficiently equal to use parametric tests
(F(1,30) = .33, p = .57). A dependent t-test revealed no significant differences
between the groups (t(15) = .38, p = .71).

Words Per Session In the data set of the in-the-wild study, we neither found
differences between the click-through rates. In the bored condition, scores
ranged from 1 to 49 words (M = 7.71, SD = 11.49). In the normal condition,
scores ranged from 2 to 21 words (M = 6.71, SD = 5.02). A Levene’s test
showed that variance of the scores of the two conditions was sufficiently equal
to use parametric tests (F(1,32) = .55, p = .46). A dependent t-test revealed no
significant differences between the groups (t(16) = .49, p = .63). In summary,
we found no evidence to indicate whether phases of boredom are better or worse
for microlearning.

Opportune Moments for Language Learning

To be able to analyze context factors that are most opportune for language learning,
the QuickLearn application collected usage logs as depicted in Table 6.2. From
this log data, we elicited 36 features (listed in Table 6.4 and 6.5) from 14,632
instances of notifications sent to 37 different participants. The features were
calculated according to a five minutes time window prior to each notification being
triggered, e.g., the number of phones unlocks five minutes before the notification
was triggered. We had previously filtered out participants who received less than
20 notifications and interacted with less than five of those. By using machine-
learning techniques we assessed the importance of these features to predict
whether a participant would react to a notification by starting a quick learning
session.

To rank the features, we built a model with XGBoost [44], a state-of-the-art gra-
dient boosting regression tree algorithm which has performed exceptionally well
in recent competitions17. XGBoost creates a ranking of the feature importance

17 https://github.com/dmlc/xgboost/tree/master/demo#
machine-learning-challenge-winning-solutions

https://github.com/dmlc/xgboost/tree/master/demo#machine-learning-challenge-winning-solutions
https://github.com/dmlc/xgboost/tree/master/demo#machine-learning-challenge-winning-solutions
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Category Feature Description

Context charging Whether the phone is connected to a charger or not
Context day_of_week Day of the week (0-6)
Context hour_of_day Hour of the day (0-23)
Context light Light level in lux measured by the proximity sensor
Context proximity Flag whether screen is covered or not
Context ringer_mode Ringer mode (silent, vibrate, normal)
Context semantic_location Home, work, other, or unknown
Context is_at_home User classified as being home
Context is_at_work User classified as being at work

Demographics age The participant's age in years
Demographics gender The participant's gender

Last Activity time_last_incoming_call_accepted Time since last incoming phone call was accepted
Last Activity time_last_incoming_call_denied Time since last incoming phone call was rejected
Last Activity time_last_notif Time since last notification (excluding Borapp probe)
Last Activity time_last_outgoing_call Time since the user last made a phone call
Last Activity time_last_SMS_received Time since the last SMS was received
Last Activity time_last_SMS_sent Time since the last SMS was sent

Context

Demographics

Last Communication Activity

Table 6.4: List of elicited features related to context, demographics, and time
since last communication activity.

when building the model. The importance is defined by the fraction of times that
a feature was chosen to be used in a tree. To build the model, we used XGBoost’s
standard configuration, with one exception: in the standard configuration, the
classifier tended strongly towards a positive prediction, while only 18.9% of the
notifications had led to learning sessions. Hence, we reduced scale pos weight by
the factor 0.25, thereby increasing the penalty for false positives. The resulting
model achieved a precision of 0.43, a recall of 0.712, and an F1-score of 0.526.
Compared to the baseline, notifications posted by such a classifier would have
resulted in a theoretical increase in the conversion rate by 2.21 times.

Table 6.6 shows the importance of the 10 best predictors as reported by the
XGBoost model. We further analyzed the correlations between those ten features
and the ground truth via Spearman’s Rank correlation. Positive predictions of the
classifier had significant, non-negligible correlations with:

• Less time passed since the phone had been last unlocked last.
(r =�0.303, p < 0.001)
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Feature Description

Usage Intensity battery_drain Average battery drain in time window

Usage Intensity time_in_comm_apps
Time spent in communication apps, categorized to none, 
micro session, and full session

Usage External num_notifs Number of notifications received in time window
Usage External last_notif Name of the app that created the last notification
Usage External last_notif_category Category of the app that created the last notification

Usage Idling apps_per_min
Number of apps used in time-window divided by time 
the screen was on

Usage Idling num_apps Number of apps launched in time window prior to probe
Usage Idling num_unlock Number of phone unlocks in time window prior to probe
Usage Idling time_last_notif_access Time since the user last opened the notification center
Usage Idling time_last_unlock Time since the user last unlocked the phone
Usage Idline num_screen_on Number of screen on events in time window

Usage Type screen_orient_changes
Flag whether there have been screen orientation changes 
in the time window

Usage Type app_category_in_focus Category of the app in focus prior to the probe
Usage Type app_in_focus App that was in focus prior to the probe
Usage Type comm_notifs_in_tw

Number of notifications from communication apps 
received in the time window prior to the probe

Usage Type app_category_in_focus_comm Current app in focus is communication app
Usage Type most_used_app Name of the app used most in the time window
Usage Type most_used_app_category Category of the app used most in the time window
Usage Type prev_app_in_focus App in focus prior to app_in_focus

Usage (related to the type of usage)

Usage (related to usage intensity)

Usage (related to whether it was triggered externally)

Usage (related to the user being idling)

Table 6.5: List of elicited features related to usage intensity, external triggers,
idling and type.

• Higher age.
(r = 0.144, p < 0.001)

• More apps used during the last 5 minutes.
(r = 0.213, p < 0.001)

• Less time passed since the last access of the notification center.
(r =�0.186, p < 0.001)

• More screen unlocks during the last 5 minutes.
(r = 0.264, p < 0.001)

• Not having received a notification in the last 5 minutes.
(r = 0.109, p < 0.001)
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Feature Importance
time last unlock 0.2163
age 0.1450
time last incoming phonecall denied 0.0814
time last notif 0.0687
num apps 0.0662
time last notification center access 0.0662
num unlock 0.0433
last notif category#None 0.0407
time last incoming phonecall accepted 0.0407
time last outgoing phonecall 0.0382

Table 6.6: Feature importance as reported by the XGBoost model.

Primarily, these results indicate that participants were more likely to engage in
quick learning sessions when they had interacted with the phone more recently.
This finding is in line with previous work that showed that more intense phone
use correlates with boredom and stimulation-seeking (Section 3.3), ritualistic
phone use [132].

6.2.4 Discussion and Limitations

Combining the two studies presented we provide empirical evidence that using a
proactive mobile learning app facilitates microlearning and is an effective way
of spacing out learning sessions throughout the day. This is mainly due to users’
tendency to review vocabulary on the go. We were able to shed some light on
context factors, in which microlearning was found feasible, namely when in
transit as well as during idle moments, such as waiting situations. The design of
the app has supported this notion of learning on-the-go by providing interactive
notifications. Further, we analyzed context factors linking phone usage patterns,
such as phone unlocks, app usage, notification access, and screen on/off events to
opportune moments for learning. Learning sessions through notifications were
found to be shorter than explicit app launches. Therefore, notifications offer
great possibilities for engaging users in quick learning tasks that only take up a
few seconds. Also, despite a tendency towards flashcards being more effective
(as in new words learned and remembered) than multiple choice questions, a
statistically significant difference could not be determined. In a mobile setting and
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with regard to users often finding themselves killing time with the phone positive
aspects of MultipleChoice seem to be the game-like mechanism and the pleasure
of guessing as stated by study participants. When notifications were triggered
out of predicted boredom situations, we were not able to detect a statistically
significant difference when compared to non-bored situations. Therefore, the
study did not find conclusive evidence whether people are more likely to engage
in micro-learning tasks depending on whether they are bored or not. While
boredom is characterized as a state in which people seek stimulation—hence
might be open for the suggestion to learn vocabulary—it is also characterized
as the inability to find stimulation in current activities [89]. While people who
are currently experiencing boredom might, in theory, have the time to engage in
microlearning, they may not be able to get up the energy or may not expect the
stimulation they desire from this mentally demanding task. It may be worthwhile,
however, to investigate users’ receptiveness of other content types suggested in
moments of detected boredom.

By analyzing phone usage context we provide an assessment of opportune mo-
ments for scheduling learning sessions. Proactive learning reminders were es-
pecially welcomed when the phone had been recently used as the correlations
with phone unlock and app usage patterns show. Also, the higher participants’
age, the more likely they would engage with learning content. Unfortunately, the
nature of the in-the-wild-study and the limited knowledge of our users prevents us
from drawing clear causal relationships here. However, by updating the boredom
classifier with our innate model we could boost acceptance rates of the app’s
learning reminders by more than factor 2.

For a one-year in-the-wild study we registered relatively low usage numbers.
Besides the fact that we did not actively push the app’s popularity, its data settings
and therefore privacy implications might have had a deterrent effect. Obviously,
our apparatus does not suffice to teach a foreign language to a learner. We
rather focused on foreign language vocabulary as a proof-of-concept application.
However, due to the well-received notion of microlearning sessions throughout the
day, such technology could pose as a complement to existing learning techniques.
For example, combined with an e-Reader or audiobook application, new words
from articles the user has read could automatically be placed into the learning cue
and spaced out in systematic repetitions in order to help users eventually commit
them to long-term memory.
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6.2.5 Study Conclusion

Microlearning in combination with ubiquitous technologies bears great potential
for learners who naturally lack time and motivation to tackle a daunting task,
such as learning a foreign language. In our work, we set out to explore different
aspects of microlearning as a tool on-the-go, namely presentation mode, automatic
reminders, interaction modalities, and learning context. Therefore, we created
an Android app, with which users learned on average 18 new words per week
by being exposed to about 37 words per day: whether in relatively quick word
reviews through the notification bar or through longer sessions through explicit
app launches. Our results show that people were more open to engaging in
quick learning sessions when they are on-the-go. Both notification interactions
and in-app sessions registered more word reviews when people were in transit
compared to at home or at work. We see microlearning as a complement to
existing learning techniques: throughout the day we read various articles, make
notes, and try to remember new information encountered. As part of a greater
knowledge management system, small learning units can be provided to users
in idle moments. In this work, we showed the feasibility of such an approach,
but the possibilities are far greater when, for example, external resources are
connected. Collaborative platforms, such as Anki18, for example, offer a great
source for flashcards that can be fed into a microlearning system, such as the
one proposed here. Through intelligent scheduling of repetitions and smarter
triggers for reminders, such technology can help users make use of idle moments,
commit knowledge to long-term memory and therefore increase their personal
effectiveness.

While predicted states boredom did not seem to correlate with opportune moments
for learning we showed that training a classifier with context information retrieved
from the phone’s sensors can more than double compliance rates. As discussed,
learning activities may be too mentally demanding as to be a preferred activity
in states of boredom. To validate and apply the boredom detection algorithm
developed in Section 3.3, together with Pielot et al. [214], we conducted a study
on triggering suggestions of light reading material based on predicted states of
boredom.

18 http://ankisrs.net/

http://ankisrs.net/
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Figure 6.6: The app Borapp2 triggered notifications throughout the day to
invite users to read BuzzFeed articles in bored and non-bored states.

6.3 Using Predicted Boredom to Suggest
Reading Content

Here, we report on a study we conducted together with Pielot et al. [214] in
2015, which followed the initial user study, in which we developed the boredom
prediction algorithm described in Section 3.3. The main goal of this study was
to assess whether users were more receptive to suggested reading content when
predicted to be bored. In contrast to the QuickLearn study, in which we suggested
learning content, light-weight reading articles were randomly selected from the
news app Buzzfeed19. Therefore, a new version of Borapp called Borapp2 was
released on GooglePlay, which suggested reading articles throughout the day.

For this study, 16 users living in Central Europe between 16 and 51 years old
(Mdn= 39, M = 36.31, SD= 9.37) were explicitly recruited to install and use the
app over the course of at least two weeks. The app was equipped with the boredom
detection algorithm, which analyzed the features described in Table 3.1 and 3.2
locally on the mobile device in order to classify users to be bored or non-bored
via a Random Forest classifier. Throughout the day the app triggered notifications,
which suggested users to open the Buzzfeed news app. The notifications contained
the title of the most recent Buzzfeed article and prompted the user to click in order
to read the article (see Figure 6.6). Notifications were scheduled with a delay
of up to five minutes when the phone screen was turned on in case 30 minutes
had passed since the last notification. Before triggering the notification, the app
checked whether the user was currently classified as bored or not. To provide a
balanced dataset the app made sure to trigger a similar amount of notifications
for each boredom condition. The app removed notifications that were ignored by
the user for more than five minutes.

19 www.buzzfeed.com

www.buzzfeed.com
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Using the participants’ receptiveness with regard to the notifications triggered
as the dependent measure, the experiment yielded two measurements: 1) the
click-ratio, which described the number of notifications clicked in a condition
divided by the total number of notifications presented in this condition. And 2) the
engagement-ratio, which additionally described how long users spent reading the
suggested article after opening it. Users were regarded as being engaged when
they spent at least 30 seconds with the suggested content.

Over the course of twelve days (the first two days were excluded from the data
analysis to exclude a novelty bias) participants had received 941 content sugges-
tions in form of notifications (M = 60.81, SD = 38.27). Participants were pre-
dicted to be bored in 48.0% of these cases. We found that users were more likely
to click on suggested content (Mdn = 20.5% vs. Mdn = 8%) and more likely
to spend more than 30 seconds engaging with it (Mdn = 15% vs. Mdn = 4%)
when they were predicted to be bored. Differences in bored vs. non-bored states
for both measures in terms of click-ratio (z =�2.102, p = .018, r =�.543) and
engagement-ratio (z =�2.102, p = .018, r =�.511) were statistically significant
with large effect sizes. These results show the feasibility of delivering reading
content in opportune moments, namely when predicted to be bored.

