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Abstract. Asynchronous/Self-timed circuits are beginning to attract renewed attention as promising means of dealing 
with the complexity of modem VLSI designs. However, there are very few analysis techniques or tools available for 
estimating the performance of asynchronous circuits. In this paper we adapt the theory of Generalized Timed Petri-nets 
(GTPN) for analyzing and comparing a wide variety of asynchronous circuits, ranging from purely control-oriented circuits 

such as cross-bar arbiters to large asynchronous systems with data dependent control such as asynchronous processors. 
Experiments with the GTPN analyzer are found to track the observed performance of actual asynchronous circuits, thereby 

offering empirical evidence towards the soundness of the modeling approach. Our main contribution is in demonstrating 
how a quantitative design methodology for asynchronous circuits can be developed based on Timed Petri-nets.

1 Introduction

Asynchronous/Self-timed designs are beginning to attract renewed attention as promising means of 

dealing with the complexity of modern VLSI designs. The advantages of self-timed systems include: 

(i) freedom from problems associated reliable global-clock generation and distribution and the associated 

power wastage in the clock drivers; (ii) modularity due to the absence of global control schedules, which 

makes asynchronous circuits easier to modify incrementally; and (iii) their capacity to exhibit better 

average case performance, as they do not have to wait for the next clock “tick” to arrive before a 

following operation can be triggered [22, 34, 12]. Asynchronous circuits are often claimed to exhibit 

better average case performance (here, and elsewhere, performance means overall speed or throughput). 

However, very few attempts have been made to study the problem of estimating the performance of a 

wide variety of asynchronous circuits as well as asynchronous systems, to understand why such a claim 

could be true, and the circumstances under which asynchronous circuits could perform better. In this
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paper, we propose performance analysis techniques for asynchronous self-timed  [22] circuits and systems 

based on timed Petri nets. One of the important features of our work is that our analysis technique can 

handle circuits whose execution time depends on the data being manipulated by the circuit, as well as 

deal with arbitration and resource usages.

It is in a way ironical that the mechanism that is claimed to be responsible for the improved average- 

case performance of asynchronous circuits— the absence of a global clock— is also responsible for making 

the problem of analyzing the performance of asynchronous circuits harder. Since synchronous clocks 

couple the computation- and physical-time, performance evaluation in the area of synchronous system 

design is almost always carried out in terms of the clock cycle time [7, 15]. Since there is no such global 

measure of time in asynchronous circuits, the problem is much more difficult. In addition, asynchronous 

circuits are often used to realize systems such as high-performance communication front-ends [9], high- 

performance cache memory subsystems [27], complex arbiter circuits [14], high performance arithmetic 

units [12], and decoupled processors [13, 5] whose execution time is data dependent. The execution 

characteristics of these systems are very decoupled as well as probabilistic in nature. Arbitration for 

shared resources is an important concern in most of these systems. Therefore, in order to get a handle on 

the problem of analyzing the performance of asynchronous circuits, we must select a suitable formalism 

that can deal with the above mentioned situations. Timed Petri nets can model systems with these 

characteristics, and therefore are central to our approach. , ,

1 .1  R elated  W o rk  and O verview  o f  O ur A p p roach

Many of the efforts in the area of asynchronous circuits are geared towards the study of synthesis 

techniques, correctness issues, etc., and are not so much geared towards understanding performance 

aspects of asynchronous systems. Asynchronous circuit performance analysis has been conducted at an 

analytical level by Sparsoe [32] and Williams [36]. Their work is primarily concerned with the study 

of asynchronous pipelines. They do not consider data dependent behaviors, arbitration, or resource 

usages.

Petri Nets have been widely used for studying asynchronous computations [25] as well as for modeling 

as well as synthesizing synchronous [29] and asynchronous circuits [8 , 3]. They have also been widely 

used in performance analysis studies at the system level. Basically one can observe two categories of 

works in this area. In the first category, decision-free Petri net structures are used to model computations 

[30] while in the second category, Petri nets with decisions (or “choices” ) are allowed [37, 18]. Recent 

work on asynchronous circuit performance analysis falling under the first category include the works of 

Burns and and Williams [6 , 36]. These authors model the computation as a constraint-graph and solve



performance equations using linear programming techniques. Work by Hulgaard et al. [16] adapt the 

work by Burns and provide an algorithm to find exact bounds on the time separation of events in a 

process graph without conditional behavior which serves as a basis for evaluation during time constrained 

synthesis or design. Nielson and Kishinevsky [26] address the problem of determining the cycle time and 

critical paths using the timing simulation of an underlying Signal graph. These techniques are limited 

in their applicability to branching behaviors, especially those dependent on data statistics, which are 

an important part of the claimed average-case performance advantages of asynchronous circuits.

