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Abstract 

The Industry 4.0 revolution is transforming the manufacturing scene to cater for new mass 

customisation demands and competitive production requirements. One of the ways Industry 4.0 aims to 

improve manufacturing is by adopting human-robot collaboration (HRC) due to its benefits in 

improving ergonomics, speeding production and merging human dexterity with robotic precision. 

Collaborative robots (cobots) are a stepping stone towards enabling HRC due to their intuitive 

programming interfaces, intrinsic safety features and agility. Cobots are marketed as “easily 

deployable” and “intuitively programmed”. However, this is only true for a limited range of HRC 

applications in which the tasks of the human and the cobot are independent and the cobot follows a 

fixed path. 

In order to expand the applicability of cobots to more complex HRC tasks in which the cobot has to be 

human-aware and exhibit flexible behaviour, we explored a new programming technique, namely task-

parametrized learning from demonstration (TP-LfD). In TP-LfD, the cobot is shown a few 

demonstrations of a task conducted under changing circumstances and a regressed model of the task is 

learnt to support new previously-unseen circumstances. Using TP-LfD requires the human teacher to 

specify the task-relevant objects and the methods of detecting and localising the objects. This is a time 

consuming process subject to human errors. To address the above challenge, in this thesis, we present 

a generic solution that automatically detects and optimises the choice of task parameters for TP-LfD. 

We evaluated our solution in multiple simulation industrial tasks where positions of objects vary in the 

scene. 

In this thesis, Gaussian mixture models (GMM) are used to model tasks using TP-LfD. A GMM is 

generated to model the path with respect to each task parameter. Each task parameter is a frame of 

reference characterised by a position and orientation. GMMs intrinsically vary when the orientation of 

a frame changes. However, in some cases, such as pick-and-place, the orientation of a frame of reference 

is irrelevant to the task. Therefore, in this thesis, we designed a new model, called the ring Gaussian, 

which models paths with respect to frames whose orientation is task-irrelevant. Our model generated 

more efficient and successful paths compared to the traditional GMM model. The proposed previous 

two contributions were integrated in one end-to-end algorithm to program cobots for a wide range of 

HRC industrial tasks, including pick-and-place and handover. The performance of the robot was more 

efficient and accurate than when either of the contributions was not used. In addition, case studies in 

this thesis show how the integrated algorithm can help overcome common problems such as partial 

occlusion and obstacle avoidance. The outcomes of this thesis were presented in 4 peer-reviewed journal 

papers and an open source code. 

To conclude, this thesis contributes towards the intuitive programming of cobots for flexible 

manufacturing tasks. Simulated industrial tasks and case studies in this thesis demonstrated the 
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successful use of the developed algorithm to program cobots for tasks with changing object position 

and human involvement, without the need for programming expertise. 

Keywords: Human-robot collaboration, Industrial robots, Learning from demonstration, Task-

parametrized Gaussian mixture models 
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Chapter 1: Introduction 
1.1. Motivation 
1.1.1. Industry 4.0 
Originating from Germany in 2011, Industry 4.0 is a global effort to revolutionise the manufacturing 

sector. Industry 4.0 aims to integrate the latest advancements in technology such as artificial 

intelligence, cloud computing, simulation and augmented/virtual reality to improve factories. These 

improvements aim to enable mass customisation, facilitate communications between machines, 

optimise operations and enable human-robot interactions (Masood & Sonntag, 2020). Research groups 

have been studying the aforementioned latest technological advancements and the best ways to use 

them to improve industrial settings. 

1.1.2. Benefits of HRC 
Human-robot collaboration (HRC) is one of the main ventures being researched in the efforts of 

pushing Industry 4.0 forward. HRC refers to application scenarios where a robot, usually a collaborative 

robot (cobot), and a human occupy the same workspace and interact to accomplish collaborative tasks. 

This interaction is through turn-taking and part/tool passing as well as separately completing parts of 

the tasks best suited to the human/cobot’s abilities (Haddadin & Croft, 2016). Human operators can 

deal with uncertainties and variability. Moreover, they can perform tasks requiring high dexterity. On 

the other hand, cobots offer advantages in terms of repeatability, speed, stamina and physical strength.  

In HRC, the benefits of automation and manual labour are combined (Müller et al., 2016), which may 

lead to an overall improvement in production time, efficiency, ergonomics and a reduction in cost and 

factory floor space.  

1.1.3. Market Cobots 

Cobots are available in the market such as Universal Robotics (UR), ABB’s YuMi, KUKA’s LBR 

iiwa, etc. (ROBOTIQ, 2020). They are equipped with a range of special features such as force torque 

sensors, no trap points and intuitive programming user interfaces (UIs) that make them easily 

deployable to work alongside human operators. Moreover, most are safety certified according to safety 

standards ISO 10218 for industrial robots and/or ISO/TS 15066/2016 for collaborative robots 

(ROBOTIQ, 2020). 

1.1.4. Industrial Implementations 
HRC is being increasingly and successfully implemented in several industrial setting. For example, 

in the BMW Mini factory, an operator places rivets on a part and a cobot fastens the rivets while the 

operator continues to perform other tasks simultaneously on the part (Reeco, n.d.). Nissan's large-scale 

Yokohama plant deployed UR10 cobots to loosen bolts and carry heavy components to relieve the 

workforce of these arduous tasks and speed up the manufacturing process (Carrus Home, n.d.). Skoda 
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also introduced a KUKA cobot to work alongside humans in the production of direct-shift-gearboxes 

(KUKA, n.d.). Therefore, the industrial interest in cobots and their proved benefits encouraged us to 

research solutions for easier and improved cobot deployment. 

1.2. Human-Robot Collaboration 
1.2.1. Levels of Collaboration 
HRC tasks can be divided into levels of collaboration according to the relation between a cobot, an 

operator, work piece(s) and the process(s) being performed on the work piece(s). That is, the levels are 

defined according to the degree of task intersection and dependency between the operator and the cobot 

(Cesta et al., 2016). The levels are the following (Figure 1.1): 

- Independent: An operator and a cobot operate on separate work pieces (W1 and W2 

illustrated in Figure 1.1) independently for their individual manufacturing processes (P1 for 

W1 and P2 for W2). The collaborative element is due to the co-presence of the operator and 

cobot in the same workspace without a fence or guard. That is, safety is achieved through 

the cobot's intrinsic safety and/or added hardware/software safety elements, such as collision 

avoidance. Therefore, the cobot is aware of the operator's presence and acts safely. 

- Simultaneous: An operator and a cobot operate on separate processes (P1 and P2 
respectively) on the same work piece (W) at the same time. There is no time or task 

dependency between them. However, the cobot needs to be spatially aware of the operator 

and his/her task requirements in order to respect the operator's space. Being able to 

concurrently operate on the work piece will minimise the transmit time of the work piece 

between the cobot and human, thereby improving productivity and space utilisation. 

- Sequential: An operator and a cobot perform sequential manufacturing processes (P1 and P2) 

on the same work piece. There are time dependencies between the cobot and operator for 

their processes. For instance, the cobot works on P1 for the work piece as an input to support 

the operator to carry on P2 for the work piece. In most cases, the cobot is arranged to handle 

tedious processes to improve the operator's working conditions. 

- Supportive: An operator and a cobot work towards the same process (P) on the same work 

piece (W) interactively. There is dependency between the actions of the cobot and the 

operator. That is, without one, another cannot perform the task. The cobot needs to 

understand the operator's intent and the task requirements in order to provide appropriate 

assistance. The role of the cobot is to physically assist the operator with work pieces which 

improves ergonomics. 
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Figure 1.1 Levels of human-robot collaboration 

1.2.2. Limitations of Market Cobots 
Upon trying to program market cobots for the different HRC levels, one is faced with many 

challenges. To begin with, even though market cobots are safety certified, risk assessment is still 

required prior deployment. That is because even with the intrinsic speed limitations, if the cobot comes 

in contact with a sensitive part of the human body, e.g. the head, it is dangerous. Therefore, additional 

safety features are required such as collision avoidance. Moreover, the built-in UIs is capable of 

intuitively programming the cobot by specifying way points. However, it does not cater for flexible 

behaviour which is a main characteristic of HRC tasks. Therefore, it is found that the current industrial 

implementations of HRC, such as the ones mentioned in Section 1.1.4, are limited in complexity. The 

cobot, even though is working alongside a human, only adheres to a predetermined path with very 

limited flexibility. 

To fully reach the potential of HRC, cobots need to be provided with two main capabilities: intuitive 

programming and flexible behaviour. Intuitive programming is important so that operators on the shop 

floor can quickly adjust cobot programs to suit preference, task changing, and understand how the cobot 

“thinks” to be able to interact with it safely and efficiently. Flexible behaviour is important so that the 

cobot can act in unpredictable situations in which the human is adding uncertainty. That is why, 

researchers are focused on integrating intelligent communication, optimisation and learning algorithms 

with cobots to expand their application range. Chapter 2 elaborates on those technologies. 

1.3. Task Parametrized Learning from Demonstration 
1.3.1. Overview 
In an effort to provide cobots with the ability to be intuitively programmed to provide flexible 

behaviour, task parametrized learning from demonstration (TP-LfD) was found to be an effective 

algorithm. TP-LfD takes a set of demonstrations of a cobot acting in a few varied settings, and then it 

generalises over them and reproduces a new path for a new setting (Calinon, 2016). The main steps of 

23 



 
 

            

 

       

      

               

      

          

      

   

      

    

 

              

                       

 

      

        

          

       

       

           

        

            

         

    

        

  

TP-LfD are the following, with an illustrative example, in which a piece of debris needs to be brushed 

onto a dustpan: 

1. Recording demonstrations: Figure 1.2 shows an illustrative example of four user-provided 

demonstrations for brushing a debris onto a dustpan. Both objects have variable positions. 

Each demonstration consists of an image of the initial setup and a demonstration path in 

which the debris is brushed by a cobot onto the dustpan. 

2. Detecting task parameters: In TP-LfD, the path of a cobot is encoded with respect to multiple 

frames of references (task parameters). Task parameters are usually associated with 

locations of task-relevant objects or locations. For example, in Figure 1.2, the debris and 

dustpan are each associated with a frame of reference, and each of them is defined by a 

location vector b and orientation α with respect to an arbitrary global coordinate system. 

Figure 1.2 Four demonstration recording of the cobot's path for brushing the debris onto the dustpan. A frame of reference 

is associated with each object. Each frame is defined by location vector b and orientation α with respect to a global frame of 

reference. 

3. Encoding the paths with respect to the task parameters: A path can be modelled as task 

parameterised Gaussian mixture model (TP-GMM) from the perspective of each available 

frame. In this thesis, GMMs are chosen to model the paths according to the central limit 

theorem, the distribution of the sample means of a population approaches a normal 

distribution as the sample size gets larger. That implies that a normal distributions can 

successfully model many complex systems with the least amount of prior knowledge 

(Goodfellow et al., 2016). In Figure 1.3 (left), Frames 1 from all the four demonstrations 

shown in Figure 1. are aligned as if the paths are observed from Frame 1. Each ellipse is a 

Gaussian probabilistic distribution (in the thesis, each ellipse is called a Gaussian for 

simplicity). The paths are encoded with three (as an example) Gaussians (1.1, 1.2 and 1.3) 

for each one third of the path. In Figure 1.3 (right), a similar process is done for Frame 2 

resulting in Gaussians 2.1, 2.2 and 2.3. 
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Figure 1.3 GMMs, constituting of 3 Gaussians each, encoding the path as observed from Frame 1 and Frame 2. 

4. Reproducing new path: Based on the demonstrations, as the positions and orientations of the 

dustpan and the debris change, the cobot should reproduce a new path for this new scenario 

accordingly (Figure 1.4(a)). Obtained GMMs for each frame are aligned depending on the 

frames’ new positions and orientations in this scenario (Figure 1.4(b)). For each frame, GMR 

is performed, where a path point distribution, i.e. Gaussian, for each time step t is sampled 

from the GMM (Gaussians under different time steps are shown in Figure 1.4(c)). Then, for 

every time step t, a product of Gaussians is performed between the Gaussians of both frames. 

The product results in a new Gaussian, whose mean is the reproduced path point at time t 

(Figure 1.4(d)). The weight for each Gaussian in the product is equivalent to the inverse of 

its covariance matrix. Thus, distributions that have higher covariance possess less priority 

in the sum. In reality, this means that when demonstrations have a consistent path (small 

covariance) with respect to a certain object (frame of reference), the cobot will learn that the 

consistency of this path is significant and needs to be maintained in future reproductions. 

However, when the demonstration does not have a consistent path with respect to a certain 

object, the cobot is more flexible with respect to this object in future reproductions. This 

reproduction process is known as task parametrized Gaussian mixture regression (TP-

GMR). 
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    (a) (b) (c) (d) 

Figure 1.4 The main steps of the task parametrized Gaussian mixture regression algorithm. (a) Detect frames in their new 

positions. (b) Align their GMMs in the new position. (c) Regress the GMM to obtain a Gaussian for every time step t. (d) 

Add Gaussians of all frames from time step t, to obtain reproduced path point. 

1.3.2. Limitations of TP-GMM/R 
TP-GMM and TP-GMR (TP-GMM/R) are successfully used to program cobots in multiple research 

works, such as in (Alizadeh & Saduanov, 2017; Y. Huang et al., 2018; Rozo et al., 2016). One of the 

main prerequisites for the success of the TP-GMM/R algorithm is the accurate detection of the task 

parameters. In most cases, task parameters take the form of frames of reference describing the position 

and orientation of task-relevant objects in space. To program each task using TP-GMM/R, the 

programmer should ensure that the algorithm is detecting task-relevant objects. This requires tailored 

computer vision algorithms done by a professional programmer, which is time and resource consuming. 

This means that TP-GMM/R is no longer an intuitive algorithm that can be applied to program tasks 

without programming expertise. To combat this setback, in this thesis, a generic vision algorithm was 

created that automatically detects task-relevant frames of reference. 

Moreover, due to the nature and shape of the GMM, the path points are modelled with respect to the 

task parameters such that when a task parameter’s orientation changes, the GMM position changes. 

That means, the path points are affected by the orientation of task parameters. However, this might not 

accurately reflect task requirements, since in most cases, the orientation of a task parameter, does not 

affect the general direction of the task path but only the gripping orientation. Therefore, in this thesis, a 

new model was created, called the ring Gaussian, which accurately encodes path points without 

accounting for the orientation of task parameters. 

1.4. Research Aims and Objectives 
With the fast advancement and increased competitiveness of industrial parties, many are seeking 

to increase production efficiency and reduce costs by employing collaborative robots. Collaborative 

robots are meant to be easily deployable and movable around the factory floor. This requires them to 

be safe to run alongside human operators without requiring expensive fence setups. The aim of this 

thesis is to make collaborative robots easily programmable with minimal programming experience to 
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facilitate their deployment and movement in a factory floor. Moreover, the collaborative robot needs 

to be equipped with the ability to function in unpredictable environments. These aims are accomplished 

by setting off to accomplish the following objectives: 

- Detect and identify task parameters for TP-GMMwithout requiring custom computer vision 

algorithms. 

- Improve the performance of TP-GMM algorithm in common industrial tasks. 

- Encourage the usage of TP-GMM to program collaborative robots for industrial tasks. 

1.5. Thesis Contributions 
The contributions in this thesis can be divided into three categories, in the field of using learning 

from demonstration to program cobots for industrial tasks: 

1. Create the idea and develop the pipeline of using generic visual features as task parameters 

for TP-GMM. A MATLAB code was written to automatically detect and optimise task 

parameters for TP-GMM/R, assuming task parameters are positions and orientations of task-

relevant objects in space, which is generally the case. To achieve this, we extract generic 

visual features such as Speeded Up Robust Features (SURF) from demonstration images. 

Since a large number of SURF features will be obtained, not all of which are task-relevant, 

the performance of the TP-GMM/R will deteriorate if all features are used as task 

parameters. Therefore, 1) a statistical algorithm groups redundant visual features, i.e. 

features belonging to the same object, together; 2) a reinforcement learning algorithm is 

used to identify the optimal features to be used as task parameters in TP-GMM/R, i.e. to 

eliminate features that are irrelevant to the task. The algorithm was tested in CoppeliaSim 

simulation environment for 4 different industrial tasks. This is discussed in chapter 3. 

2. Define orientation-less frames and identify the problem that TP-GMMs do not cater well 

for them. Create a new model, the ring Gaussian, that accurately caters for frames whose 

orientation is irrelevant for task paths, i.e. orientation-less frames. To achieve this, a 

MATLAB code was written to 1) automatically identify orientation-less frames based on 

criteria that we defined; 2) calculate the ring Gaussians for each orientation-less frame; 3) 

make adjustments on the TP-GMR algorithm to be able to cater for the new ring Gaussian 

model. This is discussed in chapter 4. 

3. Integrate the above two works in an end-to-end tool to intuitively program cobots for 

industrial tasks. 1) A tutorial document is created to teach users with no programming 

experience how to use the software. This tool is used to overcome two industrial task 

challenges: partial occlusion and obstacle avoidance. 2) Partial occlusion is overcome by 

utilising the redundant frames belonging to the same object. 3) Obstacle avoidance is 
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performed by utilising the ring Gaussians calculated for orientation-less frames. This is 

discussed in chapter 5. 

1.6. Research Outputs 
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2. El Zaatari, S. and Li, W. (2019) ‘Visual Features as Frames of Reference in Task-

Parametrised Learning from Demonstration’, in UK-RAS19 Conference. Loughborough, 
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3. El Zaatari, S., and Li, W. (2019). ‘Reinforcement Learning to Identify Optimal Frames of 

Reference in Task-Parametrised Learning from Demonstration’, in 20th Towards 

Autonomous Robotic Systems (TAROS). London, UK. 

4. El Zaatari, S., Wang, Y., Hu, Y., & Li, W. (2021). ‘An Improved Approach of Task-

Parameterized Learning from Demonstrations for Cobots in Dynamic Manufacturing’, 
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7. El Zaatari, S., Wang, Y., Li, W. (2021) ‘Reinforcement Learning based Optimization for 

Cobot’s Path Generation in Collaborative Tasks’, in 2021 IEEE 24th International 

Conference on Computer Supported Cooperative Work in Design. Dalian, China. (Won Best 

Student Paper Award) 

Our contribution in previously mentioned papers was to research, create, code and troubleshoot 

the algorithms, perform tests on simulation robots and real-life images as well as write and review the 

papers. Moreover, the following articles have been co-authored: 

1. Wang, Y., Hu, Y., El Zaatari, S., Li, W., Zhou, Y. (2021) ‘Optimised Learning from 

Demonstrations for Collaborative Robots’, Robotics and Computer-Integrated 
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1.7. Thesis Overview 
This thesis is split into six chapters, including the introduction in this chapter. Chapter 2 provides a 

review of intelligent cobot programming technologies, split into three categories: communication, 

optimisation and learning (El Zaatari et al., 2019). Chapter 3 focuses on the first contribution in the 

thesis: an automated task parameter detector and optimiser for task parametrized learning from 

demonstration (El Zaatari, Wang, Hu, et al., 2021; El Zaatari,Wang, Li et al., 2021). Chapter 4 

elaborates on the second contribution in the thesis: an innovative Gaussian model to improve the 

performance of task parametrized learning from demonstration when a frame of reference is orientation-

less (El Zaatari, Li et al., 2021). Chapter 5 presents the integration of the contributions of chapter 3 and 

4 together as well as a solution for partial occlusion and obstacle avoidance. Chapter 6 concludes the 

thesis and points towards future works to improve the presented methods and move cobots closer to 

practical applications. 
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Chapter 2: Background: Cobot Programming 
2.1. Introduction 

The programming process entails providing a cobot with the ability to understand the state of the 

environment and perform actions that advance the system towards a planned collaborative goal. 

Traditionally, a human, the programmer, is only involved off-line for an industrial robot program. These 

programs are inflexible and not human-aware, and cannot be altered during runtime, unless an error 

occurs and debugging is needed. Based on that, a robot functions in a deterministic environment in 

which an operator is not part of. However, in HRC, an operator adds stochasticity and unpredictability 

to the environment. The human involvement in the cobot's program goes beyond the programmer's 

traditional off-line role. The operator also becomes involved in the cobot's program during run-time, or 

on-line. 

An operator can be involved in modifying or affecting a cobot's program either explicitly or 

implicitly. Explicit involvement occurs in the form of direct communication, i.e., the human sends 

information or instructions to the cobot. Implicit involvement occurs such that the cobot observes the 

human's states and alters its policy accordingly. The policy can be learnt from prior data or modelled 

manually by programmers. Based on these different modes of operator involvement, this chapter 

identifies three different programming technologies that give the cobot the ability to act flexibly and/or 

be programmed intuitively. These programming technologies are especially essential for Sequential and 

Supportive HRC scenarios. The programming technologies identified are: 

- Communication: An operator controls a cobot through a communication channel that can be 

verbal (speech) or non-verbal. Non-verbal communication includes gestures, gaze, head 

pose, haptics and UIs. The off-line role of the programmer is to program and define possible 

cobot actions and the underlying motion control. The on-line involvement of the operator is 

mostly explicit, triggering the cobot into pre-defined discrete or continuous actions. 

- Optimisation: Important aspects of a cobot's surroundings, such as obstacles and tool 

positions, are mathematically modelled as a function of the cobot's actions. Those form cost 

functions that are optimised to generate desirable performance. The cobot's program can be 

made to minimise an operator's workload, energy consumed and time wasted, or maximise 

physical comfort and trust, product quality, etc. During off-line development, the 

programmer designs cost functions and optimisation algorithms. During runtime, the 

operator usually impacts the cobot's performance implicitly, since he/she will be a part of a 

cost function. The advantage of this method is the higher likelihood of performing more 

optimally than a human operator. 

- Learning: A cobot learns a skill similar to how a human would, e.g., through observing 

demonstrations, trial and error, receiving feedback and asking questions. The off-line role 
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of a programmer is to design the learning algorithm and provide initial data for the cobot to 

learn from. That could be in the form of demonstrations, trial-and-error iterations (resulting 

in a policy), training data, etc. During runtime, an operator might be able to explicitly affect 

the cobot's policy by providing additional data, such as feedback, answers to questions, 

personalised demonstrations, etc. Moreover, the operator might serve as a prior in the cobot's 

probabilistic learning algorithm, i.e., affecting the cobot implicitly by being part of the 

observed environment. 

Different programming technologies enable different degrees and forms of cobot autonomy. As 

cobot autonomy increases, an operator is more likely to feel unease due to the cobot's decreased 

predictability. However, as the cobot autonomy decreases, the operator is required to make decisions 

on behalf of both, which increases the mental workload. Therefore, one programming technology is not 

strictly better than the other, but can be mixed to exploit their benefits while negating, or limiting, their 

drawbacks. The programming technology supported should also be chosen in light of industrial scenario 

complexity and the operator's knowledge of the task. 