6.4 Chapter Summary

In this Chapter, we presented applications that take into account the current user
state and context to deliver content suggestions throughout the day. While we
built upon the algorithms and methods developed in Chapter 3 and 4 we further
explored characteristics of opportune moments for delivering learning and read-
ing content. For the first field study reported in this Chapter, we built a foreign
language vocabulary trainer that triggered learning reminders throughout the day.
To analyze opportune moments for delivering learning content we collected app
usage data along with context information from the phones’ sensor data. Further,
we collected subjective user feedback through surveys and interviews. Results
show that moments, which users spend in transit or idle (e.g., in waiting situa-
tions) present opportunities for quick learning sessions, so-called microlearning
sessions. Because of the ubiquity of mobile devices such sessions can be triggered
throughout the day, allowing users to fill idle times and memorizing information
through spaced-out repetition. Analyzing sensor context factors we found that
phone usage patterns such as phone unlocks, app usage, notification access, and
screen on/off events can be used to predict such opportune moments for learning.
Our classifier reached a recall rate of 71.2%.



166 6 Opportune Content Delivery

While we were interested in investigating the link between moments of predicted
boredom and a willingness to engage with learning content, we were not able to
find any reliable correlation between the two. However, when training a machine-
learning algorithm with the context data collected during the study we would
be—in theory—able to more than double the compliance rate. This lets us assume
that moments of boredom might be different from moments, in which learning
activities were appreciated by users.

We further looked at the design of learning triggers by comparing flashcards
to multiple choice learning. For both modes, we used interactive notifications
which could be handled in the notification drawer rather than requiring the user to
explicitly launch the app. This allowed users to engage in brief microinteractions
throughout the day, which study participants appreciated. The ease of access
to learning content allowed participants to briefly engage with learning tasks in
between other activities.

We applied the framework presented in Section 5.3 as follows: 1) we derived our
ground truth by observation, i.e., from log data. Therefore, we used instances,
in which users either proactively opened the app or clicked the notifications as a
willingness to engage in learning activities. Instances, in which notifications were
ignored or dismissed we considered as unwillingness to learn. 2) We elicited a
set of 36 features in order to 3) train a machine-learning model for predicting
opportune moments for delivering learning content.

We also investigated the suggestion of reading content. Therefore, we integrated
our boredom prediction algorithm into a mobile app that suggested articles from
a popular news app throughout the day. A field study we conducted showed that
users were more likely to engage with content suggestions and spent more time
reading when predicted to be bored.

These two studies show the overall feasibility of delivering content to users
in opportune moments, i.e., moments in which users are open to follow these
suggestions and engage in activities related to information intake and learning.
With regard to RQ5 we investigated how such moments could be determined and
following our proposed framework for developing cognition-aware systems, we
were able to validate our approach on an application level. By triggering learning
reminders we analyzed users’ receptiveness to content suggestions in order to
predict user engagement based on phone usage data. Similar studies could explore
the nature of different content types and their respective user context: besides
learning foreign vocabulary and reading news articles, application categories,
such as games and entertainment apps could be explored. Lee et al. [173] recently
proposed a context-aware application scheduler, which preloads background
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applications as they are predicted to be relevant to the user at the time. While
proactive recommenders, in general, run the risk of patronizing users, predictive
systems can be used to engage and re-engage users with services, contents, and
apps. However, transparency and appropriate intervention mechanism should be
considered to allow users to control such proactive services.

Detecting opportune moments for content delivery can further be used to instill
new habits: through context analysis (e.g., daily wait-time at the bus stop) ap-
plications could learn when to successfully trigger certain reminders and hence
use such moments for systematically pushing content related to a certain topic or
related to a certain skill to the user. Such an approach could lead to instilling new
habits in people since habits are triggered by context and therefore become deeply
ingrained [279]. An example would be a daily foreign vocabulary repetition
taking place every morning at the bus stop. The advantage of habits is that even if
the technology seizes to remind its user or is simply not available at the time, the
desired behavior could still be successfully triggered.



168 6 Opportune Content Delivery



Chapter7
Adaptive Reading Interfaces

Reading is an activity mostly taken up for information gain and pleasure. With
the rise of the information age, we face a great amount of information on a daily
basis. With the introduction of multimedia, information is tailored more broadly
to our various senses. However, reading remains the primary channel to consume
information. The skill to read and absorb information efficiently has become vital
in both the private and professional sector. We specifically focus in this Chapter
on reading because of its function in information consumption. The effectiveness
of committing information from its perception to memory is highly impacted by
our current ability to concentrate. Attention levels are therefore a vital factor for
reading activities. While Chapter 6 focused on detecting opportune moments for
content delivery, in this Chapter we explore how reading content can be adjusted
to support users taking in that information effectively.

To cope with the ever-growing amount of textual information to consume, dif-
ferent techniques have been proposed to increase reading efficiency. Reiner et
al. [224] recently summarized these efforts concluding with a clear assessment
that language skill is at the core of reading speed. In order to increase speed
while maintaining high comprehension, readers need to become more skilled
language users. Advanced language skills imply increased vocabulary, which
allows readers to quickly grasp the gist of a text while being able to comprehend
more of the arguments presented. There is a general trade-off between speed and
accuracy. If a thorough understanding of a text is not the goal, then deliberately
increasing reading speed allows the reader to get through text faster at a moderate
comprehension level.
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However, comprehension levels also depend on the reader’s mental state and
ability to focus. Increasing reading speed while trying to maintain high com-
prehension levels increases cognitive strain. High focus generally supports our
information bandwidth, therefore we can process information more effectively in
states of high concentration. In contrast, when cognitive capacities run low, more
text pushed at us will result in more information remaining unprocessed. This
absent-mindedness during information intake leads to information not committed
to memory and therefore not retrievable [234].

Currently, people have little awareness and even less control over how to adjust
their reading flow. In this Chapter, we investigate how reading UIs can be adjusted
in real-time to match the user’s cognitive capacities. First, we look at common
methods to dynamically display text in order to modulate reading speed. Based
on a review of previous work in the field we propose a dynamic reading UI that
uses a kinetic stimulus to guide readers’ eye movements and speeds up their
reading. We evaluate its effectiveness compared to alternative methods with
regard to text comprehension and users’ mental load. Then, we focus on reading
in ubiquitous device environments, where text is increasingly read on wearable
devices, such as smartwatches and smart eyewear. With their limited screen sizes,
such devices pose a challenge to effective information consumption. Hence, we
applied dynamic reading UIs, such as Rapid Serial Visual Presentation (RSVP),
to allow information intake on-the-go. User control over reading speed is vital,
which is why we explored different interaction concepts for manipulating reading
flow. Hence, we investigated both implicit and explicit interaction techniques for
reading control.

The research probes presented in this Chapter are examples of how systems can
adjust the information bandwidth according to their users’ cognitive capacities.
This can either be done by providing user controls through explicit interaction
techniques or by using implicit bio-signals, such as eye movement data, to adjust
information interfaces. Cognition-aware systems can help match the attentional
requirements of a reading interface with the user’s cognitive state in order to
prevent frustration in case of highly complex contents or to avoid boredom in case
of simple materials. In this chapter we, therefore, investigate adaptive reading
interfaces that facilitate readers’ information intake, addressing the following
research question:

• RQ6: How can information displays and more specifically reading UIs be
adjusted in real-time to decrease or increase information bandwidth?
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Parts of this chapter are based on the following publications:

• T. Dingler, A. S. Shirazi, K. Kunze, and A. Schmidt. Assessment of
stimuli for supporting speed reading on electronic devices. In Proceed-
ings of the 6th Augmented Human International Conference, AH ’15,
pages 117–124, New York, NY, USA, 2015. ACM

• T. Dingler, R. Rzayev, V. Schwind, and N. Henze. Rsvp on the go -
implicit reading support on smart watches through eye tracking. In
ACM, editor, Proceedings of the 2015 ACM International Joint Con-
ference on Pervasive and Ubiquitous Computing and Proceedings of
the 2015 ACM International Symposium on Wearable Computers, Ubi-
Comp/ISWC ’15, New York, NY, USA, 2016. ACM

7.1 Related Work

Our investigation is based on previous work on reading interfaces, interaction
techniques, eye tracking and further inspired by speed reading approaches as they
are applied by speed readers and commercially taught.

The Reading Process

Reading is a psychomotor activity during which our eyes move across visually
displayed text. During those movements—called saccades—vision is mainly
suppressed [186]. Hence, information is only acquired during the period of time
when the eyes remain fairly still—called fixations. Although there are exceptions
to this where information can be acquired during these eye movements [255],
in most cases our eyes move too quickly across a visual stimulus so that only
a blur would be perceived. An average fixation in reading lasts for about 225-
250ms [223], but depending on factors such as reading skill, language familiarity,
and text complexity fixation duration can vary considerably. The average saccade
length is 7-9 letters for readers of English and similar writing systems, which
also can significantly differ. Another important component of reading is so-called
regressions, i.e., saccades in the opposite of the reading direction, which occur
about 10-15% of the reading time. Regressions are important indicators of text
comprehension (e.g., many regressions occur in particularly difficult texts) and
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differ from return sweeps, which describe larger saccades from right-to-left in
order to get from the end of one line to the beginning of the next. The tracking
of eye movements can give us insights into people’s reading skills and also text
difficulty: more difficult text generally leads to longer fixations, shorter saccades,
and more regressions. Frequent readers typically read at a rate of 200-400 words
per minutes (wpm), but skilled readers are reported to reach much higher reading
speeds. These speeds highly depend on a number of factors, such as the reader’s
language proficiency and level of concentration, but also on the text’s complexity
and typographical aspects.

Cognitive Effects of Reading

Stanovich and Cunningham [250] identified the “Matthew effect” with regard
to reading, which describes the concept of a rich-get-richer and poor-get-poorer
phenomenon. Hence, poor readers tend to expose themselves to less text than
their more skilled peers, thereby increasingly corrupting their reading skill level.
They showed that much of what we read directly influences our language skills
and the size of our vocabulary. This is due to the fact that written language is
lexically much richer than spoken language. So sheer reading volume comes with
a higher exposure to rich language and hence enriches readers’ language skills.
Boosted language skills again contribute to the development of higher cognitive
functions like reasoning and judgment [205] and also lead to a greater general
knowledge about the world. Pronin et al. [218] linked the acceleration of thought
processes in a series of experiments to joy-enhancing effects, rapid reading being
one of those methods used for accelerating thought. Hence, we started looking
into ways to help people read faster and more.

Increasing Reading Efficiency (Speed Reading)

Evelyn Wood, creator of the Evelyn Wood Method [104] and one of the pioneers
of speed reading, was supposedly capable of reading 6000 words a minute.
Techniques she developed and applied were:

• Reading groups of words rather than single words, therefore, she needed to
train her peripheral perception.

• Avoiding involuntary rereading of passages.
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• Use of a finger or pointer to trace lines of text while eliminating sub-
vocalization (i.e., reading out loud in reader’s head).

Wood noticed that the sweeping motion of her hand across a page caught her eyes’
attention and helped them move more smoothly. Hence, the hand or finger could
be used as a pacer. This insight inspired us to design an equivalent for electronic
devices in form of a kinetic stimulus.

Hansen [121] reports on a series of studies on reading comprehension with rapid
readers trained in the Evelyn Wood method. Her results showed that rapid readers
were superior in comprehension of relational aspects of text and were able to
recall significantly more information than normal readers due to the fact that they
were able to read the material more than once given a time constraint. In other
words, when normal readers and speed readers were given the same amount of
time to read a text, the speed readers covered more of the material and their recall
indicated comprehension of the gist of the passage. They especially tended to
recall more idea clusters than normal readers, but less detail about each idea.
Other studies on the Wood method reported that average comprehension levels
went down as reading rate increased [40, 93, 116]. Just and Carpenter [150], on
the other hand, show that training speed reading can increase the comprehension
level of higher level information even on faster reading speeds. Yet, the increases
also depend on text types and difficulty. They show that easy texts can be read
very fast without loss in comprehension. Together with Rayner et al. [224]
they give a comprehensive overview of the processes of speed reading. Both
come to the conclusion that there is a trade-off between reading speed and text
comprehension. In order to maintain high comprehension while reading faster,
readers need to practice reading and therefore become more skilled language
users. However, Rayner et al. also point out that speed reading or skimming
text is feasible if a thorough text understanding is not the goal. Hence, moderate
comprehension may be acceptable for being able to read through certain texts
more quickly.

A series of studies have focused on how to best display text on computer screens
and mobile devices: while limited screen size poses a challenge for reading
UIs, reading performance has been shown to generally increase with bigger font
size, which also affects the readers’ subjective preference and lowers levels of
perceived difficulty [15, 58]. Reading while performing a secondary task, such
as walking, has further shown to decrease reading performance while increasing
cognitive load [236, 256]. Also, there is a variety of commercial tools available
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that facilitate reading on the web: Readability20, for example, used as a browser
plugin cleans up web pages and displays content in a more readable manner.
Another example is the BeeLine Reader21, which aims at smoother line break
transitions by guiding the user’s eye through a color code from one line to the
next. While these tools may facilitate reading on electronic screens they do not
necessarily nudge readers to increase their reading speed.

Rapid Serial Visual Presentation (RSVP)

RSVP, a term coined by Forster [103], is an experimental model for examining
temporal characteristics of attention. With this method users focus on visual items
being continuously presented in the same place. High information transfer rates
are thus possible because the need for saccadic eye movements is eliminated.

For electronic devices RSVP allows space to be traded for time and hence can
be used to support information browsing and search tasks on small displays [60].
However, the capability of the human visual system seems to be the limiting factor
in the application of RSVP. Presentation rate and the visual similarity of stimuli
have been shown to influence the effectiveness of RSVP streams [217]. Subse-
quent targets are often missed especially when they occur in rapid succession
(180-450ms), which Raymond et al. [222] described as attentional blink. When
users are engaged in a secondary task, more stimuli are potentially missed. This
is specifically critical for reading activities, where missing parts of a sentence
may severely inhibit readers’ text comprehension.

