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Abstract

A survey of implementations of the knowledge-based engineering approach in different tech-
nological sectors is presented. The main objectives and techniques of examined applications
are pointed out to illustrate the trends and peculiarities for a number of manufacturing field.
Existing methods for the development of these engineering systems are then examined in
order to identify critical aspects when applied to manufacturing.

A new methodological approach is proposed to overcome some specific limitations that
emerged from the above-mentioned survey. The aim is to provide an innovative method for
the implementation of knowledge-based engineering applications in the field of industrial
production.

As a starting point, the field of application of the system is defined using a spatial rep-
resentation. The conceptual design phase is carried out with the aid of a matrix structure
containing the most relevant elements of the system and their relations. In particular, objec-
tives, descriptors, inputs and actions are defined and qualified using categorical attributes.

The proposed method is then applied to three case studies with different locations in the
applicability space. All the relevant elements of the detailed implementation of these systems
are described. The relations with assumptions made during the design are highlighted to
validate the effectiveness of the proposed method.

The adoption of case studies with notably different applications also reveals the versatility
in the application of the method.
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Introduction

The role of digitalisation in process engineering is evolving in accordance to the general trend
of science and technology. In particular, the Industry 4.0 paradigm is pushing companies to
implement Cyber Physical Systems (CPSs) for the creation of the so called Smart Factories.

In this direction, Information Technology (IT) plays a crucial role by managing the data
collected in the company. IT includes the storage, retrieval, transmission, and manipulation
of data. In particular, the implementation of smart systems requires the digitalisation of tasks
that were previously accomplished by human operators.

Artificial Intelligence (AI) is the set of techniques enabling a software to emulate a
human behaviour. Knowledge-Based Systems (KBSs) are a subcategory of AI that aims to
capture and reuse the knowledge of the experts of a particular sector. The application of
the knowledge-based approach to industrial production goes under the name of Knowledge
Based Engineering (KBE). The present work deals with Knowledge Based Engineering
Systems for Manufacturing (KBESMs), i.e. applications of KBE that manage the know-how
of industrial production.

Hardware systems enabling the collection and transmission of data are nowadays widely
diffused in industry, whereas the implementation of KBE is still faltering, especially in the
case of Small and Medium Enterprises (SMEs). The main difficulties in this sense derive from
the need to implement elements of knowledge that are peculiar of the intended application. In
many cases, this specificity does not allow the direct use of pre-existing models of knowledge
representation. Furthermore, the operators’ know-how often lacks of an explicit formulation,
since it descends from the direct experience. KBESs manage this kind of knowledge by
means of Machine Learning (ML) and Case Based Reasoning (CBR) techniques.

The rapid introduction of new technologies imposes to shorten the learning time of
their features in order to be competitive on the market. For this scope, the computer-aided
knowledge management can be an effective support in building and managing process
know-how.

Especially in the case of SMEs, the process know-how is often owned by a few persons
and does not have a sharp definition. On the contrary, a formal and explicit representation
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of knowledge eases its sharing among different operators. The rational representation of
know-how is also useful in order to point out fuzzy and uncertain aspects that may exist in
the knowledge base of companies.

As above-mentioned, the automated reuse of knowledge within the CPS allows the
implementation of smart systems acting in real time. Furthermore, this automation can be
extended to the design phase of the product and process to reduce the time dedicated to
repetitive tasks and enlarging the space of explored solutions.

As a summary, the adoption of KBESM in industry is intended to manage process
knowledge by means of one or more of the following actions:

• Acquire from the observation of real-world phenomena;

• Formalise through a representation that admits reuse in the next phases;

• Synthesise by formulating human-readable rules that allow operators to learn by the
system;

• Store for increasing the knowledge-base of the company;

• Share among different human or industrial entities for re-elaboration;

• Reuse by human or computer agents in different phases of the industrial chain.

The efforts for the implementation of these systems are often perceived as prohibitive for
SMEs due to the lack of necessary expertises. Furthermore, in order to get an effective result
on the KBESM, a productive dialogue must be established between the different entities
involved. In particular, it is necessary to create a bridge between the several technical experts
providing knowledge, the management defining company’s strategies and the software experts
involved in the implementation.

For this scope, the present work proposes a methodological approach to be used in the
very first steps of KBESM development. The approach aims to extend the applicability of
this techniques in SMEs and ensure the coherence and effectiveness of the resulting systems.
The main requirements of the methodology are identified as follows:

• Flexibility to different production scenarios and objectives;

• Easiness of use to include in the system the higher number of actors and competencies;

• Consistency by preventing the definition of non-coherent elements;

• Consequentiality in the determination of techniques that can be used in the implemen-
tation phase;
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• Adaptability to modifications that may occur during the system development.

The thesis is structured as follows:
Chapt. 1 gives a brief overview on the applications of KBESM. The most relevant

methodologies for the design of KBS and KBESM are also introduced to point out their main
advantages and disadvantages.

Chapt. 2 illustrates the proposed method by giving a description of represented ontologies
and procedure to be followed during the conceptual design of a KBESM.

In Chapt. 3, 4 and 5 the method is applied to the development of three systems charac-
terised by different scopes, fields of application and methods. The three case studies report
the conceptual and detailed design of KBESMs as well as their implementation. The relations
among these phases and the benefits that are achieved through the use of the proposed ap-
proach are pointed out. Differences between the investigated systems also allow identifying
advantages and disadvantages emerging in applications to dissimilar contexts.

This work aims at giving an overview on the main tasks to be fulfilled by means of KB-
SEMs in industrial application and on main limits of existing solutions. The methodological
approach proposed tries to overcome such limitations addressing targets listed above. The
approach here presented is validated through case studies with different features and fields of
application in order to prove its validity. The method can be applied to several real cases,
promoting the actual implementation of intelligent manufacturing systems in the Industry
4.0 scenario.





Chapter 1

Knowledge-Based Systems in
Manufacturing

1.1 The role of Knowledge-Based Systems applied to
Manufacturing

During product development, integration and management of manufacturing knowledge play
a crucial role in the successful industrial production [134]. Concurrent Engineering (CE)
approach expects companies to integrate manufacturing knowledge since the very first phases
of design to offer their customers higher-quality products at lower prices and to deliver these
products more quickly.

Even more, technological breakthroughs became a significant driver of competitive advan-
tage in both emerging and mature industries [278]. Because of this influence, manufacturing
knowledge is considered one of the most valuable resources of a company and requires
proper methods for management and application [84]. Therefore, the adoption of Knowledge
Based Systems (KBSs) for knowledge management has always been particularly interesting
for research and industrial applications in this field [235, 87].

Deep evolutions in Artificial Intelligence (AI) and KBSs in the last decades renewed the
interest of researchers in applying such techniques to industrial manufacturing through the
application of new rising methods [356, 165, 328].

The role of these systems became even more crucial within the Industry 4.0 paradigm of
Cyber Physical System (CPS) and smart factory [296]. In this context, intelligent manufac-
turing offers a solution to exploit at the best the information of the smart factory to produce
and reuse knowledge [360, 338].
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1.2 Applications of Knowledge-Based Systems for
Manufacturing

1.2.1 Review methods

The present chapter aims to survey the scenario of KBESM in the years between 2007 and
2019.

The applications have been classified for manufacturing field according to [134] using
the following categories:

• Machining;

• Casting;

• Plastic Moulding;

• Bulk Forming;

• Sheet Metal Forming;

• Welding;

• Additive Manufacturing.

Additive Manufacturing (AM) was added to the classification proposed by [134] due to
its increasing importance in the industrial panorama.

It is worth noticing how many authors, especially in the latest years, prefer to adopt the
more general classification of AI instead of KBS; this complicates the challenge of having a
complete investigation of the literature scenario. For this purpose, a literature research has
been done consulting most relevant scientific search engines by using "Knowledge Based
System" and "Artificial Intelligence" as the keyword together with the descriptive terms
of the considered manufacturing processes. Articles from both peer reviewed journals and
international conferences have been included. Fig. 1.1 shows the number of papers found for
each field of application in the examined years.

Observing Fig. 1.1 it is possible to notice a general increasing trend in the number of
published papers per year.

Looking at the percentage of publications per field, a leading role of applications in the
field of machining can be observed in different years. In fact, the adoption of Computer
Aided Manufacturing (CAM) software in this field has a long-time tradition if compared to
the other investigated technologies.
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Fig. 1.1 Papers per year applying intelligent systems to manufacturing engineering

In the last years, a considerable increase in the number of publications in AM field can
be observed. This corresponds to the general increasing interest of the research for these
technologies.

A selection has been operated on the found papers in order to extract the most relevant
works for describing the role of KBSs in manufacturing. In the following sections, this batch
will be used to provide an overview of the state of art and trend in the different investigated
fields. For this scope, reviewed KBSs have been grouped in categories on the basis of
their scope. It is worth mentioning since now how this classification is often difficult and
incomplete. Nevertheless, this approach allowed getting an overview on the panorama of
different analysed technologies. The results are then used in order to give an overview of
emerging trends.

Finally, some considerations about the emerging overall scenario are briefly illustrated.

1.2.2 KBSs applied to machining

Machining is the manufacturing field that presents the highest number of applications. It is
worth mentioning in this section not only traditional material removal processes (milling,
turning, broaching, etc.) are considered but also unconventional ones like for example laser
micro-machining or net shape manufacturing by laser and others. In order to display the aim
of these KBS implementations, key-topics for a certain group of works have been identified.
Even if within a paper these key-topics partially overlap, a category has been assigned to
each paper on the basis of its relevance. Six different groups of papers have been identified.
They are:

• Decision support systems;

• Process planning;
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Fig. 1.2 Applications of KBS for machining

• Process monitoring and defect prediction;

• Tool management;

• Fixture design;

• Product design.

Figure 1.2 shows the examined papers that were published during the considered period
as a percentage for each mentioned field. Each theme will be discussed in detail within next
sessions.

Decision support systems for machining

The main aim of these KBSs is to assist a decision-making process on the basis of previous
experiences or stored knowledge.

Methods have been proposed for representing manufacturing process based on ontologies.
In these systems, knowledge about machining processes is stored, shared or managed for
different purposes [12, 127, 104]. The collection of structured data [244] allows the reuse
for sharing [147], rule extraction [217] and reuse [242].

The adoption of web-based Knowledge Management Systems (KMSs) has been proposed
and applied in [145, 51, 242].
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Some works focused on automatising the selection of machining centres [54, 228] or suppliers
[51] by expert systems, while others on tasks or process parameters optimisation [277, 36, 77].

Process Planning for machining

Figure 1.2 shows that most of the examined applications in this manufacturing area aim to
Computer Aided Process Planning (CAPP). A manufacturing knowledge representation for
this goal is proposed in [59].

A cloud-based system for dynamic production planning is proposed in [96]. Web-based
approach is also used in [97] for operation planning. The same task has been fulfilled by
using Artificial Neural Networks (ANNs) in [318, 319], graph-based approach in [274] and
Rule Based Reasoning (RBR) in [309].

Digitalisation of flexible manufacturing systems has been investigated in [262, 295].
Interaction with user is also adopted for the selection of templates defining the sequence of
machining steps in [308].

Process planning involves the analysis of the Computer Aided Design (CAD) model
for Manufacturing Feature Recognition (MFR) in several applications ([171, 310, 170,
325, 163, 191]). This kind of approach can also include the representation of intermediate
manufacturing states of the machined part, as in [76, 352].

The previously mentioned works aim to be suitable for production planning independently
by the product to be processed. In order to better fit specific requirements, some systems
have been proposed for specific fields, especially medical and transportation.

In the medical field, a MFR based approach has been proposed by [351], while in [341]
process planning is automated for dental restoration. As examples in transportation, in [170]
an integrated CAD/Computer Aided Manufacturing (CAM)/CAPP KBS is proposed to store
and reuse knowledge in automotive company. [55] adopts a fuzzy evaluation to allocate
manufacturing resources allocation during the production of aircraft structural parts. A CAPP
for hole-making in marine engines is proposed in [156].

More general optimal hole-making sequence definition for cost minimisation has also
been explored by [66] through the application of a modified shuffled frog leaping algorithm.

Figure 1.3 shows the percentage of publications in KBS for machining process planning
divided into three main areas, that are: process sequence definition, tool-path optimisation
and process parameters selection.

Toolpath optimisation is an important topic that has been mostly faced using STEP-NC
representation [169, 363, 342, 337] and Manufacturing Feature Recognition (MFR) on CAD
models [197, 320, 108, 91]. A rule-based approach based on calculation of collisions is
proposed in [7].
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Fig. 1.3 Publications in machining CAPP per area

KBSs to get optimal toolpath basing on process parameters have been presented also for
laser cutting processes [8, 58]; in [226] a KBS based on natural language for part program
generation in pulsed fibre laser micromachining is proposed.

A specific application to path generation for shoe moulds is presented in [50].
However, as it can be seen in Figure 1.3, the selection of machining parameters, together
with sequence planning , covers more than 50% of total publications.

The main objective of the KBSs in this field is to establish relations among machining
parameters and final features of the machined parts. As an example, in [162], Bayesian
Neural Networks (BNNs) have been used to predict surface finishing on the base of input
parameters. In [20] parameters selection is focused onto improving the sustainability of the
machining process.

Nevertheless, in most of the cases the parameters optimisation is conducted targeting
to several different objectives, leading to a Multi-Objective Optimisation (MOO) problem
[241, 252, 252, 22].

An analysis of the geometry is often adopted as a starting point for the definition of
optimal cutting parameters; to perform such analysis, STEP-NC representation of the part
has been employed in some works [150, 240], while in other cases MFR on CAD models
have been preferred [322, 333].

The input parameters that can be included change with the application: as an example, in
[8] both cutting and lubricant parameters are considered.
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Even in this field, a number of sector-based KBSs have been proposed in order to reach
the maximum efficiency. In [105] an automatic NC parameters definition for gear machining
is presented. A method for optimal broaching conditions definition using calculation is
presented in [138]. An optimisation based onto Genetic Algorithm (GA) is presented in
[294] for cement milling; in [277] GA is combined to Fuzzy Logic (FL) and ANN in a soft
computing system for the optimisation of High-Speed Milling (HSM).

In [35] ANN has been trained onto the results of a Design of Experiment (DOE) for cost
reduction and quality obtaining in laser cutting.

In order to determine optimal conditions for grinding operations, a Web-Based KBS has
been proposed in [251], while to determinate grinding wheels dressing parameters for cubic
boron nitride a KBS combining Rough-Set (RS) algorithm and Rule Based reasoning (RBR)
has been proposed in [330].

Process monitoring and defect prediction for machining

An key-topic of machining oriented KBSs is process monitoring and control or defect
predictions during machining under certain conditions. This issue is connected to process
planning in order to define proper conditions for achieving a certain product quality [329].

High rates of data acquisition and elaboration in current CNC machines lead researchers to
investigate into real-time monitoring systems which can prevent error in-process and represent
a complementary way to process simulation by modelling [343]. Different approaches to
monitor or predict issues related to machining quality have been proposed including process
modelling [303, 304], BN [74], ANN [289] and FL [223]. A RBR based on Decision Trees
(DT) has been proposed by [246], while [40] proposed a cloud-based diagnosis system for
the elaboration of monitored data. Error compensation can be adopted to improve accuracy of
well-established technologies such as milling [160, 354] as well as to facilitate the application
of emerging ones [83]. The efficiency of these systems increases when applied to specific
operations, as more requirements can be included [174, 154].

Monitoring of tool behaviour is deepen within the next section.

Machine tool and machining tools

The combination between machine tool and machining tools plays a crucial role to determine
cost, quality and sustainability of machining process. Therefore, machines and tools selection
is a key-activity that is conducted through several different aims, leading in general to a
Multi-Criteria Decision Making (MCDM) problem that can be assisted through KBSs. In
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[15] a Multi-Attributes Decision Making (MADM) program is developed to select the most
suitable high speed machining tool through a Case Based Reasoning (CBR) system.

Numerous KBSs to aid tool selection based on RBR have been proposed as an example
by [82, 249, 229, 313, 110].

A soft computing approach using decision trees has been presented in [245]. Examples
of cloud-based systems can be found in [177] to choose the best combination of machine and
cutters and in [73] for only tool selection. Data acquisition for development of a cloud-based
diagnosis system focused on tools condition has also been employed in [41].

A process planning tool aiming to increase tool life has been proposed in [194]; in [34]
tool life extension is pursued through data collection in process monitoring. An unsupervised
learning based on image analysis is presented for estimation of tool wearing in broaching
operations in [292]. A RBR prediction of grinding wheel topography is proposed by [23].

In [339] BNNs have been used to predict thermal behaviour of machine tools.
Finally, an integrated CAD/CAE approach to the design of machine tool is presented in

[315].

Fixture design for machining

In tool design, researchers paid a particular interest in automated design of fixtures for
machining operations; a review of Computer Aided Fixture Design (CAFD) methods can be
found in [32].

KBS designed for this proposal are usually integrated within CAD environment to
automate or assist decision-making and modelling activities about fixtures [361, 334, 335].

In [332] a combination of ANN and Finite Element Analysis (FEA) has been proposed
for automatic fixture design. A recent trend in this field is to combine RBR and Case Based
Reasoning (CBR) within KBSs [13, 221] and to apply in Virtual Reality (VR) [221] [92].

[302] proposes an integration of fixture design optimisation in a wider KBSM for turning
based on process simulation.

Product design for machining

According to the general tendency of anticipating manufacturing considerations in the
product design process, some KBSs aiming to assist the design of machinable parts have been
proposed in the scientific literature. Two examples of frameworks for integrating machining
knowledge in design have been outlined and applied in [25] and [4].

In [65] a Web-based Collaborative Design tool integrating a Knowledge-Based Decision
System is presented for micro manufacture.
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Fig. 1.4 Trends in KBSs for machining

A Design for manufacturing system based on adoption of manufacturable entities has
been proposed in [112].

Another interesting application of KBSs to machined parts investigated in recent years is
the automatic generation of blank model, as in [331, 178].

Emerged trends for machining and future scenarios

Figure 1.4 presents the percentage of papers published in each of the mentioned fields divided
per year.

As it can be observed in Figure 1.4, KBSs for production planning maintains a constant
dominant position among publications in this field. Even if RBR systems still have a
predominant role in KBSs for CAPP, an increasing number of CBR applications are emerging
in order to profitably exploit the large amount of data collected in the production plant.

The development of KBSs for the design of machinable product presents a decreasing
number of papers in latest years, while an increase in the number of publications concerning
the selection and management of tools used in the machining centres can be observed since
2014. The adoption of RBR seems to be the most adopted approach to this topic. This is
applied at different levels of the decision-making process.
Therefore, the future trend in this field seems to be a further enhancement in automation of
production planning by including new influential elements (such as machining centres and
machining tools) in the digital representation of the production system.
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Fig. 1.5 KBSs for casting

1.2.3 KBSs for casting

KBSs find a large use and application for this group of processes thanks to the large amount
of available know-how.
Fig. 1.5 provides an overview of reviewed papers on the basis of their field of application.
Six main areas, which are listed below, have been recognised:

• Decision support systems;

• Quality prediction;

• Control of process parameters;

• Energy efficiency and cost estimation;

• Product design;

• Die design.

As for the previous section, each area will be described in the next paragraphs and tables
will be added in attachment in order to summarise methods and aims of each work.

This overlook allows to underline the main peculiarities of KBSEMs developed for
casting technologies. More in detail, it is possible to notice that different techniques and
know-how representations are adopted according to the aim of the application.
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Decision support systems for casting

Several applications aim to provide advice to the operators of metal casting industries in
order to support the decision-making process.
In [238] a semantic approach is adopted to manage and share knowledge about casting of
Austempered Ductile Iron (ADI).
Information Technology (IT) to build a platform for knowledge reuse and resource sharing
among companies has been applied in [196, 192].
In the approach proposed by [267], rules were extracted by a set of training data and
automatically concatenated within the inference engine.
A KBS for material selection in casting has been presented in [161]. The system proposed
in [126] for the optimisation of scheduling in steelmaking continuous casting can also be
included within this category.
In [347] an application aiming at the development of an intelligent plant for micro-wire
casting is presented.

Quality prediction for casting

As it can be seen in Figure 1.5, almost 24% of the KBSs applied to casting deal with
the prevision of specific quality characteristics of products realised by means of casting
technologies. This is mainly due to the difficulty to properly forecast errors and build
predictive model of final product features.

To predict defects that occur in metal parts casting, a CBR approach has been proposed
in [326], while an application of the Rough Sets Theory can be found in [143].
A tool for slag detection in continuous casting is presented in [281].
A KBS for data mining from both simulation and experiments has been proposed in [283].
A combination of FL and GA is presented in [276] in order to predict mechanical properties
of silica-based resin bonded sand core system.

Control of process parameters for casting

Prediction of behaviour can be adopted in order to optimise process parameters during
casting.
In [100] CBR is applied to historical data within a proactive KBS for process parameters
control.
In [68] a KBS for squeeze casting parameters optimisation is developed through the applica-
tion of fuzzy reasoning techniques.
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Energy efficiency and cost estimation for casting

Among different objectives of process optimisation, a particular attention is given to cost
estimation and energy efficiency, which are two crucial aspects concerning casting processes.
In fact, efficient use of energy is a key factor of success for these group of processes that are
largely energy consumption dependent. In the same way, in this industrial sector manufactur-
ing enterprises experience hard concurrence and cost prediction for budget estimation is a
fundamental business aspect.
In [124] a Multi Agent System (MAS) - a distributed Artificial Intelligence (AI) system that
solves problems by social interacting that means by cooperation, coordination and commu-
nication among different Knowledge Based Agent (KBA) - is implemented together with
Extremal Optimization (EO) method. The aim was the achievement of an artificial intelligent
integrated scheduling system for significant economic benefits by increase in hot charge rate
in steel-making continuous casting.

In [185] Fuzzy Reasoning (FR) based approach was compared with a more conventional
rule based approach for cost estimation of cast metal parts .

Product design for casting

In the previous chapters, a method for the generation of cast blanks for machining processes
in [331] has been examined; together with the approach that is described in [59], these two
papers can be considered as an example of KBS for the design of castable components.

A knowledge management system to support the design of parts realised through micro-
casting and micro-powder injection moulding has been presented in [14].

Recently, in [212] a combination of CAD and FEA is presented for the optimisation of
cast metal and injection moulded polymeric parts basing onto micro structure-based material
behaviour. In [211] a KB methodology for the design of casting parts including structural
and process FE simulation is proposed.

Die design for casting

Researches on assisted design for casting does not deal only with design of parts to be
produced in order to be feasible but also concern the manufacturing system and, in particular,
die design.

In [136] a CAD integrated KBS for the parametrised modelling and intelligent assembly
of 3D die standard parts is proposed for die-casting.
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Fig. 1.6 Percentage of publications per year in different fields.

In [151] a MOO CAD integrated KBS for cavity design for die casting is proposed.
The method proposed in [125] combines CBR and RBR for the specific design of turbine
blades produced through investment casting.

[158] deals with a CBR system for reusing previous design resources in the development
of a new product.

[89] describes a Feature Based parametric design for automatising die casting design.
In [316, 253], a KBSM or the design 3D Sand Printed moulds is proposed.

Emerged trends for casting and future scenarios

Figure 1.6 reports the percentage of publications in each of the fields investigated within
the time period analysed in this review. As it can be observed, prediction of parts behaviour
and, consequently, the parameters management received an increasing interest in the period
between 2009 and 2014, while in the most recent years the published works have been mainly
focused on more general systems to assist the decision making process in foundries and the
design of moulds.
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1.2.4 KBSs for plastic moulding

Plastic moulding shows several similar aspects to casting, but at the same time presents
important peculiarities affecting all the examined applications of KBSs.
Examined KBSs about this technology have been distinguished according to their objectives
as represented in Figure 1.7.
As it will be described in the following part, most of the applications in this field are developed
for injection moulding process.

It was possible to distinguish six main areas, that are listed below:

• Decision support systems;

• Product design;

• Die design;

• Process parameters;

• Behaviour prediction.

Decision support systems for plastic moulding

To support the decision making process for injection moulding technology, a semantic web-
based KBS has been developed in [133].
A KBS focused on energy saving for injection moulding is proposed in [268].
A recommendation tool for decision making in polymer matrix composite materials process-
ing has been presented in [63].
Finally, in [45] an overview of FORMAT methodology is provided with an application to
vacuum forming.

Product design for plastic moulding

Because of the several design constraints related to most of the plastic moulding processes,
several KBSs have been developed to assist the design of products to be produced using
these technologies. Two examples of such KBS applied to plastic moulding has been already
mentioned in the previous chapter [212, 211].
In [247] a representation of product lifecycle to support e-design of injection moulded parts
is proposed.
In [362] a web-based KBS to provide designers information about existing and under
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Fig. 1.7 KBSs for plastic moulding
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developing products to support injection moulding is presented. A web based approach to
assist the design of injection moulded parts is also presented in [132]. A KBS for decision
support during the design of injected moulded parts has been outlined in [62] through the
usage of both CBR and RBR.
To directly apply design guidelines to CAD models for the manufacturability assessment, a
mid-surface representation of the solid part has been adopted in [109]. In [60] an algorithm
for the individuation of undercut features in CAD models.
Finally, an interesting family of KBSs in this field is constituted by the ones aiming to
evaluate the manufacturability of composite components [60, 285].

Die design for plastic moulding

As in metal casting, the design of manufacturing equipment, and in particular dies, plays a
crucial role in injection moulding industry, therefore it is investigated by several KBSs in
this field.

In [130] a navigation system to support mould design and reducing time required is
presented.
An example of RBR approach to mould design for injection moulding processes is proposed
in [250], while CBR approaches can be found in [198] and [103].
In [153] a combination of CAE and DOE is developed to optimise the design of injection
moulds in terms of gates and runners. An integration of CAD and CAE has been adopted for
the optimisation of mould design and moulding parameters by [190].

A web based KBS for the application of DFM rules during mould design has been
presented in [131]; a more specific application to rubber injection moulds can be found in
[291].

site materials is proposed in [27].
Finally, some KBSs have been proposed for the design of moulds satisfying specific

requirements: in [275] ICT supported system for energy efficient injection moulds design is
described, while a KBS for lead time estimation of moulds is presented in [202].

Process parameters for plastic moulding

As mentioned, in [190] not only the design of the mould, but also the design parameters are
optimised within the KBS.

In [188, 157] a KB approach to the design of KBSs for the determination of optimal
injection moulding parameters was proposed.
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Fig. 1.8 Applications in plastic moulding divided per sector

Back Propagation Neural Networks (BPNNs) have been used in [52] for the determination
of the Pareto-optimal solutions for a MOO of injection moulding parameters.