In this chapter, we elaborate on these programming technologies, their variations and 

implementation in HRC scenarios. Moreover, we delve deeper into TP-LfD, the main programming 

technique that this thesis utilises. 

2.2. Communication 
Humans rely heavily on communication to work in teams and complete tasks fluently and efficiently. 

Communication can be made to issue orders, convey intention and ask/answer questions. Researchers 

have been working on enabling communication between humans and cobots such that the human is able 

to command the cobot through different communication modes. Communication-based programming, 

where an operator commands or designs the cobot's program through communication mediums, gives 

a level of direct authority from the operator. Whether that is desirable or not depends on the complexity 

of the task, the knowledge of the operator and the industrial party's choice. However, it would certainly 

increase an operator's trust in a cobot and the willingness to work alongside it. This would aid in the 

introduction and normalisation of cobots in manufacturing. However, communication mediums vary 

drastically in intuitiveness and reliability. The works mentioned in this subsection are categorised by 

communication mode: body language and speech, user interfaces and haptics. 

2.2.1. Body Language and Speech 

Body language as a means of commanding a cobot includes using gestures, pointing, head pose, and 

gaze. Speech refers to uttering commands verbally. These two communication modes are combined in 

the same subsection since they share a similar algorithmic pipeline: First, a communication guideline 

must be defined, i.e. in what ways of language/words/gestures, will the operator communicate with the 
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cobot? Communication signals are detected, recognised and mapped to executable actions for a cobot. 

The rest of this subsection tackles the different research works done towards these different steps in the 

'body language and speech' communication pipeline. 

Communication Guidelines 
Defining an effective communication guideline involves specifying usable communication signals, 

such as a set of gestures or phrases, and when and why to use them. Various approaches have been 

found in the literature to define a communication guideline. To begin with, a set of usable gestures or 

phrases can be predefined strictly in a fixed set. A gesture lexicon can be extracted from observing 

human-human interactions (Calisgan et al., 2012; Gleeson et al., 2013; Pohlt et al., 2017). However, 

gestures extracted from observing human-human interactions will not necessarily be easy to recognise 

and differentiate. That is because many of them tend to be very subtle, context-specific and sometimes 

person-specific. 

In other cases, a set of gesturing rules is used to create a gesture set. Barattini et al. proposed a 

standard set of gestures for a given task (the gestures must be distinct from other task actions), and 

evaluated a gesture recognition algorithm on the proposed set (Barattini et al., 2012). However, even 

with optimally chosen gestures, having to memorise and adhere to a fixed set of signals can be mentally 

draining and unintuitive for the operator. 

Allowing a human to communicate with a cobot in his/her own way results in more effective, natural 

and intuitive communication. Cheng et al. designed a framework to extract robotic operations from 

natural language based on relationships between mentioned work pieces and representing the 

relationships in matrix form (Cheng et al., 2018). She and Chai used interactive learning to learn verb 

semantics in a noisy incomplete environment (She & Chai, 2017). The cobot is capable of asking the 

right questions to learn required actions and corresponding objects, states and tools. Maurtua et al. also 

analysed natural language in light of task ontology to extract commands (Maurtua et al., 2017). 

Generating a natural language system is challenging since the language use differs drastically as the 

operator progresses with work. Nakata et al. showed that in a collaborative task where only verbal 

communication is allowed, the frequency of morphemes (i.e. words belonging to these certain types: 

object, modifier, robot action, user action) decreases as the number of task trials increase (Nakata et al., 

2011). That is because humans naturally start emitting words as they become accustomed to the task. 

They naturally start considering and accommodating their team-mates’ needs without those needs being 

explicitly expressed. Kobayashi et al. also showed that the use of descriptive words decreases as the 

number of task trials increase (Kobayashi et al., 2020). Therefore, any language model between a human 

and a cobot should account for the change in human language as the human becomes more accustomed 

to the task. 
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Multi-modal Communication 
Different research works have shown that communication modes can be concatenated in different 

ways for better context understanding. Using multi-modal communication can outperform single mode 

communication. Multi-modal communication can sometimes be complementary such as a point-and-

command system. It can also be redundant such as a same-command speech and gesture system 

(Maurtua et al., 2017). The challenge lies in how to combine information from different communication 

modes to successfully draw conclusions. Srimal et al. used fuzzy logic to combine pointing gestures 

with speech in order to identify pointing targets or execute spatial commands (Srimal et al., 2017). 

Giuliani and Knoll used a score-based system to identify which action to perform on which object 

(Giuliani & Knoll, 2013). They represent an object, its corresponding action, and a score R as one tuple. 

When a speech or pointing command is uttered mentioning an object or an action, the scores of the 

tuples including the object or the action are increased. When the score exceeds a threshold, the action 

is executed on the object. 

Maurtua et al. used a fusion engine to ensure voice and pointing commands are not contradictory 

and combine them into a single command output to the execution manager (Maurtua et al., 2017). They 

designed a gesture, including pointing, and voice command system with safety functions integrated and 

implemented it on a KUKA IIWA. Their system was rated promisingly in terms of naturalness, 

usefulness and reliability in an extensive study. 

It is important to consider if/when multi-modal communication is needed, before considering how 

to implement it. Admoni et al. worked on determining when a pointing gesture is necessary along with 

a verbal description to identify an object on a table (Admoni et al., 2016). A gesture only be necessary, 

for example, if there were several objects of the same verbal description in close proximity. Their work 

can be used to guide and prompt communication to only when it is needed, which would improve 

efficiency and lessen chances of error and confusion. 

From Communicated Signals to Executable Actions 
After specifying a communication guideline, the permissible communicated signals must be mapped 

to executable cobot actions, i.e. a signal should be made a command. This can be done manually or 

through learning: 

- Manually: A programmer manually assigns gestures to cobot actions off-line according to 

task needs (Barattini et al., 2012). Human-human interactions can help programmers 

understand which gestures map best to which actions (Gleeson et al., 2013; Pohlt et al., 

2017). If the action domain is continuous such as in (Wongphati et al., 2015), then the 

gesture-action mapping is done through calibration. 

- Learning: Interactive learning can be used so that an operator plays a role in the signal-action 

mapping. Shukla et al. taught a cobot required actions to perform given a gesture using 
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incremental human feedback (Shukla et al., 2017). However, this can present unnecessary 

complications in an industrial environment where insufficient variability in the mapping is 

expected. In a continuous action domain, such as in (Huang &Mutlu, 2016), the gaze-object 

associations are obtained by a pre-trained Support Vector Machine (SVM) in order to 

ultimately predict the human's intent (i.e. the object the human is looking at). This helps the 

cobot start acting towards the object before an explicit command is uttered. This is 

particularly useful when the communication channel domain is continuous, such as gaze 

direction, and requires segmentation before mapping. 

Signal Recognition 
Delving into the technicalities of signal recognition, whether it is gestures, speech, haptics, etc. is 

beyond the scope of this chapter and will only be discussed briefly, as numerous relevant reviews 

already exist. Readers are referred to (Liu &Wang, 2018) for an extensive review on gesture recognition 

technologies in light of industrial HRC. Similarly, Benzeghiba et al. provided a review on speech 

recognition technologies (Benzeghiba et al., 2007). 

To recognise gestures, the human skeletal frame, or pose, must be detected. Modelling the gesture 

depends on whether it is static or dynamic. For a pose to be detected as a static, its temporal length 

needs to exceed a specific threshold (Pedersen et al., 2014). Then, the angles of the different segments 

of the human skeleton are thresholded to classify the gesture. In the case of dynamic gestures, Coupeté 

et al. modelled dynamic gestures as a Hidden Markov Model and classified them using K-means 

(Coupeté et al., 2019). 

Table 2.1 shows the advantages and disadvantages of different sensing technologies for pose detection. 

Figure 2.1 shows examples of sensing technology for human gestures. Given recent advancements in 

deep learning pose detection algorithms, such as OpenPose (Zhe Cao et al., 2017) and Faster R-CNN 

(Nu 

(a) (b) (c) 

This item has been removed due to 3rd Party Copyright. The unabridged version 
of the thesis can be found in the Lanchester Library, Coventry University.This item has been 

removed due to 3rd 
Party Copyright. The 
unabridged version of 
the thesis can be found 

in the Lanchester 
Library, Coventry 

University.

This item has been 
removed due to 3rd 

Party Copyright. The 
unabridged version of 

the thesis can be 
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Lanchester Library, 
Coventry University.

This item has been removed due to 
3rd Party Copyright. The unabridged 
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the Lanchester Library, Coventry 
University.
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Modelling the gesture depends on whether it is static or dynamic. For a pose to be detected as a 

static, its temporal length needs to exceed a specific threshold (Pedersen et al., 2014). Then, the angles 

of the different segments of the human skeleton are thresholded to classify the gesture. In the case of 

dynamic gestures, Coupeté et al. modelled dynamic gestures as a Hidden Markov Model and classified 

them using K-means (Coupeté et al., 2019). 

Table 2.1 Advantages and disadvantages of different gesture/pose detection sensors. 

Sensor Advantages Disadvantages 

3D-cameras, e.g. Kinect v2 

(Kumičáková et al., 2017; 

Makrini et al., 2017) and 

ASUS Xtion PRO Live 

(Pedersen et al., 2014) 

Non-intrusive, easy to setup Restricted detection region, prone 

to occlusion, dependent on lighting 

conditions, detection algorithm 

dependent on 3D sensing output 

(point cloud, depth map...) 

RGB cameras Non-intrusive, easy and 

affordable to setup, availability 

of reliable algorithms 

Restricted detection region, prone 

to occlusion, dependent on lighting 

conditions 

IMU Jackets, e.g. 

(de Gea Fernández et al., 

2017; Neto et al., 2019) 

No occlusion, no dependency 

on lighting and environmental 

factors 

Restrict mobility, not one-size-fits-

all, does not measure hand gestures 

Wrist bands, e.g. (Chen et 

al., 2007) 

No occlusion, no dependency 

on lighting and environmental 

factors 

Restrict mobility, difficult time-

consuming setup 

Motion Capture, e.g. (Vogt 

et al., 2017) 

High accuracy, 

computationally effective, less 

prone to occlusion 

Expensive and time-consuming 

setup, restricted detection region 

Pointing gestures are different since they are related to the space and objects. Recognising or 

classifying them constitutes identifying the object or location being pointed at. In (Maurtua et al., 2017), 

Euclidean cluster extraction was used to detect the human's forearm. The forearm is modelled as a 

cylinder, and the pointing target is identified as the cylinder’s axis intersection with the workspace. 

Srimal et al. also used skeletal tracking obtained from a 3D depth sensor to detect the direction of 

pointing in a similar manner (Srimal et al., 2017). 

For speech recognition, some have used Google API (Maurtua et al., 2017) or the Microsoft Speech 

API (Gustavsson et al., 2017; Huang & Mutlu, 2016) for speech to text transformation. In the case of 

natural language, morphological analysis is performed to identify word morphemes and understand 

context. For example, Maurtua et al. (Maurtua et al., 2017) used FreeLing for morphosyntactic analysis 

while Nakata et al. [67] used the MOR and the POST program of CLAN. Nevertheless, Gustavsson et 

al. pointed out that relying on speech commands can be very problematic in the presence of background 
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noise and chatter (Gustavsson et al., 2017). Table 2.2 shows a summary of the key references related to 

body language and speech communication, and their advantages and limitations. 

Table 2.2 Summary of key references in the Body Language and Speech subsection. 
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Attempting to use natural speech and gesture communication in an industrial environment is 

problematic since there is not enough industry-specific data to train models. Therefore, until natural 

speech and gesture understanding reaches a reliable level for industrial use, it is advisable to stick to a 

fixed set of verbal or non-verbal commands which are easier to recognise. However, issuing such 

commands should not be in each task iteration, since that would be mentally and physically tedious on 

the operator. But rather, that should be in special cases such as error handling. Moreover, such a 

communication scheme is especially suitable for Independent and Simultaneous scenarios in which the 

action sequence is more or less fixed and only occasional interference in required. 

The intuitiveness of body language and speech communication is often traded with reliability. 

Therefore, exploring less human-like but more reliable communication modes, such as haptics and 

Graphical User Interfaces (GUIs), might be more suitable for industrial scenarios. 

2.2.2. User Interfaces 

Since cobots work closely with operators, cobots need to be equipped with intuitive UIs. These 

interfaces are used by operators to alter/create/customise cobot programs, whether off-line or on-line. 

The previous works related to cobot UIs and research challenges are discussed below. Table 2.3 shows 

a summary of key references in this subsection, their advantages and disadvantages. 

User Interface Mediums 
A UI is an essential differentiator of a cobot from traditional robots. Besides the user-interfaces being 

developed in research communities, several industrial solutions are already available. UIs are 

categorised such as: 

- Cobot teaching pendant: Market cobots, such as Universal Robots (UR), ABB's YuMi and 

KUKA LBR iiwa, are labelled as intuitive and user-friendly due to their modular symbolic 

programming UIs. For example, the UR UI allows a user to specify way points and create 

arrayed motion patterns. The YuMi teaching interface is similar, with commands for both 

arms easily synchronised and parametrized. Teaching pendants are the easiest to utilise since 

they are built-in with the cobot. However, at a surface level, their capabilities are limited 

and do not enable human-awareness and action plan flexibility. 

- Icon-based programming: A visual library of built-in functionalities can be utilised to create 

the program. For example, in MORPHA, the icons are connected to form a series of cobot 

commands. In LabVIEW, a data flow diagram is created in which values flow across the 
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icons and trigger actions on hardware. Although an icon-based program is easy to build (in 

small-scale programs), it is difficult to debug, maintain and alter. Therefore, they have not 

been popular in the manufacturing industry (Rossano et al., 2013). Moreover, these methods 

have not yet provided options to easily integrate the operator within the cobot's program so 

that the cobot is human-aware. 

- CAD-based programming: Robot manufacturers and third parties have provided solutions 

such as V-REP, Visual Components and ABB's RobotStudio, in which performance can be 

validated and assessed. V-REP and Visual Components come with integrated human models 

that can also be programmed to help in validating the cobot's safety and collaborative 

functions around humans. In V-REP, a human can move according to a real-life actor 

through augmenting 3D sensor data, such as from Kinect v2, of a real-life human into the 

simulation. In Visual Components, the human can experience 3D simulation using VR 

which can be useful for training operators. However, since simulation has to match the real 

environment in order to achieve valid results, using CAD-based tools might be time 

consuming when changing work space design and reiterating the program, unless an 

automated method is devised to scan, map and build the environment. 

- Task-based programming: This is the most popular research direction in intuitive cobot 

programming and will be further discussed in this subsection. The developed approach is 

based on a primitive-skill-task hierarchy (Schou et al., 2013): Primitives are cobot motion 

commands or sensory inputs values, such as open gripper and sense torque. Skills are object-

oriented and achieve goals such as pick object and tighten screw. Tasks are a sequence of 

skills and achieve the over-all goal, which is the industrial scenario being implemented. 

UI Design 
Skills are the building blocks of task-based programming. They present a balance between 

specificity and abstraction, i.e. skills are general enough to be building blocks of a wide range of tasks 

while maintaining a level of abstraction understandable to humans. A skill structure was designed by 

Schou et al. (Schou et al., 2018). A skill transfers the environment from a state to another. Skills have 

preconditions that need to be checked before implementation. They also have post conditions that are 

checked to make sure that the skill is correctly implemented. Moreover, skills need to be parameterised 

depending on their input states, and continuous evaluation takes place during execution to ensure safety 

and right progress. Steinmetz et al. identified four key considerations for efficient skill design 

(Steinmetz & Weitschat, 2016): 

- It is better to teach a parameter when needed so that an operator can assess the environment 

and choose the parameter accordingly. 

- If the cobot fails to perform a task after parametrization, it should solicit the operator to edit 

the parameter. 
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- To avoid excessive parametrization, static knowledge about relationships between 

parameters can be utilised to reliably derive some parameters from others. 

- Instead of being specified by shop-floor operators, some parameters should be set at defaults. 

Moreover, the UI design should consider the four levels of users of UIs: Bystander, Modifier, 

Programmer and Integrator, each having different required competencies to operate the UI 

(Schmidbauer et al., 2020). The UI should be usable, understandable, intuitive, efficient, which are 

metrics defined by Marvel et al. (Marvel et al., 2020). Marvel et al. also provided design 

recommendations for UI designers to follow (Marvel et al., 2020). 

UI Capabilities 

For more sophisticated behaviour, researchers have worked on incorporating smarter motion 

generalisation, information display and cognitive abilities (including perception) in GUI architectures. 

Figure 2.2 shows a few examples. 

- As shown in Figure 2.2 (a), Guerin et al. designed a GUI that allows the user to specify cobot 

capabilities and constraints (Guerin et al., 2014). Constraints include tool linear or planar 

path constraints. The user is also able to record tool affordances which include movement 

primitives (recorded paths). For example, using their GUI, the user is able to record a drilling 

action (straight constrained motion along the drill axis) and reproduce the action in novel 

drill locations. 

- As shown in Figure 2.2 (b), Pedersen et al. represented a small set of skills needed in 

industrial cobots in a GUI (Pedersen et al., 2014). A set of high-level skills (e.g. pick-and-

place) can be parametrized by a single input (object or location) through pointing gestures. 

The skill set supported is limited, but they elaborated on their work in Pedersen et al. 

(Pedersen et al., 2016). 

- As shown in Figure 2.2 (c), Steinmetz et al. improved on the skill architecture and 

parametrization to support more complex skills, such as screwing (Steinmetz & Weitschat, 

2016). Their work was formalised as a UI called RAZER and evaluated in (Steinmetz et al., 

2018). RAZER allows an expert user to intuitively design new cobot skills and parametrize 

them. It presents these skills and parameter options to shop-floor operators for easy task-

programming. 

- As shown in Figure 2.2 (d), Schou et al. designed an interface that allows users to sequence 

skills and specify some pre-defined parameters (C. Schou et al., 2013). Locational 

parameters, e.g. having to do with the location of pick up, are specified using kinaesthetic 

teaching. 
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- Koch et al. incorporated the skill architecture in a software system named Skill Based 

System (SBS) that enables the creation of skills for complex tasks such as screwing and 

assembly (Koch et al., 2017). 

- Paxton et al. designed the GUI for cobot programming, based on Robot Operating System 

(ROS), which is symbolic, modular and expandable (Paxton et al., 2017). Objects and agents 

(humans and cobots) are represented in a natural abstraction the human understands. These 

abstractions are used to generate Behaviour tree-based task planners using pre-defined 

actions. The operator can also specify way points for the cobot's path. 

The aforementioned UIs provide intuitive solutions for programming a cobot for industrial tasks by 

workers with minimal programming experience. A flexible cobot behaviour obtained by the UI is a 

result of its use on-the-fly according to the operator's plans. In some cases in task-based programming, 

an expert designs the skill sequence and leaves some of the parametrization to be done by the operator 

on-line. This parametrisation is done by inputting values on the UI, by kinaesthetic teaching or by 

pointing gestures. The last two are only available for specifying locational parameters. 

(a) (b) 

(c) (d) 

This item has been removed due to 3rd Party 
Copyright. The unabridged version of the 

thesis can be found in the Lanchester Library, 
Coventry University.

This item has been removed due to 
3rd Party Copyright. The unabridged 
version of the thesis can be found in 

the Lanchester Library, Coventry 
University.

This item has been removed due to 3rd 
Party Copyright. The unabridged version 

of the thesis can be found in the 
Lanchester Library, Coventry University.

This item has been removed due to 3rd 
Party Copyright. The unabridged 

version of the thesis can be found in 
the Lanchester Library, Coventry 

University.

Figure 2.2 Examples of user-interfaces used to program cobots: (a) (Guerin et al., 2014), (b) (Pedersen et al., 2014), (c) 
(Steinmetz et al., 2018) and (d) (C. Schou et al., 2013) 

A UI is an essential part of programming a cobot system whether by an expert or an operator, unlike 

the other technologies discussed in this chapter that can be scenario/task-specific and optional. Even 
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when other technologies are used to create/alter the cobot's program, a UI is still necessary to override 

any of them since it is the most reliable means of controlling the cobot. 

2.2.3. Haptics and Force 

Commercial cobots come with a built-in “compliant” mode, i.e. the cobot moves according to the 

forces the human exerts on its body. It can be considered, thus, that the human commands the cobot 

explicitly through touch and force. Researchers have extended on the default “compliant” mode to 

increase the cobot’s intelligence and user-friendliness. That is, beyond detecting a force, understanding 

and reacting to it, researchers have worked on predicting user intent and negotiating plans. Table 2.3 

shows a summary of key references mentioned in this subsection, their advantages and limitations. 

Reactive Compliance: Understanding and Reacting to the Force 
In reactive compliance, a cobot senses the forces exerted on its body and actively moves such that 

the forces are minimised. The challenge in reactive compliance is correctly mapping between the forces 

sensed by the cobot and the required motion to be done. 

Most cobots are not equipped with tactile sensors on their bodies (the links between the joints), 

which makes it hard to localise and measure touch forces on the cobot’s body. The human intent behind 

touching the cobot, i.e. trying to move it or stop it, becomes hard to understand. The cobot, for example, 

cannot identify the point at which contact with the human occurs and whether this contact is accidental 

or deliberate (Noohi et al., 2016). Magrini et al.'s work helps localise the forces being applied on the 

cobot (Magrini et al., 2015). The method is based on the integrated use of model-based residual signals 

that detect the occurrence of collisions and of one or more external RGB-D sensors to approximately 

localise the contact point on the surface of the robot links. That allows the cobot to respond to the 

contact force as desired or regulate it. Kouris et al. differentiated between collision and cooperation 

contact in a computationally efficient manner by thresholding the Fourier transform of the applied 

force/torque (Kouris et al., 2018). Gaz et al. differentiate between forces applied due to a polishing task 

and forces applied to move the cobot body by using a model-based approach (Gaz et al., 2018). This 

allows the human to smoothly and safely switch from moving the cobot compliantly and performing 

the polishing task. 

Forces can also be difficult to interpret when they are exerted on the object a cobot is holding rather 

than directly on its body. The force that a human exerts on an object can signify an intent of motion in 

different directions. Wojtara et al. devised algorithms that differentiate between rotation and translation 

motion intent in a collaborative object-positioning scenario (Wojtara et al., 2009). The first algorithm 

relies on degree-of-freedom (DOF) switching where the human explicitly specifies his/her intent 

(rotation or translation) and the cobot acts such that the right DOF are varied or fixed. In another 

algorithm, “Partner-that-follows”, Wojtara et al. interpreted force as translation and torque as rotation 

intent above the human's axis. The results section is used to assess the different algorithms proposed 
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and compare them. All the algorithms present a reliable way of controlling a cobot for co-manipulation. 