Masson [183] reported reading studies using RSVP, in which participants were
often able to correctly outline the essence of a passage without necessarily re-
calling specific words. Schotter et al. [241] on the other hand presented findings
of how repressing regressions in reading, which RSVP effectively does, hinders
text comprehension, especially when dealing with ambiguous sentence structures.
Hedin and Lindgren [128] examined reading on mobile devices using RSVP in
regard to reading comprehension and efficiency. In a user study, they compared
reading with RSVP vs. reading with scrolling using different reading speeds.
They found that with RSVP speed and comprehension is high, but that users are
generally uncomfortable with the technique.

20 http://www.readability.com/

21 http://www.beelinereader.com/

http://www.readability.com/
http://www.beelinereader.com/
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There are different modes of RSVP as described by Spence [248], however, for
reading activities we focus on the sequential presentation of words in one spot,
as it was used more recently by the commercial application spritz22 for a text
presentation technique on mobile phones and smart watches. Georgiev [110]
investigated reading speeds—including via RSVP—on mobile devices and com-
pared reading on a PC screen with reading on paper. Top reading speeds were
achieved on computer screens with a font size of 14pt and on paper. In our work,
we apply these findings and focus on the effects of RSVP with the facilitation of
speed reading in mind.

Gaze-based Reading Interaction

First work on gaze-based interaction focused on the user-computer dialogue in a
natural and unobtrusive way [146]. Kern et al. [153] investigated the feasibility
of using eye tracking to facilitate the resumption of an interrupted task: they
developed a system that provided visual placeholders to highlight the last gaze
position which allowed users to efficiently switch between tasks. Hansen et al.
[122] added gaze tracking to smartwatches to allow hands-free interaction through
gaze gestures. Dickie et al. [66] introduced a platform for sensing eye contact
on mobile screens based on an infrared camera system. They further discussed
a reading application using RSVP and controlling the reading flow through eye
gaze. However, the application was neither implemented nor tested.

Concluding, various reading methods have been proposed to increase reading
speed or to accommodate for certain devices’ characteristics. While there is a
trade-off between reading speed and text comprehension, not every text neces-
sarily needs to be processed in full detail depending on the readers’ goals. Also,
reading performance depends on the reader’s current ability to concentrate: in
phases of high cognitive performance, text can be read faster and more effectively
processed than in times of low attention levels. Reading with high speed and
concentration, therefore, affects the reader’s mental load. Awareness of readers’
attention and cognitive performance levels can inform reading UIs to dynamically
adjust text display and keep the mental load in balance. Hence, we explored the
adjustment of reading UIs by dynamically increasing users’ reading speed and
measuring the effects on cognitive load. We begin with the report of a study to
compare dynamic speed reading UIs.

22 http://www.spritzinc.com/

http://www.spritzinc.com/
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7.2 Reading Interfaces to Increase Reading
Speed

Naturally, over the course of time people develop their innate reading, skimming
and skipping strategies. Speed reading techniques are a much-discussed topic
that has gained many followers over the last decades. Studies conducted are often
disputed but agree on a natural trade-off between reading speed and comprehen-
sion levels. Various techniques are taught by books and seminars that allegedly
enable speed reading, such as by Frank [104]. RSVP has been proposed as a
reading technique to push a reader through a text by displaying single or groups of
words sequentially in one focal point. Recent Web apps have spurred excitement
around the prospect of achieving higher speed reading by effectively reducing eye
movements (saccades). Other common techniques include the use of a kinetic
stimulus (such as a moving hand, pen or finger) to guide a reader consistently
across lines of text.

To investigate whether such techniques can be applied to reading on electronic
devices and to explore their feasibility, we assessed two stimuli: 1) the RSVP
method by using the open source framework Squirt23 and 2) a kinetic stimulus
in form of a dynamic text underline effect. Here, we present two consecutive
user studies: first, we report on a lab study in which we collected data about eye
movements, mental load and comprehension levels of 24 participants and second,
we collected subjective feedback data from 108 participants in an online reading
experiment.

In this Section, we 1) describe the application of speed reading techniques to
reading on electronic devices, 2) introduce a kinetic stimulus in order to actively
increase users’ reading speed, and 3) investigate the effects of RSVP and the ki-
netic stimulus on text comprehension, mental load, eye movements and subjective
perception.

7.2.1 Stimuli to Support Speed Reading

We implemented two stimuli with the goal of increasing reading speed by guiding
the user’s eye. We built our prototypes with a combination of HTML5, CSS and
JavaScript to make our system not only run in the lab but also on the web to make
it accessible to a broad pool of study participants.

23 http://squirt.io/

http://squirt.io/
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Figure 7.1: Kinetic stimulus: A moving line as underline effect.

The first stimulus is modeled after the idea of swiping the user’s finger or a pen
across a text in order to keep a constant reading flow [104]. Initially, we had
several prototypes of stimuli suggesting a constant motion across the screen. By
conducting pilot studies and questioning independent researchers we decided to
use the technique of dynamically underlining lines of text as a kinetic stimulus for
the user study. Using the HTML5 canvas element we implemented this dynamic
line placed under a line of text that moves from left to right at a predetermined
speed (Figure 7.1). Hereby not the entire line moves, but the left beginning of the
line moves to the right end only underlining words that are still up for reading.
This is intended to keep the eyes focused on the current line and avoid jumps of
the eye between lines as well as regressions. Once the stimulus reaches the end
of one line, the next line is underlined and the stimulus starts to run again. The
entire text is visible at all times and the stimulus moves from left to right and line
to line.

The second stimulus is modeled after the RSVP method where one word is
displayed at a time at a focal point. We based our implementation on the javascript
open source code of Squirt. It basically takes as input a text and a reading speed in
words per minute (wpm) and displays this text word by word in the middle of the
screen (see Figure 7.2). A blue letter marks the position where the reader’s eye
is supposed to focus on. This letter roughly marks the first third of the character
sequence, since in western cultures the perceptual span is skewed to the right,
hence we perceive more letters to the right than to the left of our focus point
[144]. The mark should suggest the eyes to keep their focus on this focal area.
The script analyzes the text upfront and dynamically assigns a viewing duration
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Figure 7.2: RSVP: sequentially displaying words in one focal point.

to each word, hence words with more characters are presented slightly longer.
After a slight delay to prepare the reader, the presentation of words is quickly
increased to its target speed. The same goes for words at the end of a sentence to
indicate the beginning of a new one. The entire text is not displayed upfront and
after finishing cycling through the text, the application closes its text window.

After a series of pilot studies where we raised readers’ normal reading speed by
varying amounts using both stimuli, we settled on an increase to 150%, since it
seemed both significant and feasible. To assess the effectiveness of the system we
conducted two user studies: 1) a lab study with 24 participants and a stationary
eye tracker and 2) an online study to collect subjective feedback on the two speed
reading stimuli.

7.2.2 Lab Study with Eye Tracker

First, we carried out a lab study to assess the effect of sped-up kinetic and RSVP
stimuli on reading performance of users. We recruited 24 participants (22 male,
2 female) with an average age of 23 (SD = 2.28) years. We reached out to
potential participants through university mailing lists and social networks. Most
participants were students all of which indicated German to be their first language.
Five participants indicated previous exposure to speed reading techniques.

Methodology

We designed the study using a between-subject measure design with the reading
stimuli as the only independent variable. The stimuli comprised two levels:
kinetic and RSVP. Participants were asked to read four rounds of text with one
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corresponding stimulus, for each stimulus condition we had 12 participants. As
dependent variables, we measured text comprehension and mental load using
the NASA-TLX questionnaire [124] after each round of reading. Using the eye
tracker we also recorded average fixation durations and number of fixations as
well as regressions calculated from saccades.

Apparatus

The study was conducted using the system described above. To record partici-
pants’ eye movements we used the stationary SMI RED250 eye tracker with a
sampling rate of 120 Hz. For study purposes, we integrated the browser-based
prototype into a task sequence as defined in the study software of the eye tracker.
To ensure the validity of measuring text comprehension we used an official text set
from the TestDaF institute24, which focuses on the development and application
of tests to assess language proficiency of German as a foreign language. Each text
comprised on average 583 (SD=19.8) words and came with a list of ten questions
for measuring the readers’ text comprehension.

Procedure

After explaining the purpose of the study, the participant was asked to sign the
consent form. We then randomly assigned the participant to one of the two
conditions. We calibrated the eye tracker and conducted a test to assure the eye
tracker worked properly, after which the actual experiment was started. In the
initial phase, we provided a text, which participants were asked to read as baseline
condition without using any of our stimuli in order to calculate participants’
regular reading speed (wpm). In the following, the participant read four texts in
four rounds with 150% of her regular wpm rate. At the end of each round, she
was asked to answer ten comprehension questions and fill in the NASA-TLX
questionnaire. The study, including a short debriefing session, took approximately
60 minutes per participant.

Results

In the following, we present both quantitative and qualitative results.

24 https://www.testdaf.de

https://www.testdaf.de
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Mental Load

We analyzed differences in mental load between the two groups using the RAW-
TLX scores. The homogeneity of variances was not violated (p > .05). The
independent t-test revealed no significant difference in the mental load between
the two stimuli in any round (t(22) = .889, p = .38). The average mental load
across all rounds for the kinetic stimulus was 64.80 (SD = 4.81) and for the
RSVP was 67.41 (SD = 4.35). Further, we investigated how the mental load
changed between the first and last round within each stimulus. For the kinetic,
the t-test showed that the mental load decreased significantly from the first round
(M = 74.41,SD = 11.18) to the last round (M = 61.75,SD = 19.7) , t(11) =
3.22, p = .008,r = .70. The effect size estimate indicates that the change in
the mental load created by using the kinetic stimulus was a large and therefore
substantial effect. No significant difference were found for the RSVP stimulus
(t(11) = 1.72, p = .11). The average mental load for the first round was 70.75
(SD = 8.89) and for the last round was 63.58 (SD = 19.30).

Comprehension

We compared the number of correct answers for each text to assess users’ text
comprehension. The statistical analysis of the two stimuli revealed no significant
difference (t(22) = .62, p = .40). The average number of correct answers using
the kinetic stimulus was 5.48 (SD = 1.63) and using the RSVP stimulus was
5.18 (SD = 1.72). Further, we investigated the comprehension scores between
the first and fourth round of each stimulus. For both stimuli the t-test revealed
that comprehension increased significantly (kinetic stimulus: t(11) = 2.80, p =
.01,r = .65; RSVP stimulus: t(11) = 2.75, p = .01,r = .64). The effect size
estimates indicate a large and substantial effect. The average correct answer using
the kinetic stimulus increased from 5.25 (SD = 1.48) in the first round to 6.08
(SD = 1.67) in the final round. Using the RSVP stimulus, the average number of
correct answers was increased from 4.58 (SD = 1.431) to 6.0 (SD = 1.65).

Fixations & Regressions

We further analyzed the fixation and regression information collected by the eye
tracker during the study. Fixations can be a measure to assess engagement or
difficulties in extracting information [149]. The average number of fixations
for the kinetic stimulus was 381.31 (SD = 63.22) and for the RSVP stimulus
was 119.73 (SD = 66.98). Such a significant difference between the two stimuli
was expected due to the nature of RSVP where the user focuses on a single
point instead of moving eyes across a text. Further, we assessed the number of
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fixations and the average fixation duration between the first and fourth round
of each stimulus. The t-test revealed no significant differences neither for the
kinetic (number of fixations: t(11) =�.07, p = .95, fixation duration: t(11) =
�1.50, p = .16), nor for RSVP (number of fixations: t(11) = �.08, p = .94,
fixation duration: t(11) = .49, p = .63) stimulus. For the kinetic stimulus’ first
round, the number of fixations was 379 (SD = 66.4) with an average fixation
duration of 241.25 ms (SD = 29.82), for the fourth round, the number of fixations
was 379.92 (SD = 66.1) with an average fixation duration of 248.9 ms (SD =
36.40). During the first round of the RSVP condition, the number of fixations was
118 (SD = 78.2) with an average fixation duration of 1044.07 ms (SD = 352.22).
In the fourth round, the number of fixations was 119.42 (SD = 49.1) with an
average fixation duration of 996.1 ms (SD = 385.5).

We also evaluated the regression information collected while reading the texts
using the kinetic stimulus between first and fourth round. We define regressions as
eye movements opposite to the reading direction. While regressions are negligible
when using RSVP, in normal reading they generally indicate re-reading of words
or entire sentences and hence slow down the reading process overall. The t-
test revealed the regression decreased significantly from the first round (M =
16.42,SD = 11.15) to the last round (M = 11.25,SD = 7.1), t(11) = 2.877, p =
.01,r = .65. The effect size reveals that using the kinetic stimulus has a substantial
effect on eye regressions while reading a text.

Qualitative Assessment

Taking a look at scan path visualizations of the eye tracking data of participants
using different stimuli we notice some interesting differences. In scan path
visualizations each eye fixation is represented by a circle. The longer the duration
of the fixation, the bigger the circle’s radius. A line represents a saccade between
two fixations. Figure 7.3 shows the scan path of a participant freely reading a text
without any of our two stimuli present. Fixation durations are quite variable and
a number of line jumps as well as regressions can be noticed. Figure 7.4 depicts
the scan path of that same participant directly thereafter when using the kinetic
stimulus at 150% of her initially measured reading speed. Fixations seem more
widely spread, which is probably due to the nature of the kinetic stimulus moving
across all text. Figure 7.5 shows the scan path of a participant reading with the
RSVP stimulus. Far fewer, but longer fixations on the central focus are presented.
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Figure 7.3: Scanpath visualization of reading freely.