Behaviour prediction for plastic moulding

Specific KBS have been developed to predict behaviours of moulded parts and moulding
system under different aspects.

In [144] a KBS for the estimation of defects within injection moulded parts basing onto
CAD representation is presented.

A web-based fault-diagnosis system for an injection moulding machine is developed in
[297] adopting CBR based onto previous maintenance experience.

A KBS for the prediction of mass fluctuations in injected plastic parts has been developed
in [173] through the usage of BPNN.
A Hierarchical Bayesian Network (HBN) approach to estimate the uncertainty in performance
prediction of manufacturing processes has been presented in [205] and applied to uncertainty
prediction in energy consumption during injection moulding.

Trends for plastic moulding

In Figure 1.8 KBSs for plastic moulding are summarised on the basis of percentage applied
to different fields during each year.
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Fig. 1.9 KBSs in bulk deformation divided for application

As it can be observed, there is not a well-defined trend in the development of these sys-
tems, being the percentage of applications randomly distributed with a stable predominance
of product and die design assistants.

1.2.5 Bulk metal forming

Despite its wide applications in engineering production, bulk forming its quite a niche for
developing of KBSs, as it can be observed in Fig. 1.1.

It was possible to distinguish six main areas in this field, that are listed below:

• Behaviour prediction;

• Process parameters;

• Product design;

• Tool design;

• Decision support systems;

In Figure 1.9 the percentage of KBSs reviewed in this field are divided in categories as
made for previous processes.



1.2 Applications of Knowledge-Based Systems for
Manufacturing 23

Behaviour prediction for bulk metal forming

As it can be observed in Figure 1.9, most of the KBSs applied to bulk forming aim to
predict some behaviours of the manufactured product on the basis of process parameters. An
overview of relevant effects for most of the technological processes in this field is provided
in [287].
In [46] a FE approach is adopted to model actual welding occurring in extrusion of complex
profiles.
An ANN based approach to estimation of flow stresses in plastic deformation is proposed in
[119].
A SVM based approach has been developed in [5] to classify defects occurring in hot bar
rolling of steels monitored during inspection.
Recently, a cloud-based KB adopting FEA for predicting limiting dome height and failure
mode during hot stamping process has been presented in [312].

Process parameters for bulk metal forming

Deeply connected with the previous activity, also in the field of bulk deformation some
applications have been developed to find out the optimal set of process parameters.
In [2] a combination of FL and GA is proposed for the optimisation of hot-rolling process
parameters.
GA are instead combined to FEA to optimise tube bending parameters in [167].

Product design for bulk metal forming

In [16] a CAD integrated KBS including DFM rules for the design of manufacturable bent
pipes has been proposed.
DFM is combined to axiomatic design approach within a KBS considering both process
properties and execution variables for forging process in [86].
In [168] a KBS for the determination of tube bending limits has been proposed using
analytical and FE methods and experimental data.
A KBS for manufacturability assessment of tube hydroforming is proposed in [209] through
reduction of 3D CAD data to a 1D skeleton graph.

Tool design for bulk metal forming

A KBS to assist the design of tools for bulk metal forming can be observed in [39] with an
application of ANN to the design of aluminium extrusion dies.
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Fig. 1.10 Publications per year in bulk metal forming

In [166] an integration of CAD and FEA is adopted to assist selection and design of tools for
metal tube bending.

Decision support for bulk metal forming

An example of decision support KBS for bulk forming can be found in [350], where Rough-
Set theory is applied for knowledge acquisition and reuse in cold extrusion.

Trends for bulk metal forming

Figure 1.10 reports the percentage of papers in each of the mentioned field published each
year.

As it can be seen, the prediction of characteristics of the product and its design are the
fields of most interest for the development of KBSs in the field of bulk manufacturing in the
recent years.

1.2.6 Sheet metal forming

In metal forming, a distinction is made between bulk forming and sheet metal forming for
the different methods and equipment employed.

A survey of KBSs for sheet metal stamping has been published in 2014 [231]; the
overview is here extended to more recent works and different sheet metal forming techniques.

It was possible to distinguish six main areas, that are listed below:
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• Part design;

• Tool design;

• Behaviour prediction;

• Process parameters;

• Decision support.

Figure 1.11 shows the amount as percentages of the scientific publications about sheet
metal forming divided per scope.

As it can be seen, most of the applications of KBSs in this field aim to support the design
of formed parts and production tools.

Part design for sheet metal forming

The design of sheet metal formed parts involves several considerations in order to ensure the
transformation of the blank sheet metal into the final product. Therefore DFM rules plays a
crucial role in this field and have been the basis for development of many KBSs [231].
In [207] an intelligent assistant is developed to provide recommendations for strip-layout
design of sheet metal parts produced on progressive deep drawing dies. Blank layout and
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strip-layout are then automatically modelled through in CAD environment.
A KBS for assisting the design of incremental is developed in [213] through the use of ANNs.
A CAD integrated KBS for bend-allowance estimation of air-bended sheet metal parts is
presented in [152], while in [327] a system to assist preform design for shell nosing products
through a combination of CAD and CAE has been presented.
A sector application of these systems can be observed in [114] where a KBS has been
developed to speed up the design process of formed sheet parts for automotive field.

Tool design for sheet metal forming

Due to the huge influence of process equipment onto quality and convenience of forming
processes, the development of KBSs to aid their proper design is the field of research with
the highest number of publications.
In [1] a CAPP KBS for axisymmetrical deep drawing part is presented. The output of the
system consists of the set of optimal parameters and the CAD model of the tool adopted for
the process.
More recently another CAD integrated KBS for the design of deep drawing die components
and assembly has been proposed in [206].
An expert system for die design and process planning of sheet metal forming operations is
presented for blanking operations in [272]. The task of automating blanking die design to
shorten development time is also covered by [175, 273, 149]. A CAD integrated KBS to
support the design of cutting dies components and assembly is developed by [301].
In [176] an integrated CAD/CAM/CAE KBS has been developed to assist the automated
modelling of stamping dies for the automotive field.

Behaviour prediction for sheet metal forming

The necessity to estimate the behaviour of components during the manufacturing process
led to the generation of KBSs for the prediction of specific product features affected by
the forming process. GAs have been employed together with ANN and FEA in [38] for
prediction of spring-back angles in sheet metal formed parts.
A predictive system for cost estimation of sheet metal parts has been proposed by [21].

In [311, 317] cloud-based KBS is coupled with FE simulation for the MOO of sheet
metal forming.
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Process parameters for sheet metal forming

As in other fields, prediction of product features related to manufacturing process is often
used to adjust process parameters according to the intended result.

So in [214] a KBS for deviations prediction in incremental formed sheet metal parts is
used for control of driving machines’ process.

A self-adapting KBS for the control of incremental press bending on the integral wing-
skin panels has been developed in [344].

In [75] a Cloud-Based KBS based on the use of FE methods has been developed to
predict the outcome of sheet metal forming processes.

Decision support for sheet metal forming

Some KBSs developed for sheet metal forming aim to combine different aspects of the
aforementioned applications in order to assist the manufacturing at different levels; examples
obtained through the combination of different CAx environments can be found in [219, 101,
111].
An assistant tool for evaluation and forecasting of the in-plane bending process is described
in [284].
More specific tools are then designed for sector applications.

For example, an application of KBS to aircraft panel forming is presented in [56], while
a neuro-fuzzy inference system for rule extraction in asymmetric single point incremental
forming is presented in [288].

Trends for sheet metal forming

Figure 1.12 summarises the percentage of KBSs presented per year divided according to
their application.

It is possible to notice how the design of products and production tools are the most
covered areas in this field with a stable trend. This is even truer if we consider that, in many
cases, the more general decision supporting tools include this task among other modules.

1.2.7 Welding

The applications of KBSs to manufacturing includes also joining techniques. In particular,
welding is a prolific field due to the broad use and the need of know-how of these group
of processes. A large number of different heat sources are available and, typically, a rele-
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Fig. 1.12 Publications per field in sheet metal forming

vant number of process parameters must be controlled also if material properties are not
considered.

An overview of examined systems is provided in Figure 1.13.It was possible to distinguish
six main areas, that are listed below:

• Decision support systems;

• Behaviour prediction;

• Defects management and control

• Process parameters

• Product and tool design

Defects management and control has been separated from general behaviour prediction
to underline the relevance of these features in this manufacturing field.

Decision support systems for welding

The selection of a proper welding technique is a significant problem due to the mentioned
available large number of heat sources but also depends on processed materials and product
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Fig. 1.13 KBS applications for welding

design. As a consequence, a huge number of factors must be taken into account. KBSs can
be precious in this choice as assistants of experienced or inexperienced process engineers
and managers to realise decision making systems.

Fuzzy-based KBSs to assist welding process selection have been proposed in [195] for
repairing nodular cast iron engine block and in [120] for high pressure vessel manufacturing.
Fuzzy techniques are also adopted in [139] to develop a Design Decision Making (DDM)
assistant for assembly and joining that has been tested on real welded structures.
Arc-welding knowledge is also included within the web-based management system [51]
already mentioned in 1.2.2.

In[299] a KBS for Reconfigurable Manufacturing Systems (RMS) is presented with an
application to spot- welding.

Behaviour prediction for welding

As in previously analysed manufacturing fields, the decision making activity is deeply related
to the prediction of product features on the basis of adopted technological and process
parameters.

The prediction of physical phenomena during welding process is an important field of
research. A KBS basing on Finite Element Method (FEM) is adopted in [264] to predict heat
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behaviour for back control in Gas Tungsten Arc Welding (GTAW) of stainless steel. A KBS
has been applied to electric welding with a direct observation of bead geometry through an
optic camera in [243].

By using different strategies, ANNs have been trained during online testing analysis for
online prediction about process output. [122] proposed a KBS using ANNs that could solve
both the problems of forward and reverse process mapping in case of the electron beam
welding process of reactive materials.

A fuzzy based KBS for rules extraction and inference has been proposed in [85] and
applied to prediction of welding distortion in marine engines.
Among different features, cost plays, of course, a crucial role for industrial competitiveness.
KBSs for cost-modelling of welding processes are proposed in [324] for spot welding and in
[6] for remote laser welding.

Defects management and control for welding

Quality analysis and inspection of products for defects identification is probably the char-
acteristic of processes that needs the highest level of knowledge. This problem is typically
faced by a forward process modelling.
In [346] an Adaptive Network-based Fuzzy Inference (ANFI) system has been applied to
recognise and classify welding defects by radiographic images. Rough Set Theory (RST)
has also been applied to intelligent defects recognition and welding quality classification in
[286].
A system for the analysis, diagnosis and correction of defects in aluminium welding has been
developed in [298].
In [293] a fuzzy rule extraction and inference system is proposed and applied to welding
fault diagnosis.

Process parameter optimisation for welding

As a consequence of features prediction and defects diagnosis, several applications of KBSs
aim to the individuation of optimal set of welding parameters. This problem is typically
faced by a reverse process modelling.
In [234] the robust design approach has been applied for the individuation of optimal
parameters in super duplex stainless steel arc welding.
A input-output model for submerged arc welding parameters has been developed in [70] by
using Taguchi’s Design Of Experiment (DOE) and optimised by Genetic Algorithm (GA)
and Particle Swarm Optimization Algorithm (PSOA). A different model for submerged arc
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welding based on ANNs has been used in [141] for a two wire processing of High Strength
Low Alloy (HSLA) steels.
A combination of fuzzy logic and GA has been applied in [255] to find out the optimal set of
parameters for ultrasonic welding.
In [49] an adaptive system has been developed for robotic speed control welding of moderate-
thick plate with variable groove. A KBS for robotic welding is also developed in [259] for
the automated control of current and wire feed rate in Gas Tungsten Arc Welding (GTAW).

Product and tool design for welding

For KBS development, the design of welded products and tools for welding is a niche of
research due to the standardisation of most of the equipment and for certain groups of objects
like for example welded vessels that have a large diffusion for different uses. Interesting
researches have been published in this field and are worth to be mentioned.

In [359] a KBS for the design of welding vessels has been proposed. A Multi Objective
(MO) KBS for weldability assessment for aerospace application is developed in [218] by
using the Howtomation© suite.

In[28] an automated NC programming system for locators is presented and applied to an
automobile welding line. In [314] a CBR KBS is proposed in order to assist the design of
fixtures for welding process.

Trends for welding

Figure 1.14 reports the percentage of publications of KBSs for welding in each of the
aforementioned areas during the investigated period.

It is possible to observe that in the latest year the general trend is to move from KBSs
for the prediction of welding features basing on process parameters optimisation to more
complex systems, which are able to optimise such parameters automatically to fulfil a set of
requirements.
This is a natural evolution of KBS applications, not only for welding, in the direction of a
fully automated process.

1.2.8 Additive Manufacturing

The definition of Additive Manufacturing (AM) includes a number of technologies with deep
differences in terms of materials, architectures and fields of application [237, 95]. Never-
theless, some peculiar aspects of these technologies (such as the layer-based construction
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Fig. 1.14 Publications per year in welding fields

strategy) can be recognised. Accordingly, KBSM applied to AM technologies are analysed
as a group in this section.

The applications in literature have been classified according to the scope three main
categories, that are:

• Decision support systems;

• Behaviour prediction;

• Product design.

Figure 1.15 shows the percentage composition of papers reviewed in this field.
It can be immediately noticed how most of the KBSM applications in the fields are

focused on Design for Additive Manufacturing (DfAM), i.e. on the inclusion in product
design of constraints and opportunities deriving from the adoption of AM.

As these technologies are quite recent if compared to the other categories discussed
above, the formalisation and reuse of knowledge for decision making is a very important
research challenge.
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Fig. 1.15 Publications applying KBS to AM divided per scope

Part Design

As shown in Fig. 1.15, most of the applications of KBS in AM are oriented to part design.
These applications include the manufacturing-oriented mass customisation of products [348],
the verification of DfAM rules on digital mock-ups of parts [140] and the compensation of
manufacturing-induced defects [256].

An ontology-based representation of parts is proposed by several authors in order to apply
design guidelines of the specific AM technology [9, 72]. The adoption of ontologies and
RBR is particularly charming in this field as it enables the reuse of the codified manufacturing
know-how [323].

CBR has been also efficiently applied to identify relevant manufacturing features [179]
for the specific AM process. [317] proposed BN for the organisation and reuse of DfAM
knowledge.

In [186] a KBS for knowledge extraction from text and reuse in CAD environment was
proposed. The integration of KBS in parametric CAD graphic environment has been deepen
by [48].

According to the principle of mass customisation mentioned above, several KBSM are
designed to assist the design and production of specific components. The applications include
medical [263, 307], aeronautical [146] and various customisable parts [137, 47].
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Assisted Decision Making

The general lack of knowledge in AM technology makes the use of KBSM profitable for
different decision-making problems.

A study on the role of knowledge-based information sharing in AM has been presented
by [248]. [204] outlined a method for the selection of KB ANN to fill the gaps of knowledge
in the field of AM production.

At the highest level, KBSMs have been applied to assist the selection of the proper AM
technology for given objectives [266, 265, 203, 358]. In [321] a KB approach to MCDM is
presented and applied to the selection of AM process and inspection system. Technology
selection has also been investigated by [254] in a wider ontology based approach aiming to
include several aspects of the process, such as manufacturability assessment.

In [172] ontology based representation has been used in the development of a KB CAPP
system for AM technologies. A KB multi-objective CAPP for these processes can also be
found in [355, 9].

The KB approach has been also applied to the selection of optimal part orientation [357]
and tool-path [10] according to part geometry. A KBSM for the adaptive slicing of AMed
parts was proposed by [233].

Behaviour Prediction

An example of KBSM for the prediction of physical behaviout can be found in [98], where a
KBS for prevision and control microstructure in as-deposited metal additive manufacturing
is presented.

In [364] a KB approach to thermal field is obtained by superposing local solutions
according to laser path in SLM.

Trends in KBS for Additive Manufacturing

Figure 1.16 reports the percentage of publications of KBSs for AM per year.

1.2.9 General considerations on the outlined panorama

Objectives of examined KBSs are strictly connected to peculiarities that are proper of
considered manufacturing fields. Nevertheless, it was possible to recognise five main areas
that are in common. They are:

• Decision support systems development to assist decisional processes (e.g. process or
equipment selection).
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• Product design for rules application to ensure or enhance manufacturability.

• Tool design to assist the design of equipments for production purposes.

• Prediction of product features for estimation of relevant or crucial features of the final
product, which depend on manufacturing conditions.

• Process parameters optimisation by the use of previously mentioned estimations to
determinate the optimal set of parameters to obtain a defined result.

Figure 1.17 maps the percentage of KBSs in each of the examined manufacturing fields
and grouped into the identified five main areas.

By the presented scenario, different trends have been observed for KBS applications
depending on the analysed processes.

It is worth noticing how the huge number of researches concerning the development of
KBSs for decision making assistance in processes such as machining and casting, which
have a large history, are founded on a relevant amount of knowledge and a solid tradition in
digitalisation of manufacturing information. In this case, the aim is clearly the automation
of decisional processes that are critical to success and that are still nowadays carried out by
humans. In these cases, CBR systems are mainly used to automate know-how and working
experiences in order to assist human apprenticeships.
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Fig. 1.17 Maps of KBSs objectives in different manufacturing fields

On the other hand, decision-making systems in AM are used to compensate for the lack
of knowledge in the field and the adoption of these technologies by non-expert users. Also in
this case, the deep digitalisation of these technologies plays a fundamental role in enabling
the automation of decision-making at different stages of the process development.

Instead, a major interest in prediction of product features is mainly present for manufac-
turing processes with higher uncertainties. In particular, a huge attention is paid in welding
processes to defect categorisation, diagnosis and failure predictions in order to reduce the
amount of scraps in highly or fully automated process. This interest is directly reflected on
the will to assist the selection of proper and optimal process parameters and to avoid defect
occurrence.

The great influence of the equipment on the product quality and process costs in plastic
moulding and sheet metal forming processes lead researches to focus on the KBSs to assist
tool design in order to reduce the time-to-market and guarantee higher product quality.
For all the considered manufacturing processes, KBSs that aid the product design since
the very first steps of development resulted key-tools to guarantee manufacturability in the
following production steps. This aspect underlines the importance of DFM rules and leads to
the development of RBR systems.

To summarise, the general trend shows an increasing use of integrated systems, which
connect different areas of the production plant, moves towards the same direction of the
Industry 4.0 by horizontal and vertical integration of numerous engineering activities.

It is worth to mention that depending on the manufacturing sector, a prevalence of Case
Based Reasoning (CBR) or Rule Based Reasoning (RBR) systems can be observed. In
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particular, the former type have been encountered mainly in machining, casting and welding,
while the latter ones have been mainly met in remaining fields. However, in general, if all
the manufacturing application are considered, a balanced number of applications of the two
approaches have been examined.

Concerning KBSs development, the integration of RBR with CBR systems seems to
be the frontier. This approach aims to exploit the high amount of data captured in modern
production plant and it is simultaneously able to produce a human-understandable knowledge.

The analysis of literature points out the huge variety of applications of KBSM at different
steps of the process development. Despite these differences, peculiar features characterising
these systems from general KBSs can be recognised. In Chapt. 2 a systematisation of these
aspects and a methodological approach to KBSMs will be proposed.

1.3 Methods for the design of Knowledge-based systems

Several methods can be found in literature for the development of Knowledge-Based En-
gineering (KBE) systems. As these systems are intended for also including manufacturing
requirements, the relevance to the present work is evident.

In the following, the most popular and relevant methods are briefly described in order
to point out to the reader their most peculiar features and limitations for the application to
manufacturing engineering.

A more extensive review of the period 1982-2002 can be found in [227].

1.3.1 CommonKADS

CommonKADS (Methodology and tools Oriented to Knowledge-based engineering Ap-
plications (MOKA)) is one of the first and most popular methodologies proposed for the
development of KBSs in engineering. This method is the result of a series of international re-
search projects on knowledge engineering carried out starting from European Esprit program
in 1983 [258]. Even if details on the implementation are out of the scope of this chapter,the
method is founded on the use of predefined models [257]:

• Organization model The organization model supports the analysis of the major fea-
tures of an organization, in order to discover problems and opportunities for knowledge
systems, establish their feasibility, and assess the impacts on the organization of
intended knowledge actions.
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• Task model Tasks are the relevant subparts of a business process. The task model
analyses the global task layout, its inputs and outputs, preconditions and performance
criteria, as well as needed resources and competences.

• Agent model Agents are executors of a task. An agent can be human, an information
system, or any other entity capable of carrying out a task. The agent model describes
the characteristics of agents.

• Knowledge model The purpose of the knowledge model is to explicate in detail the
types and structures of the knowledge used in performing a task. It provides an
implementation-independent description of the role that different knowledge compo-
nents play in problem-solving, in a way that is understandable for humans.

• Communication model The communication model aims to represent the communica-
tive transactions between the agents involved. The communication model is conceptual
and implementation-independent.

• Design model Based on requirements defined by previous models, the design model
gives the technical system specification in terms of architecture, implementation plat-
form, software modules, representational constructs, and computational mechanisms
needed to implement the functions laid down in the knowledge and communication
models.

The adoption of these models allowed the application of the method to several different
fields [257, 279].

As outlined by [183], the main limitation of this methodology is in the complexity of
the model that requires a quite long training and effort for implementations. Such aspects
become a limit in the actual implementability of the method. Furthermore, the model-based
framework of CommonKADS limits is mainly intended for rule-based reasoning in the form
"if...then"; the extension of the methodology to modern Deep Learning techniques can thus
result tricky and uncertain.

1.3.2 MOKA

Methodology and tools oriented to Knowledge-based engineering Applications (MOKA) is
a method is the result of the Advanced Information Technology (AIT) pilot phase ESPRIT
Project 7704 [210].

The MOKA distinguished between two main types of model, i.e. :
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Fig. 1.18 MOKA methodology [64]

• Informal Model A structured, natural language representation of engineering knowl-
edge using pre-defined forms.

• Formal Model An object-oriented map of the knowledge elements and their relations
that can be directly implemented in a OOP.

The method represents as ontologies the design descriptors and requirements, establishing
relations of derivation, consistency and fulfilment among these two sets [142]. This concept
is further extended within the proposed method in Chapt. 2.

MOKA also introduced an iterative concept in the design of KBE applications, as
schematically represented in Fig. 1.18 [64]. Also this circularity of the method is reused in
the method proposed in the following.

[142] discussed the suitability of MOKA in including CBR knowledge, unlike previous
methods.

As pointed out by [64] the main limitation of MOKA is that it does not provide any
information on the way the KBE applications are actually integrated in the design process. In
fact, no information on the implementation stage are given. The limitation of requirements to
the design field also restrict the range of variables that can be used for satisfying the project
requirements.
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1.3.3 KNOMAD

As MOKA is intended for general applicability, it lacks of useful details for particular
disciplines. In particular, fields as manufacturing would need to deep the use step of the
MOKA methodology to allow the effective implementation of manufacturing considerations
within the design process. Starting from these considerations, researchers from TU Delft
University proposed the KNOMAD methodology [64]. The acronym KNOMAD summarises
the steps followed by the method, listed below:

• Knowledge capture Declaration of the scope, objective(s) and assumptions of the
concerned project or use-case Identification of knowledge explicit and tacit sources.
Documentation of the captured knowledge for reuse in the following steps of the
method

• Normalisation Quality control of the knowledge captured in the previous step. Nor-
malisation of the acquired knowledge (according to method’s criteria) for reuse in the
next steps.

• Organisation The normalised knowledge is converted in ontologies for an object-
oriented representation of information. The aim of this phase is to allow the retrieval of
knowledge by different experts and its reuse in the following steps of KBS development.

• Modeling In this step, a model of products and processes is built. The Multi-Model
Generator approach proposed by [155, 306]. In this approach he product models are
generated combining the model parameters with knowledge formalised in previous
steps. Authors underline the extensibility of this step to process parameters (unlike
previous methods).

• Analysis The analysis modules are intended to calculate the effects induced by a
design decision on a specific field. As an example, a manufacturing analysis module
may calculate manufacturing costs, manufacturability estimates and manufacturing
logistics. The integration of MOO in this step can also be obtained by introducing
iterative modification of design parameters.

• Delivery The accepted design solutions outcoming from previous phases are delivered
and implications are evaluated.

The KNOMAD methodology allows overcoming many of the limitations deriving from
the use of previous methods. In particular, the inclusion of MOO admits the modelling
of more realistic industrial problems. The representation of process-related parameters as
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ontologies also allows efficiently including the constraints and opportunities deriving from
the production phase.

Despite this benefits, the linear structure of KNOMAD make it rigid to changes during
product development. The actual match of aims outlined in the knowledge capture phase
with benefits outlined in the delivery one is not ensured by the method’s structure. The
representation of elements does not provide indications on the techniques to be used for the
final implementation of the KBS, which is let to operator’s experience. The high level of
details used for ontologies poses some constraints to the implementation of the solution, that
may need to be modified in order to make it feasible.

1.3.4 Manufacturing-oriented methodologies

According to considerations exposed above, the general methods for KBS development lack
to address important peculiar aspects related to production engineering. Therefore, specific
studies on methods for developing Knowledge Based Systems for Manufacturing (KBSM)
have been proposed.

Even if a wide literature on Agent-Based and Intelligent Systems in manufacturing can
be found [200, 360], few methodological works have been proposed. In the last years (i.e.
during the development of the present research) some approaches to the description of
manufacturing ontologies and the analysis of system failure have been proposed.

More in detail, an analysis of the semantic representation of manufacturing systems have
been proposed by [208], pointing out the benefits and limitations of different languages when
applied to the modelling of manufacturing ontologies. This work also defined some basic
requirements in the representation of manufacturing ontologies.

An ontology-based failure analysis in manufacturing field has been proposed by [53].
The method stands on representing entities and their connections in a web-based system
that can be later investigated by human experts to find out the possible causes of failure and
proposing solutions.

In [37] a method for diagnosis of manufacturing-induces defects is presented; the ap-
proach is based on organising process ontologies within a BNN representing the manufactur-
ing flow. The main difficulty in the implementation of this approach derives from the need of
a database for training of the system and network configuration.

An architecture for agent-based manufacturing systems named CASOA has been recently
presented in [282]. This architecture manage organisational aspects of the production by
means of four types of agents, that are
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• Product Agents representing the product to be manufactured; this agent is connected
to others by means of communication tools.

• Machining Agents perform machining and storing of operations, referring to machine
tools, testing equipments and others.

• Conveying agents The conveying agents can transport the product agent from current
location to the destination, referring to conveyor belts, auto guided vehicles or other
transportation equipment.

