959 research outputs found

    Practical advances in asynchronous design and in asynchronous/synchronous interfaces

    Get PDF
    Journal ArticleAsynchronous systems are being viewed as an increasingly viable alternative to purely synchronous systems. This paper gives an overview of the current state of the art in practical asynchronous circuit and system design in four areas: controllers, datapaths, processors, and the design of asynchronous/synchronous interfaces

    Synthesis of asynchronous controllers using integer linear programming

    Get PDF
    A novel strategy for the logic synthesis of asynchronous control circuits is presented. It is based on the structural theory of Petri nets and integer linear programming. Techniques that are capable of checking implementability conditions, such as complete state coding, and deriving a gate netlist to implement the specified behavior are presented. These techniques can handle Petri net specifications consisting of several thousands of transitions and provide a significant speed-up compared with techniques that have previously been proposed.Peer ReviewedPostprint (published version

    Practical advances in asynchronous design

    Get PDF
    Journal ArticleRecent practical advances in asynchronous circuit and system design have resulted in renewed interest by circuit designers. Asynchronous systems are being viewed as in increasingly viable alternative to globally synchronous system organization. This tutorial will present the current state of the art in asynchronous circuit and system design in three different areas. The first section details asynchronous control systems. The second describes a variety of approaches to asynchronous datapaths. The third section is on asynchronous and self-timed circuits applied to the design of general purpose processors

    Peephole optimization of asynchronous networks through process composition and burst-mode machine generation

    Get PDF
    Journal ArticleIn this paper, we discuss the problem of improving the efficiency of macromodule networks generated through asynchronous high level synthesis. We compose the behaviors of the modules in the sub-network being optimized using Dill's trace-theoretic operators to get a single behavioral description for the whole sub-network. From the composite trace structures so obtained, we obtain interface state graphs (ISG) (as described by Sutherland, Sproull, and Molnar), encode the ISGs to obtain encoded ISGs (EISGs), and then apply a procedure we have developed called Burst-mode machine reduction (BM-reduction) to obtain burstmode machines from EISGs. We then synthesize burst-mode machine circuits (currently) using the tool of Ken Yun (Stanford). We can report significant area- and time-improvements on a number of examples, as a result of our optimization method

    A Methodology for Efficient Space-Time Adapter Design Space Exploration: A Case Study of an Ultra Wide Band Interleaver

    Full text link
    This paper presents a solution to efficiently explore the design space of communication adapters. In most digital signal processing (DSP) applications, the overall architecture of the system is significantly affected by communication architecture, so the designers need specifically optimized adapters. By explicitly modeling these communications within an effective graph-theoretic model and analysis framework, we automatically generate an optimized architecture, named Space-Time AdapteR (STAR). Our design flow inputs a C description of Input/Output data scheduling, and user requirements (throughput, latency, parallelism...), and formalizes communication constraints through a Resource Constraints Graph (RCG). The RCG properties enable an efficient architecture space exploration in order to synthesize a STAR component. The proposed approach has been tested to design an industrial data mixing block example: an Ultra-Wideband interleaver.Comment: ISBN:1-4244-0921-

    Performance analysis and optimization of asynchronous circuits

    Get PDF
    Journal ArticleAsynchronous/Self-timed circuits are beginning to attract renewed attention as promising means of dealing with the complexity of modern VLSI designs. However, there are very few analysis techniques or tools available for estimating the performance of asynchronous circuits. In this paper we adapt the theory of Generalized Timed Petri-nets (GTPN) for analyzing and comparing a wide variety of asynchronous circuits, ranging from purely control-oriented circuits such as cross-bar arbiters to large asynchronous systems with data dependent control such as asynchronous processors. Experiments with the GTPN analyzer are found to track the observed performance of actual asynchronous circuits, thereby offering empirical evidence towards the soundness of the modeling approach. Our main contribution is in demonstrating how a quantitative design methodology for asynchronous circuits can be developed based on Timed Petri-nets

    High-level asynchronous system design using the ACK framework

    Get PDF
    Journal ArticleDesigning asynchronous circuits is becoming easier as a number of design styles are making the transition from research projects to real, usable tools. However, designing asynchronous "systems" is still a difficult problem. We define asynchronous systems to be medium to large digital systems whose descriptions include both datapath and control, that may involve non-trivial interface requirements, and whose control is too large to be synthesized in one large controller. ACK is a framework for designing high performance asynchronous systems of this type. In ACK we advocate an approach that begins with procedural level descriptions of control and datapath and results in a hybrid system that mixes a variety of hardware implementation styles including burst-mode AFSMs, macromodule circuits, and programmable control. We present our views on what makes asynchronous high level system design different from lower level circuit design, motivate our ACK approach, and demonstrate using an example system design

    What is the cost of delay insensitivity?

    Get PDF
    Deep submicron technology calls for new design techniques, in which wire and gate delays are accounted to have equal or nearly equal effect on circuit behaviour. Asynchronous speed-independent (SI) circuits, whose behaviour is only robust to gate delay variations, may be too optimistic. On the other hand, building circuits totally delay-insensitive (DI), for both gates and wires, is impractical. The paper presents an approach for automated synthesis of globally DI and locally SI circuits. It is based on order relaxation, a simple graphical transformation of a circuit's behavioural specification, for which the Signal Transition Graph, an interpreted Petri net, is used. The method is successfully tested on a set of benchmarks and a realistic design example. It proves effective showing average cost of DI interfacing at about 40% for area and 20% for speed.Peer ReviewedPostprint (published version

    A Design Methodology for Space-Time Adapter

    Full text link
    This paper presents a solution to efficiently explore the design space of communication adapters. In most digital signal processing (DSP) applications, the overall architecture of the system is significantly affected by communication architecture, so the designers need specifically optimized adapters. By explicitly modeling these communications within an effective graph-theoretic model and analysis framework, we automatically generate an optimized architecture, named Space-Time AdapteR (STAR). Our design flow inputs a C description of Input/Output data scheduling, and user requirements (throughput, latency, parallelism...), and formalizes communication constraints through a Resource Constraints Graph (RCG). The RCG properties enable an efficient architecture space exploration in order to synthesize a STAR component. The proposed approach has been tested to design an industrial data mixing block example: an Ultra-Wideband interleaver.Comment: ISBN : 978-1-59593-606-

    Automated synthesis of delay-insensitive circuits

    Get PDF
    corecore