Figure 7.4: Scanpath visualization of reading with the kinetic stimulus.

Discussion

Looking at the significantly decreasing strain on mental load after using the kinetic
stimulus for a while, we conclude a strong learning effect while using this method.
The same applies to the significant increases in comprehension. Initially, users
seem challenged by having a stimulus dictate them where to read and at which
speed, but they adjust relatively quickly, i.e., over the course of four trials. We
further observed significantly fewer regressions after using the kinetic stimulus
for a while. The eyes seem to adjust to following the stimulus and regressions
are effectively reduced. The fact that, in accordance with fewer regressions, we



7.2 Reading Interfaces to Increase Reading Speed 183

Figure 7.5: Scanpath visualization of reading with the RSVP stimulus.

also measured increasing comprehension levels contradicts findings of Schotter
et al. [241], which is probably due to the nature of the text types used. Schotter et
al. deliberately focused on ambiguous sentence structures in their studies. When
designing such studies it is crucial to not only pay attention to the nature of the
texts used, but also to the difficulty of assessing text comprehension. We opted
for a solution in which the text came with pre-defined comprehension tests as they
are used in assessing language proficiency. Hence, they require not an only literal
translation, but also transfer skills. When reviewing the test results we realized
these type of questions were anything but trivial. However, we are positive that
considering certain text types, comprehension goals and given that users take into
account a practice phase, using such stimuli for reading is feasible.

7.2.3 Online Study

To collect more in-depth data on user perception aspects of the presented stimuli
we conducted an online study targeted at a broader audience. A total of 108
participants (72 male, 34 female, 2 without gender indication) between 12 and
69 years old (M = 27.9,SD = 8.3) fully completed the study. We disseminated
the study across university mailing lists, social networks and personal contacts in
other research facilities across U.S. and Europe. German was indicated to be the
first language by 78 study participants, 30 reported it to be English. Participants’
background ranged from students to engineers, business-related professions, and
lawyers.
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Methodology

The study followed a repeated-measure design, so all participants were exposed
to both conditions: RSVP and kinetic as independent variables. For each stimulus
participants were asked to read a short paragraph of text comprising 284 words
each. As dependent variables, we collected subjective feedback in form of a
Likert-style scale and free-text survey. The texts used for the study were taken
from literature (”The Trial” by F. Kafka) and from a popular blog to ensure
text diversity. We provided both English and German versions, self-selected by
participants. Average time to complete the online study was M=8.5 (SD = 4.8)
minutes, variations depending on individuals’ baseline reading speed and the time
they took for filling in the surveys.

Apparatus

We used again the basic web implementation of the stimuli as described above.
Additionally, we used a server running PHP as the backend to collect and store
the corresponding data. We designed a survey to be filled in after each condition.
In the consent form, we collected basic demographic information, while a final
survey was used to collect general feedback.

Procedure

On the landing page of the online study participants were asked to select their
preferred language suggesting, i.e., English and German. After, they were redi-
rected to a consent form explaining the background of the study and where they
could enter their demographics including age, gender, and profession. The first
step comprised the assessment of general reading speed: participants were asked
to fully read a paragraph of 521 words taken from ”Alice in Wonderland” by
L. Carroll. Completion time was measured from when they clicked on ’Start’,
on which the actual text appeared until they clicked on ’Finished’. From this
measurement, we calculated their reading speed in Words per Minute (WPM),
which was taken as baseline speed. From there we randomly assigned both
stimulus and text order and increased participants’ reading speed by 150% to a
maximum of 600 wpm. This cap seemed necessary to ensure that especially the
RSVP condition did not completely overburden readers who might have read the
initial text for speed assessment in overly rapid manner.
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In the next step, for each stimulus one paragraph of text was read and five ques-
tions were answered using a 5-point Likert-style scale (1=strongly disagree, 5=
strongly agree). Questions targeted subjective perceptions of text comprehension,
reading comfort, exhaustion by reading, support in speeding up reading rates and
perceived reading duration. After the last condition participants were directed to
a final survey with three free-text questions where they could state their general
preference for any of the stimuli. The questions aimed at eliciting what type of
texts participants could imagine using the presented reading techniques for and
on what kind of devices. In the last text box, we asked for general feedback and
comments.

Results

Study participants on average reached 386 wpm (SD = 194) during the speed
assessment task. Hence, for the study, we increased the stimuli speed on average
to about 512 wpm (SD = 107). For 42 participants (38.9%) we capped the reading
speed at 600 wpm.

Figure 7.6 comprises the results of the list of questions we asked after each stimu-
lus condition. A Wilcoxon Signed-Rank test revealed that there is a significant
difference in rating of subjective text comprehension (Z =�2.18, p = .03), speed
reading support (Z =�4.15, p = .0001), reading comfort (Z =�3.04, p = .002),
and perceived duration (Z = �4.09, p = .001). In these four aspects, RSVP
was rated higher than the kinetic stimulus. The rating of exhaustion showed no
significant difference.

In the final survey, 42.6% participants indicated to prefer the RSVP stimulus,
36.1% preferred kinetic, whereas 21.3% indicated no preference.

Text & Device Types

For the final survey of the study participants were asked to fill in for which types
of text and devices they could imagine using these stimuli. For each stimulus
different types of text and devices could be named. In total, we collected 106
recommendations for text types and 121 recommendations for device types. To
identify the preferred types of text and devices for each stimulus, two researchers
independently analyzed the free texts provided by the participants and categorized
them. Then, the researchers crosschecked their categories and agreed on a set of
text types and device types. In total four types of text, namely: short texts, books,
technical literature and news were derived. The top three types of text participants
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mentioned for the kinetic stimulus being useful for were: books (30%), technical
literature (23%), and news (15%). For RSVP, short texts were ranked highest
(31%), then books (25%) and news (20%).

Regarding device types that may be fit for using the two stimuli for, 6 types
were identified in total: smartwatch, smartphone, tablet, e-reader, head-mounted
display and PC/laptop. The top three device types mentioned for the kinetic
stimulus were e-reader (47%), tablet (45%) and PC/laptop (34%). The devices
mentioned to be fit for RSVP were smartphones (68%), smartwatches (27%) and
tablets (17%).

Qualitative Feedback

Looking at the general comments and feedback participants left in form of free
text, we get a broader picture of subjective perception of using such sped-up
stimuli for reading. Many participants doubted to have fully understood the texts
but also stated that for unimportant text little comprehension may be acceptable.
Others indicated having lost the context because of a moment of inattention or due
to the fast speed of the stimulus. At least with the kinetic stimulus, some were able
to catch up again, but with the costs of having missed some details in between.
Many participants found the kinetic stimulus initially confusing while one of the
problems with RSVP seemed to be a lack of sense of how far into the text the
reader already was and how much more there was to come. One participant stated

”the surrounding sentence is missing”, which shares the general assessment of
others in the difficulty to put the single words into the overall context. However,
one participant stated that sequential reading turns boring stories into interesting
ones because she found ”fun in being challenged not to miss the context of a
single word”.

One participant expressed her desire to go through different paragraphs with
different reading speeds as to use her imagination in crucial parts of a story.
There were quite some complaints about the lack of manual control: ”The kinetic
method would be reasonable if it had some sort of ‘pause’ functionality”. One
comment stated ”Speed reading is not about reading every word.” Similarly,
another one stated that there needs to be the chance to get an oversight of the text
while reading. Further, the techniques should allow skipping entire sentences or
paragraphs. We also had participants who complained about the slowness of the
stimulus, since we had a cap on 600 wpm for study purposes.

Numerous ideas to improve on the stimuli were brought forward as well. For
example, the kinetic stimulus should be used for types of text where readers
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are inclined to easily digress (e.g., mandatory texts/emails at work), especially
for ”long passages I just need to get through”. Another participant imagined
the idea of using a kinetic stimulus for collective reading as well as on public
displays. Further, it could be useful on large screens with lots of text as some sort
of ”reading guide”. Other application scenarios for the kinetic stimulus included
highlighting and re-reading of important sentences/take-aways. RSVP, on the
other hand, could be used for one-line ad screens at the bottom of cellphone
screens or for displaying stock prices. Some participants mentioned that difficult
words would need longer display time than others. One participant stated RSVP
to be potentially useful for proofreading text.

Many comments focused on the issue of the speed of the stimuli in particular
as well as increasing reading speed in general. One participant indicated the
kinetic stimulus being ”too fast compared with my comfortable speed zone”. A
great number of users mentioned that they would appreciate using the stimuli at a
slower speed. Some felt especially pressured by the RSVP stimulus as if ”being
in a challenge”. To conclude, one participant stated ”reading is more than simply
a speedy transfer of data. Any ’quality reading’ - at whatever speed - requires
that the reader first understand the reading, next remember it, then analyze or
intellectualize it from various reference points - in other words, think about the
reading”. Whereas another one summarized his comments with ”Reading should
be for fun, and not a race”.

Discussion

As can be seen from the general comments left by participants, the stimuli
triggered some mixed feelings in user perception. Whereas in terms of measures
the RSVP stimulus was clearly preferred to the kinetic stimulus, comments mostly
revolved around the feasibility of the kinetic approach, given some sort of user
control. However, findings seem to convey various application scenarios for both
stimuli. In that sense, the kinetic stimulus was generally preferred to be used for
rather long passages that require a certain amount of concentration. The RSVP
stimulus, on the other hand, seems to be more suitable for short texts.

Further, users seem to prefer the kinetic stimulus when reading on sufficiently
large displays as compared to RSVP, which they find feasible for small displays
like on smartwatches or smartphones. Tablets seem to be the type of device that
splits the categories: in case of larger available screen estate, RSVP was preferred;
in case of smaller, the kinetic technique. This indicates that reading using two
complementary devices as demonstrated by Piazza et al. [210] can make sense.
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Figure 7.6: Subjective feedback on perceptions of text comprehension, read-
ing comfort, exhaustion by reading, support in speeding up reading, and
perceived reading duration using the kinetic and RSVP stimuli.

Speed was based on one single reading pass to determine the initial wpm rate.
One participant stated he ”didn’t pay much attention to the text during the speed
assessment and hence skipped some parts” which lead to a very high reading
speed throughout the rest of the study. Further, these reading techniques are
not suitable for all types of readings. It is generally difficult to decide on an
appropriate selection of text passages. As the comments of some participants
show, there are great differences in text complexity or readers’ background
knowledge for that matter, as certain paragraphs were already known by some
participants. Further, not all of the participants were native German or English
speakers and thus were overwhelmed by being pressured to increase reading
speed in a foreign language.
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7.2.4 Implications

We set out with the goal to assess the feasibility of applying speed reading tech-
niques to reading activities on electronic devices. Our qualitative analysis shows
that the act of enforcing higher reading speeds seems to have an alienating effect
on users, especially when reading naturally comes with the idea of pleasure and re-
laxation. However, despite initial discomfort, we observed quick learning effects
that lowered mental load and increased comprehension rates, which naturally go
down when initially using such techniques. These findings encourage us to look
into how such techniques can be further developed to lower the entry barrier for
users to, slowly, but not drastically, pick up and increase their regular reading
speed. Therefore, we identified a number of issues that need to be considered
when designing such techniques:

Control

As we have learned from the qualitative feedback, it is crucial for users to remain
in control over their choice of reading technique as well as over their current
reading speed. Hence, possibilities to stop, start and pause stimuli need to be
provided. Further, speed reading does not necessarily imply reading word by
word. Hence, stimuli should take into account the users’ inclination to skip words
or entire paragraphs.

Retaining Oversight

What comes naturally to conventional books is a challenge for electronic reading
interfaces: a sense of size, position, and oversight. When reading through
an actual book, the page location and arrangement conveys a feeling of the
whereabouts of the reader in the story. In ebooks, for example, this intuition is
lost, even more so when using the RSVP stimulus as we have seen. Since a single
eye fixation provides a view of the world that is roughly elliptical (about 200
degrees wide and 130 degrees high) [144], we can us this knowledge to adjust the
number of words being displayed at once and make entire word groups graspable
with one fixation, instead of displaying only one word at a time. Further, for text
comprehension it seems crucial to be aware of the context of a word, sentence,
even of the entire paragraph and hence adequate features should be provided.
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Context-dependent Variability of Techniques

Different types of text require the reader to use different reading speeds. In such
cases reading speed can depend on various factors, such as linguistic complexity
or density of content, but also on the reading goals. In the first case, extracting
language semantics could help as well as using reading models, such as [227],
to dynamically adjust the speed of the stimulus. In the second case, readers
should have the means to either push through a text or be allowed to skip certain
parts where 100% comprehension may not be required, but skimming is accept-
able. Further, device types should be taken into account since display size is an
important factor for the choice of stimuli.

Taking into Account User Diversity

Reading is a highly complex psychomotor skill. There is a great variety of factors
that influence reading performance, such as the reader’s general background
knowledge, familiarity with the language or with the type of text, and also eye
mobility, attention span and current level of fatigue. Learning about users’ reading
habits can yield great adaption variability. Also, taking into account bio-feedback
to dynamically pause stimuli or adjust reading speed may be feasible. Oliveira and
Guimarães [204] presented a tool to assess mental workload from EEG signals
and adjust reading parameters, such as text size, contrast and presentation speed in
real-time. In case of high mental workload, text presentation can be slowed down
to reduce discomfort and on the other hand accelerated to make use of available
mental resources. Further, eye tracking can be used to take bio-feedback into
account and dynamically pause stimuli or adjust reading speed in real-time. As
one study participant stated: ”the kinetic [stimulus] could be a lot better if it were
combined with gaze detection – this would allow me to flip back and re-process a
sentence that I had missed. [...] It could auto adjust the speed, rather than just
plowing on regardless”.