• Suggestion Agents The suggestion agent represents the software component on the
cloud which is responsible for processing orders and generating scheduling suggestions.

A cloud-assisted knowledge-base is used to manage relations among these agents.

1.4 Conclusions

The present chapter provides an overview on the scenario of KBES applied to manufacturing.
The analysis deeps each technological field in order to point out the goals and methods of the
corresponding KBESMs.

It emerges that both CBR and RBR are widely applied to the most various problems. The
overview also shows the influence of specific requirements on features of the solution. This
variety makes impossible to find a structure or method common to investigated systems.

In the last part of the chapter, the main methodologies for the design and implementation
of KBES are summarised. The rigidity of these approaches seems to not match the peculiar
problems faced by systems in the literature review.

Main benefits and limits of existing methodologies are underlined. These pros and cons
will be taken into account within the next chapter during the design of a flexible methodology
that aims to fit needs of KBESM design.



Chapter 2

A method for the design of
Knowledge-Based Systems for
Manufacturing

2.1 Introduction

Observing the literature review in 1.2 it is possible to notice how the definition of KBESM
includes a number of applications with different scopes, users and methodologies. The
features of a knowledge-based systems depend on several different factors, including:

• The field of application;

• The expected user;

• The desired level of automation;

• The resources available for programming the system (in terms of time, money and
operators);

• The available equipment;

• The expected lifespan of the system.

All these factors contributes to determine the details of system implementation, that have
thus to be defined according to the specific case. Nevertheless, the implementation of KBSs
for industrial manufacturing is characterised by specific requirements that are transversal to
different applications.
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As described in 1.3, general methods for the design of KBSs show some limitations
when applied to the manufacturing field as they do not take into account the characteristic
requirements of this field. On the other hand, a general approach to developing KBESMs
must allow including the wide range of techniques and applications emerging in 1. To
efficiently aid the development, the method has also to include information useful to the
detailed design and implementation phases of the system.

Furthermore, it has been discussed how the adoption of complicated methodologies may
require an excessive effort by the company, thus precluding the use by Small and Medium
Enterprises (SMEs).

The requirements to be satisfied during the definition of a general approach can be
summarised as follows:

• Applicability to different scopes;

• Applicability to different manufacturing technologies;

• Possibility to include different rule-based and case-based techniques;

• Guidelines about implementation phase;

• Easiness of use.

In the present chapter, an approach to the development of KBMSs is proposed. Conceptual
tools to be used since the very first stage of the KBESM development are given in order
to ensure coherence of the outlined framework. The presented method is intended to be
used also by low-experienced users, enlarging the collaboration among experts and, as a
consequence, the batch of knowledge that can be included in the system.

The high-level definition of entities in the system makes it suitable for the application to
deeply different technologies and techniques. Nevertheless, the definition of attributes for
different entities allows assisting the implementation phase by defining the set of suitable
techniques. A loop structure of the method is adopted in order to allow iterative refinement,
modification and rethinking of the elements and their relations.

The method is divided in three steps, that are:

• Applicability definition, where the boundaries of the system are defined at the highest
level. The assumptions made in this phase lay the foundations for next development
and must not be modified.

• Conceptual design This phase is the core of the method and aims to collect all the
relevant aspects of the KBESM development. During this phase the ontologies of the
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system are defined and characterized according to the application. Relation among
entities are also clarified and organised.

• Design refinement The Conceptual design emerging from the previous phase is opti-
mised iteratively to include new considerations and solve emerging issues. This phase
can be continued during the detailed design of the KBESM .

In the following, these phases will be described in order to provide methodological
guidelines for the development of KBMSs. The proposed method will be then applied in
following chapters for the design of different systems, in order to point out its makings.

2.2 Mapping applicability of Knowledge Based Systems for
Manufacturing

The first step for the design of a KBESM is the definition of the expected applicability of the
system. In particular, the systems are classified basing on the intended function and the level
of knowledge of the expected user.

2.2.1 Process-Product plane

The manufacturing of a product is the combination of two main fields, i.e. the design of the
product and the technologies adopted for its transformation. Therefore,in order to reach a
certain feature of the final product, the expert has to operate on its design specification and/or
the processing conditions. In real-case scenarios, the expert is usually not allowed freely
modifying all the aspects of the design and process.
For example, the KBESM s presented in Chapt. 1 act on a fixed number of variables (input
level) in order to reach a given aim in the product (or production) features (output level).
These variables can be found in the design of the product or in the design of the process.
In particular, it is possible to distinguish between systems used for the optimisation of a
specific product and others that can be applied to different families of products. Moreover,
some KBESM are designed to allow the selection of the technological process between
different options, while others are restricted to a specific technology. Accordingly, the
applicability plane is defined as in Fig. 2.1.



46 A method for the design of Knowledge-Based Systems for Manufacturing

Fig. 2.1 Process-product plane

Fig. 2.2 KBMS space



2.3 Design flow 47

Fig. 2.3 Logical sequence for the design of KBMS

2.2.2 User axis

KBMSs are intended to aid humans in extracting, collecting, organising and reusing knowl-
edge related to industrial production. Therefore, each system has a user, which can be more
or less evident depending on the degree of automation of the KBS.

The definition of the expected user is thus fundamental since the very first step of the
KBESM design. In particular, the level of knowledge of the human user interacting with the
system must be clear during the whole design process. In fact, looking to the application in
Chapt. 1, it can be observed how the users of the introduced systems can differ in terms of
expertise, role and responsibility in the process chain. Higher is the amount of requirements
on the user, lower is the applicability of the system and vice versa. Therefore, the map of
KBESM applicability is completed by means of the user axis, as represented in Fig. 2.2.

2.3 Design flow

Once the field of applicability has been defined, the design phase of the KBMS begins.
Fig.2.3 summarises the main phases in the design of an intelligent system for manufacturing.

The starting point is the definition of aims, i.e. the objective to be addressed by using the
KBMS. These aims must be searched in two main areas: the quality of the product and the
sustainability of the process. The quality of the product deals with the features of the result of
the production cycle and is directly related to the satisfaction of the user. The sustainability
of the process concerns the economic, environmental and societal impact related to the
transformation stage. As it will be described in the following, also the quality of the product
can be considered as a sustainability aim in the usage phase.
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Once the goals to be achieved have been defined, it is necessary to clarify, formalise and
organise the relevant knowledge, i.e. all the information that can be used to achieve the
imposed aims. More in detail, it is necessary to highlight which parameters of the manufac-
turing process and/or product design are significant for the scope and whether they can be
directly or indirectly modified within the KBESM .
The connection between such parameters and the predefined objectives must be clearly
pointed out. Furthermore, it is necessary to identify the relations occurring among the
selected parameters. In this phase some hypotheses about the role and relations of different
parameters can be made; these relations must be then tested and validated before of develop-
ing the system.
As it will be evident in the following, the formalisation of knowledge is the most important
and demanding task in the design of KBMS. In the following, an analytical method is pro-
posed to support this phase.
Finally, the knowledge extracted and organised has to be reused to aid the production. Ac-
cording to this scope, the methods for the application of the KB system must be defined and
implemented. This can be made in different ways, basing on the level of automation and
the responsive time of the system. In particular, the knowledge can be used to make some
predictions about the fulfilment of imposed aims; this advices can be then used by a human
user to formulate decisions on the process and product variables. This case will be referred in
the following as Aided Decision Making. The reuse of this information can be also automated
by means of an intelligent system, that completes the decision-making process providing a
final solution to the end user. This case will be named Automatic Decision Making . When
the automatic decision making is based on live acquired data and performed within the cycle
time of the process, the system will be indicated as real time. These systems usually integrate
some actuators to modify parameters the production without the need of human interaction.

In the following section, a systematic approach to these phases will be proposed.

2.4 Matrix Objective-Descriptors-Inputs-Actions

In the present section, a systematic approach to the design of KBESM is proposed. The
methodological framework is inspired by methods for the design of industrial products such
as [94] and Quality Function Deployment (QFD) [44, 11]. Some aspects of knowledge
management proposed by works in Chapt. 1.3 have also been included. In particular, the ex-
tension to MOO problems (characteristic of manufacturing field) is guaranteed. Furthermore,
a loop structure of the method is used to allow the iterative refinement of the system.
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Fig. 2.4 Schematical representation of the Matrix Objective-Descriptors-Inputs-Actions
(MODIA)

The central element of the proposed approach is the Matrix Objective-Descriptors-Inputs-
Actions (MODIA), schematically represented in Fig. 2.4.

The MODIA is intended to summarise all the relevant aspects of a KBESM and aid the
design of the system. Nevertheless, this tool can also be adopted for the analysis of an already
existing system.
In the following, the process of creating the MODIA during design of KBESM will be
presented and the different part of the matrix will be described. In the actual design of a
KBESM, several modifications to the previous steps may be iteratively performed to refine
the design of the system.

2.4.1 Objectives array

According to what exposed in 2.3, the first step in the design of a KBESM is the definition of
objectives, i.e. of the aims to be fulfilled by means of the system. The Objective Array (OA)
is a list of the objectives together with their most important features
The aims of the production have to be searched in two main fields, that are the sustainability of
the process and the sustainability of the product. More in detail, sustainability of the process
concerns every stage preceding the delivery of the final product, while the sustainability
of the product refers to the rest of the Life Cycle (LC). Fig. 2.5 provides a schematic
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Fig. 2.5 Process and project phases in the product Life Cycle

representation on the timeline of the product. Fig. 2.5 also points out the correspondence
with the Cradle-to-Gate (C2G), Gate-to-Gate (G2G) and Gate-to-Grave (G2Gr) phases of the
LC as defined in ISO 14040:2006 and 104044:2018 [215, 216].

Nowadays, the Triple Bottom Line (TBL) [128] is commonly accepted for the classifica-
tion of sustainability aspects. According to this theory, sustainability can be divided in three
main branches, i.e.:

• Economic Sustainability (EcS);

• Environmental Sustainability (EnS);

• Social Sustainability (SoS).

Fig. 2.6 gives a schematic representation of the TBL. To reach the actual sustainability of
the process or product, satisfactory results must be achieved in all the three areas. Neverthe-
less, each of the objectives can be focused on one or more of these fields. It is worth noticing
how all the objective concerning the quality of the process and product can be classified
according to these sustainability criteria.

When defining an objective, it is necessary to specify in which stage (or stages) of the
LC and in which field (or fields) of sustainability it is expected to give benefits. These
information are reported next to the name of the objective in the OA, as shown in Fig 2.7. As
an example, the Objective 1 in Fig. 2.7 is expected to give benefits on both Environmental
and Economic sustainability of the product, i.e. in the Cradle-to-Gate phases of the LC.

It is also possible, during this phase, to assign a weight to each objective, representing its
relative importance for the system. This has to be done by taking into account the attributes
defined above (i.e. stages and fields of improvement).
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Fig. 2.6 Schematisation of the Triple Bottom Line (TBL)

Fig. 2.7 Example of Objectives Array (OA)
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2.4.2 Descriptors array

To verify the effectiveness of the KBESM , at least one descriptor must be defined for each
aim. A descriptor is thus here defined as an attribute able to provide information on the
fulfilment of one or more objectives of the KBESM .
Descriptors are here described using four classifications, i.e.:

• Type;

• Source;

• Measurement;

• Tangibility.

As different kind of attributes can be used as descriptors, the type attribute distinguish
their nature as one of the following:

• Numeric (Nmr);

• Numerable (Nmrb) ;

• Boolean (Bool);

• Categorical (Ctgr);

• Qualitative (Qltv).

A numeric descriptor is an attribute expressed by means of a natural, integer, rational, real
or complex number. A numerable attribute is not intrinsically numeric, but can be converted
to a number by means of a correspondence (as an example using marks). Boolean refers
to logic attribute whose value can be true or false. When an attribute is defined by means
of univocal labels, it is classified as categorical. The qualitative type is used for categories
which are not sharply defined and admit intersection of sets; FL is usually adopted to deal
with this kind of attributes.
The way these values are obtained leads to the definition of measurement technique, that can
be:

• Direct (Dr), when the attribute is directly observable and measurable;

• Indirect (Indr), when the value is derived from the observation of related attributes.
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This distinction is particularly relevant because, in the case of an Indr descriptor, it is
necessary to ensure that all the related Dr attributes necessary to its evaluation are included
in the set of descriptors.

A further classification of is made considering the source of descriptors. In particular,two
type of sources are distinguished, i.e.:

• Virtual (Vr), when the attribute is measured in a digital representation of the process or
product

• Physical (Phy), when the attribute is obtained by measuring on ore more physical
quantities.

It is worth mentioning how these classifications can, in general, coexist when it is
possible to derive the same attribute in the virtual or physical environment. Nevertheless,
as the techniques for measuring the attribute in the two fields are deeply different, it is
appropriate to make a sharp distinction during the design of KBESM .
Finally, it is possible to distinguish between:

• Tangible (Tg)

• Intangible (Intg)

descriptors. Different sub-classifications of intangible attributes and methods for their
measurement can be found in literature [57, 102].

Once all the four classifications of each descriptor have been made, the Descriptors Array
(DA) can be built; an example is shown in Fig. 2.8.

Fig. 2.8 Example of Descriptors Array (DA)

2.4.3 Representativeness Matrix

As exposed in 2.4.2, each descriptor represents the fulfilment of at least one aim. However,
more in general, a number of connections can exist between imposed aim and descriptors
identified for their evaluation. To clarify these connections, the Representativeness Matrix
(RM) is built using the elements of OA as rows and DA as columns. The generic element
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Fig. 2.9 Example of Representativeness Matrix (RM)

RMi, j of the matrix is defined as the importance effectiveness of the j-th descriptor in
determing the fulfilment of the i-th objective. An example is shown in Fig. 2.9.

The values in the RM have to be assigned by the designer of the system on the basis
of previous knowledge and specific considerations. It is also possible to consult different
experts for a more accurate determination of these values. In any case, a redefinition of RM
elements can be operated in the next phases of the KBESM design on the basis of direct
observation.

According to the definition of descriptors, the sum of elements in each row and in each
column of the RM has to be higher than zero.

2.4.4 Inputs Array and Interaction Matrix

Inputs Array (IA) is a collection of the parameters affecting descriptors pointed out in 2.4.2.
As in the case of descriptors, they are classified, according to the type, in numeric, numerable,
boolean, categorical and qualitative.
As discussed in 2.3, the parameters of a KBESM have to be searched in the the process or
product design. Accordingly, input parameters are classified as

• Process (Proc) parameters;

• Design (Des) parameters.

More accurately, Proc parameters are the ones describing specific features of the adopted
technological process, while Des parameters concern the nominal characteristics of the
product defined during its design.

Another fundamental distinction can be made basing on the chance to set inputs’ values.
In particular, parameters will be classified as:

• Live (Lv), when the value can be modified in real-time at any moment of the production;
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• Tunable (Tnb), if it is possible to set the parameter at fixed intervals during the
production (e.g. at the end of a cycle);

• Steady (Std), when the value can be modified only before the whole production take
place;

• Read Only (RdOn), when the value of the parameters can not be modified directly, but
only observed during the process .

As in the previous cases, the inputs parameters are collected in the IA together with their
classifiers, as exemplified in Fig. 2.10.

Fig. 2.10 Example of Inputs Array (IA) and Interaction Matrix (IM)

In the most general case, not all the parameters in Inputs Array are independent. Therefore,
it is necessary to highlight which are the reciprocal influences between the inputs parameters.
For this scope, a triangular matrix named Interaction Matrix (IM) is used. As shown in Fig.
2.10, a dot is used to mark non-independent pairs of input parameters.

2.4.5 Know-how Matrix

The Know-how Matrix (KM) is designed using descriptors from 2.4.2 as columns and inputs
from 2.4.4 as rows. The generic cell KMi, j is then used to point out eventual correlation
between the i-th input parameter and the j-th descriptor. In particular, three different kind of
relations are distinguished, i.e.:

• Knowledge (Knw);

• Experience (Exp);

• Hypothesis (Hpt).
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Fig. 2.11 Example of Know-how Matrix (KM)

A relation is based on knowledge when it is defined by an explicit rule coming from a
reliable source; demonstrated physical rules are an example of Knw relation. Exp relations
occur when a correlation between inputs and descriptors has been observed in previous cases,
but no explicit formulation is given. In case there is no evidence, but only a conjecture about
the correlation between input and descriptor, the relation is defined as Hpt.
It is worth mentioning how the type of relations in the KM might be modified during the
developing of the KBESM with a formalisation of the know-how. As an example, if an
hypothesis is tested by means of experimental activity, it is possible to shift from Hpt to Exp
relation; in the same manner, if a reliable regression model is built, the Exp relation can be
converted to Knw level.
The type of relation between input and descriptor is reported in the corresponding intersection
cell. Fig. 2.11 shows an example of KM built using IA form 2.4.4 and DA from 2.4.2.

2.4.6 Actions Array, Planning Matrix and Effectiveness Matrix

At this point of the MODIA design, it is possible to define actions to be performed in order
to fulfil the imposed aims. Actions are primarily classified basing on the agent, i.e. on the
subject that performs the action. Such a classification distinguishes:

• Human (Hmn)

• Software (Sfw)

• Hybrid (Hbr)

Hmn actions are performed by the user of the KBESM or another human agent basing
onto the information given by the KBESM . This kind of actions belong to the field of Aided
Decision Making outlined in 2.3. The elaboration of information includes in the KBESM
may also be performed by a software on the basis of specific rules and criteria: this is the
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case of both Automatic Decision-Making and Real Time systems defined in 2.3. It is also
possible to have actions performed conjunctively by a human and a software agent (Hbr).
This is the case of interactive systems, in which a dialogue between the user and the software
is established in order to reach the final solution.
As for the inputs in 2.4.4, a classifier is used to describe the response time of the action.
The attributes adopted in 2.4.4 (with the only exception of read-only) are thus reused with
analogous meanings:

• Live (Lv), an action that can be performed and have an effect at any istant of the
production;

• Tunable (Tnb), an action that can be effectively performed at fixed moments of the
production;

• Steady (Std), if the action can be performed only before the production takes place.

The definition of actions is a fundamental aspect of the design of the KBESM , and it
involves all the elements of the MODIA. For this reason, the remaining elements of the
matrix, i.e. the Planning Matrix (PM) and the Effectiveness Matrix (EM), will be described
in this section.

When designing a new action, a primary objective has to be defined. As an example,
Obj 4 is the primary objective of Act 1 in Fig 2.12. Inside the primary objective, one or
more descriptors to be used as evaluators of the action must be defined. In the example of
Fig. 2.12, Descr 2 is chosen as only descriptor for Act 1. The correspondent cell of the EM
reports number of descriptors considered by the j-th action (column) and the sum of their
representativeness for the i-th objective (row) divided by the sum of all the values in the i-th
row of RM. A semi colon is used to separate values in 2.12.

The columns of the KM corresponding to the selected descriptors are then explored to
find cells, with non-empty values, i.e. inputs having a correlation with such descriptors; the
same rows of the PM are filled with a "S" in correspondence with the column of the designed
action. This notation means that such inputs are significant for the action. As an example, in
Fig. 2.12 Inp 2 and Inp 4 are found to be significant for Act 1.

The "S" used in Fig. 2.12 is a temporary notation. In fact, the role of each input for the
action must be defined. In particular, for a certain action, an input can be a

• Variable (Var), when it can be modified by the action to change the fulfil the aim

• Parameter (Par), when it can not be directly modified by the action.
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Fig. 2.12 Example of Action definition (part 1)

The role of each input has to be defined by the designer of the KBESM . During this
phase, at least one significant input must be converted to Var.

The definition of variables and parameters is subject to some constraints deriving from
the nature of inputs summarised in the IA. Firstly, read-only (RdOn) inputs cannot be used as
variables as they are not modifiable by the user. Furthermore, the response time of the input
parameter must be less or equal than the one of the action: this means that Tnb inputs can not
be used as variables of Lv actions, while Std inputs cannot be used for both Tnb and Lv ones.

When the role of significant parameters has been defined, it is necessary to enter in the
interaction matrix (2.4.4) at each input marked as variable and assign an "S" in the PM to
every interacting input. As an example, in Fig. 2.13 the Inp 4 has the role of variable for
the Act 1. The interaction matrix shows points out a relation between this input and Inp 1,
therefore an S is placed in the PM in correspondence to Act 1 and Inp 1. These phases have
to be repeated iteratively until the role of Var or Par has been assigned to all the significant
inputs of the action.

The adoption of IM in this phase is fundamental to ensure that no relevant parameters are
omitted by the action. When input variables of the action are modified, further descriptors
(and thus objectives) will be affected. To take into account this effect, the KM and RM must
be used in order to properly modify the EM. An example is shown in Fig. 2.14: as Inp 1 is
set as Var, the corresponding row of the KM is scanned, finding the relation of this parameter
with Descr 3 (Knw). As a consequence, all the objectives that are represented by Descr 3 (in
this case only Obj 3), are affected by Act 1. The EM is modified accordingly, indicating that
Act 1 affects one descriptor (Descr 3) of Obj 3, i.e. the 7/9 of the representative descriptors.
The same is made for Inp 4. It is worth noticing how the influence of Inp 4 on Descr 4
leads to address both the descriptors (2;11/11) of the main Objective (Obj 4). Therefore, it
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Fig. 2.13 Example of Action definition (part 2)

Fig. 2.14 Example of Action definition (part 3)

is convenient to choose the minimum number of descriptors for the main objective when
starting to define an action; further descriptors can be eventually added in the following if
the values in EM show a non-effective fulfilment of the aim.

2.4.7 Analysis of the matrix

After the design has been completed, a matrix as the one in Fig. 2.15 is obtained. The
MODIA provides an overview on the design of the KBESM and can be used to point out
several peculiar features. As mentioned above, this analysis can also be performed on an
existing system.

A first analysis on the KBESM ’s trend can be made observing the OA. In fact, the stages
of the LC at which objectives aim tell how much the system is oriented to the process or to
the product. In the same way, it is possible to understand which of the aspects of the TBL
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Fig. 2.15 Example of complete MODIA

are more addressed by the system. This analysis is fundamental in order to determine if the
KBESM is actually in line with the mission behind its design.

The RM also offers an immediate glance on the role of the descriptors. In fact, the sum
of values in each column (reported in Fig. 2.15) quantifies the influence of each descriptor
on the entire KBESM .

The analysis of DA allows pointing out the percentage of descriptors that can be obtained
in a virtual representation of the product. At the same time, the splitting between tangible
and intangible assets can be obtained.

As in the case of OA, the IA can be used to verify how much the KBESM is design-driven
or process-driven; this can be made considering the percentage of Des and Proc inputs that
are used as variables in the different actions.

The number of Var values in each row of the PM gives information about the importance
of the input parameter in the decision-making. The number of both Var and Par values shows
the influence of changes in the parameter value on the whole KBESM .

The response time of actions in AA is also useful to define their order; as an example, Std
actions precede the production and have thus to be performed before than Tnb and Lv ones.
A further order can be defined among actions with the same respone attribute by sorting
columns of the AA (the PM and EM must be rearranged accordingly).

The distribution of Hmn, Sfw and Hbr attributes defines the degree of automation in the
KBESM ; this information, together with the ordering of action, determine if and in which
stages a human agent has to be present.

The sum of rows in the EM (shown in Fig. 2.15) allows understanding how much the
proposed objectives can be satisfied in the designed system configuration. The sum must
omit repetitions of the same descriptor in different actions.
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The sum of the descriptors for each action, (i.e. of columns in EM, see Fig. 2.15)
immediately distinguish actions dealing with a single objective from MOO problems. This
distinction is particularly important when moving to the detailed design of the KBESM .

During the detailed design of the system, the MODIA provides a map to determine the
best methods for each action, in particular by means of the KM. As an example, when an
action is carried out by human, one or more predictive models must be realised to aid the
decision-making. Looking to the type of the descriptors it is immediately clear if regression,
classification or fuzzy models have to be adopted. If the descriptors have different types, then
more than one predictive tool will be necessary for the same action.

The type of inputs (readable in the IA) and the kind of knowledge (in the KM) aid to
restrict the field of possible methods. For example, if a relation based on experience is given
between one or more numerical inputs and a categorical descriptor, ANN and SVM are good
candidates; if the descriptor is a Bool, also Logistic Regression (LR) can be considered.

Actions accomplished by software needs to pair at the prediction of descriptor a strategy
to find optimal set of inputs. Also in this case, the KM can be used to restrict the field of
methods. As an example, if the column of a certain descriptor in the KM has all Knw values,
a RBR strategy can be adopted to set inputs. On the other hand, when a correlation based on
experience exists between a Qltv input and a Nmr descriptor, a combination of FL and GA is
a possible solution.

As mentioned in the previous paragraphs, the MODIA may be iteratively modified several
times during both the preliminary and detailed design of the system. While the design of the
KBESM proceeds, further information can be added in the matrix (e.g. the methods adopted
in different actions).

Several variants of the MODIA as presented here may be introduced. For example, a
weight can be assigned to different objectives to distinguish their importance, or further
classifications may be added to attributes. Nevertheless, the opportunity of having a complete
overview on the KBESM offered by the method still remains valid.





Chapter 3

Plastic bottle moulding

3.1 Applicability definition

The KBESM presented in this chapter aims to aid the design and production of plastic bottles.
The system is intended to be used in a preliminary phase of the product development in
order to integrate in the design of the product manufacturing and usage requirements. The
family of products is thus well-defined, nevertheless several product within this family will
be managed by the system.

Different combinations of materials and processes will be investigated by the system in
order to find out the optimal solution under a given set of requirements. In particular, the
system has to manage the principal blow moulding processes used in the industrial field
for the production of plastic bottles, i.e. Stretch Blow Moulding (SBM), Injection Blow
Moulding (IBM) and Extrusion Blow Moulding (EBM). These processes will be combined
with industrial materials used for this family of products. Even if the details of the material
will be provided by the user, the following families will have to be considered:

• Polyethylene (PE);

• Polyethylene Terephthalate (PET);

• Low Density Polyethylene (LDPE);

• High Density Polyethylene (HDPE);

• Polycarbonate (PC);

• Polypropylene (PP).
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Fig. 3.1 Location in the applicability space of the KBESM for bottle moulding

The system is intended to aid the design phase of the product that precedes its industrial
production. Accordingly, the user is supposed to be an industrial designer working in the
field. This implies that a specific know-how is owned by the user.

The location of the KBESM in the applicability space can thus the represented as in
Fig.3.1.

3.2 Conceptual design

As mentioned above, the mission of the present KBESM is to include in the design stage
of plastic bottle the know-how related to both the process and usage of the product. This
is made in order to automate repetitive tasks carried out by the designer and reduce the
eventual issues in the manufacturing stage. Furthermore, the system intends to provide some
considerations about the environmental impacts of the product, that is a key topic in the field
of plastic bottles.

