
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 9, SEPTEMBER 2006 1637

Synthesis of Asynchronous Controllers Using
Integer Linear Programming

Josep Carmona, José-Manuel Colom, Member, IEEE, Jordi Cortadella, Member, IEEE, and Fernando García-Vallés

Abstract—A novel strategy for the logic synthesis of asynchro-
nous control circuits is presented. It is based on the structural
theory of Petri nets and integer linear programming. Techniques
that are capable of checking implementability conditions, such as
complete state coding, and deriving a gate netlist to implement
the specified behavior are presented. These techniques can handle
Petri net specifications consisting of several thousands of transi-
tions and provide a significant speed-up compared with techniques
that have previously been proposed.

Index Terms—Asynchronous circuits, logic synthesis, Petri nets,
structural methods.

I. INTRODUCTION

ONE OF THE main reasons why many designers are
reluctant to use asynchronous circuits is that these circuits

are difficult to design and the level of maturity of existing
computer-aided design (CAD) tools is still insufficient. How-
ever, in the last decade, several research groups have developed
CAD tools for the synthesis of asynchronous circuits [1]–[5].
This represents the first step in bridging the gap between
designers and design automation. This paper presents a novel
approach for the synthesis of asynchronous control circuits.

The synthesis of asynchronous circuits from a given for-
malism, such as an automaton or a Petri net, can be split into
two main steps [5]: 1) checking and (possibly) forcing imple-
mentability conditions and 2) deriving the Boolean equation for
each signal generated by the system. Most existing synthesis
tools perform steps 1) and 2) at the underlying state graph
(SG) level, thus suffering from the well-known state explosion
problem. These tools, although using symbolic techniques for
alleviating the cost of representing the state space, can only
synthesize specifications with moderate size.

In order to avoid the state explosion problem, various struc-
tural methods have been proposed [6]–[10]. The work proposed
in [6] and [8] uses graph theoretic-based algorithms, whereas
[9] and [10] combine partial order methods (Petri net unfold-
ings [11]) with either integer linear programming (ILP) [9] or
Boolean satisfiability [10].

Manuscript received July 28, 2004; revised January 9, 2005 and June 1, 2005.
This work was supported by CICYT TIN2004-07925, CICYT-FEDER 2001-
1819, and the Working Group on Asynchronous Circuit Design (ACID-WG)
under contract IST-1999-29119. This paper was recommended by Associate
Editor S. Nowick.

J. Carmona and J. Cortadella are with the Software Department, Universitat
Politècnica de Catalunya, Barcelona 08034, Spain (e-mail: jcarmona@lsi.
upc.edu; jordi.cortadella@upc.edu).

J.-M. Colom and F. García-Vallés are with the Department of Computer
Science and Systems Engineering, Universidad de Zaragoza, Zaragoza 50018,
Spain (e-mail: jm@unizar.es; gvalles@unizar.es).

Digital Object Identifier 10.1109/TCAD.2005.859516

This paper is inspired by previous works [7], [12] and
proposes a complete design flow for asynchronous controllers
based on structural techniques. The contributions of this paper
are, first, to show the effectiveness of structural methods when
used with large specifications, second, to develop a novel
algorithm for synthesis based on linear algebraic methods, and,
third, to integrate the algorithm in a complete synthesis flow for
asynchronous controllers.

This paper aims at facing the two important steps in the
synthesis of asynchronous circuits: it proposes powerful meth-
ods for checking complete state coding (CSC)/unique state
coding (USC) [13] and a novel method for decomposing the
specification into smaller ones while preserving implement-
ability conditions. The methods presented in this paper can be
combined with structural or direct translation techniques for
encoding (e.g., [14] and [15]) to provide a complete design
flow for the synthesis of controllers. This flow would be able
to synthesize large highly concurrent specifications that cannot
be handled by state-based methods.

A. Synthesis Example: VME Bus Controller

The contributions presented in the paper are briefly summa-
rized by synthesizing a simple VME bus controller. It consists
of three entities (the bus, the device, and the controller) that
interact through a bidirectional buffer according to a given
protocol. Fig. 1(a) shows the protocol and the signals involved.
The protocol for the read cycle is shown in the timing diagram,
depicted in Fig. 1(b). The arcs denote the causality relations
between events.

The protocol can be formally specified with a signal tran-
sition graph (STG). Fig. 1(c) shows the STG specifying the
read cycle. The goal is, starting from this STG, to derive the
implementation of each output signal of the controller under a
given delay model, e.g., to derive Boolean equations for signals
dtack, lds, and d under the speed-independent delay model [5].

The first step is to check whether the initial STG fulfills the
implementability conditions for speed independence [5]. This
checking is traditionally done on the state space of the system
and therefore suffers from the state space explosion problem.
In Section IV, efficient ILP methods for performing this task
are presented. For the example, this checking reveals encoding
problems that must be solved to guarantee a speed-independent
implementation.

A typical way of solving the encoding problem is by inserting
new signals in the specification, which helps in disambiguating
the conflicting states. For the example, one could resort to some
of the structural methods that avoid the computation of the state

0278-0070/$20.00 © 2006 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/185530294?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1638 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 9, SEPTEMBER 2006

Fig. 1. (a) Interface. (b) Timing diagram. (c) STG for read cycle.

Fig. 2. Structural encoding and transformations applied to VME bus
controller STG.

space, such as the ones presented in [14] and [15]. This could
derive the STG in the right part of Fig. 2, with several new
signals inserted to solve the encoding problem. In this case,
the encoding proposed in [14] has been applied. Intuitively,
it consists of adding a new layer of state signals (called spi

in the figure) that encode the value of the places in the Petri
net. In this way, the activity of the signals mimics the token
flow in the net.

Typically, structural encoding techniques are conservative
and produce a new specification with several redundant signals.
To check whether one state signal is redundant, it is enough
to check that there are no encoding conflicts after hiding the
signal. This checking can be performed by using the ILP-based

techniques presented in this paper. The resulting specification
is depicted at the bottom of Fig. 2, where only two state signals
remain (sp9 and sp10).

Besides hiding redundant signals, one could also modify the
specification to make it more efficient (e.g., by increasing the
concurrency of internal signals, as proposed in [15]). Other
possible transformations are also presented in [14], [16], and
[17]. Given that the transformations preserve the behavior of the
system, their legality is reduced to checking that no encoding
conflicts appear when applied.

Finally, synthesis must be performed. Here, the key point is
to tackle the synthesis of each output signal xi individually
by projecting the whole behavior only onto those signals that
are necessary for xi to be correctly implemented, i.e., the
support of xi. Fig. 3 presents the projection after computing
the corresponding support for each output signal.

The last step is to synthesize a circuit for each output signal.
Provided that the support of each signal is typically small, the
projections have a small state space and, thus, conventional
state-based methods for synthesis can be used. Fig. 4 shows the
final synthesis for the signals d and dtack.

B. Synthesis Flow for Large Asynchronous Controllers

The previous example illustrates how a design flow can be
devised in such a way that state-based methods can be relegated
to small specifications. A possible framework for synthesis is
the one depicted in Fig. 5. The ILP models are used to check
the legality of the transformations and to calculate the support
for each output signal. State-based methods for synthesis are
only used when the projection for the support of each output
signal has been calculated.

This paper presents ILP-based methods to check the exis-
tence of encoding conflicts and to calculate the support required
to implement each signal. Within the framework depicted in
Fig. 5, we show that the path from an implementable STG down
to the circuit is feasible and can be performed efficiently.

II. BASIC NOTIONS

We assume the reader to be familiar with Petri nets. A survey
is presented in [17]. Some basic concepts and notation are
reviewed as follows.

CARMONA et al.: SYNTHESIS OF ASYNCHRONOUS CONTROLLERS USING INTEGER LINEAR PROGRAMMING 1639

Fig. 3. Support computation for VME bus controller example.

Fig. 4. Speed-independent synthesis for signals d and dtack.

Fig. 5. Design flow for synthesis of asynchronous controllers.

