275 research outputs found

    Light-Hierarchy: The Optimal Structure for Multicast Routing in WDM Mesh Networks

    Get PDF
    Based on the false assumption that multicast incapable (MI) nodes could not be traversed twice on the same wavelength, the light-tree structure was always thought to be optimal for multicast routing in sparse splitting Wavelength Division Multiplexing (WDM) networks. In fact, for establishing a multicast session, an MI node could be crosswise visited more than once to switch a light signal towards several destinations with only one wavelength through different input and output pairs. This is called Cross Pair Switching (CPS). Thus, a new multicast routing structure light-hierarchy is proposed for all-optical multicast routing, which permits the cycles introduced by the CPS capability of MI nodes. We proved that the optimal structure for minimizing the cost of multicast routing is a set of light-hierarchies rather than the light-trees in sparse splitting WDM networks. Integer linear programming (ILP) formulations are developed to search the optimal light-hierarchies. Numerical results verified that the light-hierarchy structure could save more cost than the light-tree structure

    Load-balanced optical switch for high-speed router design

    Get PDF
    A hybrid electro-optic router is attractive, where packet buffering and table lookup are carried out in electrical domain and switching is done optically. In this paper, we propose a loadbalanced optical switch (LBOS) fabric for a hybrid router. LBOS comprises N linecards connected by an N-wavelength WDM fiber ring. Each linecard i is configured to receive on channel λ i. To send a packet, it can select and transmit on an idle channel based on where the packet goes. The packet remains in the optical domain all the way from an input linecard/port to an output linecard/port. Meanwhile, the loading in the ring network is perfectly balanced by spreading the packets for different destinations to use different wavelengths, and packets for the same destination to use different time slots. With the pipelined operation of the LBOS, we show that LBOS is an optical counterpart of an efficient load-balanced electronic switch, and close-to-100% throughput can be obtained. To address the ringfairness problem under the inadmissible traffic patterns, an efficient throughput-fair scheduler for LBOS is also devised. ©2010 IEEE.published_or_final_versio

    Power-cost-effective node architecture for light-tree routing in WDM networks

    Get PDF
    6 pages, 10 figures.-- Contributed to: IEEE Globecom 2008 Optical Networks and Systems Symposium (GC'08 ONS), New Orleans, Louisiana, USA, Nov 30-Dec 4, 2008.We present a novel cost-effective multicast capable optical cross connect (MC-OXC) node architecture which improves efficiency of optical power by constraining splitting to only two output ports, in order to reduce power losses derived from splitting into more than two output ports. This node would manage the following actions when necessary: (a) tap and binary- splitting, which consists of tapping a small percentage of the signal power to the local node (4-8%) and an w-splitting action (n=2); and (b) tap-and-continue. We call this type of node 2-STC node (binary-split-tap-continue). We compare it with other well known state-of-art proposals and analyze its benefits in terms of number of devices and power losses. An evaluation of applicability is given, showing that the binary-split restriction shows a good trade-off between power losses, bandwidth consumption and architectural simplicity. We conclude that the 2-STC node improves power efficiency and contributes to get a good trade-off between use of resources and optical power.The work described in this paper was carried out with the support of the BONE-project ("Building the Future Optical Network in Europe"), a Network of Excellence funded by the European Commission through the 7th ICT-Framework Program. It has also been supported by the Spanish MEC grant TSI2005-07384-C03-02 and PRICIT CCG07-UC3M/TIC-3356.Publicad

    Design of power efficient multicast algorithms for sparse split WDM networks

    Get PDF
    Recent years witnessed tremendous increase in data traffic as new Internet applications were launched. Optical networks employing recent technologies such as DWDM and EDFA`s emerged as the most prominent and most promising solutions in terms of their ability to keep with the demand on bandwidth. However for a class of applications bandwidth is not the only important requirement, These applications require efficient multicast operations. They include data bases, audio/video conferencing, distributed computing etc. Multicasting in the optical domain however has its own unique set of problems. First, an optical signal can be split among the outputs of a node but the power due to splitting can be significantly reduced. Second, the hardware for split nodes is relatively expensive and therefore we cannot afford to employ it at every node. Third, there are other sources of losses such as attenuation losses and multiplexing /de-multiplexing losses. This thesis deals with the important issue of Power Efficient multicast in WDM optical networks. We report three new algorithms for constructing power efficient multicast trees and forests. Our algorithms are the first to take into account all possible sources of power losses while constructing the trees. We utilize the techniques of backtracking and tree pruning judiciously to achieve very power efficient multicast trees. The first two algorithms use modified versions of the shortest path heuristic to build the tree. The third algorithm however, uses a novel concept and considers power at every tree building step. In this algorithm, the order of inclusion of destination nodes into the tree is based on the power distribution in the tree and not distance. All three algorithms prune the trees if the power levels at the destinations are not acceptable. The performance of these three algorithms under several constraints is studied on several irregular topologies. All three algorithms reported in this work produce significant improvements in signal strength at the set of destinations over the existing multicast algorithms. Numerical results show that our third algorithm outperforms the first two algorithms as well as the existing multicasting algorithms

    Virtual Topology Reconfrigation of WDM Optical Network with Minimum Physical Node

    Get PDF
    This paper review the reconfiguration of high capacity WDM optical Network, messages are carried in all optical form using light paths. The set of semi-permanent light paths which are set up in the network may be viewed as a virtual topology by higher layers such as SONET, ATM and IP. Reconfiguration is to charge in virtual topology to meet traffic pattern in high layers. It provides a trade off between objective value and the no. of changes to the virtual topology. In another study Objective is to design the logical topology & routing Algorithm on physical topology, so as to minimize the net work congestion while constraining the average delay seen by source destination pair and the amount of processing required at the nodes. Failure handling in WDM Networks is of prime importance due to the nature and volume of traffic, these network carry, failure detection is usually achieved by exchanging control messages among nodes with time out mechanism. Newer and more BW thirsty applications emerging on the horizon and WDM is to leveraging the capabilities of the optical fiber Wavelength  routing  is  the  ability  to  switch  a  signal  at intermediate  nodes  in  a  WDM  network  based  on  their wavelength. Virtual topology can be reconfigured when necessary to improve performance. To create the virtual topology different from the physical topology of the underlying network, is the ability of wavelength routing WDM. Keywords: WDM, Physical Topology, Virtual Topology and Reconfiguratio

    Measurement Based Reconfigurations in Optical Ring Metro Networks

    Get PDF
    Single-hop wavelength division multiplexing (WDM) optical ring networks operating in packet mode are one of themost promising architectures for the design of innovative metropolitan network (metro) architectures. They permit a cost-effective design, with a good combination of optical and electronic technologies, while supporting features like restoration and reconfiguration that are essential in any metro scenario. In this article, we address the tunability requirements that lead to an effective resource usage and permit reconfiguration in optical WDM metros.We introduce reconfiguration algorithms that, on the basis of traffic measurements, adapt the network configuration to traffic demands to optimize performance. Using a specific network architecture as a reference case, the paper aims at the broader goal of showing which are the advantages fostered by innovative network designs exploiting the features of optical technologies
    • 

    corecore