To the best of our knowledge, there have been no attempts so far at studying the performance of 

asynchronous circuits that exploit data dependent branchings— using timed Petri nets or any other 

formalism. Our choice of timed Petri nets as the internal representation has the added advantage that 

we can later interface the performance analysis tool with the high level synthesis tool developed by our 

group [3]. The main contribution of this paper is to demonstrate that using an existing Generalized 

Timed Petri Net (GTPN) model [18] (detailed in Section 3), it is possible to model a wide class of 

asynchronous circuits and systems in a uniform manner, model arbitration as well as resource usages, 

model circuits hierarchically, and thereby make insightful observations about factors that determine the 

performance of asynchronous circuits.

1 .2  O utlin e o f  th e R em ain d er o f  th e  P aper

In Section 2, we present how we model self-timed circuits using Petri nets. In Section 3, we present an 

overview of the theory of Generalized Timed Petri nets and discuss the performance measures used in 

this paper. In Section 4, we provide three examples to illustrate the power of our technique: a crossbar 

arbiter circuit, an asynchronous reordering buffer, and the execution unit of an asynchronous processor.

Section 5 provides concluding remarks.
)*> ft]!

2 Self-timed Circuits and their Representation

A self-timed element (or module) is a piece of hardware which accepts a signal on its input cor­

responding to initiation of a specific computation and produces a signal on its output to denote the 

completion of the computation. A  self-timed circuit is a legal interconnection of self-timed elements. A  

wide class of modern self-timed circuits roughly fall in this category [11, 34, 4, 2, 22]. We assume two- 

phase transition signaling (up-going and down-going transition of a signal have the same meaning) and 

assume one wire per bit of data with the data-bundling assumption, i.e., the data is assumed to be valid 

at all the receivers before the corresponding control signal arrives [34], Furthermore, we assume that
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Figure 1: Models for DB and PB

the asynchronous circuits considered by our analysis procedure are built using macromodules [34, 4, 2] 

although, in principle, our analysis procedure should apply to circuits built using alternate design styles

Macromodule circuits can be classified as control blocks (CB), datapath blocks (DB), and data- 

dependent control modules, or predicate blocks, PB (the latter two are illustrated in Figure 1). Examples 

of primitive CBs include the XOR gate, the Muller C-ELEMENT, and the CALL module. In Figure 1, 

the delay line that is associated with the DB logic models the datapath delay. PB implements data- 

dependent control flow, e.g., conditional branches. It employs the SELECT module which steers the 

transition on its req input to either the T-ack or the F-ack output depending on whether the logic signal 

sel is a 1 or a 0 respectively which, in turn, depends on whether d_val meets the condition being tested 

or not.

2.1 P etri N et R ep resen tation  o f  Self-tim ed C ircuits

As observed by several researchers in the past [23, 10] a self-timed circuit can be represented by a Petri 

net *. We describe each circuit element by a Petri net and express the complete circuit as a structural 

composition of the Petri nets corresponding to the individual components. Each transition (or bar) in 

a Petri net is labeled with a wire name. The firing of a transition represents a signal transition on the 

wire which labels it. Thus, the sequence of wire names in a firing sequence represents a possible history 

of wire transitions. It is easy to show that our Petri nets are one-safe, i.e., the maximum number of 

tokens in any given place is 1.

The Petri nets corresponding to circuits have a special set of places called the initial places (IP) 

and a special set of places called final places (FP). IP and FP are disjoint and they correspond to the 

inputs and outputs of the circuit. The operation of a self-timed circuit is modeled by placing tokens in

'we assume the reader is familiar with the semantics of a Petri net, due to paucity of space we do not repeat it here



IP (corresponds to initiating a computation) and waiting for tokens to appear in FP (corresponds to 

acknowledge). The environment (i.e. whoever is using the circuit) is responsible for placing the tokens 

in IP and removing the tokens from FP. We assume that the environment of a circuit uses the circuit 

properly, i.e., without causing glitching and hazards.