However, there is no evolutionary element that allows the cobot to adjust with time to its human partner 

and the algorithm is very human-led. However, the work of Wojtara et al. is the closest to industrial 

feasibility due to its reliability and predictability. 

As the number of potential directions of motion increase, it becomes difficult to manually toggle 

between them. Dumora et al. used learning algorithms to map from sensed forces to required direction 

of motion (Dumora et al., 2013). A Naive Bayes classifier is trained with the input vector of static forces 

on hand-held nob, and the output being the intent of direction of motion. The cobot then provides 

compliance in the intended direction. 

Reactive compliance produces reliable results, which increases the level of trust the operator has in 

the cobot. However, since the cobot only moves under the influence of the operator, he still carries a 

mental and physical burden. To decrease this burden, the deeper understanding of the human intent and 

goal are needed in order to take a more proactive role. 

Proactive Compliance: Supporting the Human's Intent 
Researchers have worked on deepening the cobot's understanding of the human's exerted forces to 

behave in a more proactive manner. Once the cobot understands the direction the operator wants to 

move the cobot in, the cobot exerts torque that supports the operator’s intent. The challenge in this 

degree of compliance is the accuracy of the inferences made from the exerted forces and the validity of 

their utilisation. For example, Li and Ge used force to estimate desired target positions (Li & Ge, 2014). 

Estimating the human's desired target position decreases the amount of force he/she should exert as the 

cobot takes a more proactive role. This is achieved by integrating the predicted motion intent of the 

human into an impedance controller. The algorithm, however, assumes that the human's intended 

motion path is smooth and continuous. Therefore, a sharp change in intent results in higher needed 

torque and more time than a regular impedance controller. Lichiardopol et al. worked on decreasing the 

physical load on the human while assigning the cognitive responsibility to him/her (Lichiardopol et al., 

2009), i.e. the human guides the path of the co-manipulation task with minimal exerted force. They 

assumed that the object's weight is unknown and potentially time-varying. Therefore, the algorithm 

estimates the force the human is applying based on the cobot’s control torque and the position change. 

Then, the cobot amplifies its torque to decrease the estimated human exerted force. Moreover, the 

mentioned estimation and amplification steps happen in periodic cycles to cater for changing object 

weight. 

Incorporating more intelligence and inference/prediction abilities in cobot programs decreases the 

physical and mental load on the operator. However, it also increases the probability of failure and 

unexpected cobot motions. Therefore, a more clear-cut between autonomy and reactive compliance 

would potentially avoid uncertainty and relieve the human of burden at the same time. 
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Mixed-Initiative Compliance: Balancing Between the Cobot's and Human's Plans 
A cobot has a goal path or position and acts autonomously to fulfil the goal. When an operator exerts 

force on the cobot, the system assesses how autonomous it should be as opposed to compliant. In some 

cases, the switch between the two modes is clear-cut, while in other cases the trade-off is smooth. The 

trade-off can be done by adjusting the stiffness values in impedance control or by weighting the 

autonomous and compliant components to achieve a combined result. 

Table 2.3 Summary of key references in the User-Interface and Haptics subsections. 
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For example, consider the case where a cobot knows a predefined path while the human's intended 

path does not fully align with it. In such a case, the cobot must know when to favour its own path and 

when to switch to being compliant to the human, i.e., when to use its control torque input and when to 

use the human's applied control force. Li et al. solved this by adjusting the weights are adjusted to 

minimise the difference between the applied human force and the “optimal human force” given the 

current motion direction (Li et al., 2015). Briefly, when the applied human force matches the pseudo-

force applied in the direction of motion, the cobot relies more on its own controllers to maintain the 

direction of motion. However, when the human force changes and is not aligned with the current 

direction of motion, the cobot becomes compliant and relies more on the forces to move rather than on 

its torques. This is similar to an impedance controller with autonomously varying damping and stiffness. 

The proposed algorithm creates smoother compliant motion while relieving the human from the 

continuous needed effort to push the cobot. 

However, in an industrial scenario, an operator will perform similar compliant motions for numerous 

times. The algorithm can also incorporate a learning element that compiles observed motion patterns 

and seeks to reproduce them while also being flexible to deviate from learned paths according to the 

human's current plans. An example scenario is co-moving a heavy object from Zone A and performing 

a precise positioning in Zone B.When approaching the object of an uncertain position, the human would 

naturally lead the cobot since he/she is equipped with better perception skills that allow more precise 

positioning. Similarly, the human would tend to take the lead when precisely positioning the object in 

Zone B. However, moving between zones can be done by the cobot after being led a few times by the 

human. Rozo et al. implemented a “learning from demonstration” algorithm that learns cobot stiffness 
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from a set of kinaesthetic demonstrations (Rozo et al., 2016). The demonstrations are parametrized 

according to the position of objects, obstacles and the human and represented as a Gaussian Mixture 

Model (GMM). This algorithm proved more robust against unobserved positions and varying forces 

exerted by the human, as opposed to control algorithms with fixed stiffness. 

Agravante et al. combined reactive and proactive behaviours by relying on both haptic and visual 

inputs (Agravante et al., 2014). The task handled is co-lifting a table while keeping a ball on it. The 

impedance controller which relies on haptic information, i.e. the forces sensed from the human, provides 

compliant behaviour in all 6 DOF. The vision controller only controls 2 DOF (z and φx) such that the 

ball is “attracted” to the centre of the table. In the case of intent conflict, the impedance parameters are 

adjusted such that the cobot becomes more compliant and less stiff. Sheng et al. also merged proactive 

and reactive behaviours (Sheng et al., 2015). In the problem, a cobot has to grasp a table side (gross 

motion) and then co-lift it with a human such that it remains horizontal (fine motion). The cobot learns 

how to approach and grasp the table using LfD. When the cobot successfully holds the table, is uses an 

RL-based reactive controller to keep the table horizontal with the human. A proactive controller predicts 

the human's position (equal to the cobot’s required action) in future time steps using a Kalman filter 

and assuming constant acceleration. A behaviour gain controller then merges the suggested next-step 

action from the reactive and proactive controllers. The integrated algorithm combining the reactive and 

proactive performed better than just reactive algorithms. In conclusion, the trade-off degree of 

compliance provides a balance between minimising mental and physical load on the operator while also 

yielding predictable controllable cobot actions. 

Aside from the challenges of designing the communication channel between a human and a cobot, 

Unhelkar et al. tackled the issues related to decision making in communication (Unhelkar et al., 2017). 

That includes the question of if and when to communicate, which relates to the cost and benefit of 

communication and the estimation of the human's mental state. They present open questions of how to 

quantise the cost of communication and its benefit to decide whether/how communication should be 

used. Since communication required explicit involvement from the operator, it can be mentally and 

physically tiring in repetitive long industrial tasks. Incorporating flexible autonomy through 

optimisation or learning, which will be discussed below, is an alternative. 

2.3. Optimisation 
Optimality is a primary goal during industrial design processes (product, process and production line 

design) since it ultimately yields a “maximum” profit. The main challenge in HRC scenarios is to 

optimise around the human, i.e. modelling and incorporating the human in the cost function. This 

subsection reviews the works done on optimising different aspects to yield optimal and semi-optimal 

cobot action in different industrial HRC scenarios. 
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2.3.1. Modelling different human states 

Usually in repetitive non-collaborative industrial scenarios, processes are optimised with regard to 

minimising time, waste and maximising quality and profit. Obtained parameters from the optimisation 

process are incorporated in programs and control algorithms that dictate cobot actions. In HRC 

scenarios, however, the human is a central part of the cobot's surrounding, affecting its performance. 

Modelling the human is a challenge due to the high number of factors and their unpredictable variability. 

Researchers have attempted to quantify or estimate human factors such as trust, physical load and 

mental state using observable and measurable states. 

Since ergonomics is a main driver of implementing HRC, much has revolved around producing 

cobot behaviour that maximises humans’ physical comfort and health. Modelled human factors related 

to the human’s physical state include: 

- Static ergonomic posture according to REBA: Busch et al. optimised cobot pose during 

handover to achieve human ergonomic posture (Busch, Maeda, et al., 2017). They account 

for left/right handedness and avoid intimate body parts, all while keeping the human body 

in a safe comfortable posture according to the Rapid Entire Body Assessment (REBA).  

- Muscle fatigue: Peternel et al. measured human muscle fatigue in order to adjust cobot’s 

behaviours such that it handles more physical load and the human takes a more supervisory 

role (Peternel et al., 2016).  The cobot does not take on all the physically-loaded tasks from 

the start since it needs to learn them from the human first. Hu and Chen estimated dynamic 

human fatigue (varying with time as the human works more) per assembly action and 

accordingly distributes tasks between operator and cobot (B. Hu & Chen, 2017). 

- Human joint torques: A key work in optimising co-manipulation for ergonomics is done by 

Peternel et al. (Peternel et al., 2017), a follow-up work of (Kim et al., 2018). In both, the 

human's pose is optimised during co-manipulation or handover task, such that the torque on 

the human joints are minimised. Table .2 highlights the main differences between the two 

works. An extension of these works would be to merge the benefits of both by 

mathematically remodelling the problem. 

Table 2.4 Comparison between the works of Kim et al. (Kim et al., 2018) and Peternel et al. (Peternel et al., 2017) 

Kim et al. (Kim et al., 2018) 

Only semi-static forces applied on the human 

were accounted for. 

Peternel et al. (Peternel et al., 2017) 

Forces obtained from dynamic motion were also 

accounted for. 

The centre of pressure (CoP) was measured using 

a pressure sensor plate the human stands on. 

The CoP was estimated using the weight of held 

object. 
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The forces need to be applied on the human 

before they can be minimised. 

Can be used in co-manipulation scenarios. 

Any force applied on the human by the object or 

the cobot can be accounted for. 

The forces are predicted and optimised before 

applying them on the human. 

Can only be used in handover scenarios in which 

the human carries the entire load. 

Only vertical forces applied by weights of the 

object held are accounted for. 

Optimising for ergonomics also includes accounting for the human's mental model/state, including: 

- Human knowledge of task: A mental model includes the human's knowledge of a task which, 

if known, helps the cobot assist only where and when needed. Milliez et al. designed a task 

planner that enables a cobot to decide when to instruct the human through a task, when to 

do the task itself and when to monitor the human's performance (Milliez et al., 2016). Their 

planner accounts for the human's expertise which is based on successful task attempts. Such 

a planner is useful in industrial situations since the cobot can know how much interference 

in the task is required depending on operator experience. Devin and Alami designed a 

framework that estimates the human's mental states, i.e. the human's knowledge of the 

environment, plans, progress and goal, and triggers the cobot to only communicate with new 

information to the human when needed (Devin & Alami, 2016). In tasks where several goals 

are possible, Zhu et al. estimated the goal belief of the human and optimised their action 

sequence such that the wrong goal of the highest probability is eliminated (Zhu et al., 2017). 

Several other works studied the preference of humans for proactive (perform sub-tasks 

autonomously) versus reactive (perform tasks when triggered or asked for help) cobots 

(Baraglia et al., 2016; Schulz et al., 2017). 

- Trust in cobot: The mental state also includes a human's emotional state, i.e. stress/trust 

level. Sadrfaridpour and Wang controlled the cobot joint velocity while accounting for the 

estimated human trust level (Sadrfaridpour & Wang, 2018). The trust level is estimated 

based on the progress of the human along his path while working alongside the cobot. For 

instance, a human is moving unusually slowly is being wary and careful and thus assigned 

a low trust value. The trust value is then fed into a non-linear model predictive controller 

(NMPC) to obtain control inputs. Compared to a controller that only aims at synchronising 

the human and cobot’s motions, the trust-integrated NMPC resulted in a higher trust level 

and less perceived workload for the co-worker human. In scenarios where the human and 

the cobot co-lift a work piece, the human performs better with a cobot that moves along a 

path in a biological velocity pattern rather than a fixed velocity (Maurice et al., 2018). Huang 

et al. created an algorithm that slows down its motion to match the human's pace and task 

progress (Huang et al., 2015). It shows that this is preferable as opposed to a cobot that 
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executed its motion at a fixed pace and remains idle until the human catches up. Research 

was also done to produce legible cobot behaviour, which helps the human anticipate the 

cobot’s intentions and increases the trust level (Bodden et al., 2016; Busch et al., 2017). 

Accounting for the human's mental model/state might be regarded as an overshoot by industrial 

parties. Moreover, since the mental state/model is estimated rather than measured, this presents 

unnecessary uncertainties in manufacturing processes, especially when a task-level decision is being 

made. However, during a motion-level decisions, giving indications of the cobot's intent is desirable 

since it boosts the human's comfort and trust in the cobot. This can be done by moving in a legible path 

(Busch, Grizou, et al., 2017), by communicating through light signals (Tang et al., 2019), by displaying 

facial expressions (Reyes et al., 2019). 

2.3.2 Balancing between Human and Task Benefits 

However, as mentioned earlier, the goal of optimisation from the industry’s standpoint is not merely 

to ensure better comfort for the human operator. Task parameters should be selected to minimise loss 

and time. Besides accommodating the human operator, the industry is interested in optimising towards 

task efficiency, i.e. improving product quality and decreasing production time (which can be estimated 

(Pellegrinelli et al., 2016)). Faber et al. used CAD information to optimise assembly sequence to achieve 

low mental and physical load on the human, and minimise the number of cobot tool switches and 

human-cobot switches (Faber et al., 2017). Johannsmeier and Haddadin distributed assembly sub-tasks 

between a human and a cobot as to minimise workload or energy consumption per subtask 

(Johannsmeier & Haddadin, 2017). Hawkins et al. predicted human actions probabilistically to 

optimally enlist cobot help and minimise wait time (Hawkins et al., 2015). This probabilistic prediction 

is based on observations of the human's previous actions and observation reliability and trust. 

Table 2.5 Summary of key references in the Optimisation section. 
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The advantage of using optimisation is that it yields optimal cobot behaviours. However, an optimal 

behaviour may sometimes conflict with the human's plans or preferences. Game theory enables 

cooperation between agents (humans and cobots) such that mutual benefit is realised, which is why it 

has been utilised to produce rational cobot behaviour accommodating human interest. It combines 

intelligence and rationality in pursuing one’s goal while considering the plans and benefit of other 

agents. Gabler et al. modelled a human-cobot close proximity pick-and-place problem as a two-player 

game and uses a Nash Equilibrium to solve a cost function that accounts for travel effort, object 

reachability, and object preference as well as collision risk (Gabler et al., 2017). Li et al. used game 

theory to switch the cobot role from leading (assuming a predetermined path) to compliant (deflecting 

from the planned path) in a co-manipulation task, based on forces exerted by the human (Li et al., 2015). 

Gombolay et al. extended a dynamic scheduling algorithm, Tercio, to accommodate human preference, 

workload and situational awareness (Gombolay et al., 2017), applied in object fetching. 

Banziger et al. used a simulation tool in order to optimise task allocation in several collaborative 

tasks (Bänziger et al., 2018). The use of a simulation tool allows to calculate several human and task 

49 



 
 

       

         

      

            

              

 

           

            

      

         

  
                 

         

       

     

       

         

           

 

  

            

     

  

          

   

   

  

  

   

   

      

        

    

 

     

 

     

 

 

  

     

    

 

parameters such as ergonomics and production time. It also allows to measure these parameters in 

multiple task distributions, which enables finding the optimal task allocation. On the other hand, Yu et 

al. created a task scheduling algorithm for assembly tasks by considering assembly moves analogous to 

the AlphaGo Zero game (Yu et al., 2020). They used a similar algorithm based on reinforcement 

learning and a CNN to optimise the next move choice after designed “game rules” for an assembly 

“chessboard”. 

Table 2.5 shows a summary of the key references mentioned in this subsection, their advantages, 

and limitations. The prevalent limitation with optimisation is that optimisation models are manually 

designed. Human states, although capturable in a model, remain relatively simple. This gives rise to 

learning algorithms that allow the modelling of actions and human states automatically learnt from data. 

2.4. Learning 
Humans learn new tasks by observing them being done, by trying to do them and by asking questions 

and receiving feedback on performance. A human teacher serves to demonstrate a task, answer 

questions and provide feedback, all of which do not require programming skills. Researchers have 

attempted to enable a learner-teacher relationship between the cobot and the operator due to its 

naturalness and wide potential. In HRC, it is advisable to equip the cobot with learning capabilities 

since the operator might have to expand its skill set due to unforeseen working circumstances. 

Moreover, learning provides a balance between allowing the operator to make decisions first, then 

relieving him/her of the mental load as the cobot learns to operate autonomously. 

2.4.1. Learning from Demonstration 

LfD is a very popular programming method in HRC due to its apparent intuitiveness and 

convenience. Research focus has revolved around capturing demonstrations reliably and easily, and 

encoding accurate state-action information to reproduce the task robustly in a new environment. 

Table 2.6 Advantages and disadvantages of different demonstration recording techniques 

Method Advantages Disadvantages 

Human demonstration, e.g. 

(Lafleche et al., 2019): the 

human records him/herself 

doing the task. The cobot needs 

to extract object-goal relations 

or other useful information 

from the observed demo or 

relevant human joint paths to 

replicate. 

Easiest for the human to 

perform 

Not applicable to scenarios only 

done by the cobot (lifting heavy 

objects), detecting the human 

pose might be inaccurate, 

mapping the human pose to 

cobot pose is a challenge 

(correspondence problem) 
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Kinaesthetic teaching: the 

human holds the cobot and 

moves it as required by the task. 

The cobot is in compliant mode. 

Straight-forward to perform and 

setup since compliant mode is a 

built-in feature for market 

cobots 

Is difficult to perform with 

bulky or heavy cobots (e.g. 

UR10), may generate a shaky 

paths, not suitable for high 

precision tasks, not suitable 

when there are spatial 

constraints around the cobot 

Teleoperation, e.g. (Fischer et 

al., 2016): the cobot is 

controlled remotely using an 

external device and the path 

generated is recorded as the task 

demonstration. 

Might be intuitive and fun for 

some operators, can yield very 

smooth and precise paths 

depending on the device used, 

its sensitivity and calibration 

Setting up and calibrating the 

device is a lengthy process prior 

recording the demonstrations, 

causes discomfort for some 

operators who find cobot 

motion “unpredictable” 

User-Interface: the cobot is 

controlled using teaching 

pendent, whether by joint 

movement or end-effector 

movement. 

Some movements are easier 

such as gripper rotation, 

predictive and consistent 

Not instinctive, takes a long 

time, tedious, reaches a lot of 

singularities and needs resetting 

often 

Recording Demonstrations 
Recording or displaying demonstrations can be done in several ways, each with advantages and 

disadvantages (Table 2.6). Aside from human demonstrations, kinaesthetic teaching is the fastest way 

of recording a demonstration (Fischer et al., 2016) and is generally preferred by users (Akgun & 

Subramaman, 2011). Teleoperation is highly dependent on the device used and it would yield 

comparable results to kinaesthetic teaching depending on the design (Fischer et al., 2016). 

Other solutions might fall in a grey area between the aforementioned methods. When teaching by 

kinaesthetic demonstration, the human is often in an uncomfortable position moving the cobot and 

teaching the cobot's path causing unnecessary jerks. Also, only the trajectory knowledge is transferred 

and not stiffness information. Therefore, Yang et al. presented a hand bracket interface that allows a 

human to naturally and comfortably move a cobot (Yang et al., 2017). Moreover, electromyography 

(EMG) signals are measured from the human's muscles which are transferred to the cobot as stiffness 

information for the impedance control and as open/close commands for the gripper state control. 

However, with their current hardware design, the cobot must have two arms. Different methods can 

also be used concurrently in the same system, to learn different aspects of the task (Y. Gu et al., 2018). 

This depends on the demonstration encoding requirements and the pros and cons of the different 

methods. 

51 



 
 

  
             

         

    

               

       

          

        

            

     

     

                 

  

       

          

  

              

     

    

                

   

 

      

       

         

    

 

 

            

       

  

   

             

        

   

      

Encoding Information from Demonstrations 
LfD algorithms differ in what information they encode from the demonstrations, making it difficult 

to design one that caters for all expected variability in the environment and capture all requirements. 

Encodings can be motion-level or task-level. Motion-level encodings include: 

- Motion with variable force: Kramberger et al. used Dynamic Motion Primitives to learn the 

trajectory of scooping small parts from a container (Kramberger et al., 2020). They switched 

force controls which are learnt during the demonstration in order to ensure the successful 

motions when in contact with the container and to avoid getting jammed by the parts. 

- Motion with respect to obstacles: Ghalamzan and Ragaglia encoded obstacle presence from 

demonstrations, so that the reproduced cobot actions could avoid moving obstacles to reach 

a target location (Ghalamzan E. & Ragaglia, 2018). 

- Motion of two agents (humans or cobots) with respect to each other: Vogt et al. encoded 

correlation-based interaction meshes from one human-human demonstration where one 

human led whereas the other followed. Then, they reproduced cobot motion that matches 

the human follower's pose with respect to the human leader while avoiding the 

correspondence problem (Vogt et al., 2017). 

- Constrained position and path with respect to objects and tools: Perez-D'Arpino and Shah 

encoded required postural (relative to work pieces) and path constraints for multi-step tasks 

(Perez-D’Arpino & Shah, 2017). 

- Compliance level (Stiffness) as a function of path: In a co-manipulation task, Rozo et al. 

encoded compliance level (stiffness) given force and position inputs and could therefore 

reproduce co-manipulation behaviour with the right stiffness (Rozo et al., 2016). 

- Path dependent on position of landmarks: In task-parametrised LfD (Calinon, 2016), the 

path of the cobot is encoded with respect to multiple landmarks as opposed to one. The 

importance/relevance of these landmarks to the path is automatically calculated from the 

variance of the path between multiple demonstrations. Task parametrised LfD has been used 

to generate trajectories for assembly tasks (Duque et al., 2019). 

Task-level encodings include: 

- Encoding action preconditions and effects: Liang et al. encoded task-level information from 

kinaesthetic demonstrations (Liang et al., 2017). The task preconditions and effects were 

extracted and used to create action models. During run-time, pre-conditions were identified 

by the cobot and the suitable action model chosen to create the desired effect. 

- Encoding action sequence: Maeda et al. used demonstrations to encode different sequences 

of human-robot actions to accomplish the same task (Maeda et al., 2016). During runtime, 

a lookup table is used to identify the most likely sequence followed according to the human's 

observed actions to predict and provide the complimentary cobot actions. Also, Hamabe et 
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al. also generated the task finite state machine (FSM) from a set of demonstrations which 

was used during runtime to identify the required supportive action (Hamabe et al., 2015). 