A. Petri Nets

A Petri Net (PN) is a four-tuple N = (P, T, F,m0),
where P is the set of places, T is the set of transitions,
F ⊆ (P × T) ∪ (T × P) is the flow relation, and m0 ∈ N

|P |

is the initial marking. A Petri net is usually represented as a
bipartite graph in which P and T are the nodes. For any two
nodes x and y, if (x, y) ∈ F , then there is an arc from x to y.

A marking m of a PN is a |P | vector where the component
p of the vector is a natural number. If k is assigned to place
p by marking m [denoted by m(p) = k], we will say that p is
marked with k tokens atm.

Given a node x ∈ P ∪ T , the set •x = {y | (y, x) ∈ F} is the
pre-set of x and the set x• = {y | (x, y) ∈ F} is the post-set of
x. A transition t is enabled at markingm if each place p ∈• t is
marked. When a transition t is enabled, it can fire by removing
one token from each place p ∈• t and adding one token to each
place q ∈ t•.

A marking m′ is reachable from m if there is a sequence
of firings t1t2, . . . , tn that transforms m into m′, denoted by
m[t1t2, . . . , tn〉m′. A sequence of transitions t1t2, . . . , tn is a
feasible sequence if it is firable from m0. The set of reachable
markings from m0 is denoted by [m0〉. By considering the set
of reachable markings as the set of states of the system, and
the transitions among these markings as the transitions between
the states, a reachability graph can be obtained representing the
underlying behavior of the PN.

A PN is k-bounded if no marking in [m0〉 assigns more than
k tokens to any place of the net. It is safe if it is 1-bounded. For
simplicity, the Petri nets considered in this paper are assumed
to be safe. The extension of the results to bounded Petri nets is
discussed in Section VI-C.

B. Linear Programming

A linear inequality is defined by a vector a ∈ R
n and a

constant b ∈ R. It is represented by a · x ≤ b and is feasible
over a set A if there exists some assignment k ∈ A to x
satisfying a · k ≤ b.

A linear programming problem (LP) is a finite set of lin-
ear inequalities. It can be represented in matrix notation as
A · x ≤ B, where each row of A corresponds to a linear in-
equality and B contains the constant terms of the inequalities.
Optionally, it can have a linear optimization function cT · x
called the objective function. A solution of the problem is a
vector that satisfies the linear inequalities. A solution is optimal
if it maximizes the objective function (over the set of all
solutions). An LP is feasible if it has a solution.

As a particular case, LP can also handle equality constraints,
e.g., a · x = b, by splitting them into inequality constraints:
a · x ≤ b and a · x ≥ b.

LP can be solved in polynomial time [18]. The most pop-
ular algorithm for LP is the simplex [19] that performs very
efficiently in practice, although it is exponential in the worst
case [20].

An ILP is an LP in which the variables have integrality
constraints, i.e., the solutions can only have integer values. ILP
is NP-complete [21], and different methods have been proposed

1640 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 9, SEPTEMBER 2006

to solve it. They are usually based on solving the LP version of
the problem and iteratively adding constraints to enforce the
integrality around the optimal solution [22].

ILP has been successfully used to solve different problems in
CAD, such us retiming [23], scheduling in high-level synthesis
[24], or global routing [25].

C. ILP and Petri Nets

Given a firing sequence m0[σ〉m of a PN N , the number of
tokens for each place p inm is equal to the number of tokens of
p inm0 plus the number of tokens added by the input transitions
of p appearing in σ minus the tokens removed by the output
transitions of p appearing in σ, i.e.,

m(p) = m0(p) +
∑
t∈•p

#(σ, t) −
∑
t∈p•

#(σ, t)

where #(σ, t) denotes the number of occurrences of transition
t in the sequence σ. The matrix N ∈ Z

|P |×|T | defined by

N(p, t) = F (t, p) − F (p, t)

is called the incidence matrix of N , where F (x, y) = 1 indi-
cates that (x, y) ∈ F and F (x, y) = 0 indicates that (x, y) �∈ F .

Let σ be a feasible sequence of N , and T = {t1, . . . , tn}.
The vector �σ = (#(σ, t1), . . . ,#(σ, tn)) is called the Parikh
vector of σ.

Using the previous definitions, the token conservation equa-
tions for all the places in the net can be written in matrix
form as

m = m0 + N · �σ

leading to the characterization of the reachability set by means
of an ILP model.
Theorem 2.1 (Marking Equation [26]): If a marking m is

reachable from m0, then there exists a sequence σ such that
m0[σ〉m and the following problem has at least the solution
X = �σ, i.e.:

m = m0 + N ·X. (1)

This is called the marking equation.
Special attention must be paid to the previous theorem:

the marking equation only provides a necessary condition for
reachability. If the marking equation is infeasible, then m
is not reachable from m0. But the inverse does not hold,
in general; there can be unreachable markings satisfying the
marking equation. Those markings are said to be spurious [27].
Fig. 6 presents an example of a Petri net with initial marking
(1,0,0,0,0). Fig. 6(b) depicts the graph containing the reachable
markings and the spurious markings (shadowed). This graph is
called the potential reachability graph.1

The Parikh vector �σ = (2, 1, 0, 0, 1, 0) and the markingm =
(0, 0, 1, 1, 0) are a solution of the marking equation. However,
m cannot be reached by any feasible sequence; only sequences

1In both the figure and the explanation, we abuse the notation and skip the
commas in the representation of markings.

Fig. 6. (a) Petri net. (b) Potential reachability graph.

visiting negative markings can lead to m. For example, the
following sequence would satisfy the marking equation, i.e.:

10000 t1−→ 01100 t2−→ 00011 t5−→ 1[−1]010 t1−→ 00110.

Note that a negative marking must be visited (1[−1]010) for
00110 to be reachable.

D. SGs

Asynchronous circuits can be modeled with a reachability
graph, where the events represent changes in the value of the
system signals.

A transition labeled as xi + (xi−) denotes a rising (falling)
of signal xi. It switches from 0 to 1 (1 to 0), while xi∗ denotes
a generic transition, rising or falling. Each state of an asynchro-
nous circuit can be encoded with a binary vector, representing
the signal values on that state. The encoded reachability graph is
called SG. Formally, an SG is a five-tupleA = (S,Σ, T, sin, λ),
where S is the set of states and sin is the initial state. Σ is the
set of signals partitioned into three subsets: inputs, outputs, and
internal. T ⊆ S × Σ × {+,−} × S is the labeled transition
relation. A transition is represented by an arc notation (e.g.,

s1
a+→ s2). Finally, λ : S → B

|Σ| is the encoding function. We
denote by λx(s) the value of signal x in state s. Fig. 7 shows
the SG specifying the behavior of the bus controller for the
read cycle.

E. STGs and Trigger Signals

Transitions in PN can represent signal changes of an asyn-
chronous circuit. This model is called STG [13], [28]. An STG
is a triple (N , Σ, Λ), where N = (P, T, F,m0) is a PN, Σ is
the set of signals, and Λ : T → Σ × {+,−} is the labeling
function.

An example STG specifying the bus controller is shown in
Fig. 1. By convention, places with only one predecessor and one
successor transition are not shown graphically. The reachability
graph associated to an STG is an SG. The SG associated to the
STG of Fig. 1 is shown in Fig. 7.

CARMONA et al.: SYNTHESIS OF ASYNCHRONOUS CONTROLLERS USING INTEGER LINEAR PROGRAMMING 1641

Fig. 7. SG of read cycle. States are encoded with vector (dsr, dtack, ldtack,
d, lds).

Definition 2.1 (Trigger/Disabling Transitions): Let
R ⊆ [m0〉 be the set of markings where transition ti is
enabled. Transition tj triggers transition ti if there exists a
reachable marking m such that m[tj〉m′, m �∈ R, and m′ ∈ R.
Transition tj disables transition ti if there exists a reachable
markingm such thatm[tj〉m′,m ∈ R, andm′ �∈ R.