2 .2  C om p osition

The netlist of a self-timed system can be described by a composition of the Petri nets corresponding 

to the individual circuit elements. For each module, the initial places indicate inputs to the module. 

Each initial place is connected to a bar which is labeled with a corresponding wire name. Similarly, 

each final place represents an output and is connected to a bar which is labeled by the corresponding 

wire name. We define the structural interconnection of two modules, where the output of one module is 

connected to the input of the next by making their corresponding final and initial places the same. The 

above composition method is illustrated on an example shown in Figure 2. The request, R eq , and the 

acknowledgement, ack, are inputs to the c - e l e m e n t .  The Petri net for the C-element is one possible 

representation (join) for the C-element and more detailed models can be used. The output of the C 

element is the request to the PB block which checks the greater of the two data values A and B coming 

to it. If A IB then, A is added to B (data block, DB); else, a new value is loaded into the register, 

reg  (data block). The Petri net for this example is shown in Figure 2(a) as a composition of the Petri 

Nets of these self-timed modules.

2 .3  H ierarchy o f  P etri nets

One of the problems for very large circuits and systems in using Petri nets is the explosion in the size 

of the Petri net resulting both in lack of clarity in the modeling of the circuit as well as an explosion 

in the state of the reachability graph of the net. We therefore model the Petri Net hierarchically. We 

introduce a hierarchical transition in a Petri Net which can be expanded into a sub Petri net. The input 

places of the transition are the same as the input places of the sub Petri net and the output places of 

the transition are the same as the output places of the sub Petri net. This way, the information from 

the analysis of the lower level Petri net can be used to annotate the hierarchical transition of the Petri 

net. This will be discussed in detail in Section 3. We will restrict the sub-Petri nets to have only a 

single recurrent class in its reachability graph. This is not a restriction for most hardware systems.
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Figure 2: Example for Illustration of the Modeling and Estimation 

3  T h e o r y  o f  G e n e r a liz e d  T im e d  P e tr i-n e ts

In this section, we first present the G TP N A  formalism and show how the asynchronous circuit repre­

sentation is analyzed using this model. We describe existing means for analysis of the Petri Nets, and 

how they are adapted and extended for our purposes.

3.1 Timed Petri Nets

A GTPN  [18] is a Petri net which has been augmented to include a set of firing durations (D ), a 

set of firing frequencies (F ), and a possibly empty set of resources (R ) associated with each transition. 

Formally, G T P N  =  (P, T , A , Mo, D , F, R ), where P  is the set of places, T  the set of Transitions, and A  is 

a set of directed arcs which can connect only transitions to places and places to transitions. Mo indicates 

the initial marking marking of places in the Petri Net. A  transition has a deterministic firing duration 

D  associated with it. Each transition is associated with a start firing event and an end firing event in 

between which the firing of the transition is in progess. The removal of tokens from a transition’s input 

places occurs at start firing while the placement of tokens on a transitions’s output places occurs at end

6



firing. While the firing of a transition is in progress, the time to end firing , called the remaining firing 

time (R FT), decreases from the firing duration to zero. Thus, the state of a GTPN is only partially 

defined by the distribution of tokens; its state must also include the RFT of each transition that is 

currently firing. Each transition of a G TPN  is generated by a set of start firing or a set of end firing 

events that occur simultaneously. The maximal set of transitions that can start firing simultaneously 

defines the next state of a G TPN . The frequencies, F , associated with each transition are used in 

assigning probabilities to the next state of the Petri net. (The notion of frequencies will be explained 

in detail in Section 3.2.) Note that the first four components of the tuple of a G TPN  are identical to 

similar constructs of an untimed Petri Net.

3 .2  M o d elin g  o f  delay and firing frequencies

In our approach, the delays in the circuits are modeled by the firing durations (D) of the transitions 

in the Petri nets. These delays can be obtained from a library, through experiments, or through 

known timing estimation techniques. Additional conventions in delay modeling are now explained (and 

illustrated in Figure 2):

• A  transition in the Petri net indicating a signal transition at the output of a gate is annotated 

by the delay of the gate. In this case, we do not make any distinction between rising and falling 

transitions, and give an average figure taking into account both rise times and fall times. This is 

shown by D el ay jC  elem en t and D elay^exor  in Figure 2. ' f "

• A  transition in the Petri net indicating a signal transition at the input of a gate is annotated by 

the delay of the wire from the output of the previous gate (of which it is an output) to the input 

of this gate. In the case of a primary input signal, we can annotate the transition with either zero 

or some deterministic real number indicating the delay from the primary input to the input of the 

gate. This is shown as D elay_w ire  next to the transitions in Figure 2.