Other algorithms encode both motion and task-level information. For example, Gu et al. created the 

Portable Assembly Demonstration (PAD) system that learns task-level and motion-level skills from 

human demonstrations and kinaesthetic teaching, respectively (Y. Gu et al., 2018). The system detects 

parts and tools and automatically recognises assembly states, actions and parts/tools involved, after 

observing the human demonstration. Kinaesthetic teaching was used to learn primitive actions that 

enabled these skills. Their system is robust to occlusions and environment changes and is able to handle 

complex assembly tasks such as screwing, wrenching and hammering. 

Time Aligning Demonstrations 
Time alignment is important when demonstrations and execution are not guaranteed to run exactly 

the same rate. Time alignment, such as dynamic time warping (DTW) (Vogt et al., 2017), is used to 

temporally match the demonstration with the sequence of states observed so far. However, problems 

might arise when the performance velocity differs drastically from demonstration to execution. 

Therefore, Maeda et al. rely on phase estimation instead which accommodates different velocities of 

human motion (Maeda et al., 2017). 

Expanding the Demonstration Set 
Another challenge in LfD is how to generate enough demonstrations showing the right variability, 

as doing so is time consuming. Moreover, how should one make sure that demonstrations are being 

generated usefully, and are not being redundant? Forbes et al. relied on a seed demonstration and then 

solicited a crowd to edit the demonstration using a GUI for all the scenarios this demonstration would 

fail in (Forbes et al., 2014). Luo et al. used on-line learning to expand the library of demonstrations 

when required (Luo et al., 2018). Arm reaching motions are encoded as a GMM library, and during run-

time, the partial trajectory is identified in the GMM. A GMR is used to predict the rest of it, allowing 

the prediction of reaching target. When a new reaching motion that does not resemble the existing GMM 

is recognised, the GMM library grows. Mohan and Bhat presented a growing, multi-modal memory 

framework that encodes diverse experiences of the cobot in HRC settings (Mohan & Bhat, 2018). It 

recalls past experiences in present context to plan future action. Their framework contains a perception 

system that stores object information as well as an action system that stores motion plans. The two 

systems interact together and with the Episodic Memory system that encodes experiences, infers goals 

and plans. 

LfD is a special case of supervised learning, in which a set of truths are given and learned from. 

Supervised learning can also be used to map between states and required actions. For example, in 

(Dumora et al., 2013), a Naive Bayes classifier was trained to output the direction of cobot compliant 

motion when given a vector of static human-applied forces on end effector. 
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2.4.2. Reinforcement Learning 

RL has been used to teach intelligent robots skills such as grasping objects of irregular shapes (S. 

Gu et al., 2017) and a UAV avoiding obstacles (Singla et al., 2021). Robots are left for extended periods 

of time training the RL policy. In some cases, (Levine et al., 2018), for grasping tasks, several robots 

are trained at the same time and knowledge is shared. In an industrial situation, such training time and 

resources might not be available. To combat the time limitation, demonstrations are incorporated in RL 

in order to facilitate and guide the learning process. Rajeswaran et al. used a human demonstration and 

RL to teach a robotic hand dexterous tasks, such as nail hammering (Rajeswaran et al., 2018). The 

demonstrations are used to initialise the RL policy, which facilitates convergence towards optimality. 

The demonstrations are also augmented in the loss function so that the converged policy maintains a 

similarity to them. In (Hangl, Dunjko et al., 2017), the cobot uses active learning to expand the 

applicability of a given basic behaviour to convert state A to state B, i.e. perform a certain task. In other 

words, given state C, the cobot autonomously explored a set of actions that would change it to state A 

so that the basic behaviour can be applied to convert to state B. Moreover, the cobot autonomously finds 

suitable perceptual actions that capture useful information about the environment given the task at hand. 

Their method was also integrated within a GUI that allows the user to easily program the initial basic 

behaviour (Hangl, Mennel et al., 2017). 

In HRC cases where a human is part of the cobot's environment (observed states) specifically, 

standard (or “vanilla”) RL is used since the operator cannot reasonably complete the numerous learning 

iterations with the cobot. In (Nikolaidis et al., 2015), cross-training (in which the human and the cobot 

switch roles during the training process to facilitate learning) is used to learn the reward function for 

the cobot's collaborative actions. Gu et al. used RL to collaboratively balance a table with a human. The 

reward, rather than being human feedback, is the change of slope of the table (Y. Gu et al., 2011). Sheng 

et al. added to that a proactive element to predict the human's intention and varies the table's slope 

accordingly (Sheng et al., 2015). 

Table 2.7 shows a summary of the key references mentioned in this subsection, their advantages and 

limitations. Learning-related program features provide autonomy, while enabling the operator to 

intuitively program the cobot via learning data. The cobot does not need continuous commanding from 

the operator yet behaves while showing awareness to the operator's presence and actions. Moreover, 

the operator can choose to alter the cobot's program by providing new training data, such as new 

demonstrations for the LfD algorithms. However, as aforementioned, since such algorithms are 

sensitive to the quality of data, not all data provided by an operator can yield desirable results. 

Moreover, since policies generated by such algorithms are usually non-deterministic and probabilistic, 

unexpected outlier results might occasionally be encountered. 
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2.5. Task Parametrised Gaussian Mixture Models 
LfD is the most promising way of teaching a cobot, since it does not require a large set of data to 

train, can capture a wide range of task dependencies (depending on the chosen LfD algorithm) and is 

relatively intuitive for operators to perform. Although the process of using LfD is intuitive, operators 

are still encouraged to understand the theory behind it, since there are many decisions that need to be 

taken by them that require knowledge of how LfD works. 

Task parametrised LfD is effective at capturing dependencies between different states in the 

environment, such as positions of objects and humans, and producing a cobot action accordingly. For 

Independent and Simultaneous scenarios, if objects have predetermined positions, then it is advisable 

to program the cobot by specifying fixed key points using built-in options in the cobot's teaching 

pendant. If positions of objects vary, TP-LfD can cater for this variance provided that the cobot is able 

to detect the positions of these objects. TP-LfD can even cater for position of the human's hand with 

respect to these objects. 

Table 2.7 Summary of key references in the Learning section. 
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2.5.1. Training 

Assume M demonstrations consisting of T data points each. Each data point �!,# is D dimensional, 

observed from a global frame of reference. The point dimensions depend on the task but popular options 

for dimensions are spatial coordinates, velocity, time step, and force values. Also, assume P task 

parameters, each being a frame of reference in space, defined by {�$,!, �$,!}, where p ∈ {1… P} and 

m ∈ {1… M}. �$,! is the position vector and �$,!is the rotation matrix of task parameter p in 

demonstration m. 

The D-dimensional points �# for all demonstrations are transformed from the global frame of 

reference to local coordinate frame of each frame of reference p, such that 

�#
$,! = �$,!6�# − �$,!7 (2.1) 

$ $,/ $,0A�# = ?�# , … , �# (2.2) 

The data points from all demonstrations are concatenated together in one vector to form �#
$. A TP-

GMM is trained to model all �#
$ for t ∈ {1… T}. For each parameter p, the GMM consists of K 

components that probabilistically cluster the demonstrations path points observed from said parameter. 

Each component is defined by {�$,%, Σ$,% } where �$,% and Σ$,%are the centre and the covariance matrix 

of the kth Gaussian for frame p. Moreover, a mixing coefficient �% is defined for each Gaussian k ∈ {1… 

K}. 
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The training of the TP-GMM is done using expectation-maximization (EM) algorithm to iteratively 

update the Gaussian component parameters until convergence. In the expectation step, the likelihood a 

point �#
$ belongs to each Gaussian component {�$,%, Σ$,% } in the GMM is calculated. In the 

maximisation step, the Gaussian components are recomputed to maximise the likelihoods computed in 

the previous step. 

E-step: find weights �#,% encoding the probability of a point �#
$ to belong to a cluster k. 

1" ∏$'( �45#
$|7$,",8$,"9�#,% = +

&

& (2.3) ∑)'( 1) ∏$'( 
$ |7$,),8$,)9�45* 

Where p ∈ {1… P} and P is the total number of parameters, k ∈ {1… K} and K is the total number 

of Gaussian clusters of means �$,%, covariance matrix Σ$,% and mixing coefficient �% . 

M-step: for each cluster k, update its mean �$,%, covariance matrix Σ$,% and mixing coefficient �% . 

∑#'( ;#,"�% = 
,

(2.4) 
< 

∑#'( ;#,"5#�$,% = ∑

, $ 

(2.5) ,
#'( ;#," 

∑#'( ;#,"(5# =7$,")(5# =7$,")
⊺

Σ$,% =
, $

,

$

(2.6) ∑#'( ;#," 

2.5.2. Reproducing 

The learnt model is then used to reproduce the path given new positions of task parameters, using a 

process known as task parametrised Gaussian Mixture Regression (TP-GMR). Firstly, the GMM from 

each parameter is transferred back from the local coordinate frame of parameter p to the global frame 

of reference. Then, a weighted multiplication is performed between the Gaussians of each parameter to 

obtain the final Gaussian �(�% , Σ%): 

@ ⊺7�(�% , Σ%) ∝ ∏$A/�6�$��,% + ��, �$Σ�,%�$ (2.7) 

Once the joint probabilities, i.e. K Gaussians components, are obtained, regression is performed to 

obtain a Gaussian for each time step. To perform regression, the demonstration point dimensions were 

decomposed into an input and outputs. The input dimension ℐ corresponded to the time step t dimension. 

The output dimensions � describe the path, such as end-effector position or velocity. The Gaussian 

components are decomposed into 

ℐ ℐ ℐ� 

= J�% Σ%�% �K , Σ% = J Σ%�ℐ � K (2.8) 
�% Σ% Σ%

Then, the conditional probability P(ξt O | ξt I) is calculated as follows: 
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B �T�6�#�|�#ℐ7 ~∑%A/ ℎ%6�#ℐ7� Q�̂%�6�#ℐ7, ΣS% (2.9) 

where 

�̂�6�#ℐ7 = �%� + Σ%�ℐΣ%ℐ
=/
6�#ℐ − �%ℐ7 (2.10) %

� � − Σ%�ℐΣ%ℐ
=/
Σ%ℐ�ΣS% = Σ% (2.11) 

1"�4C#ℐ|7"ℐ ,8"
ℐ9ℎ%6�#ℐ7 = + ℐ9 

(2.12) ∑"'( 1"�4C#
ℐ|7"ℐ ,8"

The conditional probability constitutes of �#� and Σ#�where the former is considered to be the 

reproduced path point. The TP-GMM and TP-GMR form the basis of the contributions presented in this 

thesis. 

2.6. Conclusion 
In summary, this chapter describes the various range of programming technologies researched to 

program cobot’s intuitively for flexible tasks. The cobot programming technologies are categorised into 

three features, that are communication, optimisation and learning features, and relevant research works 

on the defined features are reviewed in detail. Communication features enable a collaborative human 

operator to transfer intent or commands directly to a cobot, thus affecting its course of action to support 

collaboration. Optimisation features are algorithms developed by programmers on-line enabling a cobot 

to observe its collaborative operator and behave adaptively according to a pre-modelled optimised 

policy. Learning features allow a cobot to learn its own policy after receiving guidance from its 

collaborative operator. Learning from demonstration was predominantly of interest due to its combined 

potential of intuitive programming and flexible behaviour. In particular, more details were presented on 

task parametrised Gaussian Mixture Models as this project’s core algorithm. TP-GMM’s mathematical 

model was described in detail to further justify the research gaps and provide mathematical basis for 

chapter 3 and chapter 4. 
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Chapter 3: Visual Features as Task Parameters 
3.1. Introduction 
In this chapter, the first contribution in this thesis is presented. It includes a generic solution to the 

problem of identifying and detecting spatial task parameters for the task parametrized learning from 

demonstration algorithm. The developed solution filtered through generic visual features to identify 

ones that produce the closest path to the demonstration path. A simulation cobot arm was programmed 

to perform various industrial tasks using the generic developed algorithm. 

3.1.1. Background 
Task parameterized learning from demonstration (TP-LfD) algorithms model robot behaviour with 

respect to multiple task parameters. Instead of learning a single consistent behaviour from the 

demonstrations as in LfD, TP-LfD learns a behaviour dependant on environmental factors. 

In most cases, task parameters are the positions of objects/items in space, also called frames of 

reference or frames. These objects are relevant to the task, such as a tool the robot uses, a part the robot 

has to pick, etc. For example, in a simple pick-and-place task, the task parameters are the position and 

orientation (6D position) of the part to be picked and the 6D position of the container the part is dropped 

in. Assume a user records a few (4-6) demonstrations where s/he varies the 6D position of the part and 

the container and manually moves the robot such that part is picked and placed in the container. TP-

LfD learns the task such that if any of the part or the container moves, the robot’s path will adjust 

accordingly. When a human is collaborating with a cobot in a task, such as handing tools, the human’s 

hand also becomes a relevant “object” to the task. Therefore, one can also consider human hands to be 

one of the task parameters. 

3.1.2. Task Parameter Detection 

An object (and its 6D position) can be detected in a variety of ways. Classical techniques include 

motion capture and sticker markers. In motion capture, multiple prominent bulbs are placed on an object 

and easily detected and localised by a system of multiple cameras, such as in (Vogt et al., 2017). In 

stickers markers, a sticker with a prominent pattern is pasted on to the part and is detected and localised 

reliably by a 2D camera, such as in (Paxton et al., 2017; Perez-D’Arpino & Shah, 2017). However, 

these techniques are intrusive as they rely on extra hardware being placed on the objects of interest. 

Other non-intrusive object detection techniques involve image processing algorithms such as colour 

segmentation (Duque et al., 2019), contour matching (Rogowski & Skrobek, 2020) and cloud point 

matching (Y. Gu et al., 2018). However, the complexity of the shape and colour of industrial parts might 

render these algorithms non-reliable and difficult to implement. Some methods are designed based on 

machine learning techniques, such as support vector machine (SVM)-based classifiers, such as in 

(Dīnēshchandra Jōshī et al., 2020; Penumuru et al., 2020), and deep learning networks (Jia et al., 2020; 
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Park et al., 2020). These methods are reliable in detecting and localising objects in industrial scenes. 

However, they rely on a large amount of training data to function accurately, which introduces 

expensive processes of data collection and algorithm retuning for each new task. Figure 3.1 shows some 

examples of the object detection techniques previously mentioned. 

This item has been removed 
due to 3rd Party Copyright. 
The unabridged version of 

the thesis can be found in the 
Lanchester Library, Coventry 

University.

(a) (b) (c) 

Figure 3.1 Examples of object detection techniques: (a) using sticker markers (Perez-D’Arpino & Shah, 2017), (b) using 
Mask R-CNN (Jia et al., 2020), (c) using contour matching (Rogowski & Skrobek, 2020). 

In this chapter, we present an algorithm that detects and localises task parameters while fulfilling 

industrial requirements: non-intrusive, reliable and generic. 

3.1.3. Task Parameter Optimisation 
Task parameters are usually selected manually. This could lead to sub-optimality, namely if the user 

choses a task-irrelevant frame or choses two frames that are redundant. Irrelevant frames are frames 

that are randomly occurring and of no relevancy to the task. Redundant frames are defined as a set of 

frames belonging to the same rigid object, i.e. with fixed relative positions with each other. Due to their 

fixed relative position, redundant frames will have the same GMMs after training. Accounting for all 

redundant and irrelevant frames in TP-LfD degrades algorithm performance as the path becomes falsely 

biased. Ideally, there should be one frame per task-relevant object. 

To group redundant and eliminate irrelevant frames, Alizadeh et al. defined an importance score Ft,p 
for a frame p at time step (point along the demonstration path) t (Alizadeh & Karimi, 2018; Alizadeh 

& Malekzadeh, 2017), 

|%!,#�!,# = 
$%

$
| 
%| 
, (3.1) '∑&(% |%&,#

where P is the total number of frames and Σp,t is the covariance matrix of the Gaussian of frame p at 

time step t. The importance score is the determinant of the inverse of the covariance matrix of a frame 

p at time step t divided by the sum of determinants over all frames. That means for frames with high 

values in the covariance matrix, (high variability) the determinant of the inverse will be low, and hence 

the importance score will be low. The Gaussians are obtained by training a TP-GMM to model the set 

of demonstration paths. Frames with equal importance score were deemed redundant and only one of 
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them was used for path reproduction (Alizadeh & Karimi, 2018). However, in a real-life situation with 

slight frame position disturbances, even redundant frames will not have exactly equal importance 

scores. Therefore, an error threshold should be introduced to account for slight frame mis-localisations. 

Moreover, Alizadeh and Karimi’s algorithm necessitates the training of TP-GMM to obtain the 

covariance matrices before grouping redundant frames. However, with a large number of frames (more 

than ~50), the TP-GMM would fail to converge. Therefore, it is important that another algorithm is 

devised that groups redundant frames before training the TP-GMM. 

Alizadeh and Malekzadeh used the same importance score to eliminate irrelevant frames (Alizadeh 

& Malekzadeh, 2017). Frames with an importance score below a certain threshold are considered 

irrelevant and eliminated. However, choosing an appropriate threshold is tricky in the cases when some 

frames have subtle yet important effects on the path. Moreover, this method does not eliminate 

redundant frames in case some are missed by the algorithm presented in (Alizadeh & Karimi, 2018). 

Therefore, it is important that another algorithm is devised such that it relies on closed loop feedback 

to choose the relevant frames while optimising TP-GMM performance. 

Huang et al. used reinforcement learning to shift the position of frames until a task-specific cost 

function is minimised (Y. Huang et al., 2019). Moreover, they develop an automatic frame selection 

algorithm in which they identify which frames contribute most to minimising the cost function. They 

eliminate the frames that have a low influence on the learning which speeds up computation and 

improves performance. However, their approach does not tackle how to visually detect frames of 

reference, but rather they are specified as fixed positions with respect to the cobot’s end-effector. This 

eliminates cases in which the frames are intrinsically defined on non-static objects. 

The algorithm presented in this chapter achieves both goals: detecting and optimising task 

parameters. The algorithm is integrated in an end-to-end learning from demonstration system, called 

GenLfD, and validated in multiple industrial case studies. 

3.2. Procedure 
The GenLfD approach consists of two main procedures: training to generate a TP-GMM modelling 

the demonstration paths with respect to the frames of reference, and path reproduction based on TP-

GMR when presented with frames of reference in new positions. For the training process, there are 

several critical steps: 1) capturing demonstration images, 2) recording demonstration paths, 3) detecting 

frames of reference from the images of the recorded demonstrations, 4) grouping redundant frames, 5) 

generating TP-GMM, and 6) eliminating irrelevant frames. In the reproduction process, the main steps 

are: 1) recording a new setting, 2) detecting frames from the new image of the setting, 3) matching them 

with relevant frames from the demonstrations, and 4) regenerating a path using TP-GMR. Figure 3.2 

visualises the steps of the GenLfD algorithm. 
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Figure 3.2 Overview of the GenLfD algorithm 

3.2.1. Recording Demonstrations 

Each demonstration entails the image of a scene and a path that the cobot needs to perform the task. 

In this chapter, the images of the demonstrations are recorded in 2-D to simplify the computation 

complexity of the approach, i.e., the top view of objects located on a surface. To record the path, the 

user saves a series of waypoints and the path is interpolated in between them. The default total number 

of path points interpolated is 200. This is similar to kinaesthetic teaching. 

The path recorded is 5 dimensional: time step t, x-y-z coordinates and gripper state g. The x-y-z 

coordinates are measured with respect to a global frame of reference that can be randomly chosen. 

Gripper state g can be either 0 for open gripper or 1 for closed gripper. It is assumed that the cobot 

moves at constant speed. Therefore, the time step dimension t is set to be uniformly increasing 

throughout the path from 0.01 to 2. 

Figure 3.3 shows an example of a recorded demonstration for a pick-and-place task. Four waypoints 

are recorded by the user: 1) a pre-grasping point right about the cube to be grasped with an open gripper, 

2) a grasping point where the object is in the gripper with a closed gripper, 3) an intermediate point 

between the pick and place locations with a closed gripper, and 4) a placing point above the container 

with an open gripper. Table 3.1 shows the data recorded for these 4 way points. The path is interpolated 

as a straight line between the way points. Figure 3.4 shows a 2D projection of the demonstration path 

on the demonstration image. 
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Point 1 
Point 2 

Point 4 
Point 3 

Figure 3.3 An example of recorded way points for a pick-and-place task as well as the interpolated path between the points. 

Table 3.1 An example of the recorded data for the way point obtained from the simulation scene. 

Dimension 

Point 

t x y z g 

Point 1 0.01 0.0259 2.5444 0.725 0 

Point 2 0.21 0.0243 2.5439 0.6750 1 

Point 3 1.15 -0.0897 2.6257 0.85 1 

Point 4 2.00 -0.255 2.6999 0.75 0 

Figure 3.4 The 2D projection of the demonstration paths on the demonstration images for all 5 demonstrations. 
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In this algorithm, the number of demonstrations recorded is set to a default value of 5. The user is 

required to vary the positions of objects across demonstrations. Variations should cover as wide a range 

as possibly allowed in the task environment. This should be an educated decision done by the user who 

knows the task or object constraints. This variety helps the cobot learn a generalised model robust to 

changes in position of objects. Figure 3.4 shows examples of 5 recorded demonstration images and 

paths with varied object positions. 

3.2.2. Detecting Visual Features 

In an effort to simplify the process of frame detection for GenLfD, visual features are used to identify 

the frames of reference (task parameters). This presents a generic solution that can work for a wide 

range of objects without tweaking. Moreover, only a minimal setup of a 2D camera is required. Two 

types of visual features are detected: Speeded Up Robust Features (SURF) and hand features. 

SURF features: Interest points are detected based on geometric information, such as corners, T-

junctions and blobs. Such interest points are widely available in objects, which makes the GenLfD 

applicable with a wide range of object shapes and textures. 

Descriptor vectors are calculated describing each interest point. The vectors are scale and rotation 

invariant which allows them to be matched robustly from different images (Bay et al., 2006). SURF 

features can be matched across different demonstration images even when objects vary orientation on 

the table. 

Moreover, SURF features provide a balance between detection time and number of features retrieved 

(Tareen & Saleem, 2018) compared to other feature detectors. Therefore, enough features can be 

retrieved from task-relevant objects that serve as task parameters for the TP-GMM training. Figure 3.5 

shows the detected SURF features from the demonstration images. 