According to these general vision, six objectives are defined for the system, i.e.:

• Aesthetic, i.e. the look of the product. This objective focuses on the usage phase
(G2Gr) and aims to make the product more appealing for the customer; this improves
the satisfaction of the customer (SoS) and the market of the product (EcS);
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• Manufacturability. This objective focuses on making the product easy to produce by
means of blow moulding technique. This aspect is related in particular to EcS in the
G2G phase;

• Liquid transportation, that is the main objective of the product in the usage phase
(G2Gr). This deals with the amount of liquid contained by the bottle and its easiness
of use. This objective aims to all the three elements of the TBL;

• Ecology. The ecology of the product is determined basing on its environmental impact,
thus it deals with EnS in all the phases of the LC (cradle-to-grave) according to the
criteria given by [215]. This objective is particularly sensitive for plastic packaging;

• Transportability That is the easiness of transportation of the product during its distri-
bution phase (G2Gr). This reflects directly on EnS and EcS. Furthermore, as the last
transportation is made by customers, SoS is also included;

• Resistance, i.e. the mechanical strength of the bottle when external forces are applied.
This aspect affects the SoS and EcS of the product in the G2Gr phase, as it defines its
possible usage.

In order to measure the relevant features of the system, the following descriptors can be
identified:

• Curvature of the surfaces;

• Height of the bottle ;

• Capability of the bottle ;

• Mass of the bottle ;

• Life Cycle Impact Assessment (LCIA) indicators;

• Bounding Box, i.e. the dimensions of the minimum rectangular parallelepiped contain-
ing the bottle;

• Maximum diameter ;

• Wall thickness;

• Projected area in the opening direction of the mould.
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Fig. 3.2 MODIA of the KBESM for plastic bottles’ moulding
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The RM of MODIA in Fig. 3.2 summarises how this descriptors are supposed to be
representative of the above mentioned objectives. The marks are given on a scale from 1 to
10. The DA in Fig. 3.2 also shows the attributes of descriptors.

The designed inputs of the KBESM are:

• Profile, that is the curve that defines the shape bottle by means of an axial revolution;

• Fillet radii, the bottom and top radii of the bottle;

• Material, i.e. the specifics of plastic used for production;

• Machine, that defines both the specific equipment and its parameters.

In Fig. 3.2, the attributes of these inputs are given. As in can be noticed in the KM, all
the relations are based on knowledge; this suggests how a RBR approach will be suitable in
the detailed design phase.

The first designed action is the definition of the bottle shape. This activity will be
performed by the user of the system, i.e. the product designer, basing on his own skills
and know-how. This action takes as variables the profile of the bottle and the radii of the
fillets; the material and machine used for the production are parameters that defines the
constraints of the shape design. As it can be seen in the EM, this action influences a number
of descriptors, affecting all the objectives of the KBSM.

The designer will be also in charge of choosing the right combination of material and
machine for the manufacturing of the product. It is worth mentioning how these are the
solutions proposed in the design phase, that might be slightly different from the actual ones
due to emerging aspects in te detailed design of the product.

Finally, the style geometry defined by the designer needs to be refined in order to meet
requirements imposed by the objectives. This action is delegated at the software, that will use
as variable the shape defined by the designer. Therefore, this action must follow the previous
ones and its column is the EM is similar to the one of shaping.

All the inputs (and consequently actions) are Std: this means that the KBESM will be
usable only before the production takes place. Furthermore, it is possible to notice how the
system will be design-driven, as all the input variables are in the design of the product (Des).
This is in line with the initially declared expected user.

The KBESM is oriented to both the production and design, presenting objectives in all
the phases of the LC. The sum of rows in the EM points out how the designed configuration
of the system enables to efficiently act on all the descriptors and address the initial objective.
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3.3 Detailed design

The KBESM is designed as an High Level Computer Aided Design template (HLCAD). The
main features of this kind of systems are:

• Automate the routine tasks, thus reducing the modelling time;

• Include requirements on the product features;

• Analyse the model and provide reports to be used during decision-making.

For these scopes, a plug-in for a commercial CAD software (i.e. PTC Creo) has been
developed. This approach aims to integrate process and functional requirements in the usual
working environment of the product designer. A Graphical User Interface (GUI) will be thus
added to the CAD environment to allow the input of product and process parameters. For this
scope, Visual Basic (VB) language and Creo’s Application Program Interface (API) were
used.

The actions designed in 3.2 will be implemented in the following order:

• Input of design requirements and sketch of the profiles;

• Adapting the solution to the design requirements;

• Analyse the solutions for different combinations of materials and machines;

• Choose the optimal solution basing on the information provided by the system.

The first and last point will be carried out by the designer, while the remaining two will
be automated within the KBSM.

3.3.1 Representation of the product

A huge number of different shapes can be used to design a bottle for the market; accordingly,
several different strategies may be used for CAD representation of the product [182]. In order
to describe the model through a list of parameters (according to the idea of Nmrb input), a
preliminary restriction has to be done, defining the sequence of features of the general model.

A basic axisymmetric geometry can be obtained through the rotation of shape in Fig. 3.3.
This is a simplification of the shapes commonly adopted; further details on part geometries
can be easily integrated in the proposed framework.

In this very first model a flat base is adopted; a bottom straight part (B) is joined to it using
a circular fillet (A). The rotational shape of the bottle is then defined using a Non-Uniform
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Fig. 3.3 Basic revolving profile used for modeling of bottle

Fig. 3.4 NURBS curve used for the bottle modelling

Rational Basis Spline (NURBS) curve [C], constrained to be tangent to the straight line (B)
in its left part (with reference to Fig. 3.3). Neck is also represented as a straight line (D) in
this first draft.

A circular fillet is adopted to round the conjunction between the neck and the spline.
Once the diameter is defined, the detailed features of the neck (e.g. the geometry of threads)
are determined by using standards related to bottle closures and preforms [33].

In this very basic configuration, the user-defined parameters for the shape are limited to
the neck diameter, the spline shape, the height of the bottom part and the radii of top and
bottom fillets.

The diameter of the neck is a very important functional requirement; once the pre-form
has been chosen, all the geometrical parameters of the neck are assigned according to the
standard employed. In the basic sample in Fig. 3.3, the NURBS curve has been modelled
using 5 knots and 7 control points and it is tangent to the bottom cylindrical part of the
bottle. It can be noticed how this very simple general model allows representing a huge range
of existing bottles. The NURBS, once the knots array has been defined, can be described
through the coordinates xi ,yi of its N control points (N=7 in the example) with reference to
a datum coordinates system. Fig. 3.4 shows the parametric representation of the NURBS
curve.
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In order to describe the shape of the NURBS independently from absolute dimensions
of the curve (that will be managed by the automated system), the coordinates of the control
points can be normalised using the abscissa of the bottom point, leading to the adimensional
coordinates a′i and b′i in Eq. 3.1 and 3.2.

a′i =
xi

xN
(3.1)

b′i =
yi

xN
(3.2)

As definition, aN and b′N will be equal to one. Furthermore, in order to ensure the
tangency of the NURBS to the cylindrical bottom part, yN−1 must be equal to yN , that is to
say b′N−1 is equal to b′N .

Finally, according to the profile in Fig. 3.3, the y coordinate of the first point is defined
as in Eq. 3.3

y1 =
Dnk

2
(3.3)

where Dnk is the neck diameter imposed by the designer. The value b′i in Eq. 3.2 is thus
replaced by bi as defined in Eq. 3.4. The ai coefficient is unchanged and equal to a′i .

bi =
yi − y1

xN
(3.4)

Using a multiplication factor on relative parameters ai and bi, it is possible to scale
the NURBS profile maintaining the shape. As shaping is a Hmn action (see Fig. 4.2), the
definition of the NURBS is made by the user by dragging the control points in Fig. 3.4 within
the GUI. According to the mentioned constraints, the point 1 in Fig. 3.4 will be anchored,
while only one between 6 and 7 will me movable in y-direction.

Within the GUI, the designer will also define the height of the bottom part (B in Fig. 3.3),
the diameter neck Dnk and the radii of the bottom and top fillets.

To obtain the bottle shape, the revolution of shape in Fig. 3.3 must be shelled with a
certain thickness. This parameter is not directly set by the user, but it is assigned by the
KBESM basing on RBR, as it will be clear in the following. It is also worth mentioning
how the actual value of the bottle thickness can differ from the nominal one depending on
manufacturing conditions [135].
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Fig. 3.5 Graphical User Interface for the definition of plastic materials

3.3.2 Representation of the material

In order to efficiently evaluate the manufacturing-induced constraints of the design, an Object
Oriented Programing (OOP) representation of the material is needed.

To make the application usable in a real industrial design, the opportunity to set the
characteristics of a commercial material is given to the user by means of the GUI shown in
Fig. 3.5.

The commercial name of the material is given in the textbox at the top of the form. The
family of the polymer reported in parenthesis at the end of the string (PE in the example of
Fig. 3.5) is read as an attribute by the KBSM.

The user is also allowed setting the failure criterion to be used for the resistance verifica-
tion of the material; in particular, this attribute can be:

• Brittle

• Ductile

• Unspecified

In the case of unspecified failure criterion, the more conservative calculation of the two
will be used by the system for the calculation.

The nominal mechanical properties of the material are assigned by typing in the values
(in MPa) of yield tensile strength, ultimate tensile strength, ultimate compression strength
and the modulus of elasticity. The value of Poisson ratio by default is set to 0.2 (that is a
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Fig. 3.6 Schematically representation of some characteristic dimensions of the preform and
product [290]

characteristic value for the investigated families of polymers) and can be modified by the
user if more accurate data are available. This values will be used by the KBESM for the
calculation and verification of product’s resistance.

The density of the material is also required in order to enable the calculation of mass
properties of the product.

In blow moulding processes the final geometry is obtained by stretching an initial using
pressured air. Fig. 3.6 [290] shows the example of stretch blow moulding, where the initial
shape is an injection moulded preform.

The hoop ratio (λh) is defined as the ratio between the outsider diameter of the product
(Db) and the outside diameter of the preform (dp). The axial ratio (λax) is defined as the
ratio of the bottle height diameter of the product (Lb) to the height of the preform (Lp).
The product of hoop and axial ratios goes under the name of Blow Up Ratio (BUR) and is
a characteristic measure of the total stretched ratio undergone by the material during the
blowing process [290]. The BUR can be thus calculated as in 3.5
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BUR = λhλax =
Db

Dp

Lb

Lp
(3.5)

Analogous calculation can be applied in the case of injection blow moulding and extrusion
blow moulding by considering the initial shape blown used for blowing.

The BUR is a fundamental parameter for blowing processes as it determines the orienta-
tion of material molecules and, in turn, the physical and mechanical properties of the final
product. To avoid the polymer over-stretching and delamination, the BUR can not exceed
a given maximum value [290, 159]. Therefore, the GUI of Fig. 3.5 allows defining the
maximum admissible BUR for the material. As it will be clear in the following, this value
will be used, together with other inputs of the system, to determine the actual maximum
BUR of the product.

Finally, the user is allowed defining whether the polymer must be used only for a specific
blow moulding process (injection, stretch or extrusion blow moulding) due to its supplying
state. If not specified, the material is considered to be suitable for all the three variants of the
process.

3.3.3 Representation of the machine

As in the case of the material, the machine must be represented in the OOP to include its
specifics in the KBSM. Fig. 3.7 shows the GUI used for equipment definition.

The machine is defined by the name of the producer and model. According to its technical
limitations and/or to the choices of the company, the usage of the machine can be limited to
a certain family of polymers. Accordingly, the user has to specify which families are suitable
for usage on the equipment, as shown in Fig. 3.7.

The clamping force is defined as the maximum force that can be operated by the machine
on the mould to balance the internal pressure and prevent opening [159]. This is a peculiar
feature of the equipment that has to be defined by the user; ton is adopted as unit of measure
according to industrial normal practice in this field.

The average power consumption (in kW) and the maximum working pressure (in bar) are
characteristic technical data reported in the technical data sheet of the machine and have to
be included in its definition. This information will be used for following evaluation of the
performance of the production.

The minimum and maximum processable diameter and volume define the range of
applicability of the equipment.

The bottom part of the GUI is different according to the blowing process adopted. In Fig.
3.7, an example of injection blow moulding equipment is shown. Different configurations
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Fig. 3.7 Graphical User Interface for the definition of injection blow moulding equipment

of the mould can be set for the same machine, as shown in Fig. 3.7. In particular, moulds
with a different number of cavities can be adopted. For each configuration, the maximum
admissible diameter of the neck has to be defined. As well, the limit value of the product
diameter and height are set in the panel. The definition of the manufacturing constraints also
includes the maximum weight of material that can be injectes in the mould and the maximum
volume of air that can be blown to maintain an adequate pressure. Even if these values
may slightly vary according to the specific geometry of cavities, preliminary indications are
usually provided by the producer.

Finally, the minimum and maximum production rates (expressed in parts per hour) are
important data provided in the technical data sheet that determine the productivity of the
machine under the given configuration.

Analogous information is used to define configurations of extrusion blow moulding and
stretch blow moulding machines, as shown in Fig. 3.8 and 3.9, respectively.

As can be seen in Fig. 3.8, the definition of equipment for extrusion blow moulding
requires an additional information, that is the maximum extrusion rate of material in kg/hr.
The D1 and D2 diameters refer to the maximum dimensions in the opening direction of the
mould and in the orthogonal one.
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Fig. 3.8 Detail of Graphical User Interface for the definition of extrusion blow moulding
equipment

Fig. 3.9 Detail of Graphical User Interface for the definition of stretch blow moulding
equipment

In the panel of Fig. 3.9 the minimum and maximum diameter of the preform are
included, as they are constrained by the features of the stretch blow moulding apparatus. This
information will be used by the KBESM to check if it is possible to find a preform that does
not exceed the maximum BUR defined above.

The machines can be collected in a machinery (see upper part of Fig. 3.7), i.e. a set
of equipment that can be used for the production. This allows easily defining the field of
possible manufacturing solutions for the product by giving a more accurate description of
real resources allocated by the company for the production.

3.3.4 Design requirements

The definition of design requirements is fundamental in order to feed the KBESM with
criteria to be satisfied in the automatic adaptation of the design. The basic parameters of
these criteria must be given by the user directly (in the GUI) or indirectly (e.g. through
material and machine parameters defined above).

The limits on product dimensions defined for machines in 3.3.3 and the BUR in 3.3.2 are
examples of constraints induced by the process.

Another crucial parameter for the manufacturability of the product is the Aspect Ratio
(AR), defined as in eq. 3.6
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AR =
Lb

Db
(3.6)

Where Lb and Db are, respectively, the total height of the bottle and its maximum diameter,
as represented in Fig. 3.6. The aspect ratio has to be limited between a minimum and a
maximum value based on the experience of the manufacturer. These boundaries can be set
by the user for the specific combination of material and machine.

The nominal thickness of the product has a lower boundary necessary to avoid the tearing
of the material during inflation. Also in this case, the limit value depends on the combination
of material and machine and has to be defined by the expert.

The risk of tearing becomes higher in regions with narrow curvatures; furthermore, the
filling of this regions may be not uniform, resulting in a poor quality of the product and a
high deviation from nominal thickness. Therefore, shallow curvatures are usually preferable
for the design of moulds [159]. A maximum value of the surface curvature is thus defined
for the product. For the NURBS curve in Fig. 3.4, the curvature kNURBS in each point can be
expressed as in Eq. 3.7 [220]

kNURBS(x,y) =
ẋÿ− ẍẏ

(ẋ2 + ẏ2)
3/2 (3.7)

For circular fillets, the curvature is given by the inverse of the radius. The Gaussian
curvature of the surface [220] can be obtained by multiplying these planar curvatures by
the radius of revolution, i.e. the opposite of y coordinate in Fig. 3.4. As the KBESM is
implemented as a plug in for a CAD software, the built-in function for the computation of
Gaussian curvature in a generic point can also be adopted.

The first functional requirement of a bottle is the volume of liquid (VL) to be contained.
This very simple requirement is not easy to satisfy in the concept design, as the internal
volume has to be numerically calculated in the case of complex geometries. Therefore, the
target volume is a requirement imposed by the user through the GUI; the KBESM will resize
the whole design in order to fulfil this aim.

Under the point of view of mechanical resistance, plastic bottle are usually subject to two
verifications, i.e. the maximum top load (T Lmax) and the maximum internal pressure (pmax).

The top load analysis is intended to verify the resistance of the bottle under the weight
of similar packagings during transportation and stocking. Therefore, the GUI user allows
defining the maximum number of layers during stocking (NL,max). The maximum top load
T Lmax can be thus calculated as in Eq.

T Lmax = NL,maxg(wb +VLρL)SF (3.8)
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Fig. 3.10 Flow chart of geometry adapting process

where g is the gravity acceleration, wb is the weight of the bottle, ρL is the density of
the liquid and SF is a safety factor. This limit value will be used to determine the minimum
thickness. The value of maximum internal pressure (pmax) is set by the user in the GUI; also
this criterium leads to the definition of a minimum wall thickness.

It is worth noticing that several definitions of the minimum thickness have been given
according to different criteria; the actual nominal thickness of the product will be thus
determined as the intersection of these.

3.3.5 Adaptation of the geometry

As mentioned, the sketch of the designer has to be resized by the system in order to meet the
criteria above. Fig. 3.10 summarises the flow of operations used for the adaptation of bottle
geometry in the KBESM.

The geometry specifications given by the user are received as an input from the GUI.
The input profile of the NURBS (defined as in Fig. 3.4 by points xi, inp and yi, inp ) is thus
rescaled to match the Volume of liquid VL required by the user.

The rescaled shape of the bottle allows extracting some relevant parameters such as
the total height and the different diameters. These data are combined with the ones of the
material for the calculation of minimum thickness basing on mechanical resistance. The
values of T Lmax and pmax provided in the GUI are used for this scope. The nominal thickness
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is then chose as the maximum limit values deriving from mechanical calculation and the one
defined by the process as in 3.3.4. The rescaling procedure is repeated using this value of
thickness for the calculation. The iterative procedure terminates when the difference between
thickness calculated at two consecutive iterations is under a fixed threshold value.

Scaling of the shape

The scaling procedure is operated iteratively. As a value of thickness is necessary to calculate
the internal volume, an arbitrary plausible value is set for the first iteration.

The steps adopted for the iterative scaling procedure are reported in the following. The
index j is used for counting iterations. The algorithm terminates when the difference between
internal volume of the bottle at two consecutive iterations is less than a fixed threshold value
εV .

1. The initial scale factor s fnk is calculated as in Eq. 3.9

s fnk =
Dne

2y1,inp
(3.9)

2. The profile is rescaled by means of s fnk to meet the requirement on the bottle neck. The
rescaled coordinates x0 and y0 are calculated as in Eq. 3.10 and Eq. 3.11, respectively.

∀i ∈ [1;N]xi,0 = xi,inps fnk (3.10)

∀i ∈ [1;N]yi,0 = yi,inps fnk (3.11)

3. The internal volume of the product after rescaling (V0) is computed and the initial
scaling factor s f0 is obtained as in eq. 3.12.

s f0 =
3

√
V0

VL
(3.12)

4. The parameters ai, j and bi, j are calculated from xi, j and yi, j as in Eq. 3.1 and Eq. 3.4,
respectively.

5. The rescaled xi, j+1 and yi, j+1 coordinates are calculated as in Eq. 3.13 and Eq. 3.14,
respectively.

∀i ∈ [1;N] xi, j+1 = ai, j s f j xN, j (3.13)
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∀i ∈ [2;N] yi, j+1 = yi, j +bi, j s f j xN, j (3.14)

6. The internal volume of the bottle after rescaling (Vj+1) is calculated.

7. If |Vj+1 −Vj| ≤ εV , the algorithm stops.

Elsewhere, the scaling factor is corrected as in Eq. 3.15 and the algorithm is repeated
from point 4

s f j+1 = s f j +ws
|Vj+1 −Vj|
|Vj+1 +Vj|

(3.15)

The value ws in Eq. 3.15 is a corrective weight used for search. The value of ws must be
sufficiently low to prevent the method from diverging. On the other hand, too small values of
ws may lead to long calculation times.

Thickness calculation

The mechanical resistance of the bottle may be calculated through Finite Element (FE)
simulation, giving the boundary conditions defined by the user [67, 280]. To reduce the
calculation time, thus enabling a higher number of iterations, a simplified model is adopted
here to calculate the internal pressure and top load resistance analytically.

The simplest model to approach the internal pressure analysis is to consider the bottle as
a pressurized cylinder. The external radius of the equivalent cylinder re,av is assumed equal
to the average value of y on the spline of Fig. 3.4.

According to [260], assuming that only the internal pressure pi is present, the tangential
stress σt and radial stresses σr at the generic radial coordinate r can be calculated as in Eq.
3.16 and 3.17, respectively.

σt =
r2

i,p pi

r2
e,av − r2

i,p
(1+

r2
i,p

r2 ) (3.16)

σr =
r2

i,p pi

r2
e,av − r2

i,p
(1−

r2
i,p

r2 ) (3.17)

Where ri,p is the internal radius of the bottle.
The maximum shear stress according to Tresca’s criterion is located at the inner radius.

In order to find the minimum allowable thickness, the maximum shear stress is set equal to
the maximum allowable stress for the material σlim, i.e. the ultimate tensile stress for brittle
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materials and yield strength for ductile ones. A safety factor SF,p is used, as shown in Eq.
3.18.

|σt −σr|=
σlim

SF,p
(3.18)

Substituting the Eq. 3.16 and 3.17 in Eq. 3.18, the maximum admissible internal radius
Ri,max,p can be calculated as in Eq. 3.19

Ri,max,p =

√
1

σlim
−2SF,p (3.19)

Therefore, the minimum thickness tmin,p to resist the nominal internal pressure is given
by Eq. 3.20

tmin,p = re,av(1−

√
1

σlim
−2SF,p) (3.20)

To verify the resistance to top load for ductile materials, a simplified model of buckling
is used. The bottle is modelled as a cylinder with radius equal to re,av as defined above
and height Lb. This is a conservative model, as the actual shape of the profile increases the
resistance to buckling of the bottle. According to Eulero’s and Johnson’s formulas [260], the
critical buckling stress σEul can be calculated, depending on the value of σEul as in Eq. 3.21
and 3.22

σEul =
E π2 Jz

L2
B At

i f σEul ≤ Sy/2 (3.21)

σJohnson = Sy −
L2

B S2
y

Jz E 4π2 i f σJohnson ≥ Sy/2 (3.22)

Where E is the Young’s modulus of the material and Sy its Yield strength. At is the area
of the transversal section and Jz its moment of inertia, calculated as in Eq. 3.23 and Eq.3.24
,respectively.

At = π(R2
e,av −R2

i,b) (3.23)

Jz =
π(R4

e,av −R4
i,b)

4
(3.24)
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Where Ri,b is the internal radius of the cylinder. Using a safety coefficient SF,b, the
maximum value of Ri,b can be calculated as in Eq. 3.25 if 3.21 is used for sigmaEul or 3.26 if
σEul ≥ Sy/2

Ri,b,max =
4

√
R4

e,av −
4T LmaxL2

B
π3E

(3.25)

Ri,b,max =

√√√√√ L2
B

π2E − T Lmax
Syπ

√
(T LmaxEπ−L2

BSy)
2−4Eπ2SyR2

e,av(T LmaxEπ+L2
BSy+Eπ2R2

e,avSy)

Syπ2E

2
(3.26)

Once the value of maximum internal radius has been calculated, the Eulero critical
buckling stress must be computed again to verify if the right criterium has been adopted and,
eventually, repeat the calculation. The minimum allowable thickness resulting from buckling
analysis (tb,min) can be thus obtained as in Eq. 3.27:

tmin,b = Re,av −Ri,b,max (3.27)

In case the material has a brittle behaviour, the maximum internal radius can be calculated
as in Eq. 3.28

Ri,b,max =

√
Re,av −

T LmaxSF,b

πSC
(3.28)

where SC is the ultimate compression strength of the material. The value of tmin,b is
obtained also in this case using Eq. 3.27.

The nominal thickness tn is thus obtained as in Eq. 3.29

tn = min(tmin,b, tmin,p, tmin,m) (3.29)

Where tmin,m is the minimum thickness allowed by manufacturing constraints, as defined
in 3.3.4.

3.3.6 Product analysis

After the product design modification, a verification of all the constraints listed in 3.3.4 must
be performed. This verification allows pointing out non-feasible solution; during this phase,
the result of each analysis is stored for following reports
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For this scope, the maximum diameter of the bottle (DB) is computed to calculate BUR
and AR as in Eq. 3.5 and 3.6, respectively. The projected area (Ap) of the bottle surface on a
plane containing the axis of rotation is also extracted by the CAD environment. This area
will be multiplied by the air pressure pa and the number of cavities of the mould (Nc). The
resulting value (multiplied by a safety factor S f ,c) has to be less or equal than the clamping
force of the mould FC, as in Eq. 3.30

Ap NC pa S f ,c ≤ FC (3.30)

All the remaining manufacturing constraints are given as geometrical parameters, so they
can be easily get by an analysis of the CAD model.

The design adaptation and the verification of constraints already imply the calculation of
several descriptors described in 3.2. In particular, the curvature of surfaces, the height and
capability of the bottle and the maximum diameter have been calculated on the geometry. The
mass of the bottle is obtained by a simple multiplication of the product volume (Vp) by the
density of the polymer (this value has to be calculated for the verification of manufacturing
constraints in case of injection blow moulding, as shown in Fig. 3.7).

The bounding box is defined as the minimum parallelepiped inscribing the geometry of
the product; its volume (VBB) can be calculated as in Eq.

VBB = D2
B ∗ (LB+hnk) (3.31)

where hnk is the height of the bottle’s neck. The packaging efficiency ηp can be thus
calculated as in Eq. 3.32

ηp =
Vp +VL

VBB
(3.32)

This parameter allows getting an immediate information about the transportation effi-
ciency of the designed geometry.

To compute the LCIA of the product according to criteria in [215], all the phases and
contributions of the product LC should be included. However, the present application of
the LCA is intended for a comparative study among different design solution; this allows
omitting all the contributions that are not affected by design choices, as they are supposed to
be invariant.

The boundaries of the LCIA are cradle-to-gate. The study is based on simplified hypothe-
ses. As an example, the transportation, in terms of ways and distances, of the raw materials
are assumed the same for each material selected. Therefore, the impact of transportation is
not included in the Life Cycle Inventory (LCI) computation. The KBESM allows the user to
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include LCI data imported from a number of sources, as well as custom data coming from
providers.