• A  transition indicating the acknowledge signal from a DB is annotated by the average case delay 

of the DB. In Figure 2, this is represented by D e la y -D B

• Transitions indicating acknowledge signals from a PB are annotated by the sum of the average case 

delay of logic block and the delay of the Select element in generating the respective acknowledge
■Vi! ’

transition. This is shown as D ela y^ P B  in the example.

• • In the case of a hierarchical transition, we annotate the transition with the the long run time (this 

will be discussed in Section 3.3) of the sub Petri net. We also note that due to the hierarchical
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nature of the Petri net, a transition at a higher level in the hierarchy would have more abstract 

system level timing information rather than detailed circuit timing delays.

The firing frequencies (F) can be assigned to any transition. In case of a place with two or more arcs 

leading out of it (indicating a choice), branching frequencies may be assigned based on data dependent 

branching information. We note that the equivalent circuit paradigm of such an occurrence in the Petri 

net is a PB, which is a Select element whose control signal behavior is data dependent. The examples 

in Figure 3 illustrate the way we assign branching frequencies. In Figure 3, we assign the probability 

of A >  B  being true or false to the transitions to be 0.3 and 0.7. All other transitions are assumed to 

have a firing frequency of 1.

3.3 B ackground  on  the G T P N A  analysis techniques

We present below a quick overview of the G TP N A  analysis techniques from Holliday [18], for the 

sake of completeness. The following sketch of some of the relevant terminology and theorems of Markov 

Chain theory is presented here. A detailed discussion of the Discrete-Time Markov Chains and their 

relationship to stochastic Petri nets are described in [1, 24]. The strongly connected components of the 

state space (when viewed as a directed graph) are the classes of the Markov Chain. The condensed 

graph (one vertex for each class) is a directed acyclic graph with one root. In the case of a finite state 

space, the interior vertices of the condensed graph are called transient classes. The leaf vertices of the 

condensed graph are called recurrent classes 7Z. In a typical evolution of the system being modeled, 

the system starts in a state in the root of this condensed graph. It then filters through the transient 

classes until it is absorbed by one of the recurrent classes. Once absorbed it stays in that recurrent class

Figure 3: Simple Example to Illustrate Firing Frequencies and Long Run Time



permanently.

In a G TPN , we are interested in the long run (or “steady state” ) behavior. There are two character­

istics of the movement through the transient classes that are of interest: the absorption probabilities, 

or the probabilities of being absorbed by each leaf (recurrent class); and the mean time o f absorption 

into the recurrent class. For techniques to find these characteristics, readers are referred to [17]. Once 

absorbed in a particular recurrent class, the the long run [20] probability distribution over the states in 

the recurrent class needs to be computed. This stationary probability distribution 11^ is easy to find 

since it is the unique solution to the set of equations 11̂  =  U n P n  and Y ljen  =  1) where matrix 

Pn =  {P ij\ i,j  £  TZ}. Here, P,j refers to the probability of visiting state j  from state i where both 

states are within the recurrent class 7Z. The fact that Y ljen  =  1 corresponds to the fact that the 

set of states 71 is a recurrent class, i.e., once execution enters TZ, it does not leave TZ. Both Pij and 

Pi are obtained from the underlying state graph of the timed Petri net [17]. Equation =  HftPft 

corresponds to the fact that in the long run, instead of having a probability of going from state i to state 

j  in the recurrent class 7Z (as defined by the transition matrix), we now have a vector of probability 

values rift of visiting each state i in the recurrent class 7Z.

From lift, we can find the long-run time as well the relative time spent in each state of the recurrent 

class as follows. Let S be the set of states in recurrent class 7Z and let 5] be a state in S . Also, define 

R elTim e{s-[) to be the time spent in state si relative to the long-run time for 7Z. The long-run time 

for recurrent class TZ for any state Si is defined as

LongRunTime{s\) =  T .^ sT im tIn S taU lk ) fl, (1)

where T im eln S ta te(k )  is the time spent in state k which is determined from the user given timing 

annotations in the Petri net and n , is the probability of visiting state i in the long run. R elT im e (s\) 

is given by

R elT im e(s\) —
T im eIn S ta te{s\ )  f l^

(2)
Y lk e s T im e InSta te(k)

We also can obtain for each recurrent class, the utilization of the resources while in that class, we 

find E[Resusages], the expectation of Resource Usages for a recurrent class is given by

E [R esU sa ges]  =  ^  R esU sa ges(k ) R elT im e(k )  
kes

where R esU sa ges(k )  is the amount of resources used while in state k of the recurrent class.

