10 research outputs found

    Optimization of flexible spectrum in optical transport networks

    Get PDF
    The ever-increasing demand for broadband services by end-user devices utilising 3G/4G/LTE and the projected 5G in the last mile will require sustaining broadband supply from fibre-linked terminals. The eventual outcome of the high demand for broadband is strained optical and electronic devices. The backbone optical fibre transport systems and techniques such as dense wavelength division multiplexing (DWDM), higher modulation formats, coherent detection and signal amplification have increased both fibre capacity and spectrum efficiency. A major challenge to fibre capacity and spectrum efficiency is fibre-faults and optical impairments, network management, routing and wavelength assignment (RWA). In this study, DWDM and flexible spectrum techniques such as wavelength assignment and adjustment, wavelength conversion and switching, optical add and drop multiplexing (OADM) and bitrate variable transmission have been experimentally optimized in a laboratory testbed for short- and long-haul optical fibre networks. This work starts by experimentally optimising different transmitters, fibre-types and receivers suitable for implementing cost effective and energy efficient flexible spectrum networks. Vertical cavity surface-emitting lasers (VCSELs) and distributed feedback (DFB) lasers have been studied to provide up to 10 Gb/s per channel in 1310 nm and 1550 nm transmission windows. VCSELs provide wavelength assignment and adjustment. This work utilises the non-return-to-zero (NRZ) on-off keying (OOK) modulation technique and direct detection due to their cost and simplicity. By using positive intrinsic negative (PIN) photo-receivers with error-free BER sensitivity of -18±1 dBm at the acceptable 10-9-bit error rate (BER) threshold level, unamplified transmission distances between 6 km and 76 km have been demonstrated using G.652 and G.655 single mode fibres (SMFs). For the first time, an all optical VCSEL to VCSEL wavelength conversion, switching, transmission at the 1550 nm window and BER evaluation of a NRZ data signal is experimentally demonstrated. With VCSEL wavelength conversion and switching, wavelength adjustments to a spectrum width of 4.8 nm (600 GHz) can be achieved to provide alternative routes to signals when fibre-cuts and wavelength collision occurs therefore enhancing signal continuity. This work also demonstrates a technique of removing and adding a wavelength in a bundle of DWDM and flexible channels using an OADM. This has been implemented using a VCSEL and a fibre Bragg grating (FBG) providing a wavelength isolation ratio of 31.4 dB and ~0.3 add/drop penalty of 8.5 Gb/s signal. As a result, an OADM improves spectrum efficiency by offering wavelength re-use. Optical impairments such as crosstalk, chromatic dispersion (CD) and effects of polarization mode dispersion (PMD) have been experimentally investigated and mitigated. This work showed that crosstalk penalty increased with fibre-length, bitrate, interfering signal power and reduced channel spacing and as a result, a crosstalk-penalty trade-off is required. Effects of CD on a transmitted 10 Gb/s signal were also investigated and its mitigation techniques used to increase the fibre-reach. This work uses the negative dispersion fibres to mitigate the accumulated dispersion over the distance of transmission. A 5 dB sensitivity improvement is reported for an unamplified 76 km using DFB transmitters and combination of NZDSF true-wave reduced slope (TW-RS) and submarine reduced slope (TW-SRS) with + and – dispersion coefficients respectively. We have also demonstrated up to 52 km 10 Gb/s per channel VCSEL-based transmission and reduced net dispersion. Experimental demonstration of forward Raman amplification has achieved a 4.7 dB on-off gain distributed over a 4.8 nm spectral width and a 1.7 dB improvement of receiver sensitivity in Raman-aided 10 Gb/s per wavelength VCSEL transmission. Finally, 4.25-10 Gb/s PON-based point to point (P2P) and point to multipoint (P2MP) broadcast transmission have been experimentally demonstrated. A 10 Gb/s with a 1:8 passive splitter incurred a 3.7 dB penalty for a 24.7 km fibre-link. In summary, this work has demonstrated cost effective and energy efficient potential flexible spectrum techniques for high speed signal transmission. With the optimized network parameters, flexible spectrum is therefore relevant in short-reach, metro-access and long-haul applications for national broadband networks and the Square Kilometre Array (SKA) fibre-based signal and data transmission

    Personality Identification from Social Media Using Deep Learning: A Review

    Get PDF
    Social media helps in sharing of ideas and information among people scattered around the world and thus helps in creating communities, groups, and virtual networks. Identification of personality is significant in many types of applications such as in detecting the mental state or character of a person, predicting job satisfaction, professional and personal relationship success, in recommendation systems. Personality is also an important factor to determine individual variation in thoughts, feelings, and conduct systems. According to the survey of Global social media research in 2018, approximately 3.196 billion social media users are in worldwide. The numbers are estimated to grow rapidly further with the use of mobile smart devices and advancement in technology. Support vector machine (SVM), Naive Bayes (NB), Multilayer perceptron neural network, and convolutional neural network (CNN) are some of the machine learning techniques used for personality identification in the literature review. This paper presents various studies conducted in identifying the personality of social media users with the help of machine learning approaches and the recent studies that targeted to predict the personality of online social media (OSM) users are reviewed

    Pertanika Journal of Science & Technology

    Get PDF

    Pertanika Journal of Science & Technology

    Get PDF

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Optimized QoS priority routing for service tunability and overhead reduction using swarm based active network scheme

    No full text
    As technology is moving towards the pervasive computing environments with billions of users, devices, and services, the Quality of Service (QoS) becomes a necessity and an essential element for end-to-end real time applications. The concept of active network has been recently adopted in order to provide a framework in which executable code within data packets executes upon intermediate network nodes and to facilitate delay services in the network. This paper describes the combination of the active network concept with swarm based control method called Swarm-based Active Network scheme for optimized QoS priority routing. This hybrid scenario is using the bandwidth clustering approach in which packets are following the predetermined path allocated by swarm based packets (embedded swarms). This mechanism enables the adaptation of the system to new conditions, as well as additional information to be passed to neighboring nodes for which information is embodied in transmitted packets. The proposed swarm based scheme does not require message brokers to fulfill QoS demands issued by applications. Additionally, it computes efficiently the available resources that satisfy the QoS requirements of requests. Thorough examination is made for the performance and reliability of the Swarm based Active Network scheme for different traffic measures and for the corresponding QoS offered in terms of the end-to-end delay, available bandwidth and packet loss. This scheme offers a decentralized way to efficiently increase the overall network utilization, allowing scalability and efficient usage of network bandwidth
    corecore