137 research outputs found

    Smart Sensors for Healthcare and Medical Applications

    Get PDF
    This book focuses on new sensing technologies, measurement techniques, and their applications in medicine and healthcare. Specifically, the book briefly describes the potential of smart sensors in the aforementioned applications, collecting 24 articles selected and published in the Special Issue “Smart Sensors for Healthcare and Medical Applications”. We proposed this topic, being aware of the pivotal role that smart sensors can play in the improvement of healthcare services in both acute and chronic conditions as well as in prevention for a healthy life and active aging. The articles selected in this book cover a variety of topics related to the design, validation, and application of smart sensors to healthcare

    Wearable Movement Sensors for Rehabilitation: From Technology to Clinical Practice

    Get PDF
    This Special Issue shows a range of potential opportunities for the application of wearable movement sensors in motor rehabilitation. However, the papers surely do not cover the whole field of physical behavior monitoring in motor rehabilitation. Most studies in this Special Issue focused on the technical validation of wearable sensors and the development of algorithms. Clinical validation studies, studies applying wearable sensors for the monitoring of physical behavior in daily life conditions, and papers about the implementation of wearable sensors in motor rehabilitation are under-represented in this Special Issue. Studies investigating the usability and feasibility of wearable movement sensors in clinical populations were lacking. We encourage researchers to investigate the usability, acceptance, feasibility, reliability, and clinical validity of wearable sensors in clinical populations to facilitate the application of wearable movement sensors in motor rehabilitation

    Recent Advances in Motion Analysis

    Get PDF
    The advances in the technology and methodology for human movement capture and analysis over the last decade have been remarkable. Besides acknowledged approaches for kinematic, dynamic, and electromyographic (EMG) analysis carried out in the laboratory, more recently developed devices, such as wearables, inertial measurement units, ambient sensors, and cameras or depth sensors, have been adopted on a wide scale. Furthermore, computational intelligence (CI) methods, such as artificial neural networks, have recently emerged as promising tools for the development and application of intelligent systems in motion analysis. Thus, the synergy of classic instrumentation and novel smart devices and techniques has created unique capabilities in the continuous monitoring of motor behaviors in different fields, such as clinics, sports, and ergonomics. However, real-time sensing, signal processing, human activity recognition, and characterization and interpretation of motion metrics and behaviors from sensor data still representing a challenging problem not only in laboratories but also at home and in the community. This book addresses open research issues related to the improvement of classic approaches and the development of novel technologies and techniques in the domain of motion analysis in all the various fields of application

    Abstracts of the fourth brainstorming research assembly for young neuroscientists (BraYn), Italy, 20–22 October 2021

    Get PDF
    On behalf of the BraYn Association, we are pleased to present the Abstracts of the Fourth Brainstorming Research Assembly for Young Neuroscientists, which was held from 20–22 October 2021. We congratulate all the presenters on their research work and contribution

    Effects of Omega-3s and Vitamin E Prophylactic Diets and the Implications of Lipid Transport in Spinal Cord Injury