(3)



In estimating the performance of asynchronous circuits, we employ the long-run time and the resource 

usage as performance measures. Our usage of long-run time in this manner is related to Zuberek’s [37] 

use of this notion on examples with a single recurrence class.

It is important to note that this long run time is useful in the comparison of different designs and 

serves as a numerical measure with which to compare the designs. For example, Zuberek has suggested 

that by using this approach two architectures can be compared against each other, although he does 

this only for systems that can be modeled as Petri Nets with a single recurrence class. The ratio of the 

performance of an optimized and unoptimized design gives us a fair idea of the amount of improvement 

we can see in the optimization process. For example, if we want to add another instruction to the 

processor, we would like to know the speedup versus the cost of adding such an instruction. Another 

example is where we decide on multiplexing two sets of 16 bit data through the input pins of a chip, 

in a pin limited design. We calculate the speedup if the data was not multiplexed, i.e; 32 dedicated 

pins were assigned for inputting the data. The cost versus the speedup decision can then be left to the 

designer.

In the case that the recurrent class belongs to a Petri net which is a subnet (represented as a hierar­

chical transition in a higher level Petri net), the long run time becomes the firing duration (D) of the 

hierarchical transition. This makes it possible to apply the results of Section 3.3 for the hierarchical 

Petri nets as well.

4 Examples

Two examples are considered in this section. In Section 4.1, we present the analysis of a symmetric 

crossbar arbiter [35]. Arbiters are control intensive circuits whose performance is critical to the overall 

performance of the asynchronous system using them. The crossbar circuit considered here is the asyn­

chronous version proposed in [14]. This example demonstrates the ability of GTPN to allow conditional 

(state dependent) probabilities. In Section 4.2, the analysis of the Non-Synchronous RISC (NSR) [5] 

self-timed processor architecture is presented. In the same section, we compare the performance es­

timated by the GTPN tool against actually measured performance figures from the NSR processor’s 

Actel FPGA circuit, and point out that these measurements track each other, thereby justifying our 

approach. Additional examples are briefly discussed in Section 4.3.

3.4 Performance Estimation o f Asynchronous circuits
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Figure 4: Petri Net Model of the Wavefront Arbiter

4 .1  S y m m etric  C rossb ar A rb iters

Consider an NxN crossbar switch that receives (and queues up) connection requests issued at random 

from the outside world. As an example, for a 4x4  arbiter with rows and columns numbered 1 through 4, 

the queue state can read (1,2), (1,3), (2,1), (4,2) at a particular time. The problem faced by a crossbar 

arbiter is to select, from among the queued up requests, the maximum number of requests that will 

not conflict on a row or a column. For our example, the maximum number of switch connections are 

achieved by closing (2,1), (1,3), and (4,2).

In [14], a crossbar arbiter, called the wavefront arbiter has been proposed. In the wavefront arbiter, a 

diagonal wavefront travels from the top-left corner to the bottom-right corner, sequentially examining 

pending requests. Whenever a request is encountered at (x ,y ), the portion o f the wavefront at (x, y)  is 

pinned down till the request at (x , y ) has been processed. The portions of the wavefront at coordinates 

(x , y )  where x'  and y' are less than x and y are, however allowed to move forwards. In the case of our 

example, the wavefront arbiter can connect only locations (2,1) and (1,3) simultaneously; switch (4,2)



Probability of switching (of each switch)

will not be closed by it till switch (2,1) has been serviced.

The Petri-net for the wavefront arbiter is given in Figure 4. Each location of this arbiter is realized 

using a component called the lo c k -c  [14], which is a Muller C-ELEMENT that can be asynchronously 

locked. According to the figure, when a and b arrive, the lo c k -c  element gets enabled. While in 

the enabled state, the 1 input ( “lock” ) can arrive, thus postponing the firing of c. When locked, the 

wavefront is effectively pinned down by the LOCK-C. The crossbar switch at this location can now be 

closed for the desired duration of time. Following that 1 can be deasserted when the LOCK-C is unlocked 

and the wavefront is allowed to proceed once again.