In the present implementation, LCI data from the European Life Cycle Database (ELCD)
[236] are integrated into the application. The LCI flow for the production of the raw material
are selected by the KBESM basing on the family of the plastic material. The analysis refers
to the unity of product; accordingly, the weight of the bottle is used as reference for the
material flow.

By means of the information about the equipment given in 3.3.3, the production rate
(pR, in items/hour) and the power consumption of the production system (Ec, in kW) are
given. This information allows calculating the energy consumption (es, in MJ/item) for the
production of a single bottle, as in Eq. 3.33

es = 3.6 Ec pR (3.33)

This quantity is used as a reference flow for the determination of impacts related to
electricity consumption according to ELCD data. More detailed systems for LCA can be
easily integrated within this framework.

Once all the LCI data have been collected for the unit of product, the calculation of LCIA
indicators can be performed. In the presented implementation, the ILCD 2011 MidPoint
method [78, 79] for the calculation of LCIA has been used. Accordingly, the following
indices are calculated

• Climate change

• Ozone depletion

• Cancer human health effects

• Non-cancer human health effects

• Ionizing radiation - human health

• Ionizing radiation - ecosystem

• Photochemical ozone - human health

• Acidification terrestrial

• Eutrophication terrestrial

• Eutrophication freshwater
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• Eutrophication marine

• Ecotoxicity freshwater

• Land use

• Resource depletion - water

• Resource depletion- mineral, fossils and renewables

All these indicators are thus included in the reports to quantify the LC impact of the
product.

3.3.7 Report of the solutions

The material and process selection (see 3.2) has to be performed by the user on the basis of
information extracted by the system. For this scope, a report of the possible solutions has to
be provided by the system to support the decision-making process.

In the input phase, the user has to define the available set of machines and materials that
may be eventually used for the production. The space of possible solutions is defined by
matching the compatibility between materials and machines as defined in 3.3.2 and 3.3.3.

For each possible combination of process and material, the adjusting procedure described
in Fig. 3.10 and 3.3.5 is performed. At the end of this phase, the adapted design is analysed
and a report is generated for the solution. All the reports are then collected and managed to
enable comparison. Fig. 3.11 shows the report of a solution in the GUI.

The report shows the combination of material and process, and tells if the solution is
valid. In case of non-valid solutions, the list of checks that have not been satisfied is reported
to provide information that can be used by the designer to overcome this limits if necessary.

After the results of validation checks, a list of the solution’s attribute is given. In particular,
this list contains all the descriptors in 3.3, thus allowing the evaluation of the solution by the
user.

To support the decision making, a graphical mapping of solutions is also provided.
It is evident how exploring the possible combinations for several materials and machines,

a very large set of possible solutions can be generated.
Different levels of automation may be used for the solution of the MOO problem [17, 189].

According to the conceptual design in 3.2, the solution here is delegated to designer; the role
of the KBESM is thus to support the user in Multiple Criteria Decision Making (MCDM)
[187]. In this context, a graphical representation of the several different solutions is a very
immediate way to facilitate the understanding of alternatives purposed by the KBSM.
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Fig. 3.11 Solution report form
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Fig. 3.12 2D map of solutions on the basis of packaging efficiency and energy consumption

To efficiently get a quick mapping of solutions on the base of a generic couple of attributes
selected by the user, a scattered plot can be adopted. Fig. 3.12 displays the GUI of the
KBESM analysed as an example of this approach using Box efficiency of packaging ηp as
X-axis and Energy required for the production of each bottle as Y-axis. When the user move
the cursor onto a point, the number of the solution is displayed.

This method allows efficiently pointing out the best set of solution for a generic pair of
attributes.

In general, the comparison of solutions within the KBESM is a MOO of the general set
Sopt of m functions, as represented in equation 3.34:

Sopt = { f1(X), f2(X)... fm(X)} with X = {x1,x2...xn} (3.34)

The array of variables X in this case is defined by the inputs of the design, while the
functions representing the set Sopt are the descriptors provided by the KBSM.

To reduce the task to the minimization of a set of functions, even when the target is the
maximization or the achievement of a predefined value (which can be obtained by calculations
in the KBSM), the m objective functions representing the set Sopt in equation 3.34 can be
obtained from the descriptors di(X) as in Eq. 3.35

fi(X) =

{ di(X) if di(X) has to be minimised
- di(X) if di(X) has to be maximised

|di(X)− ti| if di(X) points to the target value ti

(3.35)
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Fig. 3.13 Highlighting of Pareto front on 2D maps

Indicating as Su and Sv the generic u-th and v-th solutions belonging to the collection of
solutions Cs produced by the KBESM and defined by the input sets Xu and Xv, the solution
Sv is said to dominate Su if the condition in Eq. 3.36 is met:

Su ≺ Sv ⇐⇒ { fiXv ≤ fi(Xv)∀i ∈ [1,m]} ∧ {∃i∗ ∈ [1,m]| fi∗(Xu)< fi∗(Xv) (3.36)

Using this definition, the Pareto Front of non-dominated solutions ( PF ) [17] can be built
through the condition in Eq. 3.37

Su ∈ PF ⇐⇒ ̸ ∃v ∈ [1,m]|Sv ≺ Su (3.37)

The Pareto front is pointed out by means of a blue line on the 2D map, as shown in Fig.
3.13

According to the definitions in Eq. 3.36 and Eq. 3.37, the Pareto front can be calculated
for a generic number of objective functions. When moving from two to N-dimension, it
becomes difficult to provide an efficient graphical representation of the Pareto front [29]. In
the present implementation of the KBSM, a generic number of attributes can be used for the
calculation of PF , resulting in a list of non-dominated solutions.

The maps of Fig. 3.12 and Fig. 3.13 include both the feasible and non-feasible solutions,
marked with green and red colour, respectively. If a non-feasible solution appears to be
particularly interesting due to the values of its descriptors, the designer can investigated
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Fig. 3.14 Highlighting of a subset sharing an input parameter

more in detail the reason of non-feasibility (with the aid of the report) to overcome these
limitations.

In order to give to the designer a more accurate understanding about the effects of input
variables on the descriptors, it is possible to highlight in 2D maps solutions sharing a common
attribute. Solutions belonging to selected subsets are marked with a special marker (i.e. a
yellow star) as in Fig. 3.14.

To immediately point out the region of maps where investigated solutions stand, the
convex-hull of the subset in the space of the graphic is drawn using Graham’s algorithm [99].
This approach follows the one proposed by [18] for material selection in mechanical design,
allowing getting a visualisation of the the region of plane in which the subset of solutions
stands.

3.4 Conclusions

The present chapter demonstrated the opportunity to apply the methodology exposed in
Chapter 2 to the design of a KBESM for assisting design of plastic blow moulded bottles.

The definition of applicability defined the system as applicable to the design of a specific
product with different technologies. Furthermore, a well-defined user (i.e. a designer of
bottles) has been chosen.

The choice of a specific product allowed including, in the conceptual design phase, a
number of objectives connected to the usage phase of the product (i.e. gate-to-grave phase of
the LC).
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All the descriptors used by the KBESM can be obtained by the virtual representation
of the process; this allows having a completely virtual implementation of the system that
enables Std actions by the designer.

According to the allocation in the applicability space, a generic manufacturing process
has to be managed; therefore, all the inputs of the system have been chosen in the field of
the product design. This is also coherent with the expected user of the system. As all the
relations within the KM of Fig. 3.2 are based on knowledge, a completely RBR approach
has been used for the implementation.

The high-level experience of the user also led to design most of the actions as human-
based. Automation was used only for the automation of repetitive design tasks, allowing
the exploration of a high number of possibilities in a reduce timespan. The main role of the
KBESM is thus to aid the MCDM by the user, providing forecasts on product feature and
giving the widest overview on the design opportunities. For this scope, the adoption of reports
and maps of the explored opportunities was fundamental. In particular, the transparency
of RBR to the user allows pointing out the eventual issues found during manufacturability
assessment, allowing further investigations in an iterative design process.

The main limitation of the presented system derives from the restricted number of
processable geometries. In fact, even if the proposed architecture can still be applied, its
extension to more complex geometries leads to a dramatic increase in the time required
for programming. Therefore, in order to extend the system to a higher number geometries
(i.e. moving on the product axis of applicability system) a redefinition of ontologies must
be adopted to preserve the fulfilment of objectives while containing the time necessary for
system implementation.





Chapter 4

Manufacturability Assessment in
Stereolithography

4.1 Applicability definition

In this chapter, the development of a KBSM for manufacturability assessment in Stereolithog-
raphy (SL) is presented.

The definition of Stereolithography Apparatus (SLA) includes a wide range of machines
with notable differences in terms of size, energy consumption and supply chain [24]. There-
fore, the field of application of the KBSM developed in this chapter is further restricted to
bottom-up desktop SLA; the peculiar features of this type of machine [237] will be thus
taken into account during the development of the system.

As the price of this kind of machine makes them affordable for private usage, no lim-
itations will be given to the user of the system. Accordingly, all the process know-how
necessary to ensure manufacturability has to be included within the KBSM.

Finally, as SL can be used for the fabrication of parts with different geometries and few
number of components, no limitations are applied to the product. As a consequence, it will
not be possible to include specific knowledge related to product function within the KBSM.

Fig. 4.1 shows the location of the KBSM in the applicability space according to the
proposals described above.
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Fig. 4.1 Location in the applicability space of the KBSM for SL manufacturability assessment

4.2 Concept Design

As already mentioned above, the KBSM has to assess the manufacturability of the parts to be
manufactured by means of SL. For this scope, the geometries have to be investigated in order
to point out eventual critical issues and solutions.

The main objectives to be satisfied by the system are accuracy, definition and cleanability.
The term accuracy refers to the correspondence between manufactured part and virtual

model, i.e. to the avoidance of dimensional and geometrical errors on the product. A severe
loss of accuracy may require sequent operations or the repetition of the process, resulting
in economic and environmental impacts. Less severe deformations of the part may still
allow its usage, but with malfunctioning or aesthetic defects leading to user’s dissatisfaction.
Accordingly, part accuracy aims to improve all the three pillars of the TBL.

Definition means that all the features of the model are present on the final product,
independently by their accuracy; as it will be described in the following, this aspect is
particularly critical for small details (both embossed and engraved). The same considerations
made for accuracy can be applied, leading to classify this aim as EnS, EcS and SoS.

Finally, at the end of the SL process, the part must be divided by the non transformed
material (i.e. liquid resin). For this scope, all the internal end external surfaces of the part
must be reached by a solvent to remove the non polymerised material. IsoPropyl Alcohol
(IPA) is generally used for washing being a solvent of the most common photopolymers used
in SL (i.e. epoxy and methacrylate resins). The exceeding material can corrupt the proper
functioning of the product, leading to economic impacts. Furthermore, the liquid resin is a
contaminant agent that risks to be released during the usage phase. Therefore, cleanability
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refers to the possibility to reach all the surfaces so to remove the exceeding resin from the
part.

These aims are reported in the MODIA of Fig. 4.2.
The main causes of distortion in parts by SL are the internal stresses arising from density

change during the layer-by-layer photo-polymerisation of the material [95]. This stresses can
result in deformation where the thickness of the part does not allow a sufficient resistance.

As an example, Fig. 4.3 shows the distortion of two vertical walls with different thickness.
Another example of geometries affected by this defect are vertical pins with high aspect ratio
(i.e. length/diameter).

As the material is not supported during construction, deformation may also occur due to
part own weight under the action of gravity. This effect is in particular critical in the case of
overhang geometries with angles not allowing the material self-supporting.

The minimum width of the polymerised material depends on the laser spot size, power,
speed and on the interaction between material and laser [95]. This imposes a limit to the
minimum feature (both embossed and engraved) that can be realised by means of SL. In
bottom-up SLA, the shear forces required to detach the part from the tank at the end of
each layer lead to a further limitation in minimum manufacturable features [237]. In case of
engraved details (including holes) the minimum dimension also has to take into account the
capillarity effect that does not allow the cleaning of exceeding resin.

More in general, in order to remove the non-transformed resin from cavities, the part
requires holes of a sufficient size to allow material flowing.

The descriptors and inputs of the MODIA are compiled accordingly, as it can be observed
in Fig. 4.2.

All the relations in the KM are defined as Knw, since sharp design rules can be given in a
preliminary approximation: as the KBSM is intended to be used for a specific SLA (cfr. 4.1),
the dependencies of design rules by the specific machine is not included in the MODIA.

The actions consist in the assessment of design rules through part verification. As a
generic user is considered, all the actions have to be managed by software. In Fig. 4.2
it can be observed how the definition of actions leads to seven mono-objective problems.
The software will have both the role of verifying the respect of design rules and proposing
solutions for their overcoming.
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Fig. 4.2 MODIA of the KBSM for SL manufacturability assessment
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Fig. 4.3 Vertical walls with thickness a) = 0.8 mm, b) = 0.4mm

4.3 Detailed Design

4.3.1 Manufacturing Feature Recognition

As no specifications about the product are given in the KBSM, the design rules have to be
expressed in terms of geometrical features; in order to enable the recognition of these relevant
features on a generic geometry, a Manufacturing Feature Recognition (MFR) strategy is
implemented.

Among the several approaches that can be used for feature recognition [106, 19], graph-
based approach revealed to be particularly suitable in application to recognition of man-
ufacturing features. As an example, [181] proposed a mid-surface approach to injection
moulding; this approach has been extended to the field of machining by [353].

In [180] an application of the graph-based method to Case Based Reasoning (CBR) for
identifying relevant features in AM products is proposed; sub-graphs have been isolated
and compared to relevant graph representations within the case base through the usage of
a similarity index that has been proposed by the authors. In [232] a distinction is operated
between functional and non-functional features; the part is then represented as a graph having
functional features as nodes and non-functional features as connections between them. This
kind of representation allows the authors to apply DfM rules by pointing out manufacturing
issues related to a particular feature or a relation among different ones.

The methodology here proposed is based on the interpretation of the B-Rep of examined
parts and does not depend on the modelling sequence. Furthermore, it is not required
the transformation of the geometry such as in mid-surface approach, thus reducing the
computational complexity and enabling the detailed analysis of actual geometry. In order
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Fig. 4.4 Examples of edges, vertices, faces and connectors on a simple part

to overcome the limits of traditional methods, which rise from the direct interpretation of
geometrical entities, new and original composed geometrical entities are defined in 4.3.2 and
then adopted for graph-based representation of the model.

In the proposed approach, Design for Additive Manufacturing (DfAM) rules are statically
defined, according to the criteria exposed in 4.1 and 4.2. Nevertheless, the limit values of
rules can be dynamically tuned by the user to fit the specific combination amongst materials,
machine characteristics and product structure, whether he owns these information. The
completely rule-based approach is intended to avoid uncertainties proper of CBR systems,
eliminate the necessity of a training base and allow direct control of MFR and DfAM rules.

4.3.2 Manufacturing Geometrical Entities

Relations among basic entities

The proposed method employs conventional definitions of vertices, edges and faces to
define elements that are then used for the MFR. These elements and their relations with
fundamental entities have been defined in the next lines. Then connectors, border edges,
chains, bricks,islands and blocks are introduced. If an edge ei is bounded by a vertex v j, we
say that the vertex belongs to the edge, as written in Eq. 4.1.

As an example, in Fig. 4.4 it is possible to observe that v2 ∈ e1, v2 ∈ e2. A vertex can
belong to different edges at the same moment.

v j ∈ ei (4.1)
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In the same way, if a face Fk is bounded by an edge ei, then the edge belongs to the face,
as it is shown in Eq. 4.1.

v j ∈ ei (4.2)

As an example, in Fig. 4.4 e1 ∈ F1 and e2 ∈ F2. Each edge belongs to two different faced
simoultaneously (e.g. e4 ∈ F1 ∧ e4 ∈ F2 ). Then, a relation between vertices and faces can
be defined as in Eq. 4.3

(v j ∈ ei)∧ (ei ∈ Fk)→ v j ∈ Fk (4.3)

As obvious, a vertex can belong to several faces (in any case more than two).

Connectors

A connector is assumed to be a virtual edge that connects two vertices. Connectors allow
for connecting vertices, which do not share an edge. They play the same role and own
same properties such as edges. This assumption allows extending the use of the searching
algorithm to recognise relevant geometric features within the model.As an example, in Fig.
4.4, the connector c1,5 is displayed; c1,5 connects v1 with v5. It is thus possible to write:
v1 ∈ c1,5 ∧ v5 ∈ c1,5. Obviously, connectors belong only to a face

Border edges and their features

The definition of border edges has been adopted when an edge ei is also a border for a face
Fk , then the notation in Eq. 4.4 is used:

ei ⊂ Fk (4.4)

A border edge is defined when the conditions in Eq. 4.5 and 4.6 are simultaneously
satisfied.

{ei,e j} ⊂ Fk → ei ∈ Fk ∧ ei j ∈ Fk|(vl ∈ ei ∧ vl ∈ e j) (4.5)

∃ε ∈ R|P̄O ≤ ε → ei,e j ⊂ Fk (4.6)

To explain the meaning of the vector P̄O, it is necessary to define a pair of vectors s⃗i and
s⃗ j as in the Eq. 4.7:
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Fig. 4.5 Graphical representation of the procedure for determination of border edges

{
s⃗i = ε t̄i
s⃗ j = ε t̄ j

(4.7)

where ε ∈ R, ti and t j represent tangents to ei and e j centred in the vertex vl, respectively
(Fig. 4.5. A triangle defined by the vectors s⃗i and s⃗ j can be drawn.

Two normal vector n⃗1 and n⃗2 can be drawn and centred on the centre O. The intersection
point P of one of them with the surface Fk can be found. Finally, the edges ei and ej are
border edges for the surface Fk if exists ε ∈ R small enough that the distance OP between
the centre O and the intersection point P is minor or equal to ε .

Chains, loop chains and border chains

A set of edges C = {e1,e2...en} is a chain if each edge satisfies the condition described in Eq.
4.8:

(∀v j ∈ ei)∧ (∀ei ∈C)∃ek ∈C|(v j ∈ ek)∧ (k ̸= i) (4.8)

In Fig. 4.6 is represented a simple part. A number of chains can be seen, as: C2 =

{e9,e11,e13,e15,e14,e10} and C3 = {e9,e11,e13,e16,e18,e17,e14,e10}.
If all the edges of a chain lay on the same face, then the chain is a loop chain of a face or

simply a loop (Eq. 9):
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Fig. 4.6 Example for chain recognition

Ck is a loop i f ∀ei ∈Ck → ei ∈ Fj (4.9)

As an example, chains C4 = {e1,e2,e3,e4} and C5 = {e9,e10,e11,e12} in Fig. 4.6 can be
classified as loop chains or loops. The definition of chain remains in case one or more edges
are substituted by connectors (i.e. virtual edges): as an example, in Fig. 4.6 we can define
the chain C6 = {e4,e6,e11,c47}. A border chain for a face is that chain which contains two
border edges for the same face (Eq. 4.6):

Ck ⊂ Fj ⇐⇒ ∃en,em ∈Ck|{en,em} ⊂ Fj (4.10)

As an example, in Fig. 4.6, C2 and C3 are border chains for face F1; C6 is a border chain
for F2.

Bricks and their features

A brick B0 is a set of connected chains {C1,C2, ...Cn} for whom is Eq. 4.11:

∀Ci ∈ B0 : ∃ek ∈Ci ∧∃C j ∈ B0|C j ̸=Ci ∧ ek ∈C j (4.11)
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Fig. 4.7 Samples of a) embossed brick, b) engraved brick and c) brick defined by the use of
connectors

As an example, in Fig. 4.7 a) and b) the set of chains containing edges e1, ...,e12

constitutes an embossed brick or an engraved brick, respectively.
In Fig. 4.7 c), the chain that includes edges {e1, ...,e10 and connectors c5,9, ...,c8,12

represents a brick, which was defined by the use of connectors.
A face Fk belongs to a brick Bo (Fk ∈ Bo) if a chain Ci inside Bo borders Fk, i.e. as in Eq.

4.12:

Fk ∈ Bo ⇐⇒ ∃Ci ∈ Bo|Ci ⊂ Fk (4.12)

A brick Bo is defined filled brick when its surfaces bound a volume. The notation Bo⊗
is used in order to express this condition. The notation Bo⊘ is used to express the opposite
condition also referred as empty brick. To check this condition, firstly a gravity centre g of
the n faces {S1, ...,Sn} is calculated as the gravity centre of nodes obtained after meshing
each generic face by dividing its boundary edges in m nodes along its u and v parameters as
it is shown in Eq. 4.13:

{ gX =
∑

n−1
i=0 ∑

n−1
i=0 ∑

n−1
i=0 Xi,u,v

n×m2

gY =
∑

n−1
i=0 ∑

n−1
i=0 ∑

n−1
i=0 Yi,u,v

n×m2

gZ =
∑

n−1
i=0 ∑

n−1
i=0 ∑

n−1
i=0 Zi,u,v

n×m2

(4.13)

Then, it is possible to define the central point Pc0 of the first face S1 in the brick set — i.e.
(X0,m/2,m/2,Y0,m/2,m/2,Z0,m/2,m/2) — and thus the direction of vector dg0 that is connecting
the gravity centre g to the central point Pc0 is determined as in Eq. 4.14:

d⃗g0 =
P⃗c0 −g
|P⃗c0|−g

(4.14)
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After that, a ray-tracing algorithm (e.g. [107]) is implemented to find the q intersection
points {P1, ...,Pq} with the mentioned {S1, ...,Sq} surfaces, where q < leqn.

If q is an even integer number, it is possible to define a point Pm as the middle point
between P1 and P2; on the contrary, if q is an odd integer number, then Pm = g. Eq. 4.15
summarises these assumptions{

q mod 2 = 1 → Pm = g
q mod 2 = 0 → Pm = P1 +

P2−P1
2

(4.15)

where mod indicated the modulus operator, that returns the reminder of the Euclidean
division of q by 2.

Finally, the problem of determining whether the brick B is filled or not is reduced to
determining if point Pm is internal or external to the considered part. This can be done using a
ray casting algorithm along a generic direction starting from the point Pm and considering all
the faces of the model thus obtaining the set of intersection points {P1, ...,Pr} . This criterium
is shown in Eq. 4.16: {

r mod 2 = 1 → B⊗
r mod 2 = 0 → B⊘

(4.16)

Figure 4.8 a) and b) graphically represent the procedure described above for bricks, which
are coloured in red. In both cases bricks are empty (corresponding to the first and second
line of Eq. 4.15, respectively)

Islands, blocks and their features

We define an island Iw as a set of bricks {B1, ...,Bn} that does not share edges with other
bricks in the model, Eq. (17):

∀Bi ∈ IW :̸ ∃e j ∈ Bi|e j ∈ Bk ∧Bk /∈ I (4.17)

This defines an isolated part of the model that can consist of one or more brick sharing
edges or connectors. As an example, red bricks in Fig. 4.9 are islands. All the membership
relations will be extended from elements previously defined to the island: a face belongs to
an island if it belongs to a brick of the island, etc.

A chain Ci is an external chain of an island Iw if it shares all edges with a face that does
not belong to such an island. The used symbol is Ci

Iw
, defined as in Eq. 4.18 :

Ci

Iw
⇐⇒ ∀ek ∈Ci : ∃Fj|ek ∈ Fj ∧Fj /∈ Iw (4.18)
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Fig. 4.8 Procedure to determinate whether a brick is filled or empty depending on the position
of the gravity centre g. a) An empty brick with g = Pm inside the brick. b) An empty brick
with g outside the brick and Pm as the middle point between P1 and P2

Fig. 4.9 Samples of islands which are formed by two bricks
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Fig. 4.10 Examples of four smooth islands (geometries in red colour)

In case an island does not have any external chain, it is referred to with the name of block.
It is worth to mention that an external chain is always a loop chain or a loop because of the
definition.

Smooth loops and smooth islands

In case a face is connected to only two edges, one exception arises: such a condition can
be verified only if the two mentioned vertices are classified as closed loops. This particular
and singular case will be identified with the name of smooth island: the singular surface
and both the two connected loops belong to the smooth island, which includes possible
surfaces enclosed by this closed loop. Smooth islands are represented in the Fig. 4.10 below
(highlighted in red colour) to exemplify this definition.

4.3.3 Identification of Manufacturing Geometrical Entities

As stated above, a B-Rep of the model to be produced (in its final orientation) is used as a
basis for verification of DfAM rules. For this propose, it is necessary to identify the entities
defined in 4.3.2 on the geometry. After identification has been fulfilled, the set of geometrical
entities constituting the CAD model is compared with DfAM rules (expressed in term of
mentioned entities) to provide feedback to the designer about eventual critical issues that are
in a relationship with the geometry manufacturability.
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In the following sub-sections adopted rules and their use within a general algorithm-
based system for CAD analysis and geometrical entities recognition are discussed. Being not
possible to present a general algorithmic approach to manufacturing knowledge translation
in terms of geometrical entities, this aspect is deepened within the next section with some
examples from the specific implementation.