    Get PDF
    Traumatic injury to the central nervous system (CNS) presents a devastating problem to our society. Although current interventions are promising, no effective treatments are available. The neural membrane fatty acid composition is markedly altered during the first few days after spinal cord injury (SCI). SCI results in autonomic dysfunction, paralysis, spasticity, and significant chronic neuropathic pain. The trauma leads to significantly increased levels of free radical and oxidative stress that contribute to obstructing tissue healing and recovery. A growing body of evidence shows that administration of hydrophobic molecules such as Vitamin E and long-chain omega-3 polyunsaturated fatty acids (ω3PUFAs) are capable of attenuating secondary damage, while promoting functional recovery after SCI. The precise molecular mechanisms coupling ω3PUFAs and Vitamin E to pro-restorative targets, is not well understood. Increasing attention is now being paid to understand the cellular targets of these hydrophobic molecules and how they are being transported after CNS trauma. The present study investigates the impact pre-treatment with ω3PUFAs and Vitamin E (alpha-tocopherol) in key functional outcomes observed during the acute phase of SCI. Additionally, we explored potential mechanisms through which these hydrophobic molecules were exerting its beneficial effects such as the survival of motor neurons and oligodendrocytes and the transport of ω3PUFAs and Vitamin E. Due to the hydrophobicity of ω3PUFAs and Vitamin E, membrane transport may be required to facilitate their mobilization and meet the increased metabolic demand at the injury site. The fatty acid translocase/membrane cluster of differentiation 36 (FAT/CD36) is a B class scavenger receptor, which has been implicated in the uptake and signaling of hydrophobic molecules, including ω3PUFAs and Vitamin E. Female adult Sprague-Dawley rats were received tail injections with ω3PUFAs (i.e. DHA) or were fed either with a normal diet or a regiment supplemented with ω3PUFAs and Vitamin E for eight weeks. Following the treatment animals were exposed to a contusion SCI or Sham. All animals were examined using standard functional behavior analysis. We report that pre-treatment with DHA injections improved locomotion, bladder recovery, and survival of both neurons and oligodendrocytes. Dietary ω3PUFAs pre-treatment yielded the same results as DHA injections and in addition it decreased neuropathic pain as measured through thermal hyperalgesia and allodynia. Dietary Vitamin E improved locomotion, improved H-reflex depression (indirect measure for spasticity), accelerated bladder recovery, and significantly increased the numbers of oligodendrocytes, but did not seem to preserve neurons in the ventral horn of injured rats. Further, dietary Vitamin E also increased the levels of supraspinal serotonin immunoreactivity. FAT/CD36 mRNA levels were increased at 7 days post-injury and its protein levels remained constant despite neuronal and oligodendrocyte loss. We observed the highest IR in motor neurons of the ventral gray matter and mature oligodendrocytes expressing the adenomatous polyposis coli protein (APC). Quantitative analysis of FAT/CD36 expression showed only Vitamin E upregulated this protein in neurons after SCI. Our findings support the complementary use of ω3PUFAs and Vitamin E to ameliorate motor, sensory, and autonomic dysfunctions observed following SCI. Lastly, given the beneficial roles of ω3PUFAs and Vitamin E in ameliorating functional recovery, FAT/CD36 may be a contributor to basic protection mechanisms in the injured spinal cord. Future pharmacological studies will confirm the role of FAT/CD36 in cell survival after SCI

    Wearable Sensors in the Evaluation of Gait and Balance in Neurological Disorders

    Get PDF
    The aging population and the increased prevalence of neurological diseases have raised the issue of gait and balance disorders as a major public concern worldwide. Indeed, gait and balance disorders are responsible for a high healthcare and economic burden on society, thus, requiring new solutions to prevent harmful consequences. Recently, wearable sensors have provided new challenges and opportunities to address this issue through innovative diagnostic and therapeutic strategies. Accordingly, the book “Wearable Sensors in the Evaluation of Gait and Balance in Neurological Disorders” collects the most up-to-date information about the objective evaluation of gait and balance disorders, by means of wearable biosensors, in patients with various types of neurological diseases, including Parkinson’s disease, multiple sclerosis, stroke, traumatic brain injury, and cerebellar ataxia. By adopting wearable technologies, the sixteen original research articles and reviews included in this book offer an updated overview of the most recent approaches for the objective evaluation of gait and balance disorders

    Do informal caregivers of people with dementia mirror the cognitive deficits of their demented patients?:A pilot study

    Get PDF
    Recent research suggests that informal caregivers of people with dementia (ICs) experience more cognitive deficits than noncaregivers. The reason for this is not yet clear. Objective: to test the hypothesis that ICs ‘mirror' the cognitive deficits of the demented people they care for. Participants and methods: 105 adult ICs were asked to complete three neuropsychological tests: letter fluency, category fluency, and the logical memory test from the WMS-III. The ICs were grouped according to the diagnosis of their demented patients. One-sample ttests were conducted to investigate if the standardized mean scores (t-scores) of the ICs were different from normative data. A Bonferroni correction was used to correct for multiple comparisons. Results: 82 ICs cared for people with Alzheimer's dementia and 23 ICs cared for people with vascular dementia. Mean letter fluency score of the ICs of people with Alzheimer's dementia was significantly lower than the normative mean letter fluency score, p = .002. The other tests yielded no significant results. Conclusion: our data shows that ICs of Alzheimer patients have cognitive deficits on the letter fluency test. This test primarily measures executive functioning and it has been found to be sensitive to mild cognitive impairment in recent research. Our data tentatively suggests that ICs who care for Alzheimer patients also show signs of cognitive impairment but that it is too early to tell if this is cause for concern or not
    corecore