In the Figure 5, we show the usage of the switches (throughput) against the probability of requesting 

connections by each switch of the crossbar arbiter (all switches are assumed to have the same probabil­

ity). We find that as the probability of switching requests is increased the improvement in performance 

is very gradual and approaches at most about 0.35. This means that each crossbar arbiter switch can 

make a connection at most about 35 %  of the time even if it were able to request connections all of 

the time. This information is useful in predicting the performance of the arbiter for different “traffic” 

situations.

4.2 T h e  N on -S yn ch ron ou s R IS C  (N S R ) A rch itectu re

The NSR processor is a general purpose processor structured as a collection of self-timed units that 

operate concurrently and communicate over bundled data channels in the style of micropipelines [34]. 

The NSR pipeline stages correspond to standard synchronous pipeline stages such as Instruction Fetch, 

Instruction Decode, Execute, Memory Interface and Register File. However, each stage operates con-

Figure 5: Usage of switches in the Wavefront Arbiter



currently as a separate self-timed process and are decoupled through self-timed FIFO queues between 

them that allow a high degree of overlap in their executions. Branches, jumps, and memory accesses 

are also decoupled through the use of additional FIFO queues which can hide the execution latency of 

these instructions. The prototype implementation of the NSR has been constructed using Actel Field 

Programmable Gate Arrays (FPGAs). In our Petri-net analysis, we include the Execute unit (EX), 

the Register file (RF), and the Instruction decode(ID). We will examine the performance of the EX 

independently and then its performance in association with the RF and ID stages.

Figure 6 shows the Petri Net representation of the EX unit of the NSR processor. The firing durations 

of the transitions (not shown in the diagram for the sake of clarity), were obtained from the circuit 

implementations of the EX unit. The flow of the Petri Net is as follows. First, the EX unit get the 

instruction from the ID unit and checks if this instruction is a mvpc instruction. This happens with 

an estimated probability of 0.1— a number which can be determined from execution traces. Once this 

is checked, if it is not a mvpc instruction, it is again checked whether it is a one operand or a two 

operand instruction. In case of a two operand instruction, the two operands are obtained sequentially 

from the RF (left-hand side shaded region in the Petri net) because of pin limitations. (The penalty of 

doing this will be analyzed momentarily.) This is followed by ALU operations where each instruction 

has a particular probability of occurrence. This portion of the Petri-net can be analyzed separately as 

shown by the legend labeled “Refine” , and its evaluation time can be plugged back on the transition 

labeled alureq. Once the instruction is executed, the results are concurrently sent to the respective 

destinations based on the nature of the instruction.

To verify the correctness of our tools, we ran some examples on the Petri net and compared it against 

the performance of the actual implementation of the NSR For example, in the NSR chip, performance 

was measured by placing a series of 1000 instructions in a large loop and then executing the loop 65536 

times [31]. The Petri net model was modified corresponding to each actual test to incorporate the 

probabilities o f the. instructions. For example, for the program with only the add instructions repeated 

1000 times, the probabilities in the Petri net were modified to reflect this information by suitably 

changing the branching probabilities. The performance of the execute unit was found both analytically 

and through actual chip delay measurements for that instruction executing. It was found that the 

performance figures track the actual performance of the chip reasonably as shown in the graph 7. 

Statistical and modeling errors would account for much of the difference.

Once the tools were found to be reasonably correct, our first set of experiments were to estimate the 

performance of the EX unit with- and without considering pin limitations that sequentialize multiple
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operand access. In Figure 6 we have shown in the left-hand side shaded area the multiplexed version 

of the access and in the right-hand side shaded area the non-multiplexed access. In the analysis, we 

changed the portion of the Petri Net to effect the optimization. The estimated long run times of 

the two Petri Nets were compared. It was found that this Petri net has a single recurrence class in 

both cases. Comparing the long-run times for each module, we found that the latter design (non­

multiplexed), effects a performance improvement of 5 %  under the given module delay assumptions as 

well as branching probabilities.

Another problem that is immediately noticeable is that each time any operation executes in the 

execution unit, it has to be checked whether it is a M V P C  instruction or not. We would like to 

compare, the effect this instruction has on the overall performance of the execute unit. The Petri net 

was modified to remove the mvpc instruction and the long run times of the two Petri nets (with and 

without mvpc) were compared. Through this analysis, we determined that the overhead of this is about

2 % . If this figure had been higher, then we would have performed further analysis such as the cost 

of having some alternate instruction which has the same effect as the mvpc and also we would have 

studied the effect on the performance of the processor as a whole.