Definition 2.2 (Trigger Signals): Given a signal a, the set of
trigger signals Trig(a) ⊆ Σ is defined as the set of signals {x}
such that some transition x∗ triggers some transition a∗.

It is well known in the theory of Petri nets that if ti triggers
tj , there must be a place p such that p ∈ t•i ∩• tj . This structural
condition is useful to quickly identify a set of signals that
contains Trig(a).

III. SYNTHESIS OF SPEED-INDEPENDENT CIRCUITS

Speed-independent (SI) circuits are the class of circuits that
work correctly, regardless of the delay of their components
(gates). In this section, some basic concepts on the synthesis of
SI circuits are presented. We refer the reader to [5] for a deeper
background on this subject.

A. Implementability Conditions

A set of properties that guarantee the existence of an SI cir-
cuit is introduced below. They are defined at the level of SG, but
can easily be extended to STGs. The properties are the follow-
ing: boundedness, consistency, CSC, and output persistency.
Boundedness: The set of states must be finite. Although this

seems to be an obvious assumption at the level of an SG, it is
not so obvious at the level of an STG, since an STG with a finite
structure may have an infinite number of reachable markings.
Consistency: Consistency holds when the events xi+ and

xi− alternate in any trace of the behavior. This is formally
defined as follows. A consistent SG satisfies the following
conditions for each transition s

e→ s′:

1) if e = xi+, then λi(s) = 0 and λi(s′) = 1;
2) if e = xi−, then λi(s) = 1 and λi(s′) = 0;
3) in all other cases, λi(s) = λi(s′).

CSC: This property is illustrated in Fig. 7, in which there
are two states with the same binary encoding (10101) that are
behaviorally different. This fact implies that the system does
not have enough information to determine how to react by only
looking at the value of its signals.

An SG satisfies the USC condition if every state in S is as-
signed a unique binary code. An SG satisfies the CSC condition
if for every pair of states having the same binary code the sets
of enabled noninput signals at each state are the same.

Both properties are sufficient to derive the Boolean equations
for the synthesized circuit. However, given that only the be-
havior of the noninput signals must be implemented, encoding
ambiguities for input signals are acceptable.
Output Persistency: This property is required to ensure that

the synthesized circuit is hazard free. An event x is said to
disable another event y if there is a transition s

x→ s′ such that
y is enabled in s but not in s′. An SG is said to be output
persistent 2 if for any pair of events x and y such that x disables
y, both x and y are input events. Nonpersistency may produce
a nondeterministic behavior (e.g., hazards) when the system
visits a state in which an event may be temporarily enabled
without actually firing.

B. Deriving Boolean Equations

The procedure to derive the next-state functions for output
signals from an SG A = (S,Σ, T, sin, λ) is introduced. The
procedure defines an incompletely specified function from
which a minimized gate implementation can be obtained.

The positive and negative excitation regions (ERs) of a signal
x ∈ Σ, denoted by ER(x+) and ER(x−), are the sets of states
in which x+ and x− are enabled, respectively, i.e.,

ER(x+) = {s ∈ S|∃s x+−→ s′ ∈ T}

ER(x−) = {s ∈ S|∃s x−−→ s′ ∈ T}.

The positive and negative quiescent regions (QRs) of a signal
x ∈ Σ, denoted by QR(x+) and QR(x−), are the sets of states
in which x has the same value, 1 or 0, and is stable, i.e.,

QR(x+) = {s ∈ S|λx(s) = 1 ∧ s �∈ ER(x−)}
QR(x−) = {s ∈ S|λx(s) = 0 ∧ s �∈ ER(x+)} .

Given a specification with n signals, the derivation of an
incompletely specified function F x for each output signal x and
for each v ∈ B

n can be formalized as

F x(v) =

1, if ∃s ∈ ER(x+) ∪ QR(x+) : λ(s) = v
0, if ∃s ∈ ER(x−) ∪ QR(x−) : λ(s) = v
−, if � ∃s ∈ S : λ(s) = v

.

The previous definition is ambiguous when there are
two states, s1 and s2, for which λ(s1) = λ(s2) = v,
s1 ∈ ER(x+) ∪ QR(x+), and s2 ∈ ER(x−) ∪ QR(x−). This
ambiguity is precisely what the CSC property avoids, and this
is why CSC is a necessary condition for implementability.

2Output persistency is also known as output semimodularity [29].

1642 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 9, SEPTEMBER 2006

Fig. 8. Example abcd. (a) STG. (b) SG.

Fig. 9. Complex gate implementation for abcd example.

Fig. 8 depicts an STG and the corresponding SG. Fig. 9
shows the Karnaugh maps of incompletely specified functions
for signals a and d and its corresponding implementation with
logic gates.

IV. ILP FOR STATE ENCODING VERIFICATION

This section shows how to formulate an ILP problem to ver-
ify that a given specification fulfills the USC or CSC properties.
Definition 4.1: Given a signal a with initial value λa(m0)=

v, the value of a after firing a sequence σ is equal to λa(m0) +
Ca�σ, where Ca is a |T |-element integer vector such that

Ca(t) =

−1, if Λ(t) = a−
1, if Λ(t) = a+
0, otherwise

.

The extension to all the signals is straightforward. The value
of all signals after firing a sequence �σ is represented by a |Σ|-
element vector x, where

x = λ(m0) + C�σ

and C is a matrix of dimension |Σ| × |T |, with each row
representing the vector Ca of one of the signals.

In particular, if there are two sequences, σ1 and σ2, such that
C �σ1 = C �σ2, then both sequences produce the same transfor-
mation on the value of the signals. Therefore, if m0[σ1〉m1

and m0[σ2〉m2, then m1 and m2 have the same encoding
(λ(m1) = λ(m2)).

A. ILP for Checking USC

A USC conflict appears in the SG of a system when there
are two feasible sequences, σ1 and σ2, leading to different
reachable markings, m1 and m2, such that the value of the
signals in both markings is the same. Using the marking equa-
tion (see Section II-C), a sufficient condition for USC can be
obtained.
Theorem 4.1: Let S = ((P, T, F,m0),Σ,Λ) be a consistent

STG, and N be the incidence matrix of the PN. S has USC if
the following ILP problem is infeasible.

(2)

Proof: A solution of the model would describe a pair of
different markings, m1 and m2, and two firing sequences rep-
resented by the vectors �σ1 and �σ2, respectively. The constraint
C�σ1 = C�σ2 enforces both markings to have the same encoding
(see Definition 4.1). The model being infeasible implies that
there are no two reachable markings with the same encoding.�

The constraint m1 �= m2 is not linear, but it can be replaced
by testing if at least one place has a different amount of token
in m1 and m2. Therefore, the initial nonlinear problem can be
transformed into |P | linear problems, each one checking that
m1(pi) > m2(pi). Given the symmetry of m1 and m2 in the
model, there is no need to check thatm2(pi) > m1(pi).

However, if the Petri net is safe (LP-based sufficient checks
for safeness can be used [27]), any reachable marking can be
encoded with a binary number of |P | digits. This allows us to
express the inequality m1 �= m2 as an inequality of two binary
numbers, n1 < n2, where each n is represented by

n =
|P |∑
i=1

2i−1m(pi).

This technique can be easily extended to k-bounded nets by
expressing it as an inequality of two radix-k numbers [9].

Note that the marking equation provides only a necessary
condition for reachability and, thus, Theorem 4.1 is a sufficient
condition for USC.

B. ILP for Checking CSC

A CSC conflict between two reachable markings, m1 and
m2, is a USC conflict that additionally fulfills the following
condition: the set of noninput signals enabled inm1 is different
from the one in m2. Note that the definition of CSC enables
checking for CSC violations individually for each noninput
signal. Checking CSC for a signal a can be performed in the
following way: let ai∗ be a transition of signal a. Then, a
CSC conflict exists if: 1) m1 and m2 are reachable markings;
2) m1 and m2 have the same code; 3) ai∗ is enabled in m1;

CARMONA et al.: SYNTHESIS OF ASYNCHRONOUS CONTROLLERS USING INTEGER LINEAR PROGRAMMING 1643

and 4) for every transition aj∗ of signal a, aj∗ is not enabled in
m2. Provided that the STG is safe, the enabledness of a transi-
tion t can be characterized by the sum of tokens in the preceding
places. t is enabled at m if the sum of tokens of the places
in •t is equal to |•t|.