7.2.5 Study Conclusion

In this study, we investigated reading UIs that can be adapted in real-time to
support information intake and assessed effects on cognitive load. Such adaptions
can take place according to the user’s current state of concentration, for example,
by balancing text throughput with the user’s current cognitive capacities. We
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evaluated two approaches to increase reading speed on electronic devices by
applying a kinetic and an RSVP stimulus to text. Therefore, we implemented
an animated line that moves through the text as well as an RSVP stimulus,
each moving at 150% of the reader’s regular speed. In two user studies, we
collected quantitative and qualitative data on the effects and feasibility of such
stimuli. Despite users being initially alienated by the approach, results show quick
learning effects in adjusting reading speed, lowering mental load and increasing
text comprehension levels. We concluded with a set of design guidelines for
applications using such reading techniques: therefore users should be able to
control their speed and mode of reading and be allowed to retain oversight.
Readers’ individual preferences and reading goals should be taken into account
as well as the different types of text and particularities of devices. By combining
eye tracking with natural language processing, systems can detect the reader’s
skill level, automatically assess the peculiarities of text types and adjust the text
display accordingly. Hence, such systems can offer different reading strategies to
facilitate reading tasks according to the user’s current cognitive state and reading
goal.

In the next Section, we focus on the notion of controlling the reading flow through
eye tracking. Eye movements are strong indicators of user interest and cognitive
activity. Hence, we present another application of cognition-aware systems that
process eye movement data and adjust the reading UI in real-time to support
information intake.

7.3 Implicit Reading Support Through Eye
Tracking

As we have assessed in the previous Section, reading with RSVP requires high
user attention since words are flashed in rapid sequence. This makes reading
while performing an additional task, such as walking, challenging. Even small
distractions cause users to briefly look up from the screen and hence lose part of
the currently displayed sentence.

To avoid missing vital text parts, controls are required to pause and resume
the flashing of words. RSVP is typically controlled using explicit user input.
However, pressing a button or performing a gesture requires time, attention and
accuracy. Explicit input can, therefore, be challenging for short and frequent
interruptions. Looking up from the screen while walking to adjust the walking
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Figure 7.7: RSVP reading interface with four visual markers augmenting the
smartwatch to detect when user’s eye gaze is directed at the watch.

direction, for example, can take less than a second. For such brief interruptions,
we created a system, which allows users to implicitly control RSVP text presenta-
tion. Therefore, we augmented readers with a mobile eye tracker to detect when
the reading flow is interrupted and pause the sequence of words accordingly. In
case of longer interruptions, the text backtracks to the beginning of the sentence
to restore the reader’s context. Hence, we aim to combine the advantages of
normal reading, which allows readers to freely switch their focus between text
and environment, with the advantage of RSVP requiring very little screen space.

In this Section, we present and evaluate a system that uses RSVP to display
text on a smartwatch and allows users to explicitly or implicitly control the text
presentation. In the following, we report on a user study with 15 participants, in
which we investigated the advantages of implicit eye gaze control.

7.3.1 Explicit and Implicit RSVP control

We developed a prototype that enables users to explicitly or implicitly control
RSVP text presentation. The system consists of a smartwatch with a touchscreen
and an eye tracker. Therefore, we implemented an Android Wear RSVP applica-
tion based on an open source framework25 for the Motorola Moto 360 smartwatch.
The Moto 360 runs Android (version 6.0.1) and has a circular 320⇥290 pixel
1.5600 touchscreen display with a 46 mm diameter. The application displays text,

25 https://github.com/andrewgiang/SpritzerTextView

https://github.com/andrewgiang/SpritzerTextView
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which is shown word by word with a specially colored letter serving as a focal
point for the reader’s eyes to focus on (see Figure 7.7). The number of words
shown per minute (e.g., 200 wpm) can be freely selected from the application’s
setting.

Users explicitly control the text flow through the touchscreen of the smartwatch:
reading can be paused and resumed through simple taps (Figure 7.8 (left)). To
allow readers restore the reading context, the text presentation goes back to the
beginning of the current sentence in case of longer pauses (i.e., longer than 5 sec-
onds). We use an eye tracker to enable implicit control over the text presentation
(Figure 7.8 (right)). For tracking the user’s eye movements, we use the Pupil Pro
eye tracker by Kassner et al. [151], which comes with a 3d-printed frame and a
software package for calibration, gaze detection, and surface registration. The
modular eye tracker consists of a 120 Hz head-mounted monocular camera with
a resolution of 640⇥480 pixels and a world camera with 30 Hz which delivers
the video stream in FullHD. We attached four visual markers, each with a size of
20 mm⇥ 20 mm, to the bezels of the smartwatch screen (see Figure 7.7), which
allow the software to determine whether the eye gaze is directed inside or outside
of the marked rectangle, i.e., users look at the smartwatch display or not. The gap
between markers constitutes 14 mm (vertically) and 64 mm (horizontally) so that
the diameter of the registered virtual surface corresponds to the diameter of the
watch interface. The eye tracker communicates with the smartwatch using the
Pupil Capture software26, which entails the Pupil Server plugin for broadcasting
eye gaze data over a network. The Android Wear application on the smartwatch
receives the data stream and determines whether the user is currently looking at
the watch or not. Hence, the reading flow pauses when the user looks away and
automatically resumes when the user looks back at the watch. In case of a longer
reading pause (longer than five seconds), the reading position is further reset to
the beginning of the current sentence.

7.3.2 User Study

To compare explicit with implicit control of RSVP reading flow we conducted
a user study where participants read texts with the system described above. We
hypothesized that an adaptive reading interface taking into account the user’s eye
gaze would lead to higher text comprehension and reading confidence.

26 https://github.com/pupil-labs/pupil

https://github.com/pupil-labs/pupil
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Study Design

We employed a repeated-measures design with the RSVP control modality being
the independent variable resulting in two conditions: 1) manual control through
touch interaction (tap) and 2) implicit control through eye gaze (eye gaze). For
each condition, we introduced a secondary task: while reading on the smartwatch,
participants were asked to monitor words displayed on a desktop monitor in
front of them. Shown words were either countries or city names. If a word
was a country name, participants had to press a button on the keyboard. City
names had to be ignored. Words were shown for 10 to 15 seconds. As dependent
variables we measured 1) overall task completion time, 2) comprehension scores,
3) tracked eye movements (i.e., reading pauses), 4) errors on the secondary task,
i.e., number of countries missed, and 5) measured mental load using a NASA
TLX questionnaire after each condition.

Procedure

After welcoming and introducing participants to the purpose of the study we asked
them to sign a consent form and recorded demographic data. We then introduced
the RSVP reading interface on the smartwatch and set up the mobile eye tracker,
which required a brief calibration for each participant. We explicitly asked to keep
the arm wearing the watch rather still so that it remained in the camera view of the
mobile eye tracker. After they had familiarized themselves with the interface and
the available controls, we assigned participants to a starting condition. We then
asked them to read while completing the secondary task, whereas we instructed
them to treat both tasks as equally important. After each text, we administered
a 10-item comprehension test. For each condition, participants read two texts,
after which they completed a NASA TLX questionnaire. We counterbalanced
both the sequence of conditions via latin-square as well as the allocation between
tasks and reading texts. All texts were taken from a collection used for English as
a Second Language (ESL) learners, an adaption from [220]. These texts came
with a predefined set of ten comprehension questions per text and comprised of
average 548 words (SD = 2.87). Since participants read two texts per condition,
the maximum comprehension score per condition was 20. The study took about
50 minutes per participant, which was concluded with a final questionnaire.
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Figure 7.8: Participant reading a text on a smartwatch while monitoring city
or country names on a secondary display. Left: the reading flow is controlled
explicitly through touch. Right: the reading flow is controlled implicitly
through eye gaze.

Participants

We recruited 15 participants (11 males, 4 females) through a university mailing
list. With a mean age of 26.5 years (SD = 3.5) most had a background in IT or
were university students. All reported English to be their second language, 3
were wearing contact lenses (20%), 5 glasses (33.3%). 8 of them indicated to
be familiar with the RSVP reading technique (53.3%), 8 were wearing watches
on a regular basis (53.3%), none of which were smartwatches. Participants were
rewarded 10 EUR for taking part in the study.

Results

Each participant read in total four texts, two in each condition. Table 7.1 summa-
rizes the descriptive system measurements.

Objective Measures

A Wilcoxon Signed-Ranks Test revealed that the median of the comprehension
scores for the eye gaze condition (Md = 18) was significantly higher than for
the tap condition (Md = 16), Z = 74.5, p = .041. Thus, participants had a better
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explicit
interaction

implicit
interaction

Md M SD Md M SD
Number of
pauses 8 13.5 11.73 29 30.9 6.14

Percentage of
missed countries 0 14.02 18.54 6.25 9.84 12.59

Num. of mistakes
on secondary task 0 0.6 0.74 1 0.93 1.22

Task completion
times (second) 297.2 313.3 46.4 352.4 354.1 45.3

Comprehension
Scores 16 15.86 1.88 18 17.33 1.67

Table 7.1: System measurements for both conditions: explicit (touch) and
implicit (eye gaze).

understanding of the read text when reading with implicit control using the eye
tracker. Another Wilcoxon Signed-Ranks Test also revealed that the median of the
average number of pauses for the tap condition (Md = 8) was significantly lower
than for the eye gaze condition (Md = 29), Z = 105.0, p = .001. In sum, partici-
pants made 9 mistakes on the secondary task, i.e., cities were selected instead of
countries, during the tap condition (Md = 0) and 14 mistakes during the eye gaze
condition (Md = 1). We found no statistically significant differences between the
percentage share of missed countries while tapping (M = 14.019,SD = 18.539)
vs. while using eye gaze (M = 9.842,SD = 12.599), t(14) = 1.549, p = .144,r =
.842. There was a statistically significant difference between task completion
times for the tap condition (in seconds: M = 313.3,SD = 46.4) and the eye gaze
condition (M = 354.1,SD = 45.3), t(14) = �2.383, p = .032,r = .044, where
participants took more time when reading with implicit control over the text
presentation.

Subjective Feedback

As for the subjective assessment through the Nasa TLX questionnaire, a student t-
test showed no statistically significant difference between the tap condition (M =
10.278,SD = 2.564) and eye gaze condition (M = 10.289,SD = 2.293), t(14) =
�.014, p = .989,r = .190. Thus, we found no effect of the control mechanism on
the perceived mental load. In the final questionnaire, most participants reported
the frequent taps to pause the text to be annoying and hence preferred the support
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through eye gaze. However, they felt a lack of control, since the implicit pauses
entailed no noticeable feedback.

7.3.3 Discussion and Limitations

Comprehension was higher for implicit than for touch interaction. Therefore,
eye gaze interaction seems to be less distracting than when explicitly having
to control the reading flow, which confirms, our hypothesis. While the average
number of pauses was also higher in the eye gaze condition, switches between
tasks seem to have been done with ease: participants reported in the explicit
interaction condition that they sometimes looked up without pausing the text flow
in order to take a brief glance at the secondary screen. Hence, they compromised
on text comprehension, whereas the eye gaze interaction implied a pause during
a quick glance. This is also what contributed to the overall increase in task
completion time. The monitoring task we employed as a secondary task was
meant as a distraction task. Because of the eye tracker’s sensitivity to large head
motions, we refrained from having participants perform a walking task. With
more robust trackers we would like to test our hypothesis in the context of a
navigational and therefore spacial task. Although we designed the eye gaze
interaction with RSVP in mind, a similar approach could be taken to control
the flow of automatic scrolling through text displayed on a conventional reading
interface. Other reading techniques as proposed in the previous chapter could also
benefit from eye gaze tracking to dynamically adjust reading speed, for example.
Further, we envision front-facing cameras soon to be able to detect the user’s eye
gaze which will render the mobile eye tracker obsolete and allow for more widely
applied eye gaze interactions, also for reading UIs.

7.3.4 Study Conclusion

For investigating the adjustment of reading UIs through implicit user feedback
we built a working prototype that controls the reading flow in RSVP by tracking
the user’s eye gaze. When reading on mobile devices screen size is limited and
distractions from the environment can hinder the reading flow and negatively
affect comprehension. Context- and cognition-awareness systems can adjust their
reading UIs to compensate for this effects: by automatically pausing the reading
flow when users are detected to be distracted we are able to facilitate information
intake. In a user study, we compared the implicit interaction through eye gaze
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with explicit user controls. Results show that gaze interaction is more effective
than having users explicitly pause and resume reading through touch. Hence,
tracking and processing eye movements in real-time can be used to create more
effective reading UIs that support reading in distractive environments.

7.4 Chapter Summary

In this Chapter, we explored reading as an application scenario for using aware-
ness of users’ cognitive capacities to support information intake. Since informa-
tion is consumed to great parts in the form of text, we investigated how reading
interfaces can be adjusted according to readers’ cognitive capacities. Therefore
we explored dynamic adjustments of reading UIs that allow readers to regulate
their reading speed and reading flow. An increase in reading speed generally
implies an increase in cognitive demand and compromises on text comprehen-
sion. Such compromises can be acceptable if a text does not necessarily need to
be processed in full detail, but rather with regard to its gist. In phases of high
user alertness more cognitively demanding tasks are feasible, hence an adaptive
reading UI can invite readers to read at faster rates.