Other possible analysis and estimates possible are briefly mentioned below. We can also estimate the 

effect of adding instructions in the EX unit, and then estimate the effects on the whole processor. It 

is encouraging that the G TPN  approach can yield performance results that take into account module 

delays as well as branching probabilities and give answers to questions such as these in virtually interac­

tive time. We can also make decision regarding whether to add buffers or the number of buffers to add 

in transferring the results from the EX unit to the RF unit, depending on the usage of these buffers.
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Table 1: Table of experimental results
Circuit Num of Performance (secs) Analysis Time

Name states (Long Run Time) CPU (secs)

EXOPT 223 162 0.25

EX-RF 223 142 0.25

EX-MVPC 223 156 0.25

WAV El 428 101 0.13

WAVE2 428 149 0.13

WAVE3 428 212 0.13

ARP 44 39 0.05

ARP-OPT 44 34 0.05

We can calculate the resource usages of these buffers in making the decision.

4 .3  S u m m a ry  o f  E xam p les

Table 1 shows the performance of various optimized versions of the NSR, processor. First we studied 

the original execution unit (EXOPT), then compared it with the optimization of having a single 16 bit 

port to the RF (EX-RF) and then used it to calculate the performance without the mvpc instruction 

(EX-M VPC). The table also shows the estimated performance of some versions of the wavefront arbiter. 

The performances figures for different probabilities of firing of the crossbar switch are compared and 

some of them are shown as WAVE1, WAVE2 and WAVE3 in the table. An Asynchronous Reordering 

Pipeline [21] has also been analyzed. This circuit is a modified asynchronous micropipeline which 

implements a dynamic instruction reordering scheme that optimizes multiple pending instructions to 

achieve higher throughput. ARP is an unoptimized version of this circuit and ARP-OPT an optimized 

version based on data dependent probablities of the reordering requests.

5 Conclusions

Our experiments with the performance analysis methodology have been very encouraging. We have 

been able to analyze reasonably large examples and have been able to obtain the performance estimates 

in less than a second of CPU time in most cases as shown in Table 1. By this, we have provided a 

framework for comparing the performance of different asychronous circuits which have data dependent
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behavior. We have demonstrated that the information obtained from analysis can be used in perfor­

mance versus cost tradeoffs during the optimization process as well as studying the performance of a 

design under various constraints.

Although the GTPN analysis tools are very efficient in generating the reachability graph and use good 

numerical techniques for analysis, the problem of state explosion in generating the reachability graph of 

the Petri net can be significant in some cases. This was noticed while analyzing another version of the 

crossbar arbiter called the crisscrossing arbiter [14] which is very decoupled in its execution even though 

the circuit in itself is small. Generation of the reachability graph using symmetries, as well as verification 

of the correctness of circuits using symmetries has been discussed in [33] and [19] respectively; these 

techniques will be further studied.

Hierarchical reasoning can, in general, introduce errors in the analysis, because of the fact that the 

performance of the underlying net is abstractly represented by its long-run time. For the NSR processor’s 

execution unit, we performed the analysis with- and without hierarchy, and the results were in close 

agreement. The exact magnitude of the error will be studied in our future work.

Another possible source of inaccuracy in our current approach is the following. In modeling the 

delay exhibited by data blocks whose computations are data dependent at a fine-grain level (e.g., carry- 

completion addition), we currently take the average delay exhibited by those units with respect to the 

distribution of the data being handled by those units. A more direct way to incorporate the data 

dependent delays of data blocks has to be investigated.

Finally, macromodule based circuits lend themselves very well to Petri net based analysis. However, 

we would also like to consider other classes of asynchronous circuits (e.g., burst-mode controllers [28]) 

as part of our future work.

To summarize, the main contribution of this paper has been to provide a framework for the analysis of 

asynchronous self-timed circuits taking into account data dependent behavior. This has been achieved by 

presenting techniques to represent any interconnection of self-timed blocks as a Petri Net and adapting 

techniques in the area of Petri net based performance analysis. As far as we know this is the first serious 

attempt in the area of Petri net based performance analysis of self-timed circuits. We have demonstrated 

our approach on reasonably large examples which explore different aspects of asynchronous circuit 

behavior.
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