Now we can present a sufficient condition for CSC for each
noninput signal a.

Theorem 3: Let S = ((P, T, F,m0),Σ,Λ) be a consistent
STG and let a ∈ Σ be a noninput signal. S has CSC for a if
the following problem is infeasible for each transition ai∗

(3)

Proof: Conditions (i) and (ii) characterize the reachability
of two markings with the same encoding (as in Theorem 4.1).
Condition (iii) enforces a solution in which ai∗ is enabled in a
safe net. Finally, condition (iv) models the fact that no transition
of signal a is enabled in m2. If the model is infeasible for all
transitions ai∗, then no pair of reachable markings can violate
the CSC property for signal a. �

Note that the constraintm1 �= m2 is implied by (iii) and (iv)
in this model and that Theorem 4.2 provides a sufficient check
for the CSC property.

Let us use the VME Bus Controller [Fig. 1(c)] to illus-
trate how to detect that there exists a CSC conflict for signal
d. The assignments3 �σ1 = (1, 1, 1, 0, 0, 0, 0, 0, 0, 0) and �Σ2 =
(1, 2, 1, 0, 1, 1, 1, 0, 1, 1) satisfy the first two constraints of
problem (3). The reachable markings are

m1 =(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

m2 =(0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0).

We now analyze how the constraints (iii) and (iv) hold for
m1 andm2. The former constraint is satisfied because

∑
p∈•d+

m1(p) = m1(p2) = 1 = |•d+ |

and constraint (iv) is also satisfied because
∑

p∈•d+

m2(p) = m2(p2) = 0 < 1 = |•d+ |.

C. Experimental Results for USC/CSC Checking

The methods presented in this section have been im-
plemented in moebius, a tool for the synthesis of speed-
independent circuits. The experiments have been executed on
a Pentium 4/2.53 GHz and 512 MB RAM.

3The vectors of transitions �σ1 and �σ2 follow the order (lds+, dsr+,
ldtack+, ldtack−, d+, dtack−, dtack+ lds−, dsr−, d−).

Fig. 10. Netlist of handshake components from Tangram program. The “;”
component (sequencer) forces sequentiality of handshakes in four output
channels. The “| |” components (parallelizers) perform handshakes on output
channels in parallel. The “M” components (mixers) merge input channels and
produce an output handshake for every handshake at any of the inputs.

Several parameterized examples have been used to compare
with other existing approaches and to evaluate the impact of
the size of specification on the efficiency of the method. The
following examples have been used.

1) PPWK(m,n) and PPARB(m,n): examples modeling an
m-stage pipeline. In these examples, each pipeline stage
has little interaction with the other stages, thus showing
a high degree of concurrency. In addition, PPARB(m,n)
also includes arbitration, which makes some signals non-
persistent. To make the example implementable, all the
nonpersistent signals have been assumed to be inputs.
Every benchmark in this set has CSC conflicts. These
examples were obtained from [10].

2) PPWKCSC(m,n) and PPARBCSC(m,n): a modification
of the previous benchmarks to fulfill the CSC property.

3) TANGRAMCSC(m,n): examples obtained by translating
a synthetic Tangram program into a netlist of handshake
components (shown in Fig. 10). Each handshake compo-
nent is specified as an STG and the final controller is
obtained as the composition of all STGs. Each n-way
component is implemented as a tree of two-way com-
ponents. This is a parameterized benchmark that could
represent a typical controller obtained from the direct
translation of languages like Tangram [30] or Balsa [31].

4) ART(m,n): examples modeling a different way of syn-
chronizingm pipelines. STG is depicted in Fig. 11. Every
benchmark in this set has CSC conflicts.

5) ARTCSC(m,n): transformation of ART(m,n) by insert-
ing internal signals to fulfill the CSC property [14].
The nets in this class of benchmarks are much larger
compared to the corresponding benchmark without CSC.
Therefore, checking CSC/USC for these benchmarks is a
hard task.

The experiments for CSC/USC detection are presented in
Tables I and II. The ILP-based approach never reported any

1644 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 9, SEPTEMBER 2006

Fig. 11. Art(m, n).

spurious conflict derived from the sufficiency (but not neces-
sity) of the conditions in models (2) and (3).

The tables report the CPU time in seconds. We use “time”
and “mem” to indicate that the algorithm did not complete in
less than 10 h or produced memory overflow, respectively. The
tools for comparing the experimental results are the following.

1) CLP: the approach presented in [9]. It uses nonlinear
integer programming and unfoldings.

2) SAT: the approach presented in [10] for the verification
of CSC. It uses a satisfiability solver and unfoldings.

3) ILP: the approach presented in this paper.

From the results, one can conclude, as it was expected,
that checking USC is simpler than checking CSC, given the
different natures of the two problems. Moreover, when some
encoding conflict exists, the ILP solver can find it in a short
time. This is explained by the fact that proving the absence
of encoding conflicts requires an exhaustive exploration of the
branch-and-bound tree visited by ILP solvers.

V. ILP FOR SYNTHESIS

This section presents a method to derive the support for the
implementation of each signal. As an example, let us consider
the following trace, in which the states are encoded with five
signals {a, b, c, d, e}, and only the encoding of two states is
shown

Moreover, let us assume that b is the only trigger signal of a and
that a+ is not enabled in state 01001. To calculate the support
for signal a, we might try the set {a, b}, which includes the
trigger signal of a. If the behavior is projected onto {a, b}, the
following trace is obtained:

This projection shows a CSC conflict. Hence, it is not possible
to synthesize a with only {a, b} in the support. When consider-
ing the other signals, we can classify them into two sets:

1) balanced signals, which have the same number of rising
and falling transitions between two conflicting states
(e.g., signal c);

2) unbalanced signals, the remaining signals (e.g., signals d
and e).

Only unbalanced signals between pairs of conflicting states
may help to disambiguate encoding conflicts. In this case, by
adding one of them in the support (e.g., signal d), the conflict
disappears, thus resulting in the following projection that has
no CSC conflicts:

Section V-B explains how to use ILP models to compute
supports. Section V-C presents an optimization to do this cal-
culation more efficiently.

A. Projections and Observational Equivalence

To formalize the projection of the behavior onto a set of
signals, we resort to the concept of observational equivalence
[32]. Those signals not participating in the support of another
signal are considered to be silent.
Definition 5.1 (Projection): The projection of an STG S into

a set of signals X is the STG SX that results from substituting
every transition of a signal not in X by the silent event τ .

A projected STG can be simplified by hiding the silent events
while preserving observational equivalence (see the formal
definition in Section V-D). The simplifications can be applied
at the level of PN (e.g., as in [33]) and at the level of SG (by
calculating the equivalence relation of states and taking only
one representative state for each class [32]).

According to Chu [13], two conditions are required for
Σ′ ⊆ Σ to be sufficient to implement a signal a. These con-
ditions are captured by the following definition.
Definition 5.2 (CSC Support): Let S be an STG and let

a ∈ Σ be a noninput signal. A set Σ′ ⊆ Σ is a CSC support
of a if

1) SΣ′ has no CSC conflicts for signal a;
2) Trig(a) ⊆ Σ′.

For example, a possible CSC support for signal d from the
STG in Fig. 2 (bottom-left picture) is {d, ldtack, sp9, sp10}.
Fig. 3 shows the projection induced by this CSC support and
also for the rest of noninput signals. In the figure, signals not
appearing in the support have been removed from the net.

Next, an algorithm to calculate a CSC support for a noninput
signal is presented.