To investigate the relationship between reading speed, imposed cognitive demand,
and text comprehension we conducted two user studies, in which we assessed the
use of two different reading methods: 1) we developed a kinetic stimulus in form
of a moving line that guides the user’s eyes across text and 2) we used RSVP
to show words sequentially at a focal point. Both methods superimpose reading
speed on the reader and can dynamically be adjusted. In a controlled lab study, we
assessed these methods with regard to increased reading speed, namely 150% of
readers’ normal reading rates. We found substantial learning effects for perceived
mental load and text comprehension: when reading with our kinetic stimulus
mental load was initially high when it was introduced, but was significantly
decreased over the course of four short texts. Similarly, comprehension rates went
up over time for both the kinetic and the RSVP condition. Since eye movement
patterns (i.e., number and duration of fixations) remained mainly the same, the
improvements were likely due to cognitive adjustments. In the second study, we
collected subjective feedback through a web experiment, which also revealed
that users initially felt challenged by being dictated how to read. While RSVP
was seen as appropriate for reading a rather short text, the kinetic stimulus could
be used for longer text where a larger display is required. We derived a set of
design implications for adaptive reading UIs that comprise recommendations for
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providing readers with flow and speed controls, allowing them to retain oversight
of text position, providing a variability of reading methods and speeds that also
depend on the text to read, and taking into account individual user characteristics,
such as preferences, reading skill, and current cognitive capacity.

Eye movements are strong indicators of user interest and cognitive activity. Hence,
in the second part of this Chapter, we addressed the implicit control of reading
flow based on eye gaze. Therefore, we equipped readers with a mobile eye
tracker and assessed their ability to read on smartwatches while being engaged
in a secondary task. While reading when being on-the-go, we are exposed to a
distracting environment and possibly need to navigate that environment at the
same time. Due to the rapid flashing of visual stimuli when reading with RSVP,
single words can easily be missed and even more so when the reader is engaged
in a secondary task, such as walking. Hence, we used a mobile eye tracker to
inform the reading UI when the reader focuses on the text or elsewhere. The
interface then pauses, resumes or resets the text dynamically in order to support
the reader. In a lab study, we investigated the effects of gaze-aware reading UIs
on text comprehension, secondary task performance, and reading time. Compared
to explicit controls provided by a touch interface, implicit adjustment of the
interface lead to higher comprehension rates while performance on the secondary
task was comparable. The implicitly controlled interface introduced more pauses
in the reading flow compared to the explicit condition, in which readers often
did not pause the text to quickly deal with a secondary task and hence missed
some keywords resulting in lower comprehension rates. The study showed the
feasibility of using eye gaze to inform reading UIs about readers’ focus and
provide in-situ reading support.

Concluding, there is a general trade-off between reading speed and comprehen-
sion. In this Chapter, we showed that speed reading stimuli can be used during
reading to enforce higher reading speed, which mentally strains the reader. To
answer RQ6 we developed a set of reading UIs that allow the dynamic control
of reading speed and reading flow in real-time. Cognition-awareness can be
used in systems to proactively regulate these parameters according to the user’s
current cognitive state. The goal of matching reading mode with the current
cognitive state text is to allow readers to read more efficiently (or more leisurely)
by balancing the cognitive load, reading throughput and retention.
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Chapter8
Conclusion and Future Work

In this thesis, we investigated how ubiquitous technologies can be used to help peo-
ple deal with information intake and learning tasks through cognition-awareness.
Through a series of lab studies and field experiments, we explored human atten-
tion and user context while interacting with ubiquitous technologies and how
awareness of users’ cognitive context can be applied to a range of applications.
In the following, we provide a summary of the research presented, outline the
contribution with regard to the research questions, and conclude with an outlook
on future research directions.

8.1 Summary

As knowledge grows at an ever-increasing pace, people face the constant challenge
to consume information and acquire new knowledge. While ubiquitous computing
devices are deeply ingrained in our lives and therefore provide information access
anytime and anywhere, our attention is generally limited. One of the main reasons
for failing to remember a piece of information is what Schacter [234] describes as
absent-mindedness at the point of encountering that information. When attention
is not focused, information is not encoded correctly and therefore not memorized.
Hence, attention is a crucial piece of effective information intake and processing.
In Chapter 3 we started out by investigating people’s attention in a technological
context. Posing the question “How can users’ attentiveness be quantified across
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the day and reliably predicted from phone usage patterns?” (RQ1) we conducted
a field study collecting data on mobile messaging behavior and related phone
usage. Results showed that people are highly attentive to messages throughout
the day and that phases of inattentiveness are generally brief. However, the fact
that people spend a lot of attention to their devices does not say much about
why they turn to their phones and in what kind of attentional states. We were
especially interested in idle moments, in which users engage with their mobile
device actively seeking stimulation. Hence, we investigated the question “Does
boredom measurably affect phone usage and which usage characteristics are
most prevalent in such states?” (RQ2). Assuming that people would be more
receptive to engage with content suggestions in such moments of boredom, we
conducted a field study using Experience Sampling and collected corresponding
phone usage data. By training a machine-learning model we were able to predict
phases of boredom with 82.9% accuracy and identified usage characteristics, such
as the recency of communication activities, phone usage intensity, time of day,
and demographic information to give most prevalent indications for predicting
phases of boredom. The prediction model elicited would be the basis for further
content suggestion studies described in Chapter 6.

The engagement studies we conducted, show how attentional states are linked
to people’s mobile device activities. In the next step, we focused the user’s
situational context to support information intake. Chapter 4 considered context in
the form of content-awareness: this investigation aimed to answer the question
“How can awareness of the content which the user is currently exposed to be
used to augment the user experience?” (RQ3). Tools that proactively provide
additional information and explanations to complement the content can support
users building out multiple associations and therefore helps to memorize that
content. Such tools or applications need to be able to detect the content consumed
in real-time and across device boundaries. Hence, we built a system to augment
the TV experience that taps into the stream of subtitles, extracts keywords, and
provides additional information by retrieving content from Wikipedia and Google
searches. These contents are displayed on the user’s second-screen phone app and
turn out to be highly relevant, thereby enhancing the subjective TV experience.

Having explored user context in terms of current attentiveness and content con-
sumed, in a next step we focused on more regular patterns of attention as they are
dictated by our internal body clock. These diurnal fluctuations impact the users’
levels of alertness and cognitive performance in the course of the day. Being
aware of these circadian rhythm can inform technologies to adapt information
selection and presentation in ways to match users’ current processing capacities.
To answer the question “How can technology be used to elicit the user’s circadian
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rhythm of attention and cognitive performance?” (RQ4) we adapted a sequence
of three cognitive tasks to a mobile context. With data from a mobile field study,
we were able to recreate a general model of people’s attentional fluctuations
across the day. We open-sourced the system in order to allow future psychology
experiments to be conducted in-the-wild, and which we see as a starting point for
building cognition-aware systems. We envision such cognition-awareness to help
build applications that schedule tasks during respective phases of the day and
adjust interface complexity and information bandwidth to match the user’s cur-
rent state. Hence, in phases of high concentration complex information could be
efficiently displayed, whereas in phases of low concentration complexity could be
removed to prevent information overload and frustration. Besides the open-source
toolkit, we presented a conceptual framework based on our learning from the
attention elicitation study based on phone usage data. The framework describes a
three-step approach to building algorithms that detect cognitive states of interest:
(1) it maps out how to collect ground truth data, (2) elicit meaningful features,
and (3) train machine-learning models that can be integrated into applications.
To validate this approach we focused in the next step on concrete application
scenarios of cognition-aware systems.

This final part of the thesis (Chapter 6 and 7) presents a series of research probes
that explore the application of systems that take into account users’ current
attentiveness and cognitive capacities. In Chapter 6 we report on two studies in
which we explored content recommendations in opportune moments. To answer
the question “How can opportune moments for content delivery be used to foster
information intake and learning?” (RQ5) we built two mobile systems, with
which we investigated characteristics of such moments for learning and reading.
While we used our previously developed boredom prediction algorithm to trigger
content suggestions, we did not find sufficient evidence for a correlation between
boredom and opportune moments of learning. However, based on collected phone
usage data and ground truth in the form of compliance rates to learning triggers,
we trained another prediction model and elicited indicating features. When
suggesting entertaining reading content during phases of predicted boredom, we
noted users were more open and more engaged with the content than during
non-bored phases.

Besides the identification of opportune moments for delivering intake, we also
explored how content can be adjusted in real-time to match levels of high or
low cognitive load. The higher the user’s current cognitive capacities, the more
prospective applications can take advantage of an increased information band-
width. In Chapter 7 we, therefore, explored adaptive reading UIs, with which
we investigated the interplay between reading speed and text comprehension. To
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answer the question “How can information displays and more specifically reading
UIs be adjusted in real-time to increase or decrease information bandwidth?”
(RQ6) we investigated so-called speed reading interfaces, both of which allow
the UI to superimpose reading speed on the user. Hence, we applied RSVP to
reading as it had been suggested as a feasible reading technique on small-screen
displays. We further introduced a kinetic stimulus that helped guide the reader’s
eyes across text thereby effectively increasing reading speed. In order to maintain
text comprehension, a high user focus is required, which is why such reading
techniques are not always feasible. Awareness of concentrated states can help
users pick a corresponding reading strategy to optimize their information intake
in a given state. Since during reading activities tracking eye gaze can inform
systems about the user’s focus of attention, we investigated implicit eye gaze
interaction in the context of RSVP reading. In a lab study, we found implicit eye
gaze interaction to lead to higher text comprehension than explicit touch controls
for pausing and resuming reading flow.

8.2 Contribution and Results

In the course of this thesis, we followed an experimental approach to answer
six research questions that were targeted at investigating ways to use ubiquitous
computing devices that take into account their users’ cognitive states to support
effective information intake and retention. In the following we will briefly
summarize the five key contributions made:

8.2.1 Quantification and Assessment of Users’ Atten-
tiveness

Our study on mobile messaging behavior (see Section 3.2) showed that people
are highly attentive to messaging, namely for 73.5% of their waking hours, which
constitutes for more than twelve hours per day. Phases of inattentiveness are
typically brief and only last for a few minutes, which renders delay strategies
for notifications or alerts feasible. Such strategies can, therefore, be applied to
avoid user disruption during those inattentive phases, while the risk that important
information might be missed is negligible. There are numerous cases where alerts
are not required to bring back user attention to the device. In idle moments people
turn to their phones seeking stimulation. To detect such phases of boredom we
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conducted a field study (see Section 3.3), which allowed us to build a prediction
algorithm capable of distinguishing bored vs. non-bored with an accuracy of
close to 83%. Our examination of corresponding phone usage data showed
that detecting states of boredom is feasible by looking at the most prominent
features, such as the recency of communication, usage intensity, time of day,
and demographic information. Phone awareness of such moments can be used
for benign interventions, such as sending content recommendations in form of
reading or learning materials.

8.2.2 Tools for Researching and Building Cognition-
aware Systems

Based on our studies in Chapter 3 we derived a framework in Section 5.3 with
which researchers can build cognition-aware systems in the context of ubiquitous
computing. The framework can be used to relate cognitive states to technology us-
age patterns by combining user assessments or inferences with machine learning.
By collecting ground truth together with context sensor data (step 1), extracting
features from that sensor data (step 2) and training and applying classifiers (step
3) we can build machine models based on usage correlations to detect and predict
user behavior and states. We demonstrated how ground truth collection by Experi-
ence Sampling (Section 3.3) and observation (Section 6.2) results in rich data sets.
We further presented a mobile system that adapted standard tests from previous
studies in psychology and deployed them in a mobile field study. We showed
the effectiveness of using mobile tasks to assess people’s cognitive capacities
throughout the day and elicit their circadian rhythm of alertness. Over the course
of a single week, we were able to elicit a general model of people’s circadian
rhythm of alertness and performance, which in previous works took either signifi-
cantly longer or was significantly more cumbersome to attain. Awareness of users’
diurnal performance variations across the day can help inform systems about the
user’s current cognitive state. To help researchers build such cognition-aware
systems we released our system as an open source project.

8.2.3 Identification and Characterization of Oppor-
tune Moments for Content Delivery

By applying the proposed framework we conducted a series of studies (described
in Chapter 6) to investigate the nature of opportune moments for information
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intake in two ways: vocabulary learning and reading activities. We showed
the feasibility of mobile devices promoting microlearning through proactive
reminders whose scheduling can be trained based on observed phone usage
patterns. Microlearning tasks are especially well received when people are on the
go and face idle moments, such as waiting in line for the supermarket. As for
finding reading slots during the day mobile devices can not only be used to remind
us to work on our reading list, but also select reading content based on the current
user context. Awareness of current time available and phone usage patterns can
help match user situation and reading material. In a related study (see Section 6.3)
we used our boredom detection algorithm to successfully recommend random
reading articles to users in states of boredom. In such predicted states users
were shown to be significantly more likely to open and engage with suggested
content on their mobile phones. Hence, we validated the application of the
proposed framework for building cognition-aware systems and its feasibility for
gaining insights into the relationship of different cognitive states and related user
activities.

8.2.4 Implications for Adaptive Reading

Our studies about dynamically adapting reading UIs have shown that the readers’
information intake can be influenced by using reading stimuli. Besides the estab-
lished method of RSVP, we introduced a kinetic stimulus which allows readers to
keep the entire text line in view while providing eye guidance (Section 7.2). There
is a trade-off between speed and comprehension, but if a thorough understanding
of a text is not the goal, increasing reading speed allows the reader to get through
text faster at a moderate comprehension level. Reading speed has an effect on
the reader’s mental load. Cognitive load, in turn, depends on the user’s current
cognitive capacities. Hence, reading interfaces with cognition-awareness could
adjust their cognitive demand to optimize for information bandwidth between
interface and user. Therefore, we proposed implicit and explicit ways to control
reading speed: implicitly through eye tracking, which we showed to be more
feasible than explicit user control through touch (Section 7.3).

8.3 Limitations

Throughout the course of our research we have been taking an empirical approach
by conducting lab studies (e.g., to assess mental load and text comprehension)
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and in-the-wild deployments (to take user context in the real world into account).
The lab studies (e.g., in Section 7.2) were necessary to isolate the effects of our
probes on the user. But with regard to cognition-awareness and daily information
intake external validity would be limited in lab environments due to artificial
settings and limited time constraints. This is the reason why we took most of
our prototypes to the wild by conducting field studies. By doing so we gave up a
certain amount of control over our variables and causal relationships that might
exist between user behavior and our measures, which we might not be able to
detect. However, since most of our probes require users to exhibit everyday usage
patterns, this approach was vital.