Island detection

A graph-based representation of the model, which considers edges as elements and vertices
as connectors, easily allows identifying islands (in term of edges) as they are nonconnected
sub-graphs. Once the edges of an island have been defined, it is possible to recognise loops,
which are formed by those edges that belong to the island. Faces, which belong to the
island, can be identified as the ones that are bordered by those loops that belong to the
mentioned island. Finally, by knowing island’s faces, it is also allowed determining whether
an island is filled or empty. Therefore, the rest of the proposed MFR algorithm is to split
these islands into a set of bricks that can be adopted for the application of DfM rules in AM.
This development is discussed in the next sub-paragraph

Brick-by-loop search procedure

To perform this task, we associate to every new island a set of edges named Assigned Edges
and a set of chains named Queue Chains, by stating that an edge is assigned if it belongs to
this set and that a chain is in the queue if it belongs to this set, respectively. By starting from
a chain Ci, which belongs to an island Ik, we define a set of edges named branches of the
chain, which are Non-Assigned Edges that belongs to Ik and share at least one vertex with an
edge that belongs to Ci, as in Eq. 4.19 :

e j is a branch o f Ci ∈ Ik ⇐⇒ e j is Non−assigned ∧ e j ∈ Ik ∧∃vl|((vl ∈ e j)∧ (v j ∈Ci))

(4.19)
A vertex, which belongs to a branch but does not belong to the chain Ci, will be referred

in the following sentences as an opened vertex of the branch. Furthermore, we state that two
branches e j and ek of the chain Ci are Related Branches — expressed in term of the notation
e j ≍ ek - if it exists an edge of the chain that shares a vertex with each of them, as expressed
in Eq. 4.20.

e j ≍ ek ⇐⇒ ∃el ∈Ci ∧∃(vg,vh) ∈ el|e j ∧ vh ∈ ek (4.20)
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Fig. 4.11 Schematization of brick-by-loop procedure: a) The starting chain Ci. b) Branches
of Ci. c) The corresponding chain of Ci. d) The resulting brick

If two branches of a chain have a common vertex belonging to the chain, thus they will
be named twin branches. On the base of these statements, we are going to expose how to
compose the chain C j, named Corresponding Chain of Ci and indicated as C j = Corr(Ci).
As a first step, we search for edges, which belong to island, that connect open vertices of
branches. These edges are added to the new chain. Then, we close the chain by adding
new connectors between open vertices of related branches in case an edge has not yet been
assigned between those branches; in case there is more than one combination between opened
vertices (that is in the case of twin branches), the connector has to be placed between those
vertices with minor distance. The procedure stops when two edges (or connectors) in the
open chain are assigned to every opened vertex of branches. The brick is formed by chains
Ci,C j =Corr(Ci) and all the side chains, which are obtained by using an element (edge or
connector) of Ci, one of C j and two branches. The steps of the procedure here described are
summarised in Fig. 4.11

Model Analysis

The sequence of steps that are necessary to identify different regions of the model in terms of
islands and bricks can be summarised as follows:

1. Smooth island detection Find smooth islands through model surfaces, cf. 4.3.3
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Fig. 4.12 Flowchart of the algorithm dedicated to geometry analysis

2. Smooth island detection Isolate islands form a graph-based representation of models
as in cf. 4.3.3

3. Analysis of islands If the island is a block, add a random chain to Queue Chains else
add all the external chains to Queue Chains according to 4.3.2

4. Queue Chain analysis Apply the brick-by-loop search procedure in 4.3.3 to each Queue
Chains by substituting original chains with correspondent chains in Queue Chains list
and by adding branches to assigned edges list.

5. Check Phase If all the edges of the island have been assigned, move to next island,
otherwise iterate from point 4.

6. Volume detection Check whether islands, blocks and bricks are filled or not using
procedures in 4.3.2.

The algorithm is also summarised in 4.12
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Fig. 4.13 Examples of a) supported and b) non-supported walls

4.3.4 Design for Additive Manufacturing rules

The design rules exposed in 4.2 are her translated in terms of geometrical features. The
correspondence between these features and the entities is exposed in the next sections. These
rules are derived from literature [88] and direct observation.

Walls

As already discussed in 4.2, thin walls are particularly prone to distortions induced by internal
stresses. It is necessary to distinguish the case of supported walls (i.e. walls connected on
sides) from non-supported ones, as the second are more vulnerable to deformations. The two
cases are reported in Fig. 4.13 a) and Fig. 4.13 b), respectively.

In order to avoid wall distortion, the thickness of the wall t in Fig. 4.13 has to be higher
than a minimum value tmin.

If Bi is a brick of the model, ns(Bi) is the number of faces belonging to Bi and nc(Bi) is
the number of chains belonging to Bi, then conditions in Eq. 4.21 and Eq. 4.22 can be used
to recognise supported and non-supported walls, respectively:

I f ns(Bi)< nc(Bi)−2∧Bi⊗ → Bi is a supported wall (4.21)

I f ns(Bi)< nc(Bi)−1∧Bi⊗ → Bi is a non− supported wall (4.22)

In both cases, critical dimension t corresponds to the minimum non-zero distance between
two surfaces belonging to Bi and has to be compared to the minimum value tmin.
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Fig. 4.14 Example of vertical pin

Vertical Pins

Vertical pins are defined as elongated geometries oriented according to Z-Axis. An example
of vertical pin is shown in Fig. 4.14

As stated in 4.2, these geometries are particularly prone to deformations due to internal
stresses. In order to limit these deformations, the aspect ratio arp = l/d (where l and d are,
respectively, the length and diameter of the pin as in Fig. 4.14) has to less or equal to a given
maximum value arp,max.

If Ik is a smooth island of the model and ns(Ik) is the number of faces belonging to Ik ,
naming as n̂(Sl) the normal vector of the generic l-th surface (Sl), a vertical pin is identified
when the condition in Eq.4.23 is met:

I f Ik ⊗∧ns(Ik) = 2∧∃Sl ∈ Ik|n̂(Sl)≡ Ẑ → Bi is a vertical pin (4.23)

The distance l can thus be measured as the maximum distance between the two loops of
the island, while d is the minimum size of the bounding box enclosing the feature.

Horizontal overhangs

As already mentioned in 4.2, another cause of distortion in parts by SLA is the effect of weight
on non-supported geometries. As an example, Fig. 4.15 shows an horizontal non-supported
overhang.

If Bi is a brick of the model, ns(Bi) is the number of faces belonging to Bi and nc(Bi) is
the number of chains belonging to Bi n̂(Sl) the normal vector of the generic l-th surface (Sl),
an overhang is recognised when the condition in Eq. 4.24 is satisfied.
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Fig. 4.15 Example of horizontal overhang

Fig. 4.16 Example of sloped overhang

I f Bi⊗∧I f ns(Bi)< nc(Bi)−1∧∃Sl ∈ Bi|n̂(Sl)≡ Ẑ → Bi is a horizontal overhang (4.24)

The length of the horizontal overhang l must not exceed a given limit value lmax in order
to avoid part distortion. The distance l can be computed as the maximum distance between
the only empty loop chain and the remaining surfaces of the brick.

Sloped overhangs

When the value of overhang length as defined above exceeds lmax, it is necessary to distinguish
between horizontal and sloped overhang as the one represented in Fig. 4.16.

In particular, when the angle α (as represented in Fig. 4.16) is less than a given minimum
value αmin, the overhang can not be built without inducing excessive distortions (if support
structures are not built).

A sloped overhang can be recognised by removing the condition of surface normal to Z
in Eq. 4.24, i.e. as in Eq. 4.25.
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Fig. 4.17 Example of bridge

I f Bi ⊗∧I f ns(Bi)< nc(Bi)−1 → Bi is a horizontal overhang (4.25)

The verification of rules is made by checking the normal vectors of all the surfaces
belonging to Bi.

Bridges

As in the case of walls, a difference has to be made on overhangs if two supporting geometries
are present; in this case, the geometry takes the name of bridge. An example of bridge is
shown in Fig. 4.17.

The recognition of a bridge can be made by using the conditions in 4.26.

I f Bi ⊗∧I f ns(Bi)< nc(Bi)−2∧∃Sl ∈ Bi|n̂(Sl)≡ Ẑ → Bi is a bridge (4.26)

To prevent bridge warping,the maximum length between empty loop chains (l in Fig.
4.17) must be less or equal than a given value lmax. In [88] the value of lmax is suggested for
a given transversal section of the bridge; interpolation on experimental observation may be
used to extend this result to other dimensions.

Embossed and engraved details

In section 4.2 the limitations on minimum embossed and engraved details have been in-
troduced. Fig. 4.18 a) and 4.18 b) report examples of embossed and engraved details,
respectively.
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Fig. 4.18 Example of a) embossed and b) engraved details

Each filled brick can be considered as an embossed detail, while each non-filled brick
can be considered as an engraved detail. The check on the generic brick Bi can be thus made
as in Eq. 4.27. {

Bi⊗→ Bi is a embossed;detail
Bi⊘→ Bi is an engraved;detail

(4.27)

To ensure the proper manufacturing of details, each dimension (L in Fig. 4.18 ) must
be higher than a fixed minimum value Lmin. Different values of Lmin are used for embossed
(Lmin,em) and engraved (Lmin,en) features.

The minimum non null distance between surfaces of the brick is thus compared to Lmin

for the validation of the DfAM rule.

Minimum hole diameter

As already discussed, the machine accuracy also reflects on the minimum diameter of
manufacturable holes. This constraint includes both through and blind holes. In a first
approximation, the minimum diameter (dmin) is given as a constant value, i.e. the effect of
hole length and orientation is ignored.

Every empty smooth island with less than 4 surfaces can be recognised as an hole.The
diameter is then computed as the minimum size of the bounding box enclosing the feature.

Minimum Drain Hole Diameter

In order to avoid liquid entrapment, a draining hole as the one in Fig. 4.19.
The condition has to be verified on every empty block of the model . In particular,

it is necessary to verify if exists an empty surface (Sl) belonging to the brick (Bri) and,
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Fig. 4.19 Example of draining hole

simultaneously, to an empty smooth island with one surface; this condition is expressed in
Eq. 4.28

∃Bri|Bri ⊘∧∃Sl ∈ Bri|Sl/∧Sl ∈ Is,k (4.28)

Where Is,k is a smooth island with two empty loops (i.e. a through hole). The diameter of
the hole is then compared to the minimum diameter allowing the flow of liquid resin.

4.3.5 Implementation

The described system has been implemented as a plug in for the CAD software CimatronE
12 by 3D Systems. C# programming language has been used for accessing the software of
the CAD through its Application Programming Interface (API).

The first step in the usage of the system is to define the orientation of the part to the
coordinate system of the machine, as it defined many of the features described in 4.3.2.

Fig. 4.20 provides a graphical representation of the OOP representation of entities
described in 4.3.2.

The DfAM rules described in 4.3.4 are implemented in the KBSM. The GUI in Fig. 4.21
allows defining which checks have to be performed on the model to assess manufacturability.

The limit values are assigned for a specific combination of machine and material. In the
first implementation, the values given by [88] for a Formlabs Form2 using Clear 04 resin (i.e.
a mix of Methacrylate and Diphenyl phosphine oxide) have been used. Nevertheless, when
more accurate information are given, the user has the opportunity to modify these values
using the GUI in Fig. 4.21.
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Fig. 4.20 Graph representation of manufacturing relevant geometrical entities in OOP

Fig. 4.21 Interface for rule selection and tuning of parameters
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Fig. 4.22 Interface for rule selection and tuning of parameters

Once the manufacturability check has been completed, a report of critical issues is
provided to the user. An example of such an output is shown in Fig. 4.22. The report includes
a description of the critical geometries (in terms of surfaces and edges); these entities are
also highlighted in the three-dimensional environment for a better understanding.

A textual description of the possible solutions is included. When a native geometry
(i.e. moedeled within the same CAD environment) is analysed, these solutions can be also
executed automatically by the KBSM. For some of the DfAM described in 4.3.4 more than
one solution can be adopted. As an example, when the aspect ratio of a vertical pin is
exceeded (as in Fig. 4.22), an increase of diameter d or a shortening of length l are equally
suitable to overcome the problem. In this case, the user has to choose which solution has to
be applied on the model.

4.4 Conclusions

The application of the proposed methodology to a well-defined technology allows a clear
and sharp definition of the manufacturing-induced defects. The manufacturing know-how
has been synthesised in DfAM rules about product geometry. The limit values of these rules
can be varied in order to take into account the specific characteristics of the combinations of
machine and material adopted for the production.
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As the KBSM is designed to be applied for a generic product, no information about the
geometry are given during the design of the KBSM. As a consequence, the DfAM have to be
translated in terms of local features. As relevant features are usually different from the ones
used for modelling, a definition of ad hoc entities was necessary. The geometrical entities
have been defined (starting from elementary elements) so to efficiently address DfAM criteria.
As a consequence, the study of the manufacturing rules have to be performed at the beginning
of the system development.

In 4.2 a generic user has been chosen. Therefore, the highest possible knowledge content
has to be given to the KBSM, leaving to the user only that choices that do not compromise
the success of actions. In this direction, the adoption of rule-based knowledge allows giving
precise indications on the possible solutions to identified critical issues.

The applicability to a generic geometry allows aiding the production of very different
components. On the other hand, this approach does not allow including, next to process-based
considerations, requirements related to the usage phase of the product.

As in the case of Chapter 3, the KBSM has been developed starting from the dimension
of the applicability space with the highest specificity (in this case, the process).

Implementation allowed verifying the efficiency of the designed system on geometries
produced by SL. The simplicity of KBSM actually enables its use by non-expert operators.
Future developments could easily integrate formulas, instead of constants, for the calculation
of limit values.





Chapter 5

Build Job preparation in Powder Bed
Fusion

5.1 Applicability definition

The example discussed in this chapter deals with the design of a KBESM for the preparation
of build jobs in Powder Bed Fusion (PBF). In particular, the KBESM is aims to assist the
preparation of the build job once the design of the part has been completed and the parts have
been converted to STL files.

The system has thus to be applied to a specific process, which is PBF. On the other, hand,
no specifications about the part to be processed are given; in other words, the system has to
be applicable to a generic product.

As PBF is mainly used for the production of high-level mechanical and biomedical parts
[340], the user is expected to have information about the requirements to be met by the
production. In particular, the quality level to be reached in terms of dimensional accuracy
and surface roughness has to be clear. Furthermore, as PBF machines are only adopted at
industrial level (i.e. no desktop solutions are on the market) a general knowledge of the PBF
process is expected.

The KBESM can be thus schematically represented in the space of applicability as shown
in Fig. 5.1.

5.2 Conceptual design

As mentioned above, the system is supposed to aid the user during the preparation of parts
for the PBF process. In particular, the following objectives have to be met:
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Fig. 5.1 Location in the applicability space of the KBESM for PBF preparation

• Accuracy, i.e. the respect of dimensional and geometrical design specifications

• Roughness, i.e. the fulfilment of surface roughness constraints imposed by the applica-
tion

• Build time necessary to the fabrication of the part

• Material consumption, which varies according to the amount of supporting structures
that are necessary to the fabrication of part

• Cleanability, i.e. easiness of removing the non-transformed powder at the end of the
process.

These objectives are summarised in the MODIA of Fig. 5.2.
The accuracy of the product is one of the fundamental concerns in PBF production as

the part is strongly affected by internal residual stresses at the end of the process [42, 230].
The satisfaction of dimensional requirements affects the proper functionality of the part, with
a direct impact on SoS of the gate-to-grave life step. When the design requirements are
not met by the PBF, further processes (when possible) may be adopted; this directly affects
the economical and environmental sustainability of the product’s LC in the gate-to-gate
phase. Analogous considerations can be made for the surficial quality (i.e. roughness) of the
produced part.

The build time is one of the most influential factors in determining the costs related to
PBF [239]. For this reason, the reduction of processing time allows significantly improving
the economic sustainability of the gate-to-gate LC phase. Furthermore, the electrical demand
of the process is one of the most influential factors on most of the LCIA indicators, as
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Fig. 5.2 MODIA of the KBESM for PBF build preparation

demonstrated by [81]; the same work also pointed out how the importance of the processing
phase on the total energy consumption. Therefore, reducing the time necessary to material
transformation is one extremely effective strategy to improve the environmental sustainability
of the production in the gate-to-gate step [222].

Given a certain part design, the amount of material that is actually transformed depends
onto the amount of support structures necessary to part fabrication. The production of powder
(usually by means of gas atomisation) and its transportation have in turn a significant impact
on the economic and environmental sustainability of the production [184]. Furthermore, the
support structures needs to be removed at the end of the process and disposed as a waste, since
this material can not be recycled in next productions; this results in a further environmental
and economic impact in gate-to-gate LC phase of the product. For these reasons, a reduction
of the supporting structures’ volume is a key strategy to improve economic and environmental
sustainability of the process.

At the end of the process, non-transformed powder must be accurately cleaned from parts
in order to avoid its diffusion during following manufacturing steps and product utilisation.
As fine metal powder represent a direct risk for human health [31, 113], the complete removal
of exceeding material is fundamental in order to avoid environmental and societal impacts in
both the gate-to-gate and gate-to-grave LC phases.

In order to verify the dimensional and geometrical accuracy of the part, the displacement
of reference points from their nominal position can be used. The measurement of displace-
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ment has to be done on the manufactured part; aligning techniques and reference points are
chosen according to the requirements to be met.

For the evaluation of roughness, the parameters and procedures defined by the Interna-
tional Organisation for Standardisation (ISO) (and, in particular, Ra and Rz parameters)
are commonly adopted [115, 116, 118]. These descriptors have been already adopted in
literature in order to investigate the roughness of parts by PBF [270].

Once the support structures of the part have been designed, their volume can be easily
extracted by the virtual environment. Analogously, the build height of the part is calculated
as the Z-dimension of the bounding box that contains the part with its supporting structures.

The RM in Fig. 5.2 shows how these descriptors are supposed to represent the objectives
previously outlined.

In particular, the displacement and R-parametes are direct measures of accuracy and
roughness, respectively. According to the description given, the material consumption is
directly related to the amount (i.e. volume) of processed support structures. The volume of
support structures also determines the easiness of removing powder from the manufactured
part; as it will be detailed in the following, also the design of supports has a fundamental
influence on the cleanability of the part at the end of the process.

The building time is affected by a number of factors including both part geometry and
process parameters (in particular scanning strategy and feed rate); several models for the
estimation of the build time in the design stage have been proposed in literature [225, 239]. A
first estimation can be made neglecting the difference in scanning speed between contours and
hatching, i.e. considering a constant volumetric transformation rate. This approach is adopted
by most of commercial software for initial estimations; more accurate predictions may be
obtained by self-learning using a higher number of geometrical and process parameters [71].

Under the hypothesis of constant volumetric building rate, the volume of supporting
structures and the height of the part can be considered as only descriptors for building time;
in particular, a higher influence is assigned to the height, as the re-coating time usually is
usually more influential if compared to the scanning time of supports.

Overhangs, i.e. geometries that have to be built on non-melted powder, are subject to
localised deformations due to gravity and internal stresses during part fabrication. For such
geometries, support structures play a double role by balancing internal stresses and aiding
the heat dissipation that causes them [121, 95, 349]. The amount of internal stresses to be
avoided is in turn affected by the geometry of overhangs, in particular in terms of thickness
and length [230, 261, 345]. The inclination of overhangs to the building direction is the most
influential factor, that leads to determine whether support structures have to be used during
build preparation [121, 164]. The orientation is also fundamental for the determination of
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the surface roughness, due to the staircase effect on sloped part surfaces [271]. Accordingly,
these factors are used as inputs of the KBESM in Fig. 5.2.

According to what exposed above, the design of supports plays a fundamental role on
the obtainable part quality. Several approaches have been proposed in literature to enhance
the part quality by means of support design [123, 90, 93]. In the present work, supports
consisting in a single-scan line are considered [30, 269]. This structures are widely used in
industrial applications due to their fast building and easy removing at the end of the process.
Under this restriction, the orientation of scanning line and their relative distance are the most
influential design parameters.

As direct models of the correlation between these parameters and the part quality (in
terms of accuracy and roughness) are lacking, the corresponding relations of the KM in Fig.
5.2 have been marked as Hyp. An experimental campaign (described in 5.3) was run to
deepen these relations and refine the KM. The remaining connections in Fig. 5.2 are based
on explicit geometrical rules.

Two main actions are designed for the system, i.e. part orientation and support design.
Both these actions have to be performed by the software, resulting in a highly automated
KBSM.

The part orientation deals with the determination of optimal relative angles between
the machine and model coordinate systems. The orientation of scanning lines is chosen as
variable for the support design (i.e. the distance between lines is used as a parameter).

The analysis of MODIA in Fig. 5.2 points out how the KBESM is completely process-
driven, since no variables have been assigned to design inputs. As well, the number of
objectives in the gate-to-gate LC phase shows how the system is mainly process-oriented.

All the actions are delegated to a software agent, i.e. an automated decision making
strategy is adopted. Observing the sum of columns in EM, it is also possible to notice how
both the actions will deal with MCDM problems.

5.3 Experimental analysis of relations

5.3.1 Design of experiment

In order to explicit the relations of the overhang and support geometrical parameters with the
accuracy and roughness of parts, an experimental campaign was performed.

According to what exposed in the previous sections, the levels of the experiment are:

• Length of the overhang (Loh)

• Thickness of the overhang (toh)
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• Inclination of the overhang (αoh)

• Distance between support lines (dsl)

The benchmark part of Fig. 5.3 was used for testing.
The part is designed to allow the measurement of the roughness and displacements of the

20 mm plate, as it will be clear in the following. In order to investigate the effect of support
design, linear supporting structures are built under the overhang, as shown in Fig. 5.4. The
supports are connected to the part using teeth with height 1.5 and width 0.8 mm to ease the
removal. The software Magics from Materialise has been used for support design.

Preliminary tests pointed out the insufficient resistance of one-directional walls; in fact,
these structures led to the uncontrolled deformations during construction as shown in Fig.5.5,
with consequent interruption of the build job.

For this reason, the design of supports has been modified adding reinforcements orthog-
onal to the line direction; Fig. 5.6. shows these reinforcements (in red colour) and their
dimensions (as a function of dsl).

The levels used for each factor are summarised in Tab. 5.1

Table 5.1 Levels of experimental factors

Factor N. levels Values Unit of Measure
Loh 3 20,40,60 mm
toh 3 2,4,8 mm
αoh 5 10,20,30,40,50 ◦

dsl 3 1,1.5,2 mm

A full-factorial Design of Experiment (DOE) [201] would lead to the fabrication of 135
specimens. In order to reduce the number of tests a D-Optimal DOE has been adopted
[61, 129]. The D-Optimality has been reached by means of Coordinate-Exchange algorithm
[193], leading to the selection of specimens in Tab. 5.2. The specimens 13, 14, 15 and 18
have been used for repetitions (marked with letter a).

5.3.2 Manufacturing of the specimens

A SLM 250HL machine by SLM Solution was used for the experiment. The specifications
of the machine are reported in Tab. 5.3 [300].

The focus of the laser was shifted in order to compensate the effect of thermally induced
effects on optical system [80]. A value of 3 mm was chosen according to the findings by
[26].
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Fig. 5.3 Benchmark part used for the experimental campaign
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Fig. 5.4 Supported benchmark part

Fig. 5.5 Failure of build process due to support wall deformation
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Fig. 5.6 Orthogonal reinforcements (in red) to prevent distortion of wall supports (in black)

316L stainless steel powder by SLM Solution AG has been used as feedstock material.
According to the datasheet provided by the manufacturer, the material has a density of 7.95

g
cm3 and a thermal conductivity of 15 W

m2K . The chemical composition of the alloy is reported
in Tab. 5.4. The particles have a spherical shape with diameter ranging from 10 to 45µm.

The specimens have been manufactured with a layer height (hL) of 0.05 mm. Argon was
used as assistance gas for the process. Four build jobs have been used to produce all the
benchmark parts. Tab. 5.2 reports the build job of each specimen.

The process parameters used for the manufacturing of specimens are summarised in
Tab.5.5.

5.3.3 Experimental procedure

The displacement and roughness of the overhang have been measured by means of both
mechanical and optical measuring systems.

For the mechanical measurement of the displacement, a Vernier caliper with accuracy
±0.05mm has been used. The distance between the parallel steps of the specimens (see
Fig. 5.3) has been measured as in Fig. 5.7. The measure has been repeated in ten different
positions and compared to the nominal value (hn) as calculated in Eq. 5.1.

hn = ⌊2+5+Lohsin(αoh)−2tan(αoh)

hL
⌉hL (5.1)

The average value and the standard deviation of differences between hn and measured
values has been recorded and used for analysis.

The optical measurement of displacement was made using a Keyence VHX 5000 digital
microscope. A frontal image of each specimen has been acquired using a a 100X magnifi-
cation ; a sample image is shown in Fig. 5.8. The distance between edges in the front part
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Table 5.2 Specimens used for the experimental activity

Run Loh toh αoh dsl Build Job
[mm] [mm] [°] [mm]

1 60 6 50 2 2
2 60 6 10 2 1
3 20 2 10 2 3
4 40 6 10 1 1
5 20 6 50 2 4
6 60 6 30 1 1
7 20 4 10 1 4
8 20 6 10 2 4
9 60 2 10 1 1

10 20 2 50 2 4
11 20 6 50 1 4
12 60 4 50 1 3
13 40 2 10 1.5 1
13a 40 2 10 1.5 2
14 20 4 50 1.5 3
14a 20 4 50 1.5 4
15 20 6 20 1.5 3
15a 20 6 20 1.5 4
16 60 2 10 2 2
17 60 2 50 2 2
18 40 4 30 2 3
18a 40 4 30 2 4
19 20 2 30 1 4
20 40 2 50 1 3

has been measured using an image analysis software (i.e. GIMP, GNU Image Manipulation
Program). Ten measures in different positions of the edges have been acquired also in this
case, so to investigate the average value and standard deviation of the displacement.

It is worth mentioning since now how, even if the nominal value measured by the two
methods is the same, they correspond to different geometrical descriptors. In fact, in the
case of caliper, the measured height is the distance between the highest peak of the bottom
surface and the lowest point of the upper surface. On the other hand, the optical measure
corresponds to the distance between the intersection points of the step with the front face (i.e.
the one where the microscope is focused). This difference is schematically represented in
Fig. 5.9. These two quantities have been considered in the study as they are both relevant in
order to determine the accuracy of the process.
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Fig. 5.7 Measurement of the displacement by means of caliper

Fig. 5.8 Frontal image of the specimen acquired by means of Keyence VHX 5000 digital
microscope
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Table 5.3 Technical specifications of SLM 250HL machine[300]

Building space 250 x 250 x 350 mm
Laser(cw) 400 W

Focal point diameter 70...300 µm
Layer thickness 20...100 µm

Particle size 10...65 µm
Building speed 5...20 cm3

h
Tolerance (XYZ directions) ±50 µm

Focus distance 3 mm

Table 5.4 Chemical composition of 316L feedstock powder

Element Fe Cr Ni Mo Mn Si P S C N
Min (%) Balance 16 10 2
Max(%) Balance 18 14 3 2 1 0.045 0.03 0.03 0.1

The measurement of roughness was made considering the upper face of the overhang as
a periodic surface; the distance between stairs (Rsm) is considered as period, as shown in
Fig.5.10 . The calculation of Rsm is made as in Eq. 5.2 leading to the results in Tab. 5.6.

Rsm =
hL

sin(αoh)
(5.2)

The values of roughness sampling length lr and evaluation length ln given by [115] are
summarised in Tab. 5.7

Comparing Tab. 5.6 and Tab. 5.7 it is possible to notice how different values of lr and
ln are recommended for specimens with different inclinations. In order to adopt the same
sampling and filtering conditions, the values of lr and ln have been set equal to 0.8 and 4 mm,
respectively, for all the tests.

The physical measurement of surface roughness was made using a HOMMEL-ETAMIC
Nanoscan 855 contact system. According to the indication given in [117], a probe with radius
rtip = 5µm was used for measurements, being the expected average roughness Ra far higher
than 0.5 µm. The profile has been measured along three different lines, calculating both Ra

and RZ roughness parameters [118]. Average values of both the descriptors have been used
for regression.