B. Computing Support for Synthesis

The problem faced in this section is the following: given an
STG S = ((P, T, F,m0),Σ,Λ) and a noninput signal a ∈ Σ,
compute a subset Σ′ ⊆ Σ that suffices to implement fa.

CARMONA et al.: SYNTHESIS OF ASYNCHRONOUS CONTROLLERS USING INTEGER LINEAR PROGRAMMING 1645

TABLE I
CSC DETECTION FOR WELL-STRUCTURED STGs

Deciding whether Σ′ ⊆ Σ is a CSC support for signal a can
be calculated by solving the ILP model

(4)

where C ′ is a reduced matrix obtained from C containing only
the rows corresponding to the signals in Σ′.

If (4) is infeasible, then Σ′ is enough to guarantee that the
projection SΣ′ has the CSC property for signal a. This will be
formally proved in Section V-D (Theorem 5.1).

If (4) is feasible, Σ′ must be augmented until it becomes
infeasible. But, how to augment Σ′?

Let us assume �σ1 and �σ2 are a solution for (4), leading to the
markings m1 and m2, respectively. The signals s ∈ Σ can be
classified into two categories:

1) balanced, if Cs�σ1 = Cs�σ2;
2) unbalanced, if Cs�σ1 �= Cs�σ2.

TABLE II
USC DETECTION FOR WELL-STRUCTURED STGs

Balanced signals have the same value in m1 and m2. In
particular, all signals in Σ′ are balanced. To disambiguate the
conflict between m1 and m2, some unbalanced signal must be
included in Σ′.

1646 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 9, SEPTEMBER 2006

Fig. 12. Algorithm for calculation of CSC support.

The algorithm for finding a CSC support is based on the
previous observation. The algorithm is shown in Fig. 12. It
iteratively adds unbalanced signals to Σ′ until the ILP model
becomes infeasible. Initially, Σ′ contains the trigger signals of
the signal under synthesis. To be precise, the trigger signals are
calculated structurally (see Section II-E) by including all the
predecessor events of some a∗ in the STG. This structural cal-
culation gives an overestimation of Trig(a), still guaranteeing
the correctness of the approach.

Let us illustrate how the algorithm works with the synthesis
of signal x5 in the STG depicted in Fig. 15, originally presented
in [10]. Initially

Σ′ = Trig(x5) ∪ {x5} = {z, x5}

which makes the model (4) feasible with the traces

σ1 =x+
1 x

+
2 x

+
3 x

+
4 z

+
[
x+

5 enabled
]

σ2 = y+1 y
+
2 y

+
3 y

+
4 z

+
[
x+

5 not enabled
]
.

All xi and yi signals in σ1 and σ2 are unbalanced. The algo-
rithm picks one of them arbitrarily. In this case, it adds signal
x1 to Σ′, thus having

Σ′ = Σ′ ∪ {x1} = {z, x1, x5}.

The algorithm keeps finding solutions to model (4) and adding
signals until the CSC support is derived as

Σ′ = {z, x1, x2, x3, x4, x5}.

It can be observed that most of the new added signals are not
essential for a CSC support of signal x5. We next describe a
strategy to calculate the CSC support more efficiently.

C. Optimized Calculation of CSC Support

The calculation can be highly improved by adding a cost
function to the ILP model (4). The cost function tries to
minimize the number of unbalanced signals between the two
markings with a CSC conflict. The existence of a pair of
conflicting statesm1 andm2 can be characterized by two traces
σ1 and σ2 such that

m0
σ1−→ m1

σ2−→ m2. (5)

This new characterization requires a slight modification of
the reachability conditions in the ILP model, substituting the

Fig. 13. Projection of example PPARBCSC(2,3) onto support of x5.

condition m2 = m0 + N�σ2 by m2 = m1 + N�σ2. In fact, this
new characterization does not cover all possible cases of CSC
conflicts. There might be two conflicting states such that there
are not mutually reachable (in the case SG is not strongly
connected).4 In such a case, the new characterization of the
model using (5) will be infeasible and therefore a final checking
with the conventional model (4) should be performed.

With the new characterization using (5), the objective func-
tion added to the ILP model is

min
∑

a∈Σ\Σ′

�σ2(a)

which minimizes the silent activity of the trace σ2, i.e., the
number of events not in Σ′. From the signals appearing in σ2,
we are interested in those that produce some change in the
encoding function, i.e., signals a such that Ca�σ2 �= 0, since
these are the signals that can disambiguate the encoding conflict
between m1 and m2. Intuitively, this minimization guides the
search toward signals that are almost essential to solve CSC
conflicts. In particular, if there is only one unbalanced signal a
in σ2, then signal a is essential to solve CSC, since it is the only
thing that can disambiguate the conflict for the trace σ2.

When using the objective function in the previous example
(Fig. 15), and starting with the support Σ′ = {z, x5} for the
synthesis of x5, the traces found for the ILP model are

The only unbalanced signals in the tracem1
σ2−→ m2 are x4 and

y4. By picking one of them, e.g., x4, we obtain the CSC support
Σ′ = {z, x4, x5} that makes the model (4) infeasible (a similar
result would have been obtained by including y4). This strategy
drastically reduces the inclusion of irrelevant signals for CSC
support. Fig. 13 shows the projection for the synthesis of x5.

4Asynchronous specifications without strongly connected behaviors rarely
appear in practice. A typical cause for disconnected behavior is the existence
of initialization sequences. Two possible solutions can be used to overcome
this situation: 1) insert a fake resetting sequence that drives the system to its
initial state, which is not always easy if persistency and consistency must be
preserved, or 2) use the nonoptimized calculation of the CSC support.

CARMONA et al.: SYNTHESIS OF ASYNCHRONOUS CONTROLLERS USING INTEGER LINEAR PROGRAMMING 1647

D. Projection Onto the CSC Support

Given an STG and the CSC support Σ′ ⊆ Σ for a noninput
signal a, the projection of the behavior to obtain an observation-
ally equivalent SG without silent events is done as follows.5

1) PN transformations preserving observational equivalence
are applied to the STG (e.g., fusion of series/parallel
places/transitions [17]). Most of the asynchronous spec-
ifications are well structured, and these transformations
reduce the size of the STG drastically.

2) The SG of the reduced STG is derived.
3) The remaining silent events are hidden by collapsing

observational equivalent states in the SG [32].
For the implementation of signal a, every signal in Σ′ \

{a} is considered to be an input signal [13]. We next prove
that the projection preserves the implementability conditions.
Boundedness and consistency are trivially preserved. We will
now focus on CSC and output persistency.

For the rest of the section, the following nomenclature will
be used: S and SΣ′ represent SG before and after the projection
onto Σ′. The symbols s and s′ denote states from S and
SΣ′ , respectively, and λ(s)|Σ′ denotes the encoding of state s

projected onto Σ′. Finally, s1
a=⇒ s2 denotes a trace s1

τ∗aτ∗
−→

s2 in which τ represents silent events (not in Σ′), and s ≈ s′
denotes the observational equivalence between one state of S
and another state of SΣ′ .

The following lemma establishes a partial encoding equality
between observationally equivalent states.
Lemma 5.1: If s ≈ s′, then λ(s)|Σ′ = λ(s′).

Proof: By contradiction, assume there exists a signal x ∈
Σ′ such that λx(s) = 0 and λx(s′) = 1. Since S and SΣ′ are
consistent, the first firable event of x from s would be x+,
whereas the first firable event of x from s′ would be x−, which
contradicts the fact that s ≈ s′. �

The CSC support calculated by the algorithm in Fig. 12
guarantees the infeasibility of the ILP model (4) on the original
STG. The next theorem proves that the projected STG has the
CSC property.
Theorem 5.1: Let S be an STG and Σ′ a support found by

algorithm CSC support for the noninput signal a. Then SΣ′ has
CSC for signal a.

