27,644 research outputs found

    Optimization Study For The Cross-Section Of A Concrete Gravity Dam: Genetic Algorithm Model And Application

    Get PDF
    Concrete gravity dams have trapezoidal shape in their cross section and shall guarantee the global stability against acting loads like hydrostatic and uplift pressures through his gravitational actions (self-weight and others). This study focuses on the shape optimization of concrete gravity dams using genetic algorithms. In this case, the dam cross section area is considered as the objective function and the design variables are the geometric parameters of the gravity dam. The optimum cross-section of a concrete gravity dam is achieved by the Genetic Algorithm (GA) through a Matlab routine developed by the author. Sliding, overturning and floating verifications are implemented in the program. In order to assess the efficiency of the proposed methodology for gravity dams optimization, one application is presented adopting the concrete gravity dam of Belo Monte Hydropower Plant (HPP), considering normal loading condition and others assumptions presented.Peer Reviewe

    Optimisation of composite boat hulls using first principles and design rules

    No full text
    The design process is becoming increasingly complex with designers balancing societal, environmental and political issues. Composite materials are attractive to designers due to excellent strength to weight ratio, low corrosion and ability to be tailored to the application. One problem with composite materials can be the low stiffness that they exhibit and as such for many applications they are stiffened. These stiffened structures create a complex engineering problem by which they must be designed to have the lowest cost and mass and yet withstand loads. This paper therefore examines the way in which rapid assessment of stiffened boat structures can be performed for the concept design stage. Navier grillage method is combined with genetic algorithms to produce panels optimised for mass and cost. These models are constrained using design rules, in this case ISO 12215 and Lloyd's Register Rules for Special Service Craft. The results show a method that produces a reasonable stiffened structure rapidly that could be used in advanced concept design or early detailed design to reduce design time

    Results of Evolution Supervised by Genetic Algorithms

    Full text link
    A series of results of evolution supervised by genetic algorithms with interest to agricultural and horticultural fields are reviewed. New obtained original results from the use of genetic algorithms on structure-activity relationships are reported.Comment: 6 pages, 1 Table, 2 figure

    Parameters Identification for a Composite Piezoelectric Actuator Dynamics

    Get PDF
    This work presents an approach for identifying the model of a composite piezoelectric (PZT) bimorph actuator dynamics, with the objective of creating a robust model that can be used under various operating conditions. This actuator exhibits nonlinear behavior that can be described using backlash and hysteresis. A linear dynamic model with a damping matrix that incorporates the Bouc–Wen hysteresis model and the backlash operators is developed. This work proposes identifying the actuator’s model parameters using the hybrid master-slave genetic algorithm neural network (HGANN). In this algorithm, the neural network exploits the ability of the genetic algorithm to search globally to optimize its structure, weights, biases and transfer functions to perform time series analysis efficiently. A total of nine datasets (cases) representing three different voltage amplitudes excited at three different frequencies are used to train and validate the model. Four cases are considered for training the NN architecture, connection weights, bias weights and learning rules. The remaining five cases are used to validate the model, which produced results that closely match the experimental ones. The analysis shows that damping parameters are inversely proportional to the excitation frequency. This indicates that the suggested hysteresis model is too general for the PZT model in this work. It also suggests that backlash appears only when dynamic forces become dominant

    Optimization method for the determination of material parameters in damaged composite structures

    Get PDF
    An optimization method to identify the material parameters of composite structures using an inverse method is proposed. This methodology compares experimental results with their numerical reproduction using the finite element method in order to obtain an estimation of the error between the results. This error estimation is then used by an evolutionary optimizer to determine, in an iterative process, the value of the material parameters which result in the best numerical fit. The novelty of the method is in the coupling between the simple genetic algorithm and the mixing theory used to numerically reproduce the composite behavior. The methodology proposed has been validated through a simple example which illustrates the exploitability of the method in relation to the modeling of damaged composite structures.Peer ReviewedPostprint (author’s final draft

    State of the Art in the Optimisation of Wind Turbine Performance Using CFD

    Get PDF
    Wind energy has received increasing attention in recent years due to its sustainability and geographically wide availability. The efficiency of wind energy utilisation highly depends on the performance of wind turbines, which convert the kinetic energy in wind into electrical energy. In order to optimise wind turbine performance and reduce the cost of next-generation wind turbines, it is crucial to have a view of the state of the art in the key aspects on the performance optimisation of wind turbines using Computational Fluid Dynamics (CFD), which has attracted enormous interest in the development of next-generation wind turbines in recent years. This paper presents a comprehensive review of the state-of-the-art progress on optimisation of wind turbine performance using CFD, reviewing the objective functions to judge the performance of wind turbine, CFD approaches applied in the simulation of wind turbines and optimisation algorithms for wind turbine performance. This paper has been written for both researchers new to this research area by summarising underlying theory whilst presenting a comprehensive review on the up-to-date studies, and experts in the field of study by collecting a comprehensive list of related references where the details of computational methods that have been employed lately can be obtained
    corecore