For optical measurement of roughness, the optical surface measuring system Infinitefocus
3.5 by Alicona Imaging GmbH has been used. A 4x1 mm area has been acquired for each
specimen using a step of 5 µm in the XY plane and a vertical step of 200 nm. Also in this
case, Ra and RZ measurements of three parallel profiles have been averaged and used to build
a regression model.
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Fig. 5.9 Differences in displacements measured by means of different techniques

Fig. 5.10 Rsm evaluation on the basis of nominal dimensions



130 Build Job preparation in Powder Bed Fusion

Table 5.5 Process parameters used for the manufacturing of specimens

Parameter Value Unit of measure
Focal point diameter 160 µm

Focus Position 3 mm
Contour laser power 100 W
Contour laser speed 440 mm

s
Hatching laser power 275 W
Hatching laser speed 760 mm

s
Hatch distance 120 µm

Hatching angle increment 90 ◦

Support scanning laser power 150 W
Support scanning laser speed 700 mm

s

Table 5.6 Rsm values for manufactured specimens

Angle [◦] 10 20 30 50
Rsm [mm] 0.28 0.15 0.1 0.07

5.3.4 Results and discussion

Physical Measurement of displacement

The results of vertical displacements measured by means of caliper (∆hc) are summarised in
Tab. 5.8. The average value of distortion (∆hc,aver) varies between - 0.48 and 0.43 mm, while
standard deviation (∆hc,std) is in the range [0.05;0.18] mm. Uncertainty evaluation shows
a good repeatability of average values, with a maximum difference of 0.08 mm between
specimens 13 and 13a.

The Analysis Of Variance (ANOVA) of average values leads to the results summarised
in Tab.5.9. The analysis points out the the leading role of interaction between overhang
thickness and inclination in determining the distortion of the part; also the two stand-alone
factors (αoh and toh) reveals to be significant, with a p-value of 0.01 and 0.047, respectively.
This trend is coherent with the influence of thickness and inclination on the residual stresses
that determine the part deformation [69, 305]. It is worth noticing how, in the range of
dimensions used for the experiment, the length of the overhang does not have a significant
influence on the displacement. The interaction of toh with dsl also shows a p-value < 0.05,
pointing out the influence of support spacing on displacements for high values of overhang
thickness.

The linear regression fitting the average values of ∆h,c is reported in Eq. 5.3. This
regression has R2 = 94.61% and R2

ad j = 90.47%. Fig. 5.11 shows the residuals plots of the
regression.
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Table 5.7 Recommended values of roughness sampling length and evaluation length [115]

Rsm lr ln
mm mm mm

0.013 ≤ Rsm ≤ 0.04 0.08 0.4
0.04 ≤ Rsm ≤ 0.13 0.25 1.25
0.13 ≤ Rsm ≤ 0.4 0.8 4
0.4 ≤ Rsm ≤ 1.3 2.5 12.5
1.3 ≤ Rsm ≤ 4 8 40

Table 5.8 Measurements of vertical displacement obtained by means of caliper

Run Loh [mm] toh [mm] αoh [◦] dsl [mm] Build Job ∆hc,aver [mm] (∆hc,std) [mm]
1 60 6 50 2 2 -0.48 0.09
2 60 6 10 2 1 0.43 0.14
3 20 2 10 2 3 -0.23 0.18
4 40 6 10 1 1 0.23 0.12
5 20 6 50 2 4 -0.39 0.09
6 60 6 30 1 1 -0.34 0.16
7 20 4 10 1 4 -0.07 0.07
8 20 6 10 2 4 0.36 0.09
9 60 2 10 1 1 -0.15 0.10
10 20 2 50 2 4 -0.32 0.10
11 20 6 50 1 4 -0.31 0.10
12 60 4 50 1 3 -0.43 0.13
13 40 2 10 1.5 1 -0.11 0.11
14 20 4 50 1.5 3 -0.35 0.14
15 20 6 20 1.5 3 0.19 0.15
16 60 2 10 2 2 -0.31 0.18
17 60 2 50 2 2 -0.45 0.08
18 40 4 30 2 3 -0.21 0.17
19 20 2 30 1 4 -0.26 0.06
20 40 2 50 1 3 -0.22 0.06
13a 40 2 10 1.5 2 -0.19 0.12
14a 20 4 50 1.5 4 -0.37 0.05
15a 20 6 20 1.5 4 0.13 0.05
18a 40 4 30 2 4 -0.26 0.13
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Table 5.9 ANOVA of average error measured by means of caliper

Source DF Adj SS Adj MS F-Value P-Value

Regression 10.00 1.41 1.41×10−1 22.83 0.00×100

Loh 1.00 7.50×10−4 7.54×10−4 1.20×10−1 7.32×10−1

toh 1.00 2.98×10−2 2.98×10−2 4.82 4.70×10−2

αoh 1.00 5.61×10−2 5.61×10−2 9.07 1.00×10−2

dsl 1.00 9.39×10−3 9.39×10−3 1.52 2.40×10−1

Lohtoh 1.00 6.10×10−3 6.10×10−3 9.90×10−1 3.38×10−1

Lohαoh 1.00 1.74×10−2 1.74×10−2 2.82 1.17×10−1

Lohdsl 1.00 1.34×10−3 1.34×10−3 2.20×10−1 6.50×10−1

tohαoh 1.00 3.34×10−1 3.34×10−1 54.08 0.00×100

tohdsl 1.00 4.98×10−2 4.98×10−2 8.06 1.40×10−2

a*d 1.00 1.59×10−2 1.59×10−2 2.57 1.33×10−1

Error 13.00 8.03×10−2 6.18×10−3

Lack-of-Fit 9.00 7.36×10−2 8.18×10−3 4.89 7.00×10−2

Pure Error 4.00 6.69×10−3 1.67×10−3

Total 23.00 1.49

∆hc,aver =−3.68×10−1 +1.54×10−3Loh +9.33×10−2toh +1.38×10−2
αoh+

−1.73×10−1dsl −5.37×10−4Loh ∗ toh −9×10−5Loh ∗aoh +9.9×10−4Loh ∗dsl+

−3.96×10−3toh ∗α +6.02×10−2toh ∗dsl −3.39×10−3
αoh ∗dsl

(5.3)

An analogous analysis was performed using the values of standard deviations (∆hc,std).
The results of ANOVA are reported in Tab. 5.10. It is possible to notice the significance
of dsl on the standard deviation of values. This effect demonstrates the role of supports in
mitigating the differences between lateral and central regions of the plane; the interaction of
dsl with toh points out that these differences are due to the amount of molten material above
the measuring plane.

The linear regression of data lead to R2 = 68.770% and R2
ad j = 44.63%, that is to say

linear regression can not be used to model the variation of measured values.

Optical Measurement of displacement

The average values (∆hm,aver) and standard deviations (∆hm,std) of vertical displacements
calculated on microscopic pictures are reported in Tab. 5.11. It is possible to notice how all
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Fig. 5.11 Residual plots for regression of average ∆hc,aver as in Eq. 5.3

Table 5.10 ANOVA of standard deviation of error measured by means of caliper

Source DF Adj SS Adj MS F-Value P-Value

Regression 10.00 2.52×10−2 2.52×10−3 2.85 4.00×10−2

Loh 1.00 1.28×10−3 1.28×10−3 1.45 2.50×10−1

toh 1.00 1.27×10−3 1.27×10−3 1.43 2.53×10−1

αoh 1.00 4.28×10−4 4.28×10−4 4.80×10−1 4.99×10−1

dsl 1.00 1.37×10−2 1.37×10−2 15.46 2.00×10−3

Lohtoh 1.00 1.12×10−3 1.12×10−3 1.27 2.80×10−1

Lohαoh 1.00 4.51×10−4 4.51×10−4 5.10×10−1 4.88×10−1

Lohdsl 1.00 1.93×10−3 1.93×10−3 2.18 1.64×10−1

tohαoh 1.00 1.67×10−3 1.67×10−3 1.89 1.92×10−1

tohdsl 1.00 6.51×10−3 6.51×10−3 7.37 1.80×10−2

αohdsl 1.00 3.36×10−3 3.36×10−3 3.80 7.30×10−2

Error 13.00 1.15×10−2 8.84×10−4

Lack-of-Fit 9.00 2.76×10−3 3.06×10−4 1.40×10−1 9.93×10−1

Pure Error 4.00 8.74×10−3 2.18×10−3

Total 23.00 3.67×10−2
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Table 5.11 Measurements of vertical displacement obtained by means of Keyence microscope

Run Loh [mm] toh [mm] αoh [◦] dsl [mm] Build Job ∆hm,aver [mm] ∆hm,std [mm]
1 60 6 50 2 2 2.16 0.07
2 60 6 10 2 1 0.99 0.19
3 20 2 10 2 3 -0.02 0.11
4 40 6 10 1 1 0.58 0.06
5 20 6 50 2 4 0.63 0.19
6 60 6 30 1 1 1.67 0.07
7 20 4 10 1 4 0.35 0.05
8 20 6 10 2 4 0.92 0.09
9 60 2 10 1 1 0.32 0.07

10 20 2 50 2 4 0.50 0.07
11 20 6 50 1 4 0.34 0.08
12 60 4 50 1 3 3.12 0.13
13 40 2 10 1.5 1 0.28 0.05
14 20 4 50 1.5 3 0.49 0.06
15 20 6 20 1.5 3 0.65 0.17
16 60 2 10 2 2 0.32 0.13
17 60 2 50 2 2 3.56 0.14
18 40 4 30 2 3 0.99 0.14
19 20 2 30 1 4 1.29 0.09
20 40 2 50 1 3 1.80 0.14
13a 40 2 10 1.5 2 0.42 0.05
14a 20 4 50 1.5 4 0.93 0.10
15a 20 6 20 1.5 4 0.91 0.09
18a 40 4 30 2 4 0.66 0.14

the average displacements are positive, with the only exception of specimen 3 with ∆hm,aver

equal to -0.02 mm. The range of measured average values is far higher than the one in Tab.
5.8, with a maximum value of 3.56 mm. These behaviour can be explained if considering the
difference between real and nominal shape of the edge remarked in Fig. 5.9. The range of
standard deviations on measurements is coherent with the one observed for caliper.

Tab. 5.12 reports the ANOVA results for average values ∆hm,aver in Tab. 5.11. The
p-value shows the influence of the interaction between overhang inclination and thickness on
measured displacements, in accordance with the results observed for caliper measurements.
Nevertheless, in the case of microscope measurements, the interaction between overhang
inclination and length appears to be the most influential factor on the measured values. A
possible explanation derives from considering how these factors affect the height in the
building platform where the edge is located and, in turn, its capability of disposing heat.
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Table 5.12 ANOVA of average displacements measured by means of Keyence microscope

Source DF Adj SS Adj MS F-Value P-Value

Regression 10.00 16.82 1.68 14.99 0.00
Loh 1.00 3.42×10−2 3.42×10−2 3.00×10−1 5.90×10−1

toh 1.00 9.77×10−2 9.77×10−2 8.70×10−1 3.68×10−1

αoh 1.00 4.95×10−2 4.95×10−2 4.40×10−1 5.18×10−1

dsl 1.00 9.76×10−2 9.76×10−2 8.70×10−1 3.68×10−1

Lohtoh 1.00 1.43×10−1 1.43×10−1 1.28 2.79×10−1

Lohαoh 1.00 3.98 3.98 35.44 0.00
Lohdsl 1.00 3.95×10−2 3.95×10−2 3.50×10−1 5.63×10−1

tohαoh 1.00 1.19 1.19 10.63 6.00×10−3

tohdsl 1.00 1.09×10−1 1.09×10−1 9.70×10−1 3.42×10−1

a*d 1.00 2.48×10−2 2.48×10−2 2.20×10−1 6.46×10−1

Error 13.00 1.46 1.12×10−1

Lack-of-Fit 9.00 1.26 1.40×10−1 2.85 1.63×10−1

Pure Error 4.00 1.97×10−1 4.93×10−2

Total 23.00 18.28

Eq. 5.4 fits the measured average error values with R2 = 92.02% and R2
ad j = 85.88%.

The graph of residual of the regression model are reported in Fig. 5.12. The graph points
out the presence of unusual observation with high residuals, compared to the case of caliper.
This can be explained by the local errors that can occur on the edge of the parts.

∆hm,aver = 0.35−1.04×10−2Loh +1.69×10−1toh +1.30×10−2
αoh+

−5.59×10−1dsl −2.60×10−3Lohtoh +1.36×10−3Lohαoh+

+5.36×10−3Lohdsl −7.49×10−3tohαoh +8.91×10−2tohdsl −4.24×10−3

(5.4)

In this case, no correlation between input variables and standard deviation can be observed
performing ANOVA. Accordingly, no regression can be made on the values of ∆hm,std by
using a linear model.

Contact measurement of roughness

Tab. 5.13 summarises the results of roughness measurements by means of Nanoscan contact
system. In particular, average and standard values of Ra and Rz parameters are reported with
obvious notation.
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Table 5.13 Measurements of roughness by means of Nanoscan contact machine

Run Loh toh αoh dsl Build Job Raav,n Rastd,n Rzav,n Rzstd,n
Run [mm] [mm] [◦] [mm] [µm] [µm] [µm] [µm]

1 60 6 50 2 2 11.26 0.94 55.17 3.44
2 60 6 10 2 1 17.88 2.64 82.35 3.43
3 20 2 10 2 3 18.49 2.36 86.72 3.33
4 40 6 10 1 1 17.87 0.95 82.07 7.63
5 20 6 50 2 4 9.75 0.85 49.04 6.27
6 60 6 30 1 1 14.40 2.86 63.56 14.70
7 20 4 10 1 4 17.93 1.11 82.11 6.35
8 20 6 10 2 4 15.57 1.95 73.33 5.02
9 60 2 10 1 1 14.69 3.67 66.64 20.95

10 20 2 50 2 4 9.00 1.04 44.09 5.35
11 20 6 50 1 4 8.31 1.20 38.69 6.04
12 60 4 50 1 3 10.71 2.56 49.58 1.67
13 40 2 10 1.5 1 19.76 2.20 84.95 5.64
14 20 4 50 1.5 3 11.26 2.87 54.48 14.93
15 20 6 20 1.5 3 15.83 3.73 75.66 16.06
16 60 2 10 2 2 19.86 2.05 90.37 10.02
17 60 2 50 2 2 11.02 1.38 55.50 7.89
18 40 4 30 2 3 12.43 3.14 61.41 16.83
19 20 2 30 1 4 11.97 1.78 54.97 5.51
20 40 2 50 1 3 9.02 1.09 47.00 2.78
13a 40 2 10 1.5 2 16.06 0.59 80.58 3.32
14a 20 4 50 1.5 4 8.73 2.14 50.66 10.77
15a 20 6 20 1.5 4 14.15 0.55 67.25 3.87
18a 40 4 30 2 4 13.06 0.47 64.31 4.73
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Fig. 5.12 Residual plots for regression of average ∆hm,aver as in Eq. 5.4

As it can be observed, the average values of Raav,n range between 8.31 and 19.86 µm, thus
confirming the initial hypothesis of Ra>0.05 µm that led to the choice of the probe diameter.
The high values of standard deviation on the measures point out the non-homogeneity of the
surface; in particular, this effect can be observed on Rzstd,n due to the higher influence of
localised defects on Rz parameter. The variability of feedstock powder

The results of ANOVA on Raav,n are summarised in Tab. 5.14. It can be immediately
noticed how the inclination of the overhang is the only relevant factor for the prediction
of roughness. This behaviour has been observed using both Ra and Rz. This result is also
confirmed by the ANOVA of Rz parameter, reported in Tab. 5.15. In particular, the result
shows how (in the range of the experiment) the thermal role of the supporting structures in
disposing heat [349] is negligible compared to the staircase effect in the determination of
surface roughness.

The regression models of Raav,n is given in Eq. 5.5. The regression has R2 = 91.58% and
R2

ad j = 85.11%; the graphs of residuals are shown in Fig.5.13.

Raav,n = 18.05−8.28×10−2Loh +4.96×10−1toh −2.42×10−1
αoh +2.10dsl+

+7.41×10−3Lohtoh +8.15×10−4Lohαoh +3.38×10−2Lohdsl+

+8.03×10−3tohαoh −6.47×10−1tohdsl −6.10×10−3

(5.5)
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Table 5.14 ANOVA of average Ra measured by Nanoscan

Source DF Adj SS Adj MS F-Value P-Value

Regression 10.00 285.77 28.58 14.14 0.00
Loh 1.00 2.17 2.17 1.08 3.19×10−1

toh 1.00 8.43×10−1 8.43×10−1 4.20×10−1 5.30×10−1

αoh 1.00 17.25 17.25 8.54 1.20×10−2

dsl 1.00 1.38 1.38 6.80×10−1 4.23×10−1

Lohtoh 1.00 1.16 1.16 5.80×10−1 4.62×10−1

Lohαoh 1.00 1.43 1.43 7.10×10−1 4.15×10−1

Lohdsl 1.00 1.57 1.57 7.80×10−1 3.93×10−1

tohαoh 1.00 1.37 1.37 6.80×10−1 4.25×10−1

tohdsl 1.00 5.76 5.76 2.85 1.15×10−1

a*d 1.00 5.10×10−2 5.14×10−2 3.00×10−2 8.76×10−1

Error 13.00 26.27 2.02
Lack-of-Fit 9.00 14.63 1.63 5.60×10−1 7.85×10−1

Pure Error 4.00 11.64 2.91
Total 23.00 312.04

Table 5.15 ANOVA of average Rz measured by Nanoscan

Source DF Adj SS Adj MS F-Value P-Value

Regression 10.00 4940.23 494.02 14.06 0.00×100

Loh 1.00 51.45 51.45 1.46 2.48×10−1

toh 1.00 14.27 14.27 4.10×10−1 5.35×10−1

αoh 1.00 291.60 291.60 8.30 1.30×10−2

dsl 1.00 22.42 22.42 6.40×10−1 4.39×10−1

Lohtoh 1.00 9.40 9.40 2.70×10−1 6.14×10−1

Lohαoh 1.00 35.27 35.27 1.00 3.35×10−1

Lohdsl 1.00 39.99 39.99 1.14 3.06×10−1

tohαoh 1.00 10.18 10.18 2.90×10−1 6.00×10−1

tohdsl 1.00 74.93 74.93 2.13 1.68×10−1

a*d 1.00 4.50×10−1 4.46×10−1 1.00×10−2 9.12×10−1

Error 13.00 456.93 35.15
Lack-of-Fit 9.00 400.57 44.51 3.16 1.40×10−1

Pure Error 4.00 56.36 14.09
Total 23.00 5397.15
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Fig. 5.13 Residual plots for regression of average Raav,n as in Eq. 5.5

Similar results can be found for the regression of Rzav,n as in Eq. 5.6, where R2 = 91.53%
and R2

ad j = 85.02% were observed. The corresponding graphs of residuals are shown in
Fig.5.14.

Rzav,n = 83.3−4.03×10−1Loh +2.04toh −9.95×10−1
αoh +8.50dsl+

+2.11×10−2Lohtoh +4.04×10−3Lohαoh +1.70×10−1Lohdsl+

+2.19×10−2tohαoh −2.33tohdsl −1.80×10−2

(5.6)

The ANOVA of standard deviations didn’t reveal any relevant factors for neither Rastd,n

nor Rzstd,n; as a consequence, no regression model can be built for the standard deviation.

Optical measurement of roughness

The values of Ra and Rz measured using Alicona optical system are reported in Tab. 5.16.
It is immediately clear how the values of roughness measured by means of this systems
are higher than the one registered with Nanoscan and reported in the previous section; as
an average, a difference of +31.7% in Ra and +32.08% in Rz was registered. This can be
explained considering the geometrical limitations of the spherical probe tip in reaching the
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Fig. 5.14 Residual plots for regression of average Rzav,n as in Eq. 5.6

narrowest valleys of the profile (these is even more significant due to the fact that a probe
with rtip = 5µm was used for measuring).

Tab. 5.17 and Tab. 5.18 report the results of ANOVA on Raav,a and Rzav,a values,
respectively. How it can be noticed, the inclination of the overhang αoh is, also in this case,
the only significant factor for both Ra and Rz average measured roughness. This result
confirms the trend observes by the analysis of contact measurements.

Eq. 5.7 shows the regression equation used for Ra average values; this model fits the data
with an R2 = 88.20% and R2

ad j = 79.12%; the residual plots are shown in Fig. 5.15.
The regression model of Rzav,a is given in Eq. 5.8, while the correspondent residuals are

plotted in Fig. 5.16; the regression has R2 = 81.60% and R2
ad j = 67.45%.

The low values of R2
ad j and the residual plots show how the regression models here

presented are less effective in fitting measured data than in the case of contact measurements.
This can be explained with the higher sensitiveness of this measuring system to localised
irregularities of the surface, as exposed above. This is more evident in the measure of Rz, as
localised deep valleys are more influential in the calculation of this parameter, if compared
with Ra.
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Table 5.16 Measurements of roughness by means of Alicona optical system

Run Loh toh αoh dsl Build Job Raav,a Rastd,a Rzav,a Rzstd,a
Run [mm] [mm] [◦] [mm] [µm] [µm] [µm] [µm]

1 60 6 50 2 2 12.18 1.82 60.52 5.09
2 60 6 10 2 1 21.06 1.46 89.5 7.47
3 20 2 10 2 3 35.58 3.69 148 20.82
4 40 6 10 1 1 30.86 5.29 139.09 27.23
5 20 6 50 2 4 10.74 1.18 53.13 7.79
6 60 6 30 1 1 16.33 1.85 77.2 6.24
7 20 4 10 1 4 26.32 2.69 109.75 17.27
8 20 6 10 2 4 23.12 2.44 90.91 2.81
9 60 2 10 1 1 22.99 3.33 91.48 13.81

10 20 2 50 2 4 10.85 1.17 61.6 2.22
11 20 6 50 1 4 9.62 0.41 48.4 6.37
12 60 4 50 1 3 9.61 1.57 49.04 1.08
13 40 2 10 1.5 1 22.29 1.34 97.68 10.26
13a 40 2 10 1.5 2 20.14 3.33 86.81 11.67
14 20 4 50 1.5 3 11.09 0.31 60.21 6.7
14a 20 4 50 1.5 4 12.24 3.03 64.97 8.03
15 20 6 20 1.5 3 24.04 2.64 116.08 35.63
15a 20 6 20 1.5 4 24.04 2.23 121.98 15.83
16 60 2 10 2 2 25.4 4.23 108.77 11.21
17 60 2 50 2 2 11.88 1.07 69.76 11.98
18 40 4 30 2 3 18.52 3.69 90.94 9.08
18a 40 4 30 2 4 15.45 2.47 87.33 21.46
19 20 2 30 1 4 16.69 2.48 87.26 12.39
20 40 2 50 1 3 11.45 3.85 64.88 18.25
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Table 5.17 ANOVA of average Ra measured by Alicona

Source DF Adj SS Adj MS F-Value P-Value

Term Coef SE Coef T-Value P-Value VIF
Constant 26.40 11.00 2.40 3.20×10−2

Loh -1.63×10−1 1.85×10−1 -8.80×10−1 3.96×10−1 21.85
toh 1.98 1.79 1.11 2.88×10−1 21.05
αoh -5.59×10−1 1.92×10−1 -2.90×100 1.20×10−2 25.07
dsl 7.11 5.91 1.20 2.50×10−1 14.28

Lohtoh 9.90×10−3 2.27×10−2 4.30×10−1 6.71×10−1 10.41
Lohαoh 3.42×10−3 2.25×10−3 1.52 1.52×10−1 8.36
Lohdsl -2.62×10−2 8.90×10−2 -2.90×10−1 7.73×10−1 18.70
tohαoh 4.10×10−3 2.26×10−2 1.80×10−1 8.60×10−1 9.03
tohdsl -1.61×100 8.90×10−1 -1.81×100 9.30×10−2 18.84
a*d 3.11×10−2 8.90×10−2 3.50×10−1 7.32×10−1 16.92

Table 5.18 ANOVA of average Rz measured by Alicona

Source DF Adj SS Adj MS F-Value P-Value

Regression 10.00 14011.00 1401.10 5.77 2.00×10−3

Loh 1.00 370.30 370.27 1.52 2.39×10−1

toh 1.00 559.70 559.72 2.30 1.53×10−1

αoh 1.00 1157.10 1157.12 4.76 4.80×10−2

dsl 1.00 172.20 172.19 7.10×10−1 4.15×10−1

Lohtoh 1.00 31.50 31.48 1.30×10−1 7.25×10−1

Lohαoh 1.00 504.20 504.17 2.07 1.73×10−1

Lohdsl 1.00 15.60 15.60 6.00×10−2 8.04×10−1

tohαoh 1.00 99.90 99.88 4.10×10−1 5.33×10−1

tohdsl 1.00 927.90 927.93 3.82 7.30×10−2

a*d 1.00 91.80 91.77 3.80×10−1 5.49×10−1

Error 13.00 3158.70 242.98
Lack-of-Fit 9.00 3064.30 340.48 14.43 1.00×10−2

Pure Error 4.00 94.40 23.60
Total 23.00 17169.60
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Fig. 5.15 Residual plots for regression of average Raav,a as in Eq. 5.7

Raav,a = 26.4−1.63×10−1Loh +1.98toh −5.59×10−1
αoh +7.11dsl+

+9.90×10−3Lohtoh +3.42×10−3Lohαoh −2.62×10−2Lohdsl+

+4.10×10−3tohαoh −1.61tohdsl +3.11×10−2

(5.7)

Rzav,a = 116.0−1.08Loh +12.79toh −1.98αoh +23.50dsl+

+3.90×10−2Lohtoh +1.53×10−2Lohαoh1.06×10−1Lohdsl+

−6.90×10−2tohαoh −8.21tohdsl +2.58×10−1

(5.8)

5.3.5 Correlation models and redefinition of the Know-how Matrix

Section 5.3.4 points out clear trends of the displacement and roughness while varying the
part design parameters. Nevertheless, the non-homogeneity of the part and the influence of
adopted measuring system make difficult to have accurate prediction of exact values . As the
KBESM will be used to make comparisons between alternative solutions, normalised models
of distortion and roughness are then preferred to the absolute ones presented in 5.3.4.
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Fig. 5.16 Residual plots for regression of average Rzav,a as in Eq. 5.8

The two analyses of the vertical displacement pointed out how all the investigated
parameters are influential for part distortion measured by means of different techniques.