Proof: By contradiction, let us assume that s′1 and s′2 are
states from SΣ′ that have a CSC conflict, i.e., λ(s′1) = λ(s′2),
but a signal transition a∗ is enabled only in s′1. Given that S
is observationally equivalent to SΣ′ , there exist states s1 and
s2 in S such that s1 ≈ s′1 and s2 ≈ s′2. Moreover, Lemma 5.1
guarantees that

λ|Σ′(s1) = λ(s′1) = λ(s′2) = λ|Σ′(s2).

Since s1 ≈ s′1 and a∗ is enabled in s′1, then a trace s1
a∗=⇒ is

also firable. In particular, there is a sequence

s1
τn

−→ s∗1
a∗−→

5In general, not all silent events can be removed when the system is nonde-
terministic. In practice, the deterministic nature of asynchronous specifications
allows us to eliminate all of them, since observational equivalence is reduced to
trace equivalence for deterministic systems [34].

Fig. 14. Violation of output persistency after hiding event.

for some n in which a∗ is enabled in the state s∗1. More-
over, since only τn separates s1 from s∗1, we also have that
λ|Σ′(s1) = λ|Σ′(s∗1). Finally, s2 ≈ s′2 guarantees that a∗ is not
enabled in s2. Under the previous conditions, the ILP model (4)
of S would be feasible, with s∗1 and s2 having a CSC conflict.
This would contradict the fact that Σ′ has been calculated by
the algorithm CSC support. �

Theorem 5.2: Let S be an output-persistent STG and Σ′ be a
CSC support of signal a. Then, SΣ′ is output persistent.

Proof: Given that a is the only output signal, the only
possible violation of output persistency would involve the dis-
abling of an event of a. Assume that an event a∗ is disabled by
some other event x∗ in SΣ′ . Since S is output persistent, the
disabling of a∗ in SΣ′ is created when hiding some event not
in Σ′. This situation is depicted in Fig. 14, in which a fragment
of SG is shown. Fig. 14(a) shows SG before the projection and
Fig. 14(b) the same graph after hiding the event τ . Since a is
output persistent in S, a∗ is not enabled in s1 [from Fig. 14(a)].
This implies that τ is a trigger event of a. However, τ cannot
be hidden since Trig(a) ⊆ Σ′ and the signals in Σ′ are not
hidden. �

As it was expected, the presence of all trigger signals in the
projection for the synthesis of a preserves output persistency.

E. Example: Synthesis of PPARBCSC(2,3)

We illustrate the method with the synthesis of
PPARBCSC(2,3), shown in Fig. 15 and described in
Section IV-C. We focus on the synthesis of the signals
x1, x2, and x3 (the calculation of the support for x5 was
shown in Sections V-B and V-C). In [35], the reader can find a
complete description of the example.

The results of applying CSC support computation, projec-
tion, and speed-independent synthesis for signals x1, x2, and
x3 are shown in Fig. 15. For each projection, synthesis is
performed by using the tool petrify.

F. Experimental Results

Experiments have been performed on some of the bench-
marks described in Section IV. The results are reported in
Table III. The column |S| indicates the number of states of
the SGs. Given the complexity of the benchmark, it was not
possible to calculate the number of states for ARTCSC.

The table also reports the number of output signals of the
circuit and the size of the SGs (in states and signals) after
the projection onto the support. It is important to observe that
the SGs generated after the projections are manageable by
conventional state-based synthesis tools.

The column “Literals” reports the number of literals of the
netlist in factored form. The results are compared with the

1648 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 9, SEPTEMBER 2006

Fig. 15. CSC support computation and synthesis for PPARBCSC(2,3).

TABLE III
SYNTHESIS WITH SUPPORT COMPUTATION AND PROJECTION

circuits obtained by petrify. The CPU time includes the time
for calculating the support and the time for synthesis.

Table III shows that the quality of the circuits obtained by
the ILP-based technique is comparable to that of the circuits
obtained by petrify. Moreover, it is clear that the ILP-based
approach can deal with much larger specifications.

The TANGRAMCSC(4,3) example, shown in Fig. 11, illus-
trates the suitability of our approach for the synthesis of spec-
ifications generated from an HDL. According to [30], the cost

of implementing the handshake components is as that shown
in Table IV.6

The circuit in Fig. 11 has three sequencers, eight paral-
lelizers, and nine mixers: 319 literals. This would be the cost
obtained by a syntax-directed translation. The cost obtained by
logic synthesis methods is significantly smaller (247 literals).

6A C-element is assumed to cost five literals: c = ab + c(a + b).

CARMONA et al.: SYNTHESIS OF ASYNCHRONOUS CONTROLLERS USING INTEGER LINEAR PROGRAMMING 1649

TABLE IV

TABLE V
SIZE OF NET AND ITS UNFOLDING FOR SOME EXAMPLES

VI. RELATED WORK AND DISCUSSION

A. CSC Checking

The closest work to the techniques presented in this paper
has been published in [9], [10], and [36].

In all cases, the synthesis problem is reduced to the problem
of checking the CSC property. The underlying model to solve
the problem is integer programming (in [9] or this paper) or
SAT [10]. All these models require algorithms with exponential
complexity on the size of the model.

Conceptually, there are two main differences between the
work in [9] and [10] and the one presented in this paper.

1) The methods in [9] and [10] are exact, whereas the ones in
this paper are approximate due to the potential existence
of spurious markings.

2) The methods in [9] and [10] work with net unfoldings,
whereas the ones in this paper work with the net itself.

The second aspect is crucial when efficiency is an issue. The
computational complexities of ILP and SAT depend signifi-
cantly on the size of the model. In the worst case, the unfolding
of a net can be exponential in the size of the net [11]. In prac-
tice, unfoldings rarely suffer an explosion; however, they often
generate a graph much larger than the original net, as shown
in the examples presented in Table V. Some specific examples
have been selected to illustrate the relationship between the
size of the net and the unfolding. Several instances of ARTCSC

have been selected to show, in this particular case, the quadratic
growth of the unfolding.

We also observe that TANGRAMCSC has an unfolding with
size similar to the net. This is the reason why SAT-based
methods [10] can perform better than ILP for this case when
checking CSC.

B. Impact of Spurious Markings

One can conclude that working with the original net is clearly
more efficient. However, what is the price one has to pay for
being approximate? Being more specific, what is the impact of
spurious markings on the characterization of CSC conflicts?

The theory says that the marking equation characterizes the
reachability set exactly for certain classes of Petri nets such as
live state machines (live PNs where every transition has one
input and one output place), or live marked graphs (live PN
s where every place has one input and one output transition),
or acyclic PN s (nets without cycles). Other subclasses enjoy
weaker but still useful properties, e.g., in live, bounded, and
reversible (extended) free choice nets (PNs where all conflicts
are free because each maximal set of conflicting transitions
share the same set of input places), the reachable markings
are the solutions of the marking equation that mark every
trap [37]. For the rest of cases, we can palliate the problem
of spurious solutions using marking equations with additional
linear constraints coming from trap invariants [38] or by the
addition of some special places named cutting implicit places
[27] to the original STG that remove spurious solutions from
the original marking equation. Unfortunately, in the general
case, it is not possible to remove all spurious solutions from
the marking equation [27].

Still, the existence of spurious markings would be harmful
only if they would collide with other markings with the same
encoding. Such situation would only have a negative impact
in the case that spurious conflicts would be detected in the
original net.

For the calculation of the support of each signal, the existence
of spurious markings would not affect the quality of the result.
In the worst case, it might imply some slight overestimation
of the support that would be swept away when doing synthesis
with a state-based algorithm (e.g., petrify).

For the above reason, it is believed that the approximate
techniques presented in this paper will rarely have any impact
on the synthesis results but will always contribute to reduce the
computational complexity significantly (the results of Table III
support this claim). Still, if the approximate techniques would
fail, the user could always resort to some of the exact techniques
at the expense of a higher CPU time.

C. Applicability to Bounded Petri Nets

The ILP-based methods proposed in this paper can be applied
to safe Petri nets. There is only one reason why this constraint
is required: conditions (iii) and (iv) of model (3).

