160 research outputs found

    Supervised Learning and Reinforcement Learning of Feedback Models for Reactive Behaviors: Tactile Feedback Testbed

    Full text link
    Robots need to be able to adapt to unexpected changes in the environment such that they can autonomously succeed in their tasks. However, hand-designing feedback models for adaptation is tedious, if at all possible, making data-driven methods a promising alternative. In this paper we introduce a full framework for learning feedback models for reactive motion planning. Our pipeline starts by segmenting demonstrations of a complete task into motion primitives via a semi-automated segmentation algorithm. Then, given additional demonstrations of successful adaptation behaviors, we learn initial feedback models through learning from demonstrations. In the final phase, a sample-efficient reinforcement learning algorithm fine-tunes these feedback models for novel task settings through few real system interactions. We evaluate our approach on a real anthropomorphic robot in learning a tactile feedback task.Comment: Submitted to the International Journal of Robotics Research. Paper length is 21 pages (including references) with 12 figures. A video overview of the reinforcement learning experiment on the real robot can be seen at https://www.youtube.com/watch?v=WDq1rcupVM0. arXiv admin note: text overlap with arXiv:1710.0855

    Logistical Optimization of Radiotherapy Treatments

    Get PDF

    Acta Cybernetica : Volume 17. Number 2.

    Get PDF

    An Agent Based Model to Assess Crew Temporal Variability During U.S. Navy Shipboard Operations

    Get PDF
    Understanding the factors that affect human performance variability as well as their temporal impacts is an essential element in fully integrating and designing complex, adaptive environments. This understanding is particularly necessary for high stakes, time-critical routines such as those performed during nuclear reactor, air traffic control, and military operations. Over the last three decades significant efforts have emerged to demonstrate and apply a host of techniques to include Discrete Event Simulation, Bayesian Belief Networks, Neural Networks, and a multitude of existing software applications to provide relevant assessments of human task performance and temporal variability. The objective of this research was to design and develop a novel Agent Based Modeling and Simulation (ABMS) methodology to generate a timeline of work and assess impacts of crew temporal variability during U.S. Navy Small Boat Defense operations in littoral waters. The developed ABMS methodology included human performance models for six crew members (agents) as well as a threat craft, and incorporated varying levels of crew capability and task support. AnyLogic ABMS software was used to simultaneously provide detailed measures of individual sailor performance and of system-level emergent behavior. This methodology and these models were adapted and built to assure extensibility across a broad range of U.S. Navy shipboard operations. Application of the developed ABMS methodology effectively demonstrated a way to visualize and quantify impacts/uncertainties of human temporal variability on both workload and crew effectiveness during U.S. Navy shipboard operations

    First Annual Workshop on Space Operations Automation and Robotics (SOAR 87)

    Get PDF
    Several topics relative to automation and robotics technology are discussed. Automation of checkout, ground support, and logistics; automated software development; man-machine interfaces; neural networks; systems engineering and distributed/parallel processing architectures; and artificial intelligence/expert systems are among the topics covered

    A Methodological Approach to Knowledge-Based Engineering Systems for Manufacturing

    Get PDF
    A survey of implementations of the knowledge-based engineering approach in different technological sectors is presented. The main objectives and techniques of examined applications are pointed out to illustrate the trends and peculiarities for a number of manufacturing field. Existing methods for the development of these engineering systems are then examined in order to identify critical aspects when applied to manufacturing. A new methodological approach is proposed to overcome some specific limitations that emerged from the above-mentioned survey. The aim is to provide an innovative method for the implementation of knowledge-based engineering applications in the field of industrial production. As a starting point, the field of application of the system is defined using a spatial representation. The conceptual design phase is carried out with the aid of a matrix structure containing the most relevant elements of the system and their relations. In particular, objectives, descriptors, inputs and actions are defined and qualified using categorical attributes. The proposed method is then applied to three case studies with different locations in the applicability space. All the relevant elements of the detailed implementation of these systems are described. The relations with assumptions made during the design are highlighted to validate the effectiveness of the proposed method. The adoption of case studies with notably different applications also reveals the versatility in the application of the method

    Applications

    Get PDF
    Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications

    Proceedings of the 2009 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    The joint workshop of the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB, Karlsruhe, and the Vision and Fusion Laboratory (Institute for Anthropomatics, Karlsruhe Institute of Technology (KIT)), is organized annually since 2005 with the aim to report on the latest research and development findings of the doctoral students of both institutions. This book provides a collection of 16 technical reports on the research results presented on the 2009 workshop
    • …
    corecore