The measurement made by means of contact system revealed to be less influenced by
random defects, allowing reaching an higher fitness of the regression. Accordingly, the model
of Eq. 5.3 will be used for correlation. The normalised output values of vertical displacement
dvn are resized to the range [-1;1], leading to Eq. 5.9. As obvious, this model has the same
R2 and R2

ad j of the one in Eq. 5.3; residual plots in Fig. 5.11 also remain valid.

dvn =−0.368+1.54×10−3Loh +9.33×10−2toh +1.38×10−2
αoh+

−1.73×10−1dsl −5.37×10−4Lohtoh −9.00×10−5Lohαoh +9.90×10−4Lohdsl+

−3.96×10−3tohαoh +6.02×10−2tohdsl −3.39×10−3

(5.9)

The analysis of roughness data highlighted the overhang inclination as only influential
factor; accordingly, αoh is adopted as only variable of the normalised model. The Ra data
from contact measurement (Raav,n) revealed to be the less influenced by localised random
defects. Therefore, these data will be used as a basis for the development of the normalised
model. The output values ran are normalised within the range [0;1]; Eq.

ran = 9.49×10−1 −αoh ×1.65×10−2 (5.10)
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Fig. 5.17 Residual plots for regression of normalised roughness values according to in Eq.
5.10

This model has R2 = 85.89% and R2
ad j = 85.25%; it can be observed how R2

ad j is slightly
higher than the ones calculated in the case of Eq. 5.5 due to the absence of several non-
influential variables in the model. Fig. 5.17.

The results of experimentation presented in 5.3.4 allowed defining the relations between
inputs and descriptors that were marked as Hyp in 5.2. In particular, the ANOVA allowed
pointing out the non-empty cells of the KM, i.e. the input that are significant to descriptors.

The equation derived above explicit these relations, providing correlations between inputs
and descriptors. Therefore, according to the descriptions of KM given in 2.4.5, the correlation
moved from Hyp to Knw. The KM of MODIA in Fig. 5.2 is thus redesigned as in Fig. 5.18.

5.4 Detailed design of the system

The implementation of the system will be made through the following steps:

• Import of the part geometry

• Definition of support parameters

• Definition of the design requirements

• Optimisation of the orientation
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Fig. 5.18 MODIA of the KBESM for PBF build preparation redesigned after the experimental
campaign

• Verification of the proposed solution

According to the concept design of the system presented in 5.2, the KBESM has to fulfil
two main tasks, that are the orientation of the part and the design of support structures. The
design of supports can be made only once the part has been oriented, therefore these actions
have to be performed sequentially. To allow an optimisation of predefined aims, an iterative
loop will be adopted.

The KBESM was implemented as a stand-alone software using C# language. OpenGL
library has been adopted for graphical tasks. In the following sections, the main aspects of
the implemented system are described.

5.4.1 Analysis of the geometrical model

The model is imported in the software as an STL triangular mesh. In this codification, each
triangle is represented by means of 12 floating point values, i.e.:

• The Cartesian coordinates of the three vertices {v1,x,v1,y,v1,z,v2,x,v2,y,v2,z,v3,x,v3,y,v3,z}

• The normal vector of the surface N̂ = {nx,ny,nz}

The normal vector can be directly used in order to verify if the surface requires supports.
In fact, defining as αlim the minimum inclination to the horizontal that allows self-supporting
of the material (as in Fig. 5.19), the need of supports Sb can be evaluated as in Eq. 5.11
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Fig. 5.19 αlim for material self-supporting

Sb(X) =
{ 1 i f nz ≤−cos(αlim)

0 elsewhere
(5.11)

A region-based approach is used for the design of supporting structures. For this scope, the
bounding box of the model, i.e.the minimum parallelepiped enclosing the part, is calculated;
the dimensions of the bounding box along the three axial directions are calculated as in Eq.
5.12, 5.13 and 5.14, respectively. Basing on these definitions, the diagonal of the bounding
box (dBB) can be calculated as in Eq. 5.15.

BBX = vx,max − vx,min (5.12)

BBY = vy,max − vy,min (5.13)

BBZ = vz,max − vz,min (5.14)

dBB =
√

BB2
X +BB2

Y +BB2
Z (5.15)

The XY projection of the bounding box is meshed by means of a grid with side step sg as
shown in Fig. 5.20.

Vertical rays are sent from the centre of each grid element (represented by a circle in
Fig. 5.20). For the generic element of the grid with position (i,j), the central grid element
coordinates (xi, y j) can be calculated as in Eq. 5.16 and Eq. 5.17

xi =

{ 1
2(BBx − sg⌊BBx

sg
⌉) i f i = 1

BBx − x1, j i f i = ⌈BBx
sg

⌉
x1, j +(i−1)sg elsewhere

(5.16)
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Fig. 5.20 Planar grid of the part bounding box in XY

y j =

{ 1
2(BBy − sg⌊

BBy
sg

⌉) i f j = 1

BBy − y1, j i f j = ⌈BBy
sg

⌉
y1, j +(i−1)sg elsewhere

(5.17)

A vector d⃗i, j with origin (xi,y j,vz,min) and direction (0,0,1) is defined for every element
(i,j) of the grid. A ray-casting algorithm [199] is used to check the intersection points Pi, j,k

of d⃗i, j with the part, as shown in Fig. 5.21.
As the part must satisfy the manifold condition, the intersection point Pi, j,k lays on a

triangle with negative nz if k is odd and on a triangle with positive nz if k is even. The
manifold condition also implies that the total number of intersections Pi, j,k is even for every
pair (i,j). The maximum number of intersections observed on the grid (i.e. the higher value
reached of k) will be indicated as Nmax,int .

It is then possible to define two three-dimensional matrices of dimensions [⌈BBx
sg

⌉,⌈BBy
sg

⌉,Nmax,int]
named Hs and Ts, whose generic elements are defined as in Eq.5.18 and Eq. 5.19 , respec-
tively.

Hs(i, j,k) =
{ Pi, j,2k−1 −Pi, j,2(k−1) i f ∃Pi, j,2k

0 i f ̸ ∃Pi, j,2k
(5.18)

Ts(i, j,k) =
{ Pi, j,2k −Pi, j,2k−1 i f ∃Pi, j,2k

0 i f ̸ ∃Pi, j,2k
(5.19)
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Fig. 5.21 Intersections of ray casting with the mesh

It is worth mentioning how the matrices Hs and Ts varies (both in terms of sizes and
values) according to the orientation of the investigated geometry.

5.4.2 Design of support structures

The design of the supports is made using reinforced vertical walls as the ones represented in
Fig. 5.6. As one single scan line is used for support construction, the actual thickness of the
vertical wall depends on a number of parameters, including[3, 336]:

• The scanning speed

• The laser power

• The reflectivity of the powder

• The grain size of the powder

For each element of a grid as the one represented in Fig. 5.20, the necessity of support
structures is determined by using Eq. 5.11. As it can be observed in Fig. 5.18, reducing
the volume of support structures is fundamental in order to reduce the wasted material and
building time and enhance the cleanability of the model. Accordingly, the orientation of
supporting walls is chosen in order to minimise the distortion of the part while limiting the
amount of transformed material.
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Fig. 5.22 Example of pivot determination for a given intersection level k∗

Indicating as Tr(Pi, j,k) the triangle on which the intersection point Pi, j,k lays, it is possible
to define the matrix Hcp of dimensions [⌈BBx

sg
⌉,⌈BBy

sg
⌉,Nmax,int]; the generic element Hcp(i, j,k)

is then calculated as in Eq. 5.20.

Hcp(i, j,k) = Sb(Tr(Pi, j,2k−1))
k

∑
l=1

(Ts(i, j, l)+Hs(i, j, l)) (5.20)

According to Eq. 5.20, elements of Hcp are equal to zero if the region does not require
support and equal to the height of the intersection point from the bottom plane in any other
case. Therefore, at a certain value k∗ (referred in the following as intersection level), the two
dimensional matrix Hcp(i, j,k∗) is like shown in Fig. 5.22. In the matrix Hcp(i, j,k∗), it is
possible to distinguish the cluster of supported elements, represented in blue in Fig. 5.22.
For each cluster h, the minimum values of Hcp(i, j,k∗) (highlighted in yellow in Fig. 5.22)
are identified; the corresponding centres of the grid (in red in Fig. 5.22) will be referred as
pivotal points and indicated as [vk∗,h,1, vk∗,h,1, ...].

For each element (i,j) of the grid, the supporting wall is oriented as the vector connecting
the centre of the element (xi,y j) with the projection on the XY-plane of the nearest pivotal
point vk∗,h,m = (xv∗,yv∗,zv∗). The direction vector d̂i, j,k can thus be calculated as in Eq. 5.21.

d̂i, j,k = (
xv∗− xi√

(xv∗− xi)2 +(yv∗− yi)2
,

yv∗− yi√
(xv∗− xi)2 +(yv∗− yi)2

,0) (5.21)
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Fig. 5.23 Schematisation of support wall and connection teeth

The support is designed to pass through the point of coordinates (xi,y j) and remain inside
the grid element,as shown in Fig. 5.22. The actual width of the support structure wS is thus
calculated as in Eq. 5.22, where X̂ = {1,0,0} and Ŷ = {0,1,0}.

wS(i, j,k) = max(
sg

|d̂i, j,k.X̂ |
,

sg

|d̂i, j,k.Ŷ |
) (5.22)

This width is reduced in the connection between supports and part in order to ease the
removing of the supporting structures during the post processing. The transitions between
supports and part are referred to as teeth and present the typical shape shown in Fig. 5.23.
The height of the support tooth hst and the aspect ratio αws between the width of the support
and the final width of the tooth (as in Eq. 5.23 ) are used to define the geometry of the teeth.

αws =
wse(i, j,k)
ws(i, j,k)

(5.23)

The height of the support in Z direction can be obtained by the matrix Hs calculated in Eq.
5.18. It is worth noticing how the actual coordinates of the connection to the part may vary
according to the slope of the surface: ray-casting approach exposed above can be extended to
solve this issue.
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An intersection of height hsl between the support and the part is used to enhance the
resistance of the structure, as shown in Fig.5.23. The value of hsi needs to be compared to
the values of thicknesses in the matrix Ts of Eq. 5.19 in order to prevent part piercing.

A difference between top and bottom teeth may be operated according to different levels;
as an example, the bottom teeth of the first level (i.e. the connection of the part to the build
platform) is often avoided (i.e. αws = 1) to improve the resistance, as this does not affect the
surface quality of the part.

Transversal ribs as the ones described in 5.3 are included using the dimensions in Fig.
5.6; similar criteria as above are adopted for teeth.

5.4.3 Evaluation of the solution

In order to evaluate the suitability of possible solutions, different models are built for the
product features. This models, as already mentioned in the previous sections, have to be
applied in a comparative analyses of the solutions. In order to aggregate different attributes,
the scores assigned to properties are normalised in the following.

As an example, the methods defined in 5.4.2 lead to the definition of the geometry of the
support structures. A score Psupp is assigned to the volume of supports as defined in Eq. 5.24.

Psupp =
∑
⌈BBx/sg⌉
i=1 ∑

⌈BBy/sg⌉
j=1 ∑

Nmax,int
k=1 Sb(Tr(Pi, j,2k−1)Hcp(i, j,k)s2

g

BBxBByBBz
(5.24)

Eq. 5.24 compares the space where support structures are located to the whole space
of the model bounding-box (in its own coordinate system). It is worth noticing how this
calculation does not consider the effect of change in support width due to orientation in grid
(Eq. 5.22) as it is considered negligible on the overall volume of supports. Furthermore, the
thickness of the support wall and the geometry of teeth are not considered for the study, as
these parameters do not vary with the orientation of the part (as it can be seen in the IM of
Fig. 5.18). Therefore, the reduction of volume of supporting structures corresponds to the
minimisation of Psupp.

According to Rickenbacher et al. [239], the building time TBuild of the part (considering
one single unit per build job) can be estimated as in Eq. 5.25:

TBuild = a0 +a1 ×NL +a2 ×VP +a3 ×SSupp +a4STot (5.25)

Where:

• NL is the number of layers
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Table 5.19 ANOVA of average Rz measured by Nanoscan

Regression coefficient Value Unit
a0 −1.29 h
a1 4.53×10−3 h
a2 1.80×10−4 h/mm3

a3 1.59×10−4 h/mm2

a4 −1.33×10−4 h/mm2

• VP is the volume of the part (mm3)

• SSupp is the total surface area of the support structures (mm2)

• STot is the total surface area of the part (mm2)

• a0,a1,a2,a3,a4, are the regression coefficients

The values proposed by [239] for regression coefficients, together with their unit of
measurement, are summarised in Tab. 5.19

As the orientation does not affect the volume of the part, the contribution of a2 ×VP does
not affect the comparative analysis. In a preliminar analysis, the building height is assumed to
be affected only by the number of layers NL, i.e. by the maximum height of the oriented part
(v∗z,max). Accordingly, to evaluate the efficiency of orientation in building time, a comparison
between v∗z,max and the diagonal of the bounding box in the model coordinate system (dBB) is
used. The penalty factor for part height (Pheight) is thus calculated as in Eq. 5.26.

Pheight =
v∗z,max

dBB
(5.26)

Considering the results exposed in 5.3.5, the normalised values of roughness can be
calculated as in 5.10. The normal direction N̂ of the facet element can be used to determine
the angle for estimation: accordingly, Eq. 5.10 is modified as in Eq. 5.27 in order to calculate
the roughness penalty factor Prough.

Prough = 9.49×10−1 −arcsin(|nz|)×1.65×10−2 (5.27)

The calculation of Eq. 5.27 assumes the same roughness for downward and upward
facing element, i.e. neglects the compensation of stair stepping effect that occurs before
surfaces solidification on downward facing elements according to [271].

In order to build a predictive model for distortion, a grid-based approach similar to the
one described in 5.4.1 and 5.4.2 is adopted; a grid with element size sg,d is adopted for the
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scope. This approach allows investigating the local distortion independently by the size of
triangular elements used for meshing.

Using a notation similar to 5.4.2, the pivotal point of the intersection point Pi, j,k =

(xP(i, j,k),yP(i, j,k),zP(i, j,k)) will be indicated as v∗(i, j,k)= (xv∗(i, j,k),yv∗(i, j,k),zv∗(i, j,k)).
Using this notation, the equivalent overhang length of the intersection points are thus

collected in the matrix LOH of size [⌈BBx
sg

⌉,⌈BBy
sg

⌉,Nmax,int] , whose generic element LOH(i, j,k)
can be defined as in Eq. 5.28.

LOH(i, j,k) =
{ √

(xP − xv∗)2 +(yP − yv∗)2 +(zP − zv∗)2 i f ∃Pi, j,2k

0 i f ̸ ∃Pi, j,2k
(5.28)

Analogously, it is possible to define the matrix αOH of the equivalent overhang inclina-
tions; the generic element can be calculated as in Eq. 5.29

αOH(i, j,k) =
{ arcsin(

√
(xP−xv∗)2+(yP−yv∗)2√

(xP−xv∗)2+(yP−yv∗)2+(zP−zv∗)2
) i f ∃Pi, j,2k

0 i f ̸ ∃Pi, j,2k

(5.29)

The distance between supports in Eq. 5.9 is replaced with the size of the grid used for
support generation (sg) that is the actual distance between parallel adjacent support walls.

Accordingly, the penalty distortion function is written as a matrix Pdist of size [⌈BBx
sg

⌉,

⌈BBy
sg

⌉, Nmax,int] , whose generic element Pdist(i, j,k) can be calculated as in Eq. 5.30 if
∃Pi, j,2k (while it is equal to zero in other cases).

Pdist(i, j,k) =−0.368+1.54×10−3LOH(i, j,k)+9.33×10−2TS(i, j,k)

+1.38×10−2
αOH(i, j,k)−1.73×10−1sg+

−5.37×10−4LOH(i, j,k)TS(i, j,k)−9.00×10−5LOH(i, j,k)αOH(i, j,k)+

+9.90×10−4LOH(i, j,k)sg −3.96×10−3TS(i, j,k)αOH(i, j,k)+

+6.02×10−2TS(i, j,k)sg −3.39×10−3

(5.30)

It is worth mentioning how the penalty functions described in Eq. 5.27 and 5.30 may
lead to values out of the range [0;1] for values of the input parameters out of the space of the
DOE described in 5.3.3. Furthermore, outside of this range the model works in extrapolation,
thus the reliability far from the explored range can not be guaranteed. In particular, the
behaviour of the model for angles approaching zero should be investigated by means of
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Table 5.20 General and local requirements for the build orientation optimisation

General requirements Local requirements
Building time No-support regions

Average roughness Local roughness
Average distortion

Maximum distortion
Support volume

further experimentations. Nevertheless, the trend of the model is assumed to be suitable for
comparative studies.

In order to allow the optimisation of part orientation and support design, an evaluation
criteria of the solutions must be defined. For this propose, a fitness function Ff it of the part
in a given orientation is here defined. As the actual aims of the production are strictly related
to the specific features of the product, an ad-hoc definition of the requirements is needed.
According to Fig. 5.1, the system has to be developed for a generic product, so no a priori
definitions of the requirements can be made. On the other hand, the user of the system is
supposed to own a specific knowledge about the product; therefore, the definition of the
optimisation aims is delegated to the user. As the requirements of the part may vary on the
different regions of the geometry, a split between general and local requirements is made, as
summarised in Tab. 5.20 .

The know-how of the user is exploited in order to define the requirements.
The local requirements are defined for each element of the mesh by means of weight

coefficients. As a default, the weight of each factor is set equal to 1 and can be modified
according to user preferences. In the implementation of the solution, the user is allowed
defining specific regions of the mesh where the weights of requirements are different from
the rest of the mesh.

Therefore, each triangular element Ti is characterised by a penalty factor for the presence
of supports (wp,s(i)) and a penalty factor for surface roughness (wp,r(i)). Indicating as NT

the total number of triangular elements, the overall penalty for supports and regions (Ps) and
for local roughness (Pr) can then be calculated as in Eq. 5.31 and Eq. 5.32, respectively:

Ps =
1

NT

NT

∑
i=1

Sb(Ti)wp,s(i) (5.31)

Pr =
1

NT

NT

∑
i=1

wp,r(i)Prough(Ti) (5.32)
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Where Prough(Ti) is the penalty given to roughness of the i-th triangle, calculated as in
5.27.

Also the general requirements of the part are defined by the user giving a penalty weight
to each of the criteria listed in Tab. 5.20. In particular, the following notation is used for
penalty factors:

• wp,bt Penalty factor for the building time

• wp,ar Penalty factor for the average roughness

• wp,ad Penalty factor for the average distortion

• wp,md Penalty factor for the maximum distortion

• wp,sv Penalty factor for the support volume

The Fitness function (Ff ) for the part in a given orientation and with a defined support
design can be expressed as in Eq. 5.33

Ff = Ps +Pr +wp,btPheight +wp,mdmax(Pdist(i, j,k))+wp,svPsupp+

+
1

NT

NT

∑
i=1

Prough(Ti)+wp,ad
∑
⌈BBx/sg⌉
i=1 ∑

⌈BBy/sg⌉
j=1 ∑

Nmax,int
k=1 Pdist(i, j,k)

⌈BBx/sg⌉×⌈BBy/sg⌉×Nmax,int

(5.33)

The MOO is thus reduced to a single objective optimisation (the minimisation of Ff ) as
defined in Eq. 5.33.

5.4.4 Optimisation of the part orientation

As mentioned above, a GA-based approach to part orientation is adopted to find the optimal
part orientation.

For this scope, the orientation of the part in the build chamber is described by means of
the three rotation angles θx, θy and θz (Euler angles) of the part coordinate system of the
model on the coordinate system of the machine.

Using Euler angles, the coordinates of the rotated model V ∗ = [v∗xv∗yv∗z ]
T are thus obtained

multiplying the internal coordinates of the generic point V = [vxvyvz]
T by the rotational

matrix shown in Eq. 5.34, where cθ and sθ are the cosine and sine of the angle θ .
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Fig. 5.24 Chromosome representing the rotational angles in 8-bit codification

Table 5.21 General and local requirements for the build orientation optimisation

Parameter Default value
nst 20

nmin,pop 100
nmax,pop 200
nmax,pop 0.3

v∗x
v∗y
v∗z

=

 cθycθz −cθysθz sθy

sθxsθycθz + cθxsθz −sθxsθysθz + cθxcθz −sθxcθy

−cθxsθycθz + sθxsθz cθxsθysθz + sθxcθz θxcθy


vx

vy

vz

 (5.34)

Using the support design strategy described in 5.4.2, each set of angles (θx, θy, θz)
corresponds to a value of the fitness function (Ff (θx,θy,θz)) calculated as in Eq. 5.33.

The values of rotation angles are then converted in binary codification and composed to
obtain the chromosome genotype [43, 224]. Fig. 5.24 shows an example in which the values
of angles (in degrees) are represented using a 9-bit codification (thus allowing to span the
range of integers [0-360]).

A two-point crossover strategy with splitting points between angles (i.e. in the points
highlighted in Fig. 5.24). A mutation strategy is introduced to prevent the GA from
converging to a local optimum instead of finding the global one. A flip-bit mutation is
adopted in the present approach, i.e. each chromosome of the offspring generation has a
given mutation probability (pmut) to invert the bit of a gene (from 0 to 1 and vice versa).
The population at each iteration is limited between a minimum (nmin,pop) and a maximum
(nmax,pop) number of chromosomes [148].

At each iteration h, the fitness function of each chromosome is calculated and the
best fitness value (Ff ,min(h)) is found. A stagnation termination strategy is adopted, i.e.
the algorithm ends when no improvements in the minimum observed fitness function are
observed after a certain number nst of consecutive iterations.

The default values adopted in the implementation are summarised in Tab. 5.21.



158 Build Job preparation in Powder Bed Fusion

These values can be varied by the user in case he has previous expertise with the calcula-
tion method and prefers to adjust the values according to the specific case.

5.5 Conclusions

The present chapter demonstrated the opportunity to apply the methodology exposed in
Chapter 2 to the design of a KBESM for assisting the build job preparation in PBF.

In applicability space, the system was defined as applicable to the design of a generic
product with a specific combination of technology and material. Furthermore, the user has
been supposed to be an expert of the process and to gain elements of knowledge about
product requirements.

The adoption of a generic product required the use of local regions (triangular and grid
elements) as objects of the analysis. The limitation to a specific process allowed implementing
in the solution ad-hoc models obtained by means of experimental activity. The know-how of
the user has been exploited for the definition of requirements, allowing introduction of the
peculiar needs of the manufactured part.

Fig. 5.18 points out how the actions of the system have to be managed by software;
accordingly, a sequence between the two actions has been defined and an iterative approach
was used for optimisation.

This approach allowed shifting the time dedicated by the user from the trial and error
and repetition of automatic tasks to the analysis and definition of the optimisation objectives.
Interaction is thus performed by redefining the aims if satisfying solution is not reached.

The main limitation of the presented approach derives from the specificity of the models
obtained through experimentation and implemented in the system. To overcome this limit, a
more general rule-based approach able to take into account machine and material features
may be developed.
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The analysis of the literature on KBESMs allowed pointing out the main common features
of these systems. A wide range of objectives, processes, methods and solutions has been
found in the scientific literature. A-priori guidelines about the implementation of KBESM
can not be defined, as they would over-constrain the representation and reuse of the real
manufacturing know-how.

The main methodologies proposed in literature for the development of KBSs and
KBESMs have been analysed. It has been noticed that the general methodologies does
not allow an efficient application to industrial process engineering if not with laborious
modifications, as they do not include by default the specific ontologies of manufacturing
know-how. On the other hand, the methods for knowledge representation in manufacturing
tend to limit representable entities and relations. Furthermore, these methods do not provide
any guideline about the techniques that must be adopted during the low-level implementation
of the KBESM.

To overcome these limitations, a new approach to the conceptual design of KBESMs
has been proposed in Chapt. 2. The method starts from the definition of the applicability
field to be covered by the KBESM. This important information was missing in the previous
methods and allows us to achieve a sharp view of the outlined system. The consequences of
applicability definition on the next decisional steps of KBESM design have also been pointed
out.

Next, the MODIA was presented by detailing its ontologies and relations between them.
The structured definition of entities prevents the inclusion of elements that are not coherent
among each other or with the intended applicability field of the application. The explicit
formulation of the relations also clarifies the kind of know-how owned by the company
and the potential benefits resulting from the adoption of the KBESM. This enables an
early decision-making according to intended strategies. The graphical representation of
the MODIA also provides a continuous overview of KBESM during its design, easing the
modification or redefinition of its aspects. The closed-loop structure of the matrices ensures
that all the entities affected by a certain modification are adjusted to preserve the overall
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consistency of the system. Attributes of ontologies and relations limit the set of techniques
that can be used for the fulfilment of tasks of the system, thus providing a guideline for the
detailed design and implementation of the KBESM.

In the application to the design of an industrial product the opportunity to include
manufacturing know-how in a design-driven system was demonstrated. The peculiarities
of the system descending from its location in the applicability matrix have been discussed.
The opportunity to use knowledge deriving from the expert user has been exploited in the
implementation of the system, leading to a collaborative aided-decision making system. The
implementation demonstrated that the automation of repetitive tasks allowed to reducing the
time required for modelling. Besides, the comparison and test of a large number of solutions
was enabled.

On the other hand, in the case of SL, a system for inexperienced users was designed. For
this scope, all the process knowledge has been implemented in the system by means of a
RBR approach. This case also showed that the applicability to a general product does not
permit the inclusion of functional requirements. Furthermore, this condition obliges to define
local geometrical entities for the verification of the manufacturability conditions.

In the last case study, the knowledge about the product was integrated by the user, since
the system is located in the lower region of the applicability space. The interaction between
the user and software has been thus moved from the decision-making phase (as in the first case
study) to the definition of aims. This implementation also demonstrated the application of a
completely software based action, by integrating the decision-making within the KBESM.

As a conclusion, the proposed approach demonstrated its suitability to the design of
KBESMs applied to different fields of the process engineering and with dissimilar scopes
and applicabilities. The applications also pointed out the correlation among attributes of the
ontologies and the techniques used for the implementation. The simplicity of the method
allows a fast learning as well as the immediate understanding of the main important elements
of the KBESM.

For these reasons, the proposed approach seems to be an inclusive path to extend the
parterre of users of KBESMs in the Industry 4.0 scenario.

MODIA methodology has been proved to overcome the main limitations deriving from
existing methods for the design of KBESMs mentioned in Chapt. 1. The present work can
be thus considered as a step forward in the state of art on methods for design of KBESMs.

A future development of this work will integrate the framework presented in Chapt. 2
within a software application, so to further ease the implementation of MODIA framework
extending the batch of users. Moreover, a next direction of the present research will aim at
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including decisional maps to guide the user to the choice of best RBR and CBR methodologies
on the basis of the attributes defined in the MODIA.
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