However, using SURF features presents a few limitations. Firstly, interest points are detected from 

the intensity values of pixels rather than the RGB value. That means, the feature detector does not take 

into account colour information. Therefore, identical objects of different colours cannot be 

differentiated using SURF features. Moreover, SURF features are not robust to reflective surfaces or 

shadows. This might require speciality industrial anti-shadow lighting to be used, depending on the 

texture of the objects involved. 
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Figure 3.5 Detected SURF features from the demonstration images of the pick-and-place task. 

Matching SURF features is done using exhaustive nearest neighbour search method (Muja & Lowe, 

2009). Features that are matched across all the images of the demonstrations are kept. If a feature is not 

found in at least one of the images, it is eliminated since TP-GMM can only be trained if a feature is 

found in all demonstration images. Figure 3.6 shows the matched features between the demonstration 

images of the pick-and-place task. The total number of matched features is defined as P. 
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Figure 3.6 Matched SURF features from the demonstration images of the pick-and-place task. 

Once a SURF feature is matched in all demonstration images, it is saved as a task parameter to be 

used in training TP-GMM. Each task parameter p is characterised by a pixel position vector bp,m={x,y}p,m 

and an orientation αp,m, where m ∈	 ℕ{1,…,M}, the total number of the demonstration images and p ∈	 
ℕ{1,…,P} is the total number of	 task	 parameters (Figure 3.7). From the orientation, a 2x2 rotation 

matrix Ap,m is calculated. 

x 

y 
b1,1 

p1,1 

Figure 3.7 an example of task parameter 1 from demonstration 1 and its pixel position vector. 

The units of the demonstration path’s x-y-z coordinates are real-life measurement units, e.g. 

centimetres, metres, etc. Therefore, the task parameter position units are converted from pixels to real-

life units based on the position of the camera with respect to the global reference frame. Moreover, the 

orientation matrix is also adjusted to be consistent with the real-life orientation convention. 
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To convert the x-y-z coordinates of frames of reference from pixel positions to real-life coordinates, 

the following steps are followed: 

1. Camera calibration parameters are obtained: 

a. {xcam_pos ,ycam_pos, zcam_pos} be the coordinates of the camera in space with respect to a 

randomly chosen global reference frame, on the surface of the task table 

b. {resolx, resoly} be the image pixel resolution in the direction of {x, y} as defined in 

space 

c. αproj be the perspective angle of the camera lens 

2. The real length of the surface displayed in the image is calculated as such: 

����' = 2 × z()*_#,- × tan(�#.,//2) (3.2) 

× 
.1-,2)����0 = ����' (3.3) 
.1-,2* 

3. Each frame’s position bp,m={x,y}p,m is converted from pixel to real-life coordinates: 

3+,-./*4'!,15�#,* = ����' × 0 + �()*_#,- (3.4) 
.1-,2* 

6
+,-./)40!,170�#,* = ����0 × 
.1-,2) 

+ �()*_#,- (3.5) 

Hand features: hand features are detected using a pre-trained YOLOv3 neural network (Redmon & 

Farhadi, 2018). YOLOv3 is a real-time deep convolutional neural network that identifies a wide range 

of pre-trained objects in images/videos. YOLOv3 surveys the image as a whole before identifying 

classes in their bounding boxes while accounting for the full image context. A hand detection is a square 

bounding box on the 2D image. If multiple hands are detected in a demonstration image, there is no 

differentiating factor between them except a detection confidence score. Matching hand features across 

demonstration images is not possible. Therefore, the hand of the highest confidence score from each 

demonstration image is considered and the rest of the hand features are ignored. This is an acceptable 

assumption since it is assumed that the cobot is only collaborating with one other human operator. 

Moreover, if one of the operator hands is mistakenly detected instead of the other while accidentally in 

the image frame, the operator is encouraged to remove his hand from the camera’s field of view. 

However, if both of the operator’s hands are present purposefully, then it is assumed they are both 

operating on the same object and hence either of them is okay to detect. Alternatively, in the future, we 

can add an option in the programming GUI for the operator to choose whether the right-most hand or 

the left-most hand in the image is to be detected. 

Moreover, the hand bounding box is not oriented. Therefore, the orientation of the hand is considered 

to be equal in all the images and is set to zero degrees. This is an acceptable assumption since it is likely 

that the human operator stands in a consistent direction with respect to the cobot. In the handover task 
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shown in Figure 3.8, the hand is detected and then combined with the SURF features to form the total 

set of task parameters. 

Demonstration image 

Detected hand 

All task 
parameters 

SURF features 

Figure 3.8 In a handover task, the robot is going to hand the circuit board on the table to its human partner. The hand 
features are detected separately using YOLOv3 and then combined with the SURF features to form the total set of task 

parameters. 

3.2.3. Grouping Redundant Frames 
Redundant frames are frames that belong to the same rigid object. Due to their fixed relative position 

with respect to each other, the obtained GMM for each frame are identical. When reproducing a path 

using the GMMs of all redundant frames, the path will be falsely biased towards the largest group of 

redundant frames. Therefore, redundant frames must be identified and grouped together as one object 

and only one frame should be used in the TP-GMM and TP-GMR algorithms. This one frame from the 

object is called the lead frame and is chosen based on the highest frame detection confidence value (a 

parameter returned by the SURF detector algorithm). 

Redundant frames are identified based on their relative positions with respect to each other, 

following these steps: 

1. The distance djp,m and relative orientation αjp,m between two frames j and p in a demonstration 

m are calculated. 

�/# = {�/#,* ∀� ∈ ℕ{1,… ,�} ���ℎ �ℎ�� �/#,* = T(�/,* − �#,*)8 + (�/,* − �#,*)8 (3.6) 

�/# = {�/#,* ∀� ∈ ℕ{1,… ,�} ���ℎ �ℎ�� �/#,* = (�/,* − �#,*) (3.7) 
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2. The standard deviation σ(djp) and the mean μ(djp) of the distance d between frames j and p 

across all demonstrations are calculated. 
9 :�W�/#X = ∑*;9 �/#,* (3.8) 
: 

8
:[∑*;9 \�/#,* − �W�/#X] ^�W�/#X = (3.9) � 

3. The standard deviation σ(αjp) and the mean μ(αjp) of the relative orientation α between frames 

j and k across all demonstrations are calculated. 
9 :�W�/#X = ∑*;9 �/#,* (3.10) 
: 

8
:[∑*;9 \�/#,* − �W�/#X] ^�W�/#X = (3.11) � 

4. If the standard deviation divided by the mean, σ(djk)/μ(djk) and σ(αjk)/μ(αjk) are both below a 

certain threshold ε (see Equation 4), the frames are deemed redundant. 

�� 
<=>23? 

@=)23? 
< � (3.12) 

@=>23? 
< � ∩ 

<=)23? 

5. A P x P redundancy matrix Redun is defined to represent the redundancy relationship (which 

two frames are redundant) between frames, where P is the total number of frames. If frames 

j and k are redundant, Redunjk is set to 1. 

�ℎ�� �����/A = �����A/ = 1 (3.13) 

6. When the matrix is completed, frames that are redundant are grouped together into one 

object. From each object, the frame with the highest detection confidence value (a score 

returned by the SURF detection algorithm) is set to be the lead frame. The lead frame will 

be used in training the TP-GMM. 

7. If the total number of obtained lead frames is more than the maximum number of lead frames 

allows, the threshold is increased by an increment and steps 4 to 7 are repeated again. 

8. If the total number of obtained lead frames is less than the maximum number of lead frames 

allows, the process is complete. 

The maximum number of lead frames allowed is set to be 25. This number is a generous estimation 

of the number of objects in a scene. The threshold ε is initialised as 0.05 and increased by increments 

of 0.01. Figure 3.9 shows that as the threshold ε is increased, the number of lead frames decreases. 
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ε = 0.05 ε = 0.1 ε = 0.2 

Figure 3.9 As threshold ε increases, the total number of lead frames obtained decreases. 

Figure 3.10 shows the grouped redundant frames in the pick-and-place task. The frames of the 

same colour belong to the same object. There are multiple recognizable errors: 

1. Error 1: The red frame is slightly rotated compared to its matches in the other demonstrations. 

Therefore, the algorithm failed to detect that it belongs to the same object, i.e. the container, as 

the yellow frame. 

2. Error 2: The dark blue frame is mistakenly matched on a different corner of the cube in the 

second demonstration. Therefore, the algorithm failed to detect that it belongs to the same 

object, i.e. the cube, as the light blue frame. 

3. Error 3: The orange frame belonging to the table failed to be grouped with the table object 

frames (in blue) since it is an outlier in the last demonstration, i.e. it was falsely detected on the 

container. 

error 1 

error 2 

error 3 

Figure 3.10 The grouped redundant frames in the pick-and-place task and the three potential types of errors encountered. 

However, such errors do not affect the final result of the algorithm since any erroneous frames will 

be eliminated by the reinforcement learning algorithm. 
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3.2.4. TP-GMM Training 

After grouping redundant frames, effectively reducing the total number of frames, the TP-GMM is 

trained. More details about TP-GMM can be found in chapter 2. 

It is important to note that the frames of reference are 2-dimensional (x, y), whereas the path data is 

5-dimensional (t, x, y, z, g). Therefore, when transforming the path data from the general frame of 

reference to each parameter’s frame of reference, only the x-y coordinates are changed whereas the 

other dimensions remain untransformed. The time t and gripper state g dimensions do not vary with 

respect to each of the frames, since they are non-spatial dimensions. It is assumed that the z dimension 

also does not vary since the objects are placed on a table, so their height is constant across the 

demonstrations. This is a safe assumption since it is common for industrial tasks to involve table-based 

objects. However, it cases where objects do vary height and the z dimension is not fixed, then it needs 

to be detected using a depth sensor along with the z dimension of task parameters. From the TP-GMM 

training, we obtain a GMM modelling the path data with respect to each frame. Figure 3.11 shows an 

example of the demonstration paths with respect to p1 which is associated with the cube in the pick-

and-place task. Moreover, Figure 3.11 shows the GMM obtained modelling the path points with respect 

to p1, which lies on the cube. As can be seen in Figure 3.11, the GMM constitutes of four Gaussian 

components, one of which is very small and close to p1. This figure shows an example of the result of 

modelling path points with Gaussian distributions. 

p 

Figure 3.11 The paths with respect to p1 as well as the GMM obtained modelling these paths. 

These GMMs are used to reproduce the paths in new situations where the frames vary positions. 

However, some frames might be identified as orientation-less, which are frames whose orientation does 

not affect the functionality of the task paths. In that case, the path points are modelled as ring GMMs. 

Figure 3.12 shows the ring Gaussian modelling of the path points with respect to p1, which is identified 

as an orientation-less frame. 
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Figure 3.12 The ring GMM modelling for p1, which is identified as an orientation-less frame. 

3.2.5. Removing Irrelevant Frames 

Irrelevant frames are frames that are not related to the path’s function. For example, when detecting 

SURF features in an image, some of the features might be extracted from the background, from noise 

or from useless clutter. The performance of the TP-GMR is highly dependent on the set of frames given. 

If any of the frames are task-irrelevant, the performance of TP-GMRwill deteriorate and the reproduced 

path might be unsatisfactory. Therefore, a reinforcement learning-based algorithm is designed to 

enhance the reproduced path by optimising the choice of frames used. Reinforcement learning enables 

finding the optimal frames, from a discrete set, without performing exhaustive search and while 

leveraging experience and previous results. Given the expected number of relevant frames, set to a 

default of nbRelev = 2, the algorithm identifies a set of nbRelev frames that produce the best path 

reproduction. The reinforcement learning problem is formulated as follows: 

State: The state of the environment is the reproduced path generated in each iteration of the algorithm 

Action: The action set is the various frame combinations that can be chosen to reproduce the path 

Model: The environmental model is the GMMs obtained from training the TP-GMM since they provide 

a mapping between the chosen frames and the reproduced path 

Reward: The reward r is a function that assesses how close the reproduced path is to the demonstration 

path (ground truth) 

Policy: The policy π is a function that describes the probability of a frame being used in the next path 

reproduction, based on the previous performance of each frame 

The reinforcement learning algorithm is performed in the following steps: 

1. Each lead frame p is given a relevancy probability, probRelevi that signifies how likely it is 

that a frame is relevant to the task, i.e. the probability that it should be used to reproduce the 

path. The goal of this algorithm is to maximise the values of probRelevi (policy) for relevant 

frames (action set) such that the generated path (state) is the most similar to the 
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demonstration path (maximum reward). Initially, the probRelevs are assigned equal values 

summing up to 1. Therefore, given P is the total number of lead frames, 

���������# = 1k� (3.14) 

2. The algorithm is trained over iterTot number of iterations. The value of iterTot is set to a 

default value of 10PxnbRelev. In each iteration iter, a disturbance ΔprobReleviter to the 

relevancy probability is introduced as part of the exploration tactic in reinforcement 

learning. This results in temporary relevancy probability λprobRelevs that are used as the 

policy π in iteration iter. The λprobRelev for all lead frames sum up to 1. Given rand is a 

random number between 0 and 1, 

����������B!1. = W����# − ���������X × 0.05 (3.15) 

⁄����������B!1. = (��������� + ����������B!1.) ∑(��������� + ����������B!1.) (3.16) 

3. In each iteration iter, a random demonstration m is chosen. The nbRelev lead frames to be 

used in path reproduction, i.e. action to be performed, is based on the values of λprobRelev, 

i.e. the policy. The nbRelev frames of maximum λprobRelev are used to reproduce the path 

in demonstration m. Given the lead frames with maximum probRelev, the path, i.e. the state, 

is reproduced using the model, i.e. the GMMs or ring GMMs of these frames. For example, 

if the number of relevant frames is 2, then the 2 lead frames with the highest value of 

λprobRelev at a certain iteration iter are used in TP-GMR. 

4. Once a path, i.e. the state, is generated, a cost is calculated as the average of the Euclidean 

distance between the points of the reproduced path and the demonstration path for 

demonstration m. The cost measures the similarity between the reproduced path and the 

demonstration path, as a means of assessing the quality of the reproduced path and the policy 

at iter. Given that T is the total number of points in a path, (xt, yt) and (Xt,m, Yt,m) are the x-y 

coordinates of the path point at time step t on the reproduced path and demonstration m’s 

path, respectively, 

9����B!1. = ∑C!;9 r(�! − �!,*)8 + (�! − �!,*)8 (3.17) 
C 

5. For every iterPeriod number of iterations, the costs are normalised between 0 and 1. The 

value of iterPeriod is set to a default of P. Then, the reward r is calculated using the 

normalised costs, such that, 

�B!1. = �������(−5 × ����B!1.) (3.18) 

6. For every iterPeriod number of iterations, the value of probRelev is updated based on the 

rewards obtained from the different disturbances ΔprobRelev. Based on the exploitation 

tactic in reinforcement learning, the policy probRelev is shifted towards the values of 
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λprobRelev that yielded higher reward values in the last iterPeriod set of iterations. The 

value of probRelev slowly converges to the lead frames obtaining to highest reward value, 

i.e. the relevant lead frames. Figure 3.13 shows the decreasing value of the normalised cost 

as well as the increasing value of the reward obtained while optimising the pick-and-place 

tasks. 

��������� = ��������� + ∑B!1. �B!1. × ����������B!1. (3.19) 

Reward 
Cost 

Figure 3.13 The value of the reward and normalised cost as a function of the number of iteration periods for training the 
pick-and-place task. 

It is expected that the path reproduced using the relevant frames identified will be more similar to 

the demonstration path than the path reproduced using all lead frames. Figure 3.14 shows the difference 

between the demonstration path (green), the paths reproduced using the relevant frames identified 

(white) and that using all lead frames (red). 

Relevant 
frames 

Reproduced 
path 

Reproduced 
path 

Demonstration 

Figure 3.14 The demonstration path (green) and the paths reproduced using the relevant frames identified (white) and that 
using all lead frames (red). 

3.2.6. Path Reproduction 

After determining which frames are relevant amongst the lead frames, the cobot can apply TP-GMR 

to reproduce the path in a new scenario. The reproduction process is as follows: 
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1. An image is captured in the new setting, i.e. similar images to those in the demonstrations 

but with objects varying positions. 

2. Visual features (SURF and hand features) are extracted from the new image. Figure 3.15 

shows the SURF features detected from the new image. 

3. The visual features in the new image are matched with the relevant frames from the 

demonstration images. This is done to identify the new locations in which the relevant 

frames are in the new image. Figure 3.15 shows the relevant frames successfully detected in 

the new image. 

4. The GMMs or ring GMMs of the relevant frames are used to reproduce the path in the new 

image, using TP-GMR. More technical details on TP-GMR are found in chapter 2. Since the 

frames in this pick-and-place task are orientation-less, an adjusted TP-GMR algorithm is 

performed. Figure 3.15 shows the reproduced path in the new image successfully 

accomplishing the pick-and-place task. 

All SURF features 

Relevant 
features 

Reproduced 
path 

Figure 3.15 A visualisation of the steps performed to reproduce the task path in an image of a new setting. 

3.3. Results 

3.3.1. Varying number of lead frames 

In this subsection, the performance of the reinforcement learning algorithm is investigated as the 

number of lead frames are varied. The purpose of this investigation is to test the robustness of the 

algorithm against a higher number of irrelevant frames. The experiment was performed on the synthetic 

data provided by Calinon (Calinon, 2016). Figure 3.16 show the four demonstrations provided of a path 

going from one frame to another as well as the path reproduction. One of the frames varies position 

across demonstrations. 
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Original demonstrations 

Original reproductions 

 
Figure 3.16 Demonstration data provided by Calinon (Calinon, 2016). 

Irrelevant frames where added randomly to the original demonstrations such that the total number 

of lead frames was varied between 5 and 35 in increments of 5. Figure 3.17 shows the demonstrations 

with the concatenated 33 extra frames as well as the path reproductions.  

Demonstrations with irrelevant frames 

Reproductions with irrelevant frames 

 

Figure 3.17 Demonstration data and reproduction paths with the additional 33 irrelevant frames. 

Table 3.2 Success rate of reinforcement learning algorithm as a function of the number of lead frames. 

Number of lead frames Success rate (%) 

5 85 

10 90 

15 100 

20 100 

25 90 

30 95 

35 100 
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The reinforcement learning algorithm was run 20 times on each number of lead frames. The 

reinforcement learning algorithm had to identify the 2 relevant frames. Table 3.2 shows the success rate 

for each number of lead frames. 

The results show that the algorithm is capable of handling a large numbers of lead frames, i.e. scenes 

of high complexity with various clutter. The algorithm is robust and its performance is independent of 

the number of lead frames. That is mainly due to the fact that the parameters of the reinforcement 

learning algorithm are parametrized with respect to the number of lead frames. Therefore, when the 

number of lead frames varies, the parameters adjust in order to maintain a good performance of the 

algorithm. For example, the number of iterations in every period is equal to the number of lead frames 

and the total number of iterations is equal to the number of lead frames multiplied by the number of 

relevant frames multiplied by 10. 

3.3.2. Simulation Results 

To assess the results of the algorithm in chapter 3, industrial tasks were designed such that the 

relevant frames are oriented. This is done by maintaining a consistent orientation of relevant objects 

with a portion of the task path. The simulation scenes were built in CoppeliaSim EDU. The following 

tasks were tested: 

Task 1 - Sorting: Given two circuit boards and two containers, the robot task is to pick the smaller 

circuit board and place it in the green container. The containers are in a fixed positions where as the 

circuit boards vary position, but not orientation. Task 1 shows that GenLfD can be used to program 

conditional industrial operations such as sorting. If two pick-and-place tasks are learnt, GenLfD is 

capable of identifying which task corresponds to which object by identifying the visual features of that 

object in an image. 

Task 2 - Handover: The cobot needs to pick up an object, in this case a circuit board, and hand it to 

a human hand. Both the hand and the circuit board vary positions. Task 2 shows that GenLfD can 

program tasks involving human operators such as simultaneous or supportive tasks, defined in chapter 

1. 

Task 3 - Glue book spine: Given a book on a table, the cobot is required to apply glue to the book 

spine in a straight line. This is a task that could aid an operator before joining a book with a hard cover. 

The book and its associated hard cover vary positions on the table. 

Task 4 - Pick-and-place: The robot is required to pick an object, a cube, and place it in a box. Both 

the cube and the box vary positions on a table. This could also be analogous to peg-in-hole or assembly 

tasks. 
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Six demonstrations are recorded for each task where the objects are in variable positions. Five of 

these demonstrations are used for training, and one of them is used for validation. The following 

parameters were set as defaults during training and were not changed between tasks: 

- Number of demonstrations M = 5 

- Number of Gaussian components K = 4 

- Number of relevant frames nbRelev = 2 

Figure 3.18 shows the results on the four different tasks in the various stages of the algorithm. The 

first row shows the grouped redundant frames in the validation image of each task. The frames of the 

same colour belong to the same object. It can be observed that even though some frames belong to the 

same object, they sometimes failed to be identified as redundant, such as in the circuit boards in Task 

1, 2 and 4 and the book in Task 3. That is due to the book’s complex design and some erroneous frame 

mislocalisation. This does not pose a problem in the results since the reinforcement learning algorithm 

will filter through the frames and choose the ones with the least mislocalisation error. 

The second row in Figure 3.18 shows the result of training the TP-GMM and reproducing the path 

(in red) using all the lead frames. It can be observed that the reproduced path did not always achieve 

the goal of the demonstration path (in green). For example, in Task 1, the reproduced path failed to start 

from the centre of the circuit board. In Task 2, the reproduced path failed to reach the hand of the user. 

In Task 3, the reproduced path did not trace the book’s spine but was rather offset. In Task 4, the 

reproduced path failed to reach the box. This error is due to the use of irrelevant and redundant frames 

in the TP-GMR. However, this error does not pose a problem in the final results since the reinforcement 

learning algorithm will eliminate the irrelevant frames. 

The third row in Figure 3.18 shows the results of the reinforcement learning algorithm. In all cases, 

the relevant frames were successfully identified. An improvement in the reproduced path using the 

relevant frames only (in white) is noticed compared to the reproduced path using all lead frames (in 

red). For example, in Task 1, the white path successfully starts from the circuit board. In Task 2, the 

white path is slightly closer to the hand even though it still did not fully reach the final path destination. 

In Task 3, the white path successfully traces the book’s spine very similar to the demonstration path (in 

green). In Task 4, the white path successfully reaches the box. 
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Figure 3.18 The results on the four tasks, at the different stages of the algorithm. 

Table 3.3 Distances between the reproduced paths and the demonstration path. 