In practice, most of the specifications of asynchronous con-
trollers are safe by construction. Still, the ILP-based methods
presented in this paper can be easily extended to structurally
bounded Petri nets with weights on the arcs. Roughly speaking,
a Petri net is structurally bounded when the bounds on the
places can be calculated by using LP models. This calculation
has polynomial complexity. We refer the interested reader to
[39], where a method to model the enabling conditions with
linear inequalities is described. Briefly, any k-bounded place
is substituted by a set of k safe places that mimic the be-
havior of the original place. This technique also requires the
duplication of some transitions and makes the ILP model more
complex.

The methods based on unfoldings [10] impose the constraints
of the algorithm to calculate the unfolding. The most popular
algorithms work on safe Petri nets [40]. There are more

1650 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 9, SEPTEMBER 2006

sophisticated and complex strategies that can handle bounded
Petri nets [41]. To the best of our knowledge, no algorithm has
been proposed to calculate the unfolding of a Petri net with
weighted arcs.

D. Calculation of CSC Support

The seminal work by Chu [13] introduced the idea of net
contraction (projection) of an STG onto the support of a signal.
Later on, Puri and Gu [42] presented a method to calculate the
support for each signal based on the satisfiability of a Boolean
formula. However, it was an algorithm that required the explicit
enumeration of the reachable states of the system.

Recently, Yoneda et al. [43] presented an alternative method
that avoids the enumeration of the state space and computes
the support from an initial partition of the STG. This approach
resembles our technique with the difference that a guided
simulation is used to find out a trace connecting states with CSC
violations. In our approach, the trace is found simultaneously
with the CSC checking using an ILP model.

The method presented in [43] cannot check the CSC prop-
erty. This prevents the method from removing redundant inter-
nal signals in the specification that might be generated from
conservative encoding techniques. Another aspect to be taken
into account is that the calculation of support must be done
by projecting STG onto the potential subset of signals each
time the support must be augmented. This strategy may be
faster than ILP for examples with moderate size. However, it
may suffer from an excess of projections when the specification
is large.

Finally, Khomenko et al. have extended the work in [10] to
derive a method for computing support sets [36]. The method
uses incremental SAT techniques, a variation of the SAT prob-
lem, where also partial satisfying assignments can be obtained.
The approach is opposite to ours: for computing the support
set of an output signal, it finds first its maximal nonsupport
sets (by repeatedly solving SAT instances) and then computes
the minimal support sets by solving again an SAT instance.
Although the number of times an SAT solver is executed can
be exponential, it has been shown that large benchmarks can
also be handled by this approach in practice.

As a conclusion, all methods discussed in this section have
similar goals while using different approaches. Their applica-
tion is not mutually exclusive and, possibly, the combination
of different features from each approach could lead to a hybrid
scheme in which different algorithms could cooperate in the
same synthesis framework. More investigation into this direc-
tion is required in the future.

VII. CONCLUSION

This paper has shown how to use linear algebraic
techniques to verify the implementability of asynchronous
specifications and synthesize asynchronous controllers. The
experiments show that good quality results can be obtained effi-
ciently by using approximate techniques that avoid the explicit
enumeration of state space.

These techniques open the possibility of building a general
framework for the synthesis of asynchronous controllers. Such
a framework can start by an HDL specification, from which a
Petri net can be derived by syntax-directed translation.

ACKNOWLEDGMENT

The authors would like to thank V. Khomenko and T. Yoneda
for providing examples, tools, and discussion on different ap-
proaches for the synthesis of large asynchronous circuits. They
would also like to thank the reviewers for their constructive
comments and suggestions to improve the manuscript.

REFERENCES

[1] L. Lavagno and A. Sangiovanni-Vincentelli, Algorithms for Synthesis and
Testing of Asynchronous Circuits. Boston, MA: Kluwer, 1993.

[2] C. J. Myers and T. H.-Y. Meng, “Synthesis of timed asynchronous cir-
cuits,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 1, no. 2,
pp. 106–119, Jun. 1993.

[3] C. Ykman-Couvreur, B. Lin, and H. de Man, “Assassin: A synthesis
system for asynchronous control circuits,” IMEC, Leuven, Belgium,
Sep. 1994. User and Tutorial manual.

[4] R. M. Fuhrer, “Sequential optimization of asynchronous and synchronous
finite-state machines,” Ph.D. dissertation, Dept. Comput. Sci., Columbia
Univ., New York, 1999.

[5] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev, Logic Synthesis of Asynchronous Controllers and Interfaces.
Berlin, Germany: Springer-Verlag, 2002.

[6] P. Vanbekbergen, “Synthesis of asynchronous control circuits from graph-
theoretic specifications,” Ph.D. dissertation, Dept. Electr. Eng., Catholic
Univ. Leuven, Leuven, Belgium, 1993.

[7] F. García-Vallés and J. M. Colom, “Structural analysis of signal transition
graphs,” in Proc. Workshop Petri Nets System Engineering (PNSE), Mod-
elling, Verification and Validation, D. H. I. B. Farwer and M. Stehr, Eds,
Hamburg, Germany, 1997, pp. 123–134.

[8] E. Pastor, J. Cortadella, A. Kondratyev, and O. Roig, “Structural methods
for the synthesis of speed-independent circuits,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol. 17, no. 11, pp. 1108–1129,
Nov. 1998.

[9] V. Khomenko, M. Koutny, and A. Yakovlev, “Detecting state coding con-
flicts in STGs using integer programming,” in Proc. Design, Automation
Test Eur. (DATE), Paris, France, 2002, pp. 338–345.

[10] ——, “Detecting state coding conflicts in STG unfoldings using SAT,”
in Proc. Int. Conf. Application Concurrency System Design, Guimaraes,
Portugal, Jun. 2003, pp. 51–60.

[11] K. McMillan, “Using unfoldings to avoid the state explosion problem in
the verification of asynchronous circuits,” in Proc. Int. Workshop Com-
puter Aided Verification, Montreal, Canada, G. V. Bochman and D. K.
Probst, Eds. London, U.K.: Springer-Verlag, 1992, vol. 663, pp. 164–177.

[12] J. Carmona and J. Cortadella, “ILP models for the synthesis of asyn-
chronous control circuits,” in Proc. Int. Conf. Computer-Aided Design
(ICCAD), San Jose, CA, Nov. 2003, pp. 818–826.

[13] T.-A. Chu, “Synthesis of self-timed VLSI circuits from graph-theoretic
specifications,” Ph.D. dissertation, MIT Lab. Comput. Sci., Cambridge,
MA, Jun. 1987.

[14] J. Carmona, J. Cortadella, and E. Pastor, “A structural encoding technique
for the synthesis of asynchronous circuits,” Fundam. Inform., vol. 50,
no. 2, pp. 135–154, Apr. 2002.

[15] D. Shang, F. Xia, and A. Yakovlev, “Asynchronous circuit synthesis via
direct translation,” in Proc. Int. Symp. Circuits and Systems, Scottsdale,
AZ, May 2002, vol. 3, pp. 369–372.

[16] J. Carmona, J. Cortadella, and E. Pastor, “Synthesis of reactive systems:
Application to asynchronous circuit design,” in Advances in Concur-
rency and Hardware Design, ser. Lecture Notes in Computer Science,
vol. 2549, J. Cortadella, A. Yakovlev, and G. Rozenberg, Eds. Berlin,
Germany: Springer-Verlag, 2002, pp. 108–151.

[17] T. Murata, “Petri nets: Properties, analysis and applications,” Proc. IEEE,
vol. 77, no. 4, pp. 541–574, Apr. 1989.

[18] L. Khachian, “A polynomial algorithm in linear programming,” Sov.
Math., Dokl., vol. 20, no. 1, pp. 191–194, 1979.

[19] G. Dantzig, Linear Programming and Extensions. Princeton, NJ:
Princeton Univ. Press, 1963.