To infer cognitive states we correlated user behavior with the ground truth we
collected. This ground truth may not always reflect the complexity of cognitive
interactions, but is rather a simplified abstraction. Relying on user’s self-reports
can introduce users’ biases and misconceptions. Observing usage patterns and
making inferences from user activity may be confounded by external influences.
On the other hand, the correlations we identified may not be directly resulting from
the respective cognitive states, but features may rather become indicative when
combined with others. Researchers applying our proposed framework should
be aware of these potential pitfalls. However, as our validation studies showed,
application of prediction models might still work despite possibly confounded
underlying relations. Also, correlation does not imply causation, so we have to be
careful when making statements about the exact relationships between features.

Device usage is also rarely the sole predictor of cognitive states. People’s focus
is influenced by a number of aspects, such as sleep, general fitness, nutrition or
environmental factors. However, the nature of our applied research approach is
more focused on the application layer, rather than claiming to uncover psycholog-
ical truths. For systems to become cognition-aware, monitoring context factors
have shown to be sufficient for indicating states of attention and receptiveness.

We created prediction models based on general usage patterns, not based on
individuals’ data. This may be sufficient for proof-of-concept prototyping, but
future models and algorithms should consider continuously learning from the
user’s behavior in order to adapt to individual and possibly changing usage
patterns.

While the applications presented in part III are linked in theory to cognition-
aware system triggers, a fully integrated system for eliciting cognitive states to
adjusting the UI, for example, requires thorough design and evaluation. This
includes privacy implications that such sensitive data collection implies. Further,
by adjusting UIs to cognitive state such adjustments may change the user state in
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return. The investigation of this feedback loop—and the corresponding search for
a “sweet spot”—between user and application (as suggested by Schmidt [238])
will need to be picked up by future work for which this thesis provides a starting
point.

8.4 Future Work

This thesis provides a set of tools for future research on cognition-aware systems.
While we focused on their applications for supporting information intake and
learning, we came across a number of application scenarios and use cases these
might be used for. Also, during the course of our research on building these tools
and applications, we identified several additional research challenges which are
beyond the scope of this thesis. In the following, we will lay out how future
research and development can be continued immediately, mid-term, and more
long-term.

Research projects that can be immediately picked up concern the application of
the tools provided by our work for more general validation purposes, but also
for applying them to new application scenarios. The conceptual framework, for
example, can be applied to elicit and predict a range of user behavior and states.
While we mainly focused on attention and receptiveness, future experiments
could focus on relating phone usage patterns to different emotions and affects.
Mottelson and Hornbaek [191] showed the feasibility of eliciting positive affect
from smartphone sensor data linked to movement. Using experience sampling
or an analysis of current writing style (using language processing) could provide
systems with further insights into the user’s current mood and emotional state.
While emotions impact memorization [12] users may be more inclined to certain
activities in negative vs. positive emotional states. The same accounts for quiet
or aroused states. A related research question concerns the relationship between
people’s individual chronotypes and the emotional patterns that unfold across the
day. If such patterns can reliably be elicited, systems aware of users’ affects can
schedule activities across the day, recommending to engage in communication
tasks, for example, in phases of positive affect. The range of possible applications
should be explored in more detail. While we focused on content suggestions
in the form of learning and reading content, receptiveness to suggestions to go
for a run or call a friend, for example, might be inherently different. Further
implications for the advertising industry should be investigated: since in our
attention economy commercial services compete for being noticed, receptive
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states are worth exploring for their economic value. Advertisers might be willing
to pay higher prices for ad impressions triggered during attentive rather than
inattentive states.

The mobile toolkit we presented in Section 5.2 can also be the basis for future
investigations into a) how to apply awareness of user alertness and cognitive
performance in different applications but also on b) how to elicit these circadian
rhythms in more implicit ways. Performance measures, such as reaction time
and error rates when trying to inhibit or follow a stimulation can be integrated in
gaming applications, where the player’s performance in a game such as “Whack-
a-Mole”27 could be used to elicit the circadian rhythm of alertness. The spatial
task in the form of multiple object tracking, which we applied, can be found in
games, such as “Air Commander”28, hence different game designs and mechanics
should be explored to record such performance measures throughout the day. The
feasibility of this approach would need to be tested and mechanisms to be applied
that invite players to play the game during different times of the day rather only
when they feel like it and explicitly launch the game.

Research projects with a more mid-term time horizon (ca. 3-4 years) could focus
on how to integrate a network of devices that record activities and derive cognitive
states. Arising challenges include how an ecosystem of devices could be realized
that applies cognition-awareness, communicates beyond device boundaries and
splits up learning tasks across devices and times of the day. For example, key-
words could be extracted from a foreign language article that the user reads on
a tablet while commuting to work in the morning. The smartphone then invites
the user to review these words in opportune moments throughout the day. These
repetitions can be spaced out over time so that these words are transmitted to
long-term memory. Pronunciation exercises are then scheduled at night when
users sit in front of a laptop equipped with a microphone and where they can
speak freely. Such interweaved systems entail a networked system architecture in-
cluding wearables, phones, and stationary devices and require research in context
sensing, cross-device task sharing, application scenarios, and social acceptability.
Such an integrated research project provides the basis for a ubiquitous personal
assistance system that accompanies users throughout their day and helps them
with scheduling pending tasks according to their situational and cognitive context.
Future research on this topic further entails disruption management and how such
a personal device ecosystem can help users manage interruptions throughout the
day, stay focused, but communicate interruptibility in opportune moments.

27 https://play.google.com/store/apps/details?id=com.feasy.game.MoleWhack

28 https://play.google.com/store/apps/details?id=com.gunrose.aircommander

https://play.google.com/store/apps/details?id=com.feasy.game.MoleWhack
https://play.google.com/store/apps/details?id=com.gunrose.aircommander
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As we pointed out in our ethical considerations, making sure we provide reliable
privacy and security features, is essential for the long-term acceptance of such
systems. Initially, rule-based learning rather than black-box machine learning
could help foster user acceptance. If users can relate to why certain recommen-
dations are triggered at certain times and can further confirm or dismiss their
usefulness, these systems can learn from this feedback loop and increase user
comfort. Future research that focuses on privacy and security should investigate
how to make cognition-aware systems secure, transparent, and socially acceptable.
By applying concepts, such as privacy by design and homomorphic encryption
users might be more willing to grant technologies comprehensive access to their
personal data, habits, and behavioral patterns.

As for long-term time horizon (10 years) we see as main challenge the wide
proliferation of the technologies and vision proposed in this thesis to be highly
dependent on user acceptance. While applications like adjustable reading UIs are
already commercially being spread by companies, such as Spritz29, a cognition-
aware ecosystem of devices is much more privacy invading. Location sharing,
for example, has been a highly controversial topic and continues to be so to
this day, but the advantages are increasingly dominating the concerns: we share
our location for efficient navigation, for area explorations, being able to meet
up with friends, or being alerted about potential dangers in our surroundings.
Cognition-aware systems face similar challenges and need to be proven useful
first.

While we provide first investigations in applying such tools to learning and reading
tasks, a fully developed system that comprehensively supports users with their
information tasks throughout the day, could boost an entire society’s productivity
level. Beyond awareness of circadian rhythms of cognitive performance, research
could address the question of how technologies can stage interventions through
awareness and thus induce favorable cognitive states. Just like people drink a
cup of coffee when they start to feel tired, technologies could detect fatigue
and proactively help users to change their current state. This is similar to what
meditation or mindfulness practices already propose in order to increase general
focus or wind down after a long day of work. A study by Solberg et al. [246] has
shown that meditation can help obtain physical and mental stability and boost the
performance of athletes in shooting competitions. More recently, systems have
been proposed that support users’ mental preparedness [107] or induce creative
states [1], but systems could go beyond single use cases and schedule a variety
of interventions throughout the day to help users get to and remain in highly

29 http://spritzinc.com/

http://spritzinc.com/
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productive states. Such potentially invasive systems are clearly controversial and
hence a research plan would need to include assessments of long-term effects on
their users including behavior changes and potential health impact. Chronically
high levels of mental load have been shown to cause various health problems,
such as stress, depression, and burnout [258]. Future research in this direction
would need to look at the long-term feasibility and implications of such systems
on people’s levels of health, productivity, and comfort.

8.5 Final Remarks

When developing tools for augmenting cognitive processes the question comes up
whether technology enhances our cognitive aptitude or helps to build and improve
innate skills. The difference between these two notions becomes apparent when
the tool is removed. Does the skill persist?

Clark and Chalmers [48] coined the term active externalism describing the active
role our environment plays for our cognitive processes. They argue that cognition
is not limited to the physical boundaries of our skull. External objects play a
crucial role in cognitive processes, such as memory retrieval, linguistic processes,
or skill acquisition. For example, we use our fingers to augment our working
memory in calculations or use pen and paper to perform multiplications. While
the brain is performing operations it delegates some of its workload to its external
environment. Kirsh and Maglio [155] demonstrated how performing actions in the
world can lead to quicker solutions of certain cognitive and perceptual problems
than performing them mentally. They showed how physically rotating a shape by
90�, for example, could be done in about 100 ms, plus 200 ms required to press a
respective button. In contrast, mentally rotating the shape took about 1000 ms.
They distinguish pragmatic actions—where the world is altered because some
physical change is desirable for its own sake—from epistemic actions, in which
the world is altered to aid and augment cognitive processes, such as recognition
or search, i.e., to understand the world. In the rotating shape example that would
mean a person gains knowledge about the world (does the shape fit an appropriate
slot?) by pragmatic action (physically rotating the shape) quicker than through
epistemic action (rotating the shape in the head). Hence, tools and technologies
augment our cognitive processes and our understanding of the world. Obviously
such knowledge gain remains even if the tool is removed. In other tasks, such as
performing a tricky calculation, a calculator becomes coupled with the person
as a tool. According to Clark and Chalmers [48] such coupling is considered
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an externally augmented cognitive process, which is sufficient if the tools (the
relevant capacities) are generally available when they are needed: “In effect, they
are part of the basic package of cognitive resources that I bring to bear on the
everyday world. These systems cannot be impugned simply on the basis of the
danger of discrete damage, loss, or malfunction, or because of any occasional
decoupling: the biological brain is in similar danger, and occasionally loses
capacities temporarily in episodes of sleep, intoxication.” [48] Hence, extended
cognition is considered to be a core cognitive process, not an add-on extra.

The increasing spread of ubiquitous computing devices supports this notion.
Devices are portable, ingrained in our everyday life and therefore near-constantly
available. Hence, the functions and support they provide become part of our
everyday cognitive processes including looking up information, noting something
down, and sharing it. The notion of extended cognition is taken to the next
level by some of the ideas and prototypes presented in this thesis. Context- and
cognition-aware systems support the user in-situ according to current abilities
and aptitudes. Proactive recommendations and content suggestions as described
in Chapter 6 match content to the user’s real-time processing capabilities and
therefore facilitate information intake and processing. Seamless support may
become so ingrained in our everyday life that the cognitive boost we receive
through them becomes self-evident and may only be noticed when the tools err or
fail. But since these technologies are built on people’s innate circadian rhythm
and productive phases, we could argue that even if the technology failed them,
it might succeed in instilling productive habits. So even if the content was no
longer pushed proactively, formed habits and awareness might cause users to
actively seek out activities that match their current cognitive state. Similarly, for
the adaptive reading, UIs presented, enhanced reading skill is applicable also for
offline reading. The kinetic stimulus, for example, has the potential to school eye
movements which endure even if the stimulus is absent. Also, one could expect
that by using such tools, the overall reading volume is increased over time, which
has been shown to lead to an increase in vocabulary and therefore advance word
processing capabilities [250], and innate cognitive skill.
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Additional User Study
Documents

• Consent form used for the controlled QuickLearn study (Section 6.2).

• An example RECALL Ethics Worksheet for the controlled QuickLearn
study (Section 6.2) following the ethics process [170], which we applied
for all user studies under RECALL.

• Consecutive screenshots of the kinetic stimulus as it was used in our user
study(Section 7.2).



Study:	QuickLearn	
Participant	ID:	________	
	 	 	 	 	
	
	

Informed	Consent	
	
Thank	you	for	your	participation	in	our	study.	
	
Please	read	the	following	information	carefully.	A	copy	is	available	through	the	Quick	
Spanish	application	for	future	reference.	
	
Experiment:		
Promoting	Language-Learning	Through	Smartphone	Application	
Identifying	opportune	moments	for	language	learning.	
	
Description:		
Volunteering	in	this	two-week	user	study	involves	using	a	language	learning	
application	on	your	Android	smartphone.	The	study	is	dedicated	to	understanding	
optimal	moments	and	different	interface	designs	for	language	acquisition.	For	the	
two-week	duration	of	the	study,	various	aspects	of	your	phone	usage	is	being	
processed.	We	guarantee	that	your	data	will	be	stored	securely	and	anonymously.		
	
Participation	is	completely	voluntary	and	you	are	free	to	drop	out	of	this	study	at	
any	point	in	time.	
	
Compensation:	
You	will	be	compensated	with	5	€	at	each	of	the	three	visits	during	the	study.	An	
additional	5	€	will	be	given	at	the	final	visit	if	you	attend	all	three	sessions	resulting	
in	a	total	of	20€.	
	
Experimenters:		
Tilman	Dingler,	Universität	Stuttgart,	tilman.dingler@vis.uni-stuttgart.de	
Chun-Cheng	Chang,	University	of	Washington,	changcc@uw.edu	
Jennifer	Cooper,	University	of	Minnesota,	cooperj@umn.edu	
	
Please	do	not	hesitate	to	contact	us	if	you	have	questions	or	concerns.		
	