Task #$$ �!"!#$ %&$�!"!#$ #$$ �'!#%! %&$�'!#%! )22 �1E> .12�1E>

Task 1 0.0381 0.0235 0.0208 0.0062 0.0268 0.0286 

Task 2 0.0250 0.0236 0.0049 0.0043 0.0838 0.0688 

Task 3 0.0238 0.0016 0.302 0.0017 0.0147 0.0020 

Task 4 0.0344 0.0124 0.0064 0.0035 0.0846 0.0285 

Table 3.3 shows the distances between the reproduced paths and the demonstration path for all four 
)22 tasks. �!,!)2 is the average distance between all the points on the reproduced path using all lead frames 

.12and the demonstration path. �!,!)2 is the distance between all the points on the reproduced path using 
)22 relevant frames and the demonstration path. �-!).! is the distance between the first point on the 

.12reproduced path using all lead frames and the demonstration path. �-!).! is the distance the first point 
)22 on the reproduced path using relevant frames and the demonstration path. �1E> is the distance between 

the last point on the reproduced path using all lead frames and the demonstration path. 
.12 is the distance the last point on the reproduced path using relevant frames and the demonstration �1E>
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path. The results show that overall the reproduced path using relevant frames is closer, i.e. has less value 

of d than the reproduced paths using all lead frames. 

Moreover, Task 1, 2, 3 and 4 were run a 100 times each with the objects varying in positions 

randomly. The reproduced paths were surveyed manually and two different errors were identified. The 

percentage of occurrence of each type of error is shown in Table 3.3. 

- Error 1 - Mis-locating a frame; when a frame is falsely detected in a wrong location. This 

error could be common in object with symmetries or repetitive patterns. 

- Error 2 - Unsatisfactory TP-GMR; when the path reproduced using TP-GMR does not fulfil 

the task requirements e.g. the destination is not reached. This is due to the limitations of the 

TP-GMR and could be improved using El Zaatari et al. (El Zaatari et al., 2021) or the works 

of Sena et al. (Sena et al., 2019). 

Table 3.4 Percentage of occurrence of the different error types in each task. 

Task 1 Task 2 Task 3 Task 4 

Error 1 0 6% 3% 0 

Error 2 50% 12% 16% 40% 

Since the hand in Task 2 is synthetic (simulation, not real), that decreased the detection rate of the 

YOLOv3 algorithm cause Error 1 to appear as due to the high complexity of the object, i.e. the book, 

in Task 3, one of the frames was mis-located 3% of the time (Figure 3.19 (c)). Error 2 occurred more 

often in all 3 tasks. In Task 1, the reproduced path failed to start from the circuit board. This occurred 

when the circuit board is more offset from the centre of the workspace (Figure 3.19 (a)). In Task 2, the 

path failed to reach the hand when the ox and hand where too far away from each other (Figure 3.19 

(b)). In Task 4, the reproduced path failed to reach the inside of the box which counted as an Error 2 

(Figure 3.19 (e)). This occurred when the box was either too close or too far from the cube. In both of 

these cases, the error is caused by the performance of the TP-GMR. This encouraged the work in chapter 

4, which was to adjust the probability distribution used in TP-GMR to better accommodate such tasks. 

In Task 3, the reproduced path deviated outside the book’s outline (Figure 3.19 (d)). This was because 

one of the frames was detected at an offset angle. 
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Figure 3.19 Examples of the most common errors in the path reproductions: (a) In Task 1, if the frame belonging to the 
small circuit board is falsely detected to be on the table, the path will not reach the board; (b) In Task 2, if the hand is too 
far in the operation space, the reproduced path might fail to reach it; (c) In Task 3, if one of the frames belonging to the 
book is not detected in its location, the reproduced path will be faulty; (d) In Task 3, if one of the frames is detected at a 

wrong orientation, the reproduced path will be rotated; (e) In Task 4, when the box is too close to the cube and not facing it 
from the side, the path will twist. 

Finally, when running the algorithm on new images, the average time it took to identify the location 

of the relevant task parameters and reproduce the path was around 0.55s. The calculations were done 

on MATLAB on a MacBook Air M1 chip that has a 7-core GPU. Depending on the task, such 

processing time has the potential to enable real-time performance. 

3.4. Conclusion 
The task parameters chosen play a very important role in the quality of the reproduced path by task 

parametrized Gaussian mixture models (TP-GMM) and regression (TP-GMR). This chapter presents a 

novel algorithm, GenLfD, which automatically detects and identifies the optimal task parameters for 

learning a given task. The algorithm presented is generic, i.e. can be used to program a wide range of 

tasks without applying any programmatic changes. Moreover, the algorithm is end-to-end as it requires 

no inputs from the user except the task demonstrations (path data and setup image). 

GenLfD consists of several research innovations: 1) detecting generic visual features from 

demonstration images to serve as potential task parameters, 2) grouping features that belong to the same 

objects together to avoid redundancies, and 3) identifying the optimal features to be used as task 

parameters to learn a given task. 
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GenLfD was used to successfully and easily program a cobot for four different tasks: applying glue 

on book spine, pick-and-place, sorting and handover. The results show that GenLfD is a robust 

algorithm able to learn a variety of tasks involving different objects. Moreover, GenLfD generates 

reliable results given setup changes. However, there still is room for future improvements of GenLfD, 

mainly in the following aspects: 

- Using a 3D visual feature detector instead of a 2D visual feature detector (SURF), to support 

more complex shapes and textures of objects 

- Learning gripper 3D orientation in addition to gripper 3D position and state, to support more 

complex tasks 

- Detecting visual features in each time step instead of just at the beginning, to support 

dynamic changes in tasks 

- Automatically identifying the optimal number of relevant frames 

- Using a smarter cost function that encourages a path as close as possible to the demonstration 

path, only where it matters (i.e. when the demonstration path variance is low) 

Moreover, in light of ISO 10218-1/2:2011, the work in this chapter can encompass the four 

collaborative safety operative modes in the ISO 10218-1/2:2011 standards: safety-rated monitored stop 

(SMS), hand-guiding (HG), speed and separation monitoring (SSM) and power and force limiting 

(PFL). For example, a safety algorithm can be overlayed over GenLfD such that the robot halts (SMS) 

or varies speed (SSM) if a human gets too close. Moreover, based on the variances learnt through TP-

GMM, the robot can vary its stiffness where the path is allowed to vary allowing for the human to guide 

the robot (HG). Finally, the robot can also limit its power and force to comply with the PFL mode. 

Therefore, the work in this chapter does not contradict or limit any additional measures that need to be 

taken in compliance with ISO 10218-1/2:2011. 

To conclude, GenLfD enables operator with little programming experience to teach cobots to 

perform flexible industrial tasks easily and quickly. The cobot learning algorithm, GenLfD, developed 

in this chapter has great potential to boost the extent and range of use of cobots on factory floors. 
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Chapter 4: Ring Gaussians for Orientation-less Frames 
4.1. Introduction 
In this chapter, the second thesis contribution is presented. The problem of Gaussian mixture models 

(GMM) not catering for orientation-less frames is defined. A novel model, called the ring Gaussian, is 

proposed, and integrated into the task parametrized Gaussian mixture model algorithm. Using this 

model instead of the GMM, more efficient and successful paths are reproduced when one of the task 

parameters is an orientation-less frame. 

4.1.1. Background 
In task parametrized learning from demonstration, various probability distributions can be used to 

model the path data with respect to the task parameters. In this research, task parametrized Gaussian 

mixture models (TP-GMMs) are used since the central limit theorem states that normal distributions 

successfully models many complex systems with the least amount of prior knowledge (Goodfellow et 

al., 2016). Moreover, the path is reproduced using task parametrized Gaussian mixture regression (TP-

GMR). 

However, the GMM modelling sets task limitations on the use of TP-GMM. When introducing TP-

GMM, Calinon presented the following illustrative example: a path that goes from one point, i.e. frame, 

to another (Calinon, 2016). However, the path is subject to a constrained slit at each frame (Figure 4.1 

(a)). Meaning, the path approaches (or leaves) a frame from a fixed relative orientation. Due to this 

constraint, data points from various demonstrations overlap for a small portion of the path. When 

encoding the demonstration paths with a GMM with respect to a frame, a low variance Gaussian will 

model the path in its slit (Figure 4.1 (b)). When multiplying Gaussians from different frames together, 

the low variance Gaussians will ensure that the reproduced path satisfies the task conditions of passing 

through the slit and reaching a frame (Figure 4.1 (c)). 

(a) (b) (c) 

Figure 4.1 The illustrative example presented by Calinon to describe TP-GMM and TP-GMR. (a) the four demonstrations 
provided. (b) the GMM modelling the paths observed from each frame of reference. (c) the paths reproduced using the 
GMMs. 
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4.1.2. Problem Statement 
This is analogous to the dustpan in the cleaning task example presented in the introduction. The path 

always approaches the dustpan from a specific relative orientation (Figure 4.2 (a)). We defined the 

frame associated with the dustpan object to be an oriented frame (OF). OFs are frames whose 

orientations are relevant to a demonstration. If the orientation of the dustpan changes, the demonstration 

path has to change as well (Figure 4.2 (c)). 

(a) (b) (c) 

Figure 4.2 The cleaning task example illustrating the difference between OFs and OLFs. (a) The original demonstration 
path, (b) If Frame 1 is rotated, the original demonstration path is still functional. Thus, Frame 1 is considered an OLF, as its 
orientation does not play a role in the functionality of the path, (c) If Frame 2 is rotated, the original path becomes 
dysfunctional, making it necessary to record/generate another updated path. This makes Frame 2 an OF, as its orientation 
plays a role in the functionality of the path. 

However, consider the case of the debris in the cleaning task example presented in the introduction. 

The path can approach and carry the debris from any relative orientation. In the debris rotates, the path 

does not need to adjust to accomplish the task (Figure 4.2 (b)). The Gaussian components of the debris’ 

GMM all have high variance due to the absence of a constrained path portion. Therefore, when 

Gaussians from various frames are multiplied together, the debris’ Gaussians will not dominate, and 

hence the path will fail to reach the debris. We defined the frame associated with the debris object to be 

an orientation-less frame (OLF). 

4.1.3. Relevant Works 
Various research works were conducted to improve the performance of the conventional TP-

GMM/R. Some researchers undertook demonstration-based improvements. For example, Hu and 

Kuchenbecker designed TP-GMM/R to program collaborative object movement but iteratively 

suggested adding demonstrations to improve performance (S. Hu & Kuchenbecker, 2019). Cao et al. 

used GMM/R iteratively to program robotic motions (Zhiqi Cao et al., 2019). After each GMR, if a 

collision occurs, a human operator corrects the path and retrains GMM. Willibald developed an 

interactive learning system in which a robot automatically detects new tasks that require new 

demonstrations (Willibald, 2020). However, these demonstration-based methods are not a suitable 
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solution for improving the performance of TP-GMM/R in the case of OLFs. Such methods will still 

require a human operator to record demonstrations in which paths vary in all directions around an OLF. 

Even though a set of demonstrations will fully describe the possible paths, the resultant GMM that 

models these demonstrations could still fail. That is, the GMM will either be biased towards one 

direction of the frame, or will be centred on the frame, both of which are not accurate representations 

of the paths. 

Other researchers worked on frame-based solutions to improve the performance of TP-GMM/R. 

For example, Sena et al. calculated the importance scores of frames to amplify the weights of relevant 

frames during a portion of a demonstration (Sena et al., 2019). Based on that, the TP-GMM/R algorithm 

can provide meaningful results even when the newly observed positions of frames are far from the 

previous demonstrations. Vidaković et al. designed an algorithm that classified task parameters/frames 

(Vidaković et al., 2020). Some frames are classified as attractors and some as obstacles. A cost function 

was designed to ensure that obstacles are avoided and attractors are approached. Moreover, the cost 

function can also maintain a specific relative orientation of path points with respect to other frames. 

Silverio et al. designed new task parameters that help identify positional and/or orientation constraints 

as well as configurational constraints (Silverio et al., 2019). Instead of considering task parameters to 

be positions of objects in space, task parameters are Jacobians describing the absolute pose of the 

bimanual humanoid’s end effector as well as their pose relative to the humanoid. These different task 

parameters are projected on to the configurational joint space of the humanoid. This allows the robot to 

learn complicated tasks that automatically toggle between positional/orientation and absolute/relative 

constraints of its end effector. Their work, however, neglects information about the positions of other 

objects in the same space so that such solution does not tackle the problem of OLFs from its root cause. 

To tackle the TP-GMM/R’s problems related to OLFs, an OLF requires a different Gaussian model 

than the conventional one to accurately describe the nature of demonstration paths. None of the previous 

works to the best of our knowledge, tackled this problem from the TP-GMM/R-based point of view. In 

this chapter, we create a new Gaussian model that accurately encodes demonstration paths with respect 

to OLFs. OLFs are automatically identified in a task. Their corresponding new Gaussian model, called 

ring Gaussian, is automatically calculated and used to reproduce the path in a new task setting. The 

overall algorithm is referred to as ring TP-GMM/R. 

4.2. Methodology 
The overall framework entails the following steps: 1) Collecting key information in demonstrations, 

i.e., task parameters (frames) and paths (refer to Section 3.1). A user provides demonstrations by 

dragging the end effector of a cobot to create some trajectories from the start position to the end position 

of a task. 2) Training TP-GMM based on demonstrations (refer to Section 3.2). 3) Identifying OLFs 

and OFs. 4) Calculating ring Gaussians for the OLFs. 5) Upon being given new data for task parameters, 

converting the ring Gaussians of OLFs to Gaussians. 6) Performing the TP-GMR algorithm to 
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reproduce a path in a new scenario (refer to Section 3.3). The ring TP-GMM/R algorithm differs over 

the “conventional” TP-GMM/R in Steps 3, 4, and 5, which are further elaborated in this section. Figure 

4.3 illustrates the complete steps of the algorithms. To simplify representations and formulas, in this 

chapter, demonstrations are presented in a two-dimensional Euclidean space for better explanation and 

illustration. The developed algorithms can be naturally extended to the three-dimensional Euclidean 

space. 

Figure 4.3 The overall framework of the ring TP-GMM/R algorithm. 

4.2.1. Identifying Orientation-less Frames 
As shown in Figure 4.3, identifying OLFs is performed after training the TP-GMM model. The TP-

GMM assumes all frames are OFs. The GMMs encoding the demonstration paths with respect to each 

frame are obtained. Identifying OLFs is subsequently done by identifying OFs. OFs are distinguished 

by the overlapping portion of the demonstration paths, which is modelled using a Gaussian component 

of low variance, as in Figure 4.1. Such a Gaussian component has three distinguishable criteria. Once 

all three criteria are ensured, a frame is labelled as an OF. Otherwise it is an OLF. 

The three criteria are: 

The Gaussian should encode points from all demonstrations 
TP-GMM is designed to model patterns and trends in all demonstrations. That is, each resultant 

Gaussian needs to provide information about the patterns and trends of all demonstrations. However, 

one of the limitations of TP-GMM is that it does not have knowledge of which points belong to which 

demonstration. That is, all points are regarded equally during TP-GMM training so that the algorithm 

might generate Gaussians that are biased towards certain demonstrations over others. In some cases, it 

might even make a Gaussian to over-fit a demonstration, as depicted in Figure 4.4 (a). 
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   (a) (b) 

Figure 4.4 Result of TP-GMM: (a) depicting an anomaly Gaussian over-fitting one demonstration, (b) in which over-fitting is 
avoided. 

As described in chapter 2, TP-GMM is trained using the EM algorithm. In every E-step, the 
" likelihood �"�!

"|�",$ , Σ",$( of each point �! at time step t belonging to a Gaussian �"�",$ , Σ",$( is 

calculated. We recall that �!
" is a concatenation of points �!

",% from all demonstrations m ∈ {1… M}. 

The calculation is conducted independently for each point, which means that the EM algorithm does 

not account for which demonstration that point belongs to. This potentially allows Gaussians to over-

fit a particular demonstration. Based on this observation, it is essential to introduce adjustments to the 

EM training algorithm to ensure each obtained Gaussian models points from all demonstrations equally, 

to avoid such anomalies. The following steps are followed: 

1. Calculate the likelihood �"�!
",%|�",$ , Σ",$( of a point �!

",% for all values of m. 

2. For each Gaussian component k, let �!$ be the average of �"�!
",%|�",$ , Σ",$( across all 

demonstrations. This step associates the likelihoods of the points of the time step t together. 
& '�!$ = ∑%(&�"�!

",%|�",$ , Σ",$( (4.1) 
' 

In reality, point �!
",% of demonstration m might not be associated with point �!

",%)of Demonstration 

m’. Demonstrations might have slightly varying lengths and velocities, thus some points from different 

demonstrations that are closer in the x-y space might have slightly different time steps t. Therefore, the 

values of �!$ are “blended” across t by using weighted average. 

3. Define a kernel of size 2S+1 such that, 
.������ = [�&, �*, … , �*+, �*+,&] �ℎ��� �+,&-. = �+,&,. = 1 − 

+,& 
��� � ∈ [0, … , �] (4.2) 

For example, if S=3, kernel = [0.25, 0.5, 0.75, 1, 0.75, 0.5, 0.25]. 

4. Pad �!$ with S zeros on each side of dimension t, such that the size of �!$ is now {T+2S, K}. 

5. For each Gaussian component k, convolve the kernel over the vector �!$ across t. 
& *+,&�!$ = 
&,+ 

(∑/0123(& ������/0123 × �(!-+-&,/0123,$)) (4.3) 
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6. Adjust the likelihood �"�!
",%|�",$ , Σ",$( by bringing it closer to �!$ by a scale ω. If ω=1, 

then �"�!
",%|�",$ , Σ",$( = �!$. If ω = 0, the values �"�!

",%|�",$ , Σ",$( would be left 

unaffected. Therefore, an intermediate value of ω = 0.5, prevents over-fitting without 

enforcing rigid constraints. 

�"�!
",%|�",$ , Σ",$( = �"�!

",%|�",$ , Σ",$( + ωG�!$ −�"�!
",%|�",$ , Σ",$(H (4.4) 

Thus, the resultant Gaussians have a tendency to model all demonstrations evenly, instead of over-

fitting towards one particular demonstration, such as in Figure 4.4 (b). 

The Gaussian should be narrow 
A Gaussian is characterised by its Eigen vectors [v1, v2] and Eigen values [e1, e2], which describe 

the Gaussian’s direction and size, respectively (Figure 4.5). 

Figure 4.5 The Eigen values and Eigen vectors of a Gaussian. 

Assuming a 2 dimensional Gaussian for x-y coordinates, let �37 be its covariance matrix. The Eigen 

values and vectors are calculated using the following equations: 

�37 ∙ �& = �& ∙ �& (4.5) 

�37 ∙ �* = �* ∙ �* (4.6) 

To consider a Gaussian to be narrow, the ratio � = �&⁄�* should be greater than a threshold ε. ε is 

chosen to be 10 by trial and error. A narrow Gaussian indicates that the portions of demonstrations that 

it encodes are in restricted or limited variability with respect to its corresponding frame. This criterion, 

when combined with the following criteria, helps identify whether the orientation of that frame affects 

demonstrations, i.e. if the frame is an OF. 

The Gaussian should stretch along the direction of demonstration paths 
This criterion ensures that the Gaussian is not stretched over demonstration paths that are widely 

apart such as illustrated in Figure 4.6 (a). Instead, the direction of change of time step t (signifying the 

direction of demonstrations) should be parallel to the long axis of the Gaussian, such as illustrated in 

Figure 4.6(b). 

The direction of change of time step t is given by the vector Ct = (Cxt, Cyt), where Cxt and Cyt are 

components from the covariance matrix �",$ of the Gaussian k. 

�!! �3! �7! 
�",$ = M�!3 �33 �73O (4.7) 

�!7 �37 �77 

Cxt describes the effect of the x position of a point on its time step t. The change in time step t 

signifies the flow on a demonstration, since the points increase time step t incrementally along the 
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demonstration. That is, the higher Cxt value is, the more the change in the x coordinate affects the change 

in time step t. That means that demonstrations are more tending to be parallel to the x axis. Similarly, 

the same applies for Cyt.. Therefore, the vector Ct = (Cxt, Cyt) is indicative of the direction of the flow of 

demonstrations in the x-y space. 

The direction of the long axis of the Gaussian is given by Eigen vector v1 given that Eigen value e1 
is greater than Eigen value e2. Angle α between these two vectors Ct and v1 is calculated using their dot 

product. To comply with the criterion, trials show that the angle α must be equal to 0 ± 0.1 or π ± 0.1. 

(a) (b) 

Figure 4.6 An example of a narrow Gaussian that: (a) does not belong to an OF. The diagram shows that the direction of the 
change of time step t is not parallel to that of the Gaussian's long axis, (b) belongs to an OF. The diagram shows that the 
direction of the change of time t is almost parallel to that of the Gaussian's long axis 

Therefore, if a Gaussian fulfils the above three criteria, it is said the frame that the Gaussian is 

associated with is an OF. Otherwise, the frame is an OLF. 

4.2.2. Calculating Ring Gaussians 
No changes are made to the trained TP-GMM if frames are OFs. However, for OLFs, new 

probability distributions are generated to model the demonstrations. The points of demonstrations 

around OLFs are modelled in a new probabilistic distribution, as opposed to the “normal” Gaussian 

used in the “conventional” TP-GMM/R algorithm. Since the frame is orientation-less, a given path point 

is equally likely to occur around the frame. Therefore, a suitable Gaussian to describe the distribution 

of points around an OLF would be an ring Gaussian, which is described as a Gaussian that has been 

spanned around the OLF forming a ring (illustrated in Figure 4.7). 
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Figure 4.7 The ring Gaussian modelling around an OLF. 

A ring Gaussian is computed below in a 2 dimensional x-y coordinate system. For every time step 

t, the probability of a path point with respect to the frame is described below: 
" 

#$%"&'"()!* 

��(�, �) = 
& �- "+!" (4.8) 

8*9:!" 

where {x,y} are the 2D coordinates of the path point relative to the frame, μr is the mean distance 

between the point and the frame, and σr is the standard deviation of the distance between the point and 

the frame. 

To obtain μr and σr of every time step t, a TP-GMM that models radius r and time steps t is trained. 

For example, take OLF p in Figure 4.8 and five demonstration paths (M=5) around it. As previously 

mentioned, each demonstration constitutes of T path points represented in time step t and the x-y position 

coordinates with respect to Frame p. To generate the parameters for the ring Gaussian for Frame p at 

time step t, the following steps are followed: 

1. The x-y coordinates of the path points with respect to Frame p are converted into polar 

coordinates. That is, the radius of 

2. a path point at time step t of Demonstration m is calculated using the following equation: 

�!%," = S"�!%,"(
* + "�!%,"(

* (4.9) 
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Point �! 
",% 

Demonstration m 

OLF p 

Figure 4.8 An OLF p and five demonstration paths. Each point X on a path has x-y coordinates with respect to Frame p. 
Moreover, it has a time step t depending on its sequence order in its path. The radius r is calculated as the distance between 

the frame and the point. 