CARMONA et al.: SYNTHESIS OF ASYNCHRONOUS CONTROLLERS USING INTEGER LINEAR PROGRAMMING 1651

[20] V. Klee and G. Minty, “How good is the simplex algorithm,” in Inequali-
ties III. New York: Academic, 1972, pp. 159–172.

[21] M. Garey and D. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. New York: Freeman, 1979.

[22] A. Schrijver, Theory of Linear and Integer Programming. New York:
Wiley, 1998.

[23] C. E. Leiserson, F. M. Rose, and J. B. Saxe, “Optimizing synchronous
circuitry by retiming,” in Proc. 3rd Caltech Conf. VLSI, Pasadena, CA,
Mar. 1983, pp. 23–36.

[24] J. Lee, Y. Hsu, and Y. Lin, “A new integer linear programming formulation
for the scheduling problem in data-path synthesis,” in Proc. Int. Conf.
Computer-Aided Design (ICCAD), Santa Clara, CA, 1989, pp. 20–23.

[25] J. Heisterman and T. Lengauer, “The efficient solution of integer programs
for hierarchical global routing,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol. 10, no. 6, pp. 748–753, Jun. 1991.

[26] T. Murata, “State equation, controllability, and maximal matchings of
Petri nets,” IEEE Trans. Automat. Contr., vol. AC-22, no. 3, pp. 412–416,
Jun. 1977.

[27] M. Silva, E. Teruel, and J. M. Colom, “Linear algebraic and linear
programming techniques for the analysis of place/transition net sys-
tems,” in Lecture Notes in Computer Science: Lectures on Petri Nets I:
Basic Models, vol. 1491. Berlin, Germany: Springer-Verlag, 1998,
pp. 309–373.

[28] L. Y. Rosenblum and A. V. Yakovlev, “Signal graphs: From self-timed
to timed ones,” in Proc. Int. Workshop Timed Petri Nets, Torino, Italy,
Jul. 1985, pp. 199–207.

[29] M. Kishinevsky, A. Kondratyev, A. Taubin, and V. Varshavsky, Concur-
rent Hardware: The Theory and Practice of Self-Timed Design, ser. Series
in Parallel Computing. New York: Wiley, 1994.

[30] K. van Berkel, Handshake Circuits: An Asynchronous Architecture for
VLSI Programming, ser. International Series on Parallel Computation,
vol. 5. Cambridge, U.K.: Cambridge Univ. Press, 1993.

[31] D. Edwards and A. Bardsley, “Balsa: An asynchronous hardware synthe-
sis language,” Comput. J., vol. 45, no. 1, pp. 12–18, Jan. 2002.

[32] R. Milner, Communication and Concurrency. Upper Saddle River, NJ:
Prentice-Hall, 1989.

[33] G. Berthelot, “Checking properties of nets using transformations,” in
Advances in Petri Nets 1985, ser. Lecture Notes in Computer Science,
vol. 222, G. Rozenberg, Ed. Berlin, Germany: Springer-Verlag, 1986,
pp. 19–40.

[34] J. Engelfriet, “Determinacy—(Observation equivalence = trace equiva-
lence),” Theor. Comput. Sci., vol. 36, no. 1, pp. 21–25, Mar. 1985.

[35] J. Carmona, “Structural methods for the synthesis of well-formed con-
current specifications,” Ph.D. dissertation, Dept. Llenguatges i Sistemes
Informàtics, Univ. Politècnica de Catalunya (UPC), Barcelona, Spain,
Mar. 2004.

[36] V. Khomenko, M. Koutny, and A. Yakovlev, “Logic synthesis for asyn-
chronous circuits based on Petri net unfoldings and incremental sat,”
in Proc. Int. Conf. Application Concurrency System Design, Hamilton,
Canada, Jun. 2004, pp. 16–25.

[37] J. Desel and J. Esparza, “Reachability in cyclic extended-free-choice
systems,” Theor. Comput. Sci., vol. 114, no. 1, pp. 93–118, Jun. 1993.

[38] J. Esparza and S. Melzer, “Verification of safety properties using integer
programming: Beyond the state equation,” Form. Methods Syst. Des.,
vol. 16, no. 2, pp. 159–189, Mar. 2000.

[39] J. L. Briz and J. M. Colom, “Implementation of weighted place/transition
nets based on linear enabling functions,” in Proc. Int. Conf. Application
and Theory Petri Nets, Zaragoza, Spain, R. Valette, Ed. London, U.K.:
Springer-Verlag, 1994, vol. 815, pp. 99–118.

[40] J. Esparza, S. Romer, and W. Vogler, “An improvement of McMillan’s
unfolding algorithm,” in Proc. Tools Algorithms Construction Analysis
Systems (TACAS), Passau, Germany, 1996, pp. 87–106.

[41] A. Kondratyev, M. Kishinevsky, A. Taubin, and S. Ten, “Analysis of Petri
nets by ordering relations in reduced unfoldings,” Form. Methods Syst.
Des., vol. 12, no. 1, pp. 5–38, Jan. 1998.

[42] R. Puri and J. Gu, “A modular partitioning approach for asynchro-
nous circuit synthesis,” in Proc. ACM/IEEE Design Automation Conf.,
San Diego, CA, Jun. 1994, pp. 63–69.

[43] T. Yoneda, H. Onda, and C. Myers, “Synthesis of speed indepen-
dent circuits based on decomposition,” in Proc. Int. Symp. Advanced
Research Asynchronous Circuits Systems, Crete, Greece, Apr. 2004,
pp. 135–145.

Josep Carmona received the M.S. and Ph.D. de-
grees in computer science from Universitat Politèc-
nica de Catalunya, Barcelona, Spain, in 1999 and
2004, respectively.

In 2003, he was a Visiting Scholar at the Univer-
sity of Leiden, The Netherlands. He is currently a
Lecturer in the Department of Software, Universitat
Politècnica de Catalunya. His research interests in-
clude formal methods and computer-aided design of
very large scale integrated systems with special em-
phasis on asynchronous circuits, concurrent systems,

logic synthesis, and nanocomputing.

José-Manuel Colom (M’94) received the Ph.D. de-
gree in industrial-electrical engineering from the
University of Zaragoza, Zaragoza, Spain, in 1989.

He is currently a Professor in the Department of
Computer Science and Systems Engineering, Uni-
versity of Zaragoza. He has coauthored over 90 re-
search papers in technical journals and conferences.
His research interests include modeling, qualitative,
and performance analysis, and implementation of
discrete event systems using Petri nets.

Dr. Colom has served on the technical committees
of several international conferences in the field of formal methods and con-
current systems. He organized, as a Conference Co-Chair, several international
conferences in the field of Petri nets and discrete event systems.

Jordi Cortadella (S’87–M’88) received the M.S.
and Ph.D. degrees in computer science from Univer-
sitat Politècnica de Catalunya, Barcelona, Spain, in
1985 and 1987, respectively.

In 1988, he was a Visiting Scholar at the Uni-
versity of California, Berkeley. He is currently a
Professor at the Department of Software, Univer-
sitat Politècnica de Catalunya. He has coauthored
numerous research papers and has been invited to
present tutorials at various conferences. His research
interests include formal methods and computer-aided

design of very large scale integrated systems with special emphasis on asyn-
chronous circuits, concurrent systems, and logic synthesis.

Dr. Cortadella has served on the technical committees of several international
conferences in the field of design automation and concurrent systems. He
received the Best Paper Awards at the International Symposium on Advanced
Research in Asynchronous Circuits and Systems (2004) and the Design Au-
tomation Conference (2004). In 2003, he was the recipient of a Distinction for
the Promotion of the University Research by the Generalitat de Catalunya.

Fernando García-Vallés received the M.S. and
Ph.D. degrees in electrical engineering from the Uni-
versity of Zaragoza, Zaragoza, Spain, in 1992 and
1999, respectively.

He is currently an Associate Professor in the
Department of Computer Science, University of
Zaragoza, where he is in charge of courses on
computer architecture and operating systems. His
research interests include the modeling and analysis
of concurrent systems.