Thanks!	
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Study:	QuickLearn	
Participant	ID:	________	
	 	 	 	 	

Consent Form 
 

 
❏   I have read and understood the information above. 
 
❏   I have understood the purpose of this study and I agree to participate.  
 
❏   I have understood that I can cancel my participation at any point in time.  
 

 

 

Participant ID    ________________________ (filled in by the experimenter) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signatures 

 

Participant    __________________________   Date ______________ 

 

Experimenter   __________________________   Date ______________ 
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RECALL	 Feb	2015	 Ethics	Worksheet 
 
 

RECALL	Ethics	Worksheet	
This	worksheet	documents	a	particular	experiment	within	RECALL	that	 is	covered	by	one	or	more	Study	Process	Templates	
(SPTs).	It	is	used	for	documentation	purposes	and	forms	part	of	the	corresponding	deliverable	in	which	this	experiment	took	
place.	It	helps	researchers	within	RECALL	to	ensure	that	all	personal	information	collected	and	processed	in	RECALL	is	treated	
in	accordance	with	the	project’s	ethical	guidelines	and	the	feedback	from	its	ethical	advisory	board	(EAB).		

Study	Information	

4.1 Study	Title	
Give	a	concise	title	to	your	study	that	describes	the	particular	problem	you	are	investigating	in	your	experiment	and/or	field	
study.	

Detecting	Opportune	Moments	of	Learning	through	Language	Acquisition	Application	
	

4.1 Brief	Description	
Describe	your	experiment	in	a	few	sentences	(no	more	than	3-4	sentences).	The	description	should	include	the	problem	you	
are	trying	to	address	and	the	methods	you	are	planning	to	use.		

We	investigate	whether	a	previously	established	boredom	detection	algorithm	can	be	
leveraged	to	promote	productivity	on	smartphones	(e.g.,	language	learning)	during	
periods	of	predicted	boredom.	Additional	phone	usage	will	be	logged	to	determine	
whether	factors	outside	of	boredom	lead	to	opportune	moments	of	learning.	Users	of	
the	app	will	be	asked	to	engage	in	a	language-learning	task	that	teaches	foreign	language	
words	in	two	methods;	flashcards	and	multiple-choice.	We	will	measure	the	number	of	
words	that	users	learn	at	the	close	of	each	week	during	a	controlled	two-week	study	and	
additionally	release	the	app	on	GooglePlay	for	a	broader	audience.	
	

4.2 Planned	Duration	
How	long	(start,	finish,	duration)	do	you	plan	to	run	these	experiments	and/or	field	studies	for?		

10.09.15	–	Sep.’16	
	

4.3 Work	Package	
What	RECALL	work	package(s)	does	this	work	fall	in?	

WP	2,	WP	4,	WP	5	

Project	Staff	

4.4 Principle	Researcher,	Institution	
Who	are	the	principle	researchers	responsible	for	this	experiment/study	(incl.	institution)?	
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Tilman	Dingler	(University	of	Stuttgart)	
	

4.5 Other	Staff	(Project	Members)	
Name	all	personnel	involved	in	this	set	of	experiments/field	studies.	This	may	also	include	project	members	from	other	
institutions,	

Dominik	Weber	(University	of	Stuttgart)	
Niels	Henze		(University	of	Stuttgart)	
	

4.6 External	Staff	
Name	all	personnel	involved	in	this	set	of	experiments/field	studies.	This	may	also	include	project	members	from	other	
institutions,	as	well	as	external	researchers.	

Chun-Cheng	Chang	(University	of	Washington)		
Jennifer	Cooper	(University	of	Minnesota)	

Aims	and	Methods	

4.7 Goals	and	Research	Questions	
What	are	the	goals	of	this	research	effort?	What	research	questions	do	you	hope	to	be	able	to	answer	with	this	set	of	
experiments?	Please	be	as	specific	as	possible.	

The	goal	of	the	study	is	to	evaluate	the	vocab	learning	gains	made	in	each	of	the	
language	learning	application	delivery	methods	(i.e.,	flashcard,	multiple	choice)	during	
different	timing	conditions	(i.e.,	boredom	detection,	random).	The	additional	condition	of	
user-initiated	usage	will	be	compared	to	an	existing	boredom	detection	algorithm	in	an	
attempt	to	uncover	additional	measures	of	opportune	moments	for	microlearning	based	
on	when	the	user	chooses	to	engage	in	the	language-learning	application.	We	hope	to	
answer	the	question	of	whether	periods	of	boredom	lead	to	learning	opportunities	or	if	
there	are	other	conditions	that	lead	to	these	opportunities.	These	questions	will	be	
answered	in	two	ways,	one	by	pushing	notifications	to	users	during	periods	of	predicted	
boredom,	we	can	see	whether	they	participate	in	learning	at	higher	rate	than	during	
other	random	times;	and	two,	log	data	from	phone	usage	should	reveal	patterns	that	will	
dictate	the	best	times	to	provide	opportunities	for	productivity	for	the	user.	
	

4.8 Envisioned	Methods	(Planned	Experiments	and	Studies)	
Describe	the	set	of	experiments	and/or	field	studies	that	you	are	planning	to	conduct	within	the	scope	of	this	research	effort.	
If	there	is	an	order	to	the	experiments,	enumerate	them	in	order.	Otherwise	list	them	as	bullet	points	in	no	particular	order.	Be	
as	specific	as	possible	(e.g.	instead	of	“interviews”	write	“online	interviews	through	SurveyMonkey”	or	“Student	focus	groups	
on	campus”…	
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System-Initiated:	Repeated-measures	design,	where	each	student	will	be	exposed	to	
each	of	the	four	independent	variables:		
	
1)	Boredom-detected:	flashcard		
2)	Boredom-detected:	multiple-choice		
3)	Random:	flashcard		
4)	Random:	multiple-choice	
	
User-initiated:	Correlational	analyses	will	be	conducted	and	the	results	will	contribute	to	
the	“ground	truth”	for	opportune	moments	of	learning.	
	

4.9 Study	Type	and	ID	
Select	the	type	of	study	and	if	appropriate	enter	a	reference	to	the	guidelines	used.	If	the	experiment	does	not	fit	into	one	of	
the	existing	RECALL	categories	select	“Other”	and	contact	the	coordinator	in	order	to	verify	if	additional	EAB	input	is	needed.	

Document	ID:	Click	here	to	enter	text.		(see	RECALL	Wiki)	

	Lifelogging	Experiment	(see	guidelines) 
	Controlled	Volunteer	Studies	(see	guidelines) 
	Public	Trials	(see	guidelines) 
	Others	(describe	and	contact	coordinator	in	case	additional	ethics	advice	req.):	

						Click	here	to	enter	text.		
	
	

4.10 Adequacy	of	Methods	
Briefly	explain	why	the	experimental	methods	indicated	above	are	adequate	for	the	research	questions	

-	A	Controlled	study	because	we	want	to	manipulate	certain	variables	while	
simultaneously	measuring	the	learning	gains	during	specified	time	periods	
-	An	in-the-wild	study	to	collect	feedback	from	a	broader	user	base	necessary	to	train	a	
new	machine-learning	algorithm	for	classifying	opportune	moments	for	learning	
	

4.11 Subjects	and	Recruitment	Process	(if	any)	
Who	are	the	subjects	of	your	research,	and	how	are	you	planning	to	recruit	them?	Be	as	specific	as	possible.	Note	that	you	
might	not	require	recruitment	if	you	are	simply	planning	observations	in	public.		

-	The	experimenters	personally	recruit	subjects	and	release	the	app	on	GooglePlay		
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4.12 Data	to	be	Collected	
What	information	are	you	collecting	in	your	experiments?	Try	to	be	as	inclusive	and	specific	as	possible,	listing	all	potential	
data	types	that	you	might	be	interested	in	collecting.	If	you	are	not	collecting	identifiable	information	from	your	subjects,	
state	this	here,	but	still	list	the	(anonymous)	data	that	you	are	planning	to	collect.	

-	Quiz	scores	
-	General	log	data	from	cell	phone	
-	Subjective	feelings	(survey/interview)	
-	Demographics	

Risks	and	Precautions	

4.13 Potential	Risks	
Try	to	envision	the	risks	that	your	data	collection	might	pose	to	your	data	subjects.	What	if	the	data	you	collected	would	wind	
up	on	the	Internet,	together	with	your	subjects’	real	name	and	contact	info?	Could	they	suffer	problems	at	work	if	their	
employers	would	find	this	information?	What	if	hackers	would	be	able	to	break	into	your	system	and	steal	your	data	
collection?	Would	they	be	able	to	commit	criminal	acts	with	this	information?	

-	Limited	risk	for	participants	since	we	gather	mostly	uncritical	data	
-	Data	collection	is	anonymized	
	

4.14 Planned	Precautions	
Given	the	risks	you	identified	in	question	4.13,	what	precautions	will	be	taken	by	you	and	your	team	in	order	to	prevent	data	
leakage?	Try	to	be	as	specific	as	possible.	You	can	also	refer	to	your	description	of	data	storage	in	the	next	section.	

-	Anonymized	data	collection.	
-	Double	consent	form:	1)	in-person	consent,	2)	in-app	consent	
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Data	Storage	and	Processing	

4.15 Storage	Locations	
Describe	where	each	of	the	data	enumerated	under	3.6	will	be	stored.	Also	consider	potential	backup	processes.		

-	Local	file	servers	
-	Regular	backups	
	

4.16 Access	Control	
Explain	how	access	to	the	data	is	regulated.	Try	to	be	as	specific	as	possible.	Use	the	RECALL	Guide	to	Secure	Storage	
Document	for	guidance,	but	make	sure	to	describe	your	actual	implementation	of	these	guidelines	here.	

-	Only	researchers	directly	involved	in	the	project	have	access	to	data	
	

4.17 Data	Processing	
Describe	how	the	collected	data	will	be	used.	What	kind	of	statistics	will	be	assembled,	what	kind	of	qualitative	information	
extracted,	what	kind	of	information	combined?		

-	Classic	data	evaluation	of	qualitative	key	performance	indicators.	
	

4.18 Data	Anonymization	
If	some	or	all	of	your	data	will	be	anonymized	or	pseudonymized,	explain	how	you	do	this.	What	algorithms	will	be	used	for	
the	anonymization,	and	what	guarantees	do	they	offer?	How	are	pseudonymous	identifiers	generated	and	where	is	lookup	
information	(if	any)	for	those	pseundonymizers	kept?		

-	each	participant	is	assigned	an	anonymized	hash	number	(Details	see:	
http://tilmanification.org/quicklearn.html)	
	

4.19 Data	Retention	
How	long	will	you	keep	personally	identifiable	information	(PII)?	 

	No	PII	will	be	kept	 
	6	months	after	study	finishes 

	6	months	after	results	have	been	first	published*	 
	6	months	after	RECALL	finishes 

	Others	(describe):	Click	here	to	enter	text.		
*Or	within	6	months	after	RECALL	finishes,	if	results	are	not	published	until	end	of	the	project	
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Ethical	Checklist	
Use	the	checklist	below	for	a	quick	overview	of	the	ethical	issues	in	your	planned	experiment.	

	 Aspect	 Yes	 No 
1.	 Informed	Consent	Form	Needed?		

If	yes,	attach.	If	no,	justify	on	attached	sheet.   

2.	 Deception	Used?		
If	yes,	justify	on	attached	sheet.   

3.	 Private	Information	collected?	
(c.f.	to	4.13.	for	list	of	data	items)   

4.	 Subjects	Remunerated?		
If	yes,	write	amount	here:   

5.	 Involvement	of	Children,	Patients,	People	with	Cognitive	Disorders?	
If	you	answer	yes	to	this	question,	you	must	explicitly	consult	with	the	EAB!		   

6.	 Internal	IRB	Review	Needed?		
If	yes,	attach	feedback	after	obtained   

	

Worksheet	Versioning	
Provide	date,	authorship,	and	changes	made	to	this	specific	worksheet	in	the	history	table	below.	

Date	 Author	 Comment 
12.07.15	 Jennifer	Cooper	 v0.1 
14.07.15	 Tilman	Dingler	 v0.2 
10.09.15	 Tilman	Dingler	 v.0.3 
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ETHICAL ISSUES TABLE 

 YES PAGE 

Informed Consent  

1. Does the proposal involve children?  NO  

2. Does the proposal involve patients? NO  

3. Does the proposal involve  persons not able to give consent? NO  

4. Does the proposal involve adult healthy volunteers? YES  

Biological research  

5. Does the proposal involve Human Genetic Material? NO  

6. Does the proposal involve Human biological samples? NO  

7. Does the proposal involve Human biological data collection? NO  

8. Does the proposal involve Human Embryos? NO  

9. Does the proposal involve Human Foetal Tissue or Cells? NO  

10. Does the proposal involve Human Embryonic Stem Cells? NO  

Privacy  

11. Does the proposal involve processing of genetic information or personal data (e.g. health, 
sexual lifestyle, ethnicity, political opinion, religious or philosophical conviction) 

NO  

12. Does the proposal involve tracking the location or observation of people without their 
knowledge? 

NO  

Research on Animals  

13. Does the proposal involve research on animals? NO  

14. Are those animals transgenic small laboratory animals? NO  

15. Are those animals transgenic farm animals? NO  

16. Are those animals cloned farm animals? NO  

17. Are those animals non-human primates?  NO  

Research Involving Developing Countries  

18. Is any part of the research carried out in countries outside of the European Union and 
FP7 Associated states? 

NO  

Dual Use   

19. Does the research have direct military application  NO  

20. Does the research have the potential for terrorist abuse NO  

ICT Implants  

21. Does the proposal involve clinical trials of ICT implants?  NO  

(IF NONE) I CONFIRM THAT NONE OF THE ABOVE ISSUES APPLY TO MY 
PROPOSAL 
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