3. A GMM is trained on the 2D data {�, �!%,"} for all t ∈ [1,…, T] and m ∈ [1,…, M]. This means 

that K Gaussians are fitted to describe the change in the distance between OLF p and the path 

points around it. Gaussian k is identified as �(;)"�(;)",$ , Σ(;)",$(. For example, in Figure 4.9, 

K=3. 
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Figure 4.9 Given radius values of all points from the demonstrations, a GMM is fitted to the radius-time data. Then, 
regression is performed to obtain a mean �(�)�,�	and a standard deviation �(�)�,�	for each time t 

4. Gaussian regression is performed to obtain a radius mean �(;)",! and standard deviation �(;)",! 

at every time step t (Figure 4.9). 

Finally, the resultant data, average �(;)",!	and standard deviation �(;)",! for every time step t, is used 

in the adjusted TP-GMR in the next section to reproduce paths in new settings.  

4.2.3. Reproducing the Path 
In a new task setting, the objects are expected to be in new positions that are previously unseen by 

the cobot. The cobot needs to perform the task path based on what was observed in the demonstrations. 

The path is reproduced using TP-GMR. Firstly, in TP-GMR, the GMM of each task parameter are 

regressed from K Gaussians to T Gaussians, i.e. a Gaussian for each time step t. Secondly, the Gaussians 

from different task parameters are combined together using weighed product (for more details, refer to 

chapter 2). Weighted product can only be performed on normal Gaussians due to their mathematical 

properties. That is, only two normal Gaussians can be multiplied together to obtain another normal 

Gaussian. Therefore, it is imperative that the ring Gaussians of OLFs are converted to normal Gaussians 
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before performing TP-GMR. To convert a ring Gaussian for OLF p at time step t, the following steps 

are taken: 

1. For all p’ ∈ [1,…, P] – {p}, identify the closest point �����""0,! on the circle of radius �(;)",! and 

centre frame p, and 

a. The circle of radius �(;)"),! and centre frame p’ if frame p’ is an OLF. This can be 

divided into three cases depending on the relative positions of the two circles: 1) The 

circles are external, i.e. the sum of radii is less that the distance between their centres. 

2) The circles are intersecting, i.e. the sum of radii is more than the distance between 

their centres but the difference between the radii is less than the distance between their 

centres. 3) The circles are internal, i.e. one of them is inside the other such that the 

difference between the radii is more than the distance between their centres. Figure 4.10 

shows an example of where �����""0,! would be for different circle relative positions. 

Frame p’ 

Frame p 

Frame p’ 

Frame p Frame p 

Frame p’ �����""0 ,! 

����� �����"" ,! 

External circles Intersecting circles Internal circles 

Figure 4.10 The position of pointpp’,t according to the different relative positions between circles of centres frames p and p’ 
and radii μ(r)p,t and μ(r)p’,t 

b. The centre �!� of the Gaussian for frame p’ for all p’ ∈ [1,…, P] – {p} if frame p’ is an 

OF 

2. For all p’ ∈ [1,…, P] – {p}, calculate the coefficient �""0,! for �����""0,! such that: 

a. �""0,!, when frame p’ is an OLF, is: 1) the distance between �����""0,! and the circle 

of radius �(;)"),! and centre frame p’ if the circles are external; 2) number very close to 

zero when the circles are intersecting. Here, we set it to be e-20; 3) the distance between 

�����""0,! and the circle of radius �(;)"),! and centre frame p’ when the circles are 

internal. 

b. �""0,! is the distance between �����""0,! and the centre �!� of the Gaussian for frame 

p’ if frame p’ is an OF 
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3. Calculate the weighted average �����",! of points �����""0,! for all p’ ∈ [1,…, P] – {p}, 

weighted by �""0,! 

4. Define the normal Gaussian with centre �����",! and covariance matrix Σ",!, such that 

�(;)",! 0
Σ",! = [ \ (4.10) 0 �(;)",! 

Upon converting all ring Gaussians for all OLFs and time steps t to normal Gaussians, TP-GMR can 

be performed as described in chapter 2, to reproduce the task path. 

4.3. Results 

4.3.1. Assessing the Performance of the OLF Identifier 
The performance of the OLF identifier depends on two main factors: 1) the quality and variability 

of demonstrations provided, and 2) the ratio between K, the number of Gaussians in the GMM, and the 

length of the orientation-consistent path. An orientation-consistent path is the portion of demonstration 

paths that is dependent on the frame’s orientation. To assess the performance of the OLF identifier, its 

F1-score is calculated as the following parameters are varied: 

• Number of Gaussian components in the GMM (K): {3, 4} 

• Number of demonstrations used in training (M): {4, 5, 6} 

• Length of the orientation-consistent path (L): {10, 15, 20, 25}% of the average distance between 

the frames 

For this experiment, 6 demonstrations were recorded for a path going from Frame 1, an OF, to Frame 

2, an OLF. The algorithm should classify each of the frames correctly as OLF or OFs. The F1-score is 

calculated as follows: 
*×>;2?/./@0×A2?BCC �1 = (4.11) 
>;2?/./@0,A2?BCC 

where, 
!" $% &'() *+,!-*%*,+ .) &'() ��������� = (4.12) 

!" $% %/.0,) *+,!-*%*,+ .) &'() 

!" $% &'() *+,!-*%*,+ .) &'() ������ = (4.13) 
!" $% &'() 

Table 4.1 F1 scores for 30 different runs of the OLF identifier with varied parameters. 

M=4, K=3 M=5, K=3 M=6, K=3 M=4, K=4 M=5, K=4 M=6, K=4 

L=10% 0.67 0.67 1 1 0.67 1 

L=15% 1 1 1 1 1 1 

L=20% 1 0.67 1 1 1 1 

L=25% 1 1 1 1 1 1 
In Table 4.1, an F1 score of 1 indicates that Frame 1 and Frame 2 were correctly identified as OF 

and OLF, respectively. A result of 0.67 indicates that the OLF failed to be identified as an OLF. The 

results show a correlation between the three different parameters and the effectiveness of the OLF 
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identifier. Based on these correlations, the following recommendations are provided for a user to choose 

parameters that increase the success chances of the OLF identification: 

• Identifying false OLFs can happen when L is low compared to the number of Gaussians K. 

During the initialisation process of TP-GMM, Gaussians are distributed equally across time 

segments. For example, if K=4, the first Gaussian initially covers 25% of the path. Whereas for 

K=3, the first Gaussian covers 33.3% of the path. During TP-GMM training, Gaussians shift 

across time segments in order to accurately model the patterns and trends of the path. For 

example, when L=15%, ideally after convergence, the first Gaussian should model the first 15% 

of the path in order to accurately describe it. Correctly describing it means a Gaussian will 

conform to the criteria mentioned in Section 3.1, thus increasing the chances of identifying the 

frame as an OLF. Therefore, when L is much less than 100/K, there seems to be a higher chance 

of identification error. 

Usually, the number of Gaussians K is optimised using Bayesian Information Criterion (BIC) 

(Schwarz, 1978) or by calculating a task-relevant cost function for different value of K and 

choosing the one with the least cost (Rozo et al., 2016). Alternatively, the value of K might be 

manually selected (Hewitt et al., 2017). However, the mentioned results encourage to consider 

the length L, which is determined or restricted by the task objects and the task requirements. 

Moreover, the length L is encouraged to be if possible, given that it doesn’t hinder the 

functionality or constraints of the task. This should be judged by the operator recording the 

demonstrations. 

• Increasing the number of demonstrations results in a more varied set of demonstrations, which 

in turn results in a more accurate and well fitted GMM. This decreases the OLF identification 

false positives. 

To further understand the effect of the kernel convolution (Section 4.2.1.) that was designed to avoid 

overfitting, the OLF identifier was executed without it. In Table 4.2, an F1 score of Inf indicates that 

Frame 2 was mistakenly identified as an OF. That is because when the kernel convolution is not 

performed, some Gaussians might over fit a particular demonstration’s path thus fulfilling two of the 

OLF identifier’s criteria: narrow Gaussian and Gaussian that stretches along the path direction. 

Therefore, the kernel convolution plays an important role in preventing this error. 
Table 4.2 F1 scores for 30 different runs of the OLF identifier with varied parameters, without convolving the overfitting 
kernel. 

M=4, K=3 M=5, K=3 M=6, K=3 M=4, K=4 M=5, K=4 M=6, K=4 

L=10% Inf 1 1 Inf 1 Inf 

L=15% 1 1 1 1 1 1 

L=20% 1 1 1 1 1 1 

L=25% Inf 1 1 Inf 1 1 
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4.3.2. Synthetic Data 
The ring TP-GMM/R algorithmwas tested on 3 synthetic tasks, similar to the standard task presented 

by Calinon in (Calinon, 2016). The task is to go from Frame 1 (pink) to Frame 2 (green), under varying 

conditions: 

Task 1: Both frames are oriented (OFs). Therefore, the path has to pass through Frame 1 and Frame 

2’s tips as seen in Figure 4.11. The training parameters were: M=4, K=3. This is analogous to an 

assembly task. 

Task 2: Frame 1 is oriented (OF) while Frame 2 is orientation-less (OLF). Therefore, the path has to 

pass through Frame 1’s tips but can approach Frame 2 from any direction as seen in Figure 4.11. The 

training parameters were: M=6, K=4. This is analogous to a peg-in-hole task. 

Task 3: Both frames are orientation-less (OLFs). Therefore, the path can approach Frame 1 and 

Frame 2 from any direction as seen in Figure 4.11. The training parameters were: M=6, K=4. This is 

analogous to a pick-and-place task. 
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Figure 4.11 The demonstration data for the three different synthetic tasks. 

All three demonstrations were learnt using both traditional TP-GMM/R and ring TP-GMM/R. The 

ring TP-GMM/R automatically identifies which frames are oriented or orientation-less. The reproduced 

paths are shown in Figure 4.11. 

In Task 1, the ring TP-GMM/R successfully identified the frames as oriented and used normal 

Gaussian to model the demonstration paths. Therefore, the reproduced paths are the identical using both 

algorithms. 

In Task 2, the reproduced path sometimes failed to reach the green Frame 2 using traditional TP-

GMM/R since the normal Gaussian modelling does not accurately reflect orientation-less frames. This 

error was not encountered when using ring TP-GMM/R. Moreover, the ring TP-GMM/R also respected 

the constrained imposed by the oriented Frame 1, even when an OLF is present in conjunction with an 

OF. 
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In Task 3, it can be noticed than the reproduced paths by the improved algorithm are straighter than 

those by the conventional algorithm. 

Overall, the ring TP-GMM/R provides comparably satisfactory results with OFs and better results 

with OLFs than the traditional TP-GMM/R. A quantitative comparison is performed on a 100 

reproductions of the task paths on new previously-unseen positions of the frames. The results are 

assessed using three metrics: smoothness, efficiency and reachability. 

Smoothness. The generated path should ideally be smooth such that there are no sharp turns that 

might jolt a cobot upon performing the path. Firstly, the derivative 1
1
7
3
1

1 
of the path at each point pt = 

{x,y}t of time step t is calculated. This derivative describes the slope of the path. Then, the second 

1D2'1E2%1derivative is calculated with respect to time. The second derivative describes the rate of change 
1! 

in the path’s slope, i.e., a high change would signify a sharp edge. For every point at which the second 

derivative is higher than a threshold (e.g., 0.5), a “sharp” edge is noted. The smoothness score is given 

based on the average number of sharp edges per path across the 100 reproductions. Therefore, the higher 

the smoothness score, the more sharp edges there are, so that the less smooth the path is. 

171 71&3-71(3= (4.14) 
131 31&3-31(3 

242'15 42'1&3(2'1(352%1 2%1&3 2%1(3
21 = " 

(4.15) 

1 , �(+
+3
2!
!
)⁄�� > 0.5 ��� ������������ ���ℎ � ∈ [1, … ,100]

�����0,- = / (4.16) 
0 , �(

+
+2
3
!

!
)⁄�� ≤ 0.5 ��� ������������ ���ℎ � ∈ [1, … ,100] 

4 5 6
074 -74�����ℎ���� = ∑ ∑ �����0,- (4.17)

5 

Efficiency. The path should also be efficient in length, i.e. as close to the shortest distance as 

possible. The efficiency score is obtained by dividing the shortest distance sdm between the start and 

end points by the distance dm covered by the reproduced path m. Therefore, the closer the score is to 1, 

the closer the path is to the shortest distance. 

��% = ^(�& − �F)* + (�& − �F)* (4.18) 

F-&�% = ∑!(& ^(�! − �!,&)* + (�! − �!,&)* (4.19) 

4 5 )+"���������� = 
5 
∑074 +" 

(4.20) 

Reachability. The reachability shows the percentage of the path successfully passing in the start 

and end points. The reason to consider this measurement is that even if a reproduced path is smooth and 

efficient, if it does not achieve successful reachability, the task fails. Firstly, for each reproduction path 

m, the distance d1m between the start frame {X1, Y1} and the start point {x1, y1} on the path is measured. 
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Similarly, the distance d2m between the end frame {X2, Y2} and the last point {x2, y2} on the path is 

measured. For each value of d1m or d2m that is less than an error tolerance value ε, the reachability score 

is increased by 0.5. The error tolerance is manually chosen and can change depending on the task and 

the scale/size of the task objects involved. Having a lesser ε value means that the task is more strict in 

reaching start and end positions. Finally, the reachability score is averaged over the total number of 

reproductions M. 

�1% = ^(�& − �&)* + (�& − �&)* (4.21) 

�2% = ^(�* − �*)* + (�* − �*)* (4.22) 

Starting from Reach = 0 and iterating over the values of � ∈ [1, … ,�]: 

����ℎ, �1% > � ��� �2% > � 
����ℎ = f����ℎ + 0.5, �1% < � �� �2% < � (4.23) 

����ℎ + 1, �1% < � ��� �2% < � 

����ℎ = ����ℎ × 100 / � (4.24) 

Table 4.3 Metric results on the three different tasks using the traditional TP-GMM/R and the ring TP-GMM/R training 
algorithms. 

Task/Algorithm Smoothness Efficiency Reachability (%) 

Task 1 
Traditional TP-GMM/R 43.5200 2.2506 99 

Ring TP-GMM/R 43.5200 2.2506 99 

Task 2 
Traditional TP-GMM/R 46.55 1.499 62.5 

Ring TP-GMM/R 29.95 1.456 100 

Task 3 
Traditional TP-GMM/R 50.76 1.1123 62.5 

Ring TP-GMM/R 29.78 1.0698 100 

The results in Table 4.3 show that the ring TP-GMM/R exceeds the traditional TP-GMM/R in 

performance in all three metrics when an OLF is included in the task. The paths produced using the ring 

TP-GMM/R have less sharp edges, reach their targets more efficiently and effectively. 

However, this performance is dependent on the following assumption: In the ring Gaussian, the 

centre of the ring is always the orientation-less frame with respect to which the paths are being 

modelled. Therefore, when a path starts or ends at a certain frame, the ring Gaussian is capable of 

capturing that with a ring of a very small radius. However, if a path starts or ends at a point far offset 

from a frame, then the ring Gaussian will have a radius equal to the distance between the frame and the 

offset point. However, that means that the path can start or end anywhere on the ring Gaussian, not 

necessarily at the intersection between the ring Gaussian and the offset point. 

Moreover, the algorithm assumes the absence of obstacles and that the ideal path from the origin to the 

destination is a straight line. That excludes any path constraints imposed by oriented frames. 
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4.3.3. Simulation Results 
To assess the results of the algorithm in chapter 4, we perform the experiment on Tasks 1, 2 and 4 

from chapter 3. In chapter 3, the orientation of relevant objects was maintained such that all the frames 

were oriented frames. That was done to highlight the effect of chapter 3’s work independently from 

chapter 4’s. However, in this chapter, the orientation of relevant objects is varied such as they are OLFs. 

The effectiveness of the ring Gaussian at modelling paths with respect to OLFs is examined. 

The simulation scenes were built in CoppeliaSim EDU. As a reminder, the tasks performed are the 

following: 

Task 1 - Sorting: Given two circuit boards and two containers, the robot task is to pick the smaller 

circuit board and place it in the green container. The containers are in a fixed positions where as the 

circuit boards vary position and orientation. Task 1 shows that ring Gaussians can cater for OLF even 

if they are fixed in position. 

Task 2 - Handover: The cobot needs to pick up an object, in this case a circuit board, and hand it to 

a human hand. Both the hand and the circuit board vary positions and orientations. 

Task 4 - Pick-and-place: The robot is require to pick an object, a cube, and place it in a box. Both 

the cube and the box vary positions and orientation on a table. This could also be analogous to peg-in-

hole or assembly tasks. 

Six demonstrations are recorded for each task where the objects are in variable positions. Five of 

these demonstrations are used for training, and one of them is used for validation. The following 

parameters were set as defaults during training, like in chapter 3, and were not changed between tasks: 

- Number of demonstrations M = 5 

- Number of Gaussian components K = 4 

- Number of relevant frames nbRelev = 2 
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Task 1 Task 2 Task 4 

(d
) 

(c
) 

(b
) 

(a
) 

 

Figure 4.12 The reproduced path for Tasks 1, 2 and 4 when: (a) all frames are used in TP-GMM and considered OFs by 
default, (b) all frames are used in TP-GMM and identified to be OLFs or OFs, (c) relevant frames are used in TP-GMM and 

considered OFs by default, and (d) relevant frames are used in TP-GMM and identified to be OLFs or OFs. 

Figure 4.12 shows the results of the algorithm at different stages. Row (a) shows the reproduced 

path (red) compared to the demonstration path (green) when traditional TP-GMM/R is used and all 

frames are considered oriented (blue) by default. All the reproduced paths failed to reach their 

destination, both because all frames are oriented by default and because some of them are irrelevant.  

In row (b), the frames are identified to be oriented or orientation-less. The images show the 

reproduced path (red) compared to the demonstration path (green) when ring TP-GMM/R is used and 

some frames are identified as orientation-less (yellow). An improvement is noticed compared to the 

paths in the first row. The paths in Task 1 and 2 successfully reach their destination. However, they are 

unsmooth.  

Row (c) shows the reproduced path (white) compared to the demonstration path (green) when 

traditional TP-GMM/R is used and the relevant frames are identified and considered oriented by default. 

Similar to row (b), there is an improvement in destination reach for Tasks 1 and 2. However, the 

resultant path still fails to accomplish Task 4. Moreover, the path is inefficient in Task 2. 
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Row (d) shows the reproduced path (white) compared to the demonstration path (green) when ring 

TP-GMM/R is used and the relevant frames are identified to be orientation-less. The reproduced paths 

all reach their target locations and are smooth. 

Table 4.4 The distances between the reproduced paths and the ground truth when all frames are considered OFs or when 
frames are identified as OFs or OLFs. The results are shown when all lead frames are used in TP-GMR or when only the 
relevant frames are used. 

Task .// �,-,./ "0/�,-,./ .// �1,.", "0/�1,.", BCC �201 ;2C�201

Task 1 
All OFs 0.0474 0.0127 0.0135 0.000427 0.1012 0.0412 

OFs & OLFs 0.049 0.0113 0.005 0.0024 0.1172 0.0346 

Task 2 
All OFs 0.0737 0.0726 0.004 0.0039 0.1184 0.0086 

OFs & OLFs 0.0112 0.0097 0.0033 0.0078 0.0078 0.0058 

Task 4 
All OFs 0.0601 0.051 0.0139 0.0048 0.111 0.0747 

OFs & OLFs 0.0354 0.0248 0.0164 0.0177 0.0076 0.0121 

Table 4.4 shows the distances between the demonstration paths and the reproduced path in multiple 

situations: 

BCC • �!@!BC is the average distance between all the points on the reproduced path using all lead frames 
;2Cand the demonstration path. �!@!BC is the distance between all the points on the reproduced path 

using relevant frames and the demonstration path. 
BCC • �.!B;! is the distance between the first point on the reproduced path using all lead frames and 

;2Cthe demonstration path. �.!B;! is the distance the first point on the reproduced path using 

relevant frames and the demonstration path. The reason why this metric is calculated is because 

the start and end of the path often play a key role in the success of common tasks such as pick-

and-place. 
BCC • �201 is the distance between the last point on the reproduced path using all lead frames and the 

demonstration path. �201;2C is the distance the last point on the reproduced path using relevant 

frames and the demonstration path. 

Each metric is calculated twice for each task: 

• All OFs; when all the frames are considered to be oriented by default. That is, the normal 

Gaussian is used for modelling the paths. 

• OFs and OLFs; when the frames are identified to be either OFs or OLFs. That is, the ring 

Gaussian is used to model the paths with respect to the OLFs. 
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In Table 4.4, the distance is highlighted: 

• Green if the distance of the OFs and OLFs is less than that of the OFs alone. This means that 

our method has increased the similarity between the demonstration path and the reproduced 

path. 

• Yellow if the distance of the OFs and OLFs is comparable to that of the OFs alone, i.e. with a 

difference of less than 0.01. 

• Red if the distance of the OFs and OLFs is higher than that of the OFs alone. 

The results show that using ring Gaussians generally improves or maintains the similarity between 

the demonstration path and the reproduced path compared to using the normal Gaussian alone. 

4.4. Conclusion 
The most common modelling used in TP-LfD is a GMM due to its mathematical properties and 

ability to model complex relations. However, a GMM fails to describe a path when it is equally 

occurring around a spatial task parameter, i.e. a frame. That is, a Gaussian will always be biased towards 

a certain side of a frame, and will not reflect that a path can occur on other sides. 

In this chapter, we define a type of frames with respect to which paths are equally likely to occur in 

any direction. We name them orientation-less frames since if the frame changes orientation, the paths’ 

functionality is not affected. Orientation-less frames are automatically identified based on their GMM. 

Their GMM does not include any Gaussian component that is narrow and stretched along the direction 

of the demonstration paths. That is, no portion of the path is constrained with respect to the frame’s 

orientation. 

To cater for orientation-less frames, we present a ring Gaussian modelling that gives equal 

probability for a path point around the frame. The ring Gaussian is a Gaussian that is revolved around 

a frame forming a ring. Ring Gaussians are calculated for orientation-less frames as part of the ring TP-

GMM algorithm. To incorporate ring Gaussians with the normal Gaussian for oriented frames, we 

design an algorithm to convert a ring Gaussian to a normal Gaussian on a case-by-case basis during TP-

GMR for path reproduction. 

Using the presented ring Gaussian modelling, an improvement in paths is observed in tasks involving 

an orientation-less frame. The paths generated were smoother and more effective at reaching the target 

or source frames. Moreover, the algorithm was used to intuitively learn 3 different industrial tasks 

providing a reliable and flexible performance. 

An orientation-less frame might be associated with an orientation-less real life object. Often, the 

frame might not be overlapping with the object’s “centre”, e.g. its grasping point. When modelling the 

paths with ring Gaussians that will be centred around the frame, the path might fail to reach the object’s 
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“centre”. Therefore, in future works, we aim to adjust the modelling of the ring Gaussian such that it 

can be centred at a point offset from the frame, to be automatically identified. Moreover, we aim to 

improve the accuracy of the OLF identifier by employing a feedback system that adjusts decisions based 

on performance. 
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Chapter 5: Tool Integration and Extended Applications 
5.1. Introduction 
The work in chapter 3 and 4 was integrated together in a tool, GenLfD. GenLfD is a Generic tool 

that allows operators to intuitively use Learning from Demonstration to program cobots for industrial 

tasks. The tool is made to be used intuitively by operators. As part of this research, we have created a 

tutorial document to teach a user with minimal programming experience how to use the tool. The tutorial 

is in Appendix A. and the tool can be found online on: https://github.com/sherineza/GenLfD 

As shown in chapters 3 and 4, the tool can be used for a range of industrial tasks involving 1 or 2 

objects such as pick-and-place, gluing, and simple assembly operations. In this chapter, GenLfD is used 

to overcome potential issues: partial occlusion and obstacle avoidance. Moreover, in chapter 3 and 4, 

the experiments performed were in an industrial simulation environment. In this chapter, we evaluate 

our code in real-life settings. 

5.2. Partial Occlusion 
In chapter 3, visual frames are detected from 2D images of the task setting. Frames that belong to 

the same rigid object are grouped together as redundant frames. One of the advantages of grouping 

redundant frames together is that it solves the problem of partial occlusion in a new scenario. If a task-

relevant object was partially occluded in the new image, its corresponding relevant frame might be 

undetectable. In that case, we resort to detecting the redundant frames belonging to the relevant frame’s 

object. Redundant frames have a fixed relative position with respect to each other. Therefore, if one 

frame from an object is detected, the other redundant frames’ positions can be estimated, including that 

of the relevant frame. However, if none of the frames from an object are found, the process is terminated. 

Consider the task setting of Task 1 in chapter 3. The task is to pick the small circuit board (object 1) 

and place it in a fixed box on the side (not in camera view). Using the algorithm developed in this thesis, 

five demonstrations were recorded, visual features were detected, redundant features were grouped and 

finally, relevant features were identified (Figure ). One of the relevant features identified belongs to 

object 1 while the other belongs to the background table, so by substitution, to the fixed box. The task 

is successfully learnt using TP-GMM and the path (in white) is reproduced using TP-GMR. 
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Figure 5.1 The recorded demonstrations of task 1.The first row of images shows the detected visual features grouped as 
redundant frames. The second row shows the identified relevant frames, an OLF belonging to the small circuit board and an 
OF belonging to the table. The demonstration path is shown in green and the reproduced path in white. 

When reproducing the path in new settings, it is essential to identify the new positions of the relevant 

frames. Consider the case where one of the relevant frames, the one belonging to the table is occluded 

by the cobot’s gripper. One of the redundant frames of the occluded frames is detected and the relative 

position between these two frames is used to calculate the hidden position of the occluded frame (Figure 

5.2).  

 

Figure 5.2 To overcome the occlusion of a relevant frame (the partial occlusion of an object), a visible redundant frame is 
detected and used to calculate the hidden position of the occluded frame. 
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5.3. Obstacle Avoidance 
In chapter 4, ring Gaussians were formed to model paths with respect to orientation-less frames. If 

a frame belongs to an obstacle, the paths will maintain a distance from this frame. Hence, the calculated 

ring Gaussians will have a large diameter. When the path is reproduced, the obstacles large ring 

Gaussians will ensure that the reproduced path points tend towards maintaining a safe distance from the 

obstacle. 

Consider the task setting where 2 circuit boards and a box are on a table in varying positions. The 

task is to pick the small circuit board (object 1) and place it in the box (object 2), while avoiding the 

second larger circuit board (obstacle). Five demonstrations are provided as shown in Figure 5.3. In some 

of the demonstrations, the obstacle is placed between object 1 and 2, whereas in other demonstrations, 

the obstacle is placed on the side. This is to teach the cobot that the demonstration path, shown in green, 

should pass around the obstacle only when it is in the way between object 1 and 2 and it is not really 

task related. 

 

Figure 5.3 The demonstrations images and paths for the pick-and-place task with obstacle avoidance. 

Visual features are automatically detected and matched in the demonstration images. Redundant 

features are groups together into objects with a lead frame from each object, as shown in Figure .  
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Figure 5.4 The detected frames from all the demonstration images. Redundant frames are matched into objects and given the 
same colour. 

TP-GMM is used to calculate the GMM for each lead frame. The GMM is then used to identify if a 

frame is oriented or orientation-less, as shown in Figure 5.5 all the lead frames were identified as 

orientation-less. Ring Gaussians are calculated for the orientation-less frames. Figure 5.6 shown the 

ring Gaussians learnt for the 3 objects in the scene, object 1, object 2 and the obstacle. We notice that 

the smallest ring Gaussian around the obstacle is of large diameter, ensuring that the path remains far 

from the obstacle. The paths reproduced using the lead frames is shown in red in Figure 5.5. The paths 

are unsatisfactory; too curvy, do not reach the target and do not avoid the obstacle.  

 

Figure 5.5 The reproduced paths, in red, using ring TP-GMM. All the lead frames are detected to be orientation-less frames. 
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Figure 5.6 The calculated ring Gaussians for 3 of the lead frames belonging to each of the relevant objects: the small circuit 
board, the box and the large circuit board. 

Assume that the user identifies the relevant frames to the task manually, including the known 

obstacle. This would have been done automatically using the reinforcement learning algorithm in 

chapter 3. However, that algorithm fails to detect obstacles as relevant frames due to the nature of the 

cost function. In future works, obstacles might need to be dynamically detected using depth sensors and 

avoided using the suggested algorithm. Figure 5.7 shows the reproduced paths (in white) when 

accounting for one frame each from object 1, object 2 and the obstacle. There is an improvement in the 

quality of the path compared to that in Figure 5.5. Most importantly, the obstacle is avoided on the path 

from object 1 to object 2.  

 

Figure 5.7 The reproduced paths using the relevant frames, one of which belongs to the known obstacle. 

When reproducing the path, ring Gaussians have to be transformed into normal Gaussians before 

performing the weighted Gaussian product. That is done using the process described in chapter 4. 

However, in the case of an obstacle, the intersection between the obstacle’s ring Gaussian and the other 

Object 1: small circuit board Object 2: the box Obstacle: large circuit board 



110 
 

objects’ will be a Gaussian at a safe distance from the obstacle, such as in Figure 5.8. The “safe distance” 

is learnt from the demonstration since the Gaussians around the frame will have a large radius, hence a 

safe distance. There will be two points of intersection between the ring Gaussians, so an arbitrary one 

is chosen. However, it is important to make sure that the intersection point chosen on frame p’s ring’s 

intersection with frame j’s is the same as the intersection between frame j’s ring with frame p’s. The 

resultant Gaussian combining these two intersections will also be at a safe distance from the obstacle. 

That way, the reproduced path will deviate from the obstacle.  

 

Figure 5.8 The ring Gaussians at time step t=101. The ring Gaussians are converted to the normal Gaussians by taking the 
intersection between every two pair of Gaussians. The resultant normal Gaussian therefore falls at a safe distance from the 
obstacle. 

According to the results shown in Figure 5.7, the generated paths successfully avoided the obstacle 

in a smooth manner in demonstration 2, 3 and 4 when the obstacle was obstructing the path. However, 

when the obstacle was not obstructing the path, the reproduced path was functional in going from object 

1 to object 2 but in a rough manner. Therefore, in future work, we aim to identify if an obstacle exists 

before accounting for its corresponding feature in the path reproduction algorithm. 

5.4. Conclusion 
In conclusion, the results presented in this chapter prove that the tool developed as part of this thesis, 

GenLfD, has the potential of overcoming typical robotic challenges: partial occlusion and obstacle 

avoidance.  

To further improve the applicability of our tool with obstacle avoidance, a future advancement is to 

detect when an object is an obstacle. That way, two problems are avoided: 1) the deteriorating algorithm 

performance when an object is accounted for while reproducing a path when in reality it is not an 
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obstacle since it is out of the way; and 2) the ability to cater for multiple unpredictable obstacles rather 

than a predefined one. 
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Chapter 6: Conclusion 

6.1. Thesis Motivation 
In this research project, we aimed to bridge the gap between industrial deployment of collaborative 

robots (cobots) and their research application. It was noticed that research application focused on 

teaching cobots complex tasks involving human-awareness and uncertainties. Moreover, research also 

spanned the field of teaching cobots tasks intuitively using demonstrations or trial-and-error. However, 

industrial applications were limited to predictable tasks in proximity with a human. Moreover, industrial 

cobots were still programmed using their classical user-interface by specifying way points. Albeit 

intuitive, this programming technique only yields predictable motions by the cobot. Chapter 2 further 

elaborated on the different research technologies relating to cobots and some of the missing pieces 

preventing their implementation into industrial scenarios.  

After the extensive literature review presented in chapter 2, a learning by demonstration algorithm 

known as task parametrized Gaussian mixture models/regression (TP-GMM/R) was chosen as a base 

for our work. TP-GMM/R is an intuitive method to program cobots to perform flexible tasks. It is 

capable of encoding path and time dependencies between objects or people in the scene. TP-GMM/R 

requires the end-user to simply provide demonstrations of a task being done to teach the task to the 

cobot. Therefore, it is dubbed as “intuitive”. However, a back-end user will need to specify task 

parameters, which are positions of task relevant objects/locations in the scene. This usually requires a 

complex computer vision algorithm to be designed and customised for each task. This might hinder the 

use of TP-GMM/R to program cobots in industrial scenarios, especially in mass customisation, due to 

the time limitation that prevents the designing of a vision algorithm for each new task. Moreover, being 

given a wrong or sub-optimal choice of task parameters leads to a deterioration in learning performance. 

6.2. Thesis Contributions 
In chapter 3, we presented an algorithm that provides a generic task parameter detector and 

identifier. In brief, visual features, e.g. SURF features, were detected from demonstration images and 

matched between the images to be used as frames of reference. Frames belonging to the same object 

were grouped together to overcome partial occlusion and decrease the total number of features. Then, 

a reinforcement learning algorithm was used to identify the optimal frames to be used in TP-GMM/R 

to reproduce a path as close as possible to the demonstration paths. 

The devised novel task parameter detection pipeline allowed us to program the cobot for multiple 

industrial tasks involving different objects without programmatically changing the algorithm. That is, 

TP-GMM/R was used without the need for a back-end user to custom design a computer vision 

algorithm to detect new objects for a new learnt task. Our work makes TP-GMM/R truly intuitive to 
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use, start to end, thus allowing it to be easily used on factory floors. This enables cobots to be used for 

more complex and flexible collaborative tasks in manufacturing.  

Upon using TP-GMM/R to program tasks in chapter 3’s experiments, we noticed a limitation 

imposed by the GMM modelling in TP-GMM/R. The GMM is composed of several Gaussians 

modelling the demonstration paths with respect to a frame of reference. If path points are scattered 

around a frame in all directions, then a Gaussian will not be able to capture all the points without being 

biased to a certain direction. Alternatively, if a Gaussian described all the points in all directions, then 

its centre will overlap with the frame’s origin, thus falsely implying that the points are concentrated on 

the origin. Therefore, in chapter 4, we identified such a frame as “orientation-less” since its orientation 

is irrelevant to the path points. We designed a novel Gaussian model that can describe the points’ 

variability around the frame and their distance from the frame. This novel Gaussian model, the ring 

Gaussian, is a Gaussian that is spanned around the frame. It accurately encodes the points’ distance 

from the frame and the fact that they occur all around the frame.  

The ring Gaussian was incorporated in the TP-GMM/R algorithm and used to program cobots for 

tasks such as pick-and-place, handover, sorting. The path reproduced using ring TP-GMM/R was 

smoother and more successful at accomplishing the task than the path reproduced using traditional TP-

GMM/R. Therefore, the work in chapter 4 improved on the performance of TP-GMM/R for industrial 

tasks by improving the efficiency and effectiveness of the cobot paths generated. This makes TP-

GMM/R more likely and susceptible to being used in programming cobots in flexible manufacturing 

settings. 

Finally in chapter 5, the tool was used to overcome two common task challenges: partial occlusion 

and obstacle avoidance. We also provide a link to our code with tutorial steps in Appendix A on how 

to use it. 

6.3. Safety Recommendations 
Any implementation of human-robot collaboration must undergo risk assessment and comply with 

ISO 10218-1/2:2011 and ISO TS 15066. The former states four collaboration safety-operative modes: 

safety-rated monitored stop, hand guiding, speed and separation monitoring, and power and force 

limiting. Achieving these modes led to different fields of research such as collision avoidance (Lenz et 

al., 2009; Meziane et al., 2017; Wang et al., 2013; Schmidt and Wang, 2014), human motion prediction 

(Wang et al., 2017; Dinh et al., 2015), risk assessment through VR and simulation (Matsas et al., 2018) 

and other safety enabling technologies. The ISO 10218-1/2:2011 standards also necessitate performing 

risk assessment that is custom to each task, setup, and tools. ISO TS 15066 elaborates on the forces and 

pressures that are safe for different human body parts and how to calculate them. Together, these 

standards provide the methodology of performing risk assessment on collaborative robotic setups to 

make sure that the safety of the human operator is ensured. 
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In this thesis, the algorithms developed target the task programming of the robot without 

contributing to the safety factor. However, it does not contradict with any potential safety added feature. 

For example, the algorithms developed do not determine or limit joint velocities or torques, so a safety 

algorithm can freely control velocity and torque to ensure safety. It is a necessity that the 

implementation of the algorithms in this thesis are overlayed by a safety algorithm that is ready to 

override the robot’s program in case of danger.  

6.4. Future Prospects 
The recommendations for future work include the following: 

• Redundant frames are currently identified using an open-loop algorithm, by calculating the 

relative positions between every pair of frames. In the future, deep learning vision algorithms 

can be incorporated to validate the results of grouping redundant frames using intelligent object 

segmentation algorithms. A deep learning algorithm would provide more accurate, educated 

segmentation results that are robust to the object rotating about all axes and varying distance to 

the camera.  

• Features detected are currently 2D which means that the path cannot be flexible with respect to 

their height change. Therefore, in the future, we aim to detect 3D features using a 3D camera 

and to include the gripper’s orientation in the path points’ data. That way the cobot will be able 

to learn more complex tasks involving variable orientation of objects and gripper orientation 

constraints. 

• The ring Gaussian model currently implies that path points are occurring around a frame in all 

directions. However, in the future, we aim to design a partial ring Gaussian that spans a 

constrained portion of the orientation around the frame. This will more accurately describe real-

life situations in which objects are not necessarily completely oriented or orientation-less, but 

rather something in between. 

• Obstacle avoidance currently is only supported when the obstacle is predefined. In the future, 

an obstacle should be automatically detected so that no objects are considered in path 

production when they are not  

Finally, this thesis has been a great journey, through which I have found myself in the field of 

learning from demonstration. I sincerely hope that the work done in this thesis will provide useful 

grounds for upcoming work on programming cobots for industrial tasks. 
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Appendix A: Instructions 
This appendix include the tutorial document attached with the integrated tool to teach a user how to 
program a cobot using the tool. 

 

You are a technician in a factory. You are required to program a robot. You have no 

programming experience. 

You are presented with a tool called GenLfD, which allows you to program robots for Generic 

tasks using Learning from Demonstrations.  

To be able to run the program, you need to have installed: 

1. MATLAB R2020a  

2. CoppeliaSim EDU (free download https://www.coppeliarobotics.com/downloads)  

Step 1  

The tutorial folder includes different files and folder including code functions, simulation files and 

saved examples. As a user, you will only be using: 

• TeachRobot.m, a MATLAB script used to record task demonstrations 

• TestRobot.mlx, a MATLAB live script used to test the learnt task model 

Firstly, open TeachRobot.m with MATLAB R2020a. 
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Step 2 

When MATLAB launches, run the TeachRobot script by clicking Run, in the Editor Toolbar. 

 

Step 3 

CoppeliaSim EDU simulation software will automatically open to a scene showing, a UR5 robot, a 

white cube, a brown box and a vision sensor.  

The simulation will be used to record 5 demonstrations of the robot picking the cube and placing it in 

the box. The vision sensor will record a 2D image of the initial table setup of each demonstration.  

In each demonstration, the position and orientation of the cube and box should vary, so the robot learns 

a task model. 
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Use the object shift and rotate tools to vary the positions of only the cube and box on the table.   

 

Make sure: 

• You don’t move the robot, the vision sensor or the table.  

• When using the shift tool, enable shifting along the x and y dimensions only, relative to World.  

 
• When using the rotate tool, enable rotating along the z direction only, relative to World.  

Vision Sensor 

Brown Box 

White Cube 

UR5 
Robot 
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• The objects remain within the field of vision of the vision sensor. You can confirm this in the 

next step, or in the vision sensor’s pop-up output. 

 

Once the cube and the box are moved and rotated to your choice, click OK on the GenLfD dialogue box 

that opens within MATLAB. 

 

Step 4  

The captured image will be shown as well as a GenLfD dialogue box asking you if you are satisfied 

with the image. Click Yes, continue if you are satisfied with the image.  

However, if any of the objects are outside the camera’s field of vision, move them again to your choice 

and then click No, repeat. If you would like to terminate the software, click Quit. 
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Step 5 

If you clicked Yes, continue, now is time to record the demonstration path. In this task, each path is 

made from 4 path points: 

1. Pre-grasp point, above the cube with open gripper 

2. Grasp point, on the cube with closed gripper 

3. Midway point, between the cube and box, above the table with closed gripper 

4. Drop point, above the box with open gripper 

In the next dialogue box, you will be asked if you want to record a path point. Click Yes, to begin 

recording. 

 

Step 6  

The first path point in a pick-and-place task is typically above the object to be picked. In this case it is 

above the cube. 

Each path point consists of 3 dimensions: x, y and z. Firstly, you record the x and y position by clicking 

on the cube in the image.  

When clicking, observe how the robot end effector moves above the cube in CoppeliaSim.  
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A dialogue box will pop-up but DO NOT click it yet.  

Step 7 

In CoppeliaSim, you will find that the robot’s gripper is now is above the x-y point that you chose in 

Step 6. You will see that there is a golden sphere within the robots grippers. This golden sphere will be 

referred to as the Target. 

Now, you should adjust the z position of the path point, i.e. the height of the gripper above the object.  

The Target is too high above the cube in the z direction.  

To bring the Target down to a more appropriate height, as in Step 3, open the shift tool then click on 

the Target and move it along the z direction down to a few centimetres above the white cube.  

 

 

Target 
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Return to the open dialogue box in MATLAB and now click OK. 

 

Step 8 

After recording the coordinates of a path point, you are asked whether the gripper is to be open or closed 

at that point. For the 1st path point, click Open.  

 

 

Step 9 

Next, you need to record the 2nd path point. Click Yes when asked to record a path point. 

 

Secondly, click on the cube to record the x-y coordinates of the 2nd path point.  
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Then, adjust the height of the Target so that the cube is in between the gripper fingers. 

 

When asked if the gripper is closed or opened, click Close. You will see the gripper will close in the 

simulation. 

 

Step 10 

Repeat the above step for the 3rd point; however, this time 

• The x-y coordinates are between the cube and the box 

• Raise the height a few centimetres above the table  
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• Keep gripper closed 

           

 

(Note: when the robot moves to the specified point, the cube might fall out of the gripper. This is just 

a simulation fault and will not affect the end learnt model. Therefore, continue the steps and ignore 

this fault. Refer to Potential Problems #1) 

Step 11 

Repeat the above step for the 4th point which should represent the drop position.  

• The x-y coordinates are on the box 

•  Adjust the height to be slightly above the box  

• Set the gripper to open  
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You will see that the object falls into the box and the task is completed.  

 

Step 12  

You have thus recorded the necessary path points to accomplish the task.  

 

When prompted again to record a path point, click No, since the task is completed. 
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Step 13 

For the robot to learn the task, you need to provide multiple demonstrations with varied positions of 

cube and box. That way, the robot will understand that the path points are dependent on the positions 

of the cube and the box. 

Now you will repeat steps 3 to 12, 4 more times until you have recorded 5 demonstrations in total. 

 

Make sure to vary the positions and orientations of the cube and the box well between demonstrations 

to create a good variety. Below are a few examples of how you can vary the positions of the cube and 

box. 

    

Step 14 

Once the training is completed, you can test your learnt model.  

In the folder, click on TestRobot.mlx.  

 

In CoppeliaSim, vary the positions of cube and box such that they are in new positions the cobot has 

never seen.  
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Run the TestRobot MATLAB live script. You will obtain the reproduced path in this new scenario. 

(Note: If you receive an error saying no subtask was matched, that means the algorithm failed to detect 

the  

Step 15 

Once all the demonstrations are recorded, the training process starts automatically so you only need to 

wait. At the end, you will see the result of the training process. 

 

Firstly, the task parameters will be detected. They are the different dots in the image below. It is 

important that at least one dot belongs to both the cube and the box. 
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Secondly, the model will be trained to obtain probabilistic distributions of the paths with respect to the 

task parameters. Here we notice that the generated white path, is not satisfactory since it is very 

different than the ground truth path in green. The next step will solve this problem. 

 

Thirdly, a reinforcement learning algorithm will identify optimal task parameters that generate a 

better path. You can see that the new path in white is much better than the originally generated path in 

red. 

 

(Note: In the training process, two errors might occur. Refer to Potential Problems #2 and #3.) 

Potential problems 

1. Failed Demonstration 
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When recording the demonstration, the cube might fall out of the gripper while moving. This is a 

simulation dynamics error and won’t actually affect the algorithm performance. 

2. Missed objects 

 

When looking at the matched frames of references (the dots), we can notice that none of them belong 

to the cube. That means that the cube was not detected by the algorithm. Therefore, the reproduced 

paths will be ineffective.  

This could be because the object doesn’t have prominent features, or it has a reflective surface, or there 

are shadows. Try to overcome the above problems and rerun the recording algorithm. If problem 

persists, seek help from the programmer. 
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3. Incorrect convergence 

 

The reproduced path in white is unsatisfactory and not meaningful, that is because the green frame 

belongs to the table, not the box. When this happens, run the function of findirrelevant.m until 

satisfactory results are obtained.  

4. No Features Detected 

In TestRobot live script, the algorithm attempts to detect the task parameters in the new image. In rare 

occasions, they might fail to detect and in such a case, the path cannot be reproduced. 
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