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Abstract
Concrete gravity dams have trapezoidal shape in their cross section and shall guarantee the 
global stability against acting loads like hydrostatic and uplift pressures through his 
gravitational actions (self-weight and others). This study focuses on the shape optimization 
of concrete gravity dams using genetic algorithms. In this case, the dam cross section area 
is considered as the objective function and the design variables are the geometric 
parameters of the gravity dam. The optimum cross-section of a concrete gravity dam is 
achieved by the Genetic Algorithm (GA) through a Matlab routine developed by the author. 
Sliding, overturning and floating verifications are implemented in the program. In order to 
assess the efficiency of the proposed methodology for gravity dams optimization, one 
application is presented adopting the concrete gravity dam of Belo Monte Hydropower 
Plant (HPP), considering normal loading condition and others assumptions presented.
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1. Introduction
Concrete gravity dams are hydraulic structures widely used as 
water reservoir to hydroelectric power plants in general. These 
structures have trapezoidal shape in their cross section and 
shall guarantee the global stability against hydrostatic and uplift 
pressures by means of gravitational actions (as self-weight and 
others) [32]. Hence, finding a proper design for the cross-
section can remarkably reduce the construction costs [3].

For stability requirements, the dam must be safe against 
overturning, sliding and floating. Moreover, the acting stresses 
in the concrete of the dam or in the foundation material shall 
attend the limits stabilized by design criteria. The potential 
failure plans as concrete-foundation contact, horizontal plans 
through the dam body or through the foundation, can be 
considered, according to the rupture mechanisms identified by 
the geotechnical model [11].

In order to assure the structural global stability and the 
allowable stress criteria for the concrete gravity dam design, as 
discussed in Gutstein [19] and [20] a trial and error procedure 
process is usually carried out from a preliminary cross section 
defined in the design initial phases, followed by stability and 
stress analysis studies. Then, if the chosen cross section does 
not meet the security criteria, it shall be modified and analyzed 
again. Also, once safety criteria are met, a new study can be 
conducted with the purpose of optimizing the design 
(minimizing the dam cross section area).

To achieve this purpose, several alternatives can be used to 
obtain a number of feasible shapes. Finally, the cross section 
with minimum area (also with lower cost), that meets the 
structural considerations and design criteria, is selected as the 
final shape. In order to reliably achieve an optimal shape for 

dams in this study, instead of this trial and error procedure, 
optimization techniques have been effectively utilized 
[23,24,34].

Genetic Algorithms (GA) are heuristic search approaches 
applicable to a wide range of optimization problems [4]. This 
flexibility makes them attractive for many optimization 
problems in practice. They represent one branch of the field of 
study called evolutionary computation, which imitate the 
biological processes of reproduction and natural selection to 
solve for the fittest solutions [7].

GA can solve a broad class of engineering problems 
encountered in practice, involving a large number of design 
parameters (integer, discrete, continuous and integer/discrete-
continuous) and a large number of constraints. It has been 
highly successful as one of evolutionary computation 
techniques in searching for a broad class of stacking sequence, 
size, topology optimization problems for composite structures 
[18,29,30,31].

Designing and constructing concrete gravity dams can be 
considered as a typical optimization problem, since the cross 
section geometry with lowest area that meets the design 
criteria is searched for, with the final aim of reducing cost [35].

Optimizing this cost requires cross-section optimization. The 
main aim of this paper is to present and discussed an 
optimization study for concrete gravity dams based on GA and 
Matlab application. The present work brings a simple 
implementation using GA in Matlab for usual loading condition, 
contrasting with the complexity presented in 
[2,3,13,14,23,24,35] which bring approaches with high 
complexity computational methods.
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The dam's geometry and the acting loads must be considered in 
its design analysis procedure. In order to reduce the 
computational cost of the optimization process, the stopping 
criteria is limited to satisfactory values. To demonstrate the 
efficiency of GAs in finding the optimum design of concrete 
gravity dams, the cross-section from Belo Monte Hydropower 
Plant is presented as an example of application, considering 
normal loads and hypothetical resistance parameters for the 
foundation.

2. Stability analysis of concrete gravity dams

Figure 1 shows the usual loads acting in a dam considering 
drainage. Water pressure is the major external load acting on 
such a dam. The horizontal water pressure, exerted by the 
weight of the water stored on the upstream side on the dam 
can be estimated from rule of hydrostatic pressure distribution.

In other to meet the safety requirements, the dam cross section 
is verified against floating, overturning and sliding.

Floating safety factor has the function to guarantee the stability 
of structure against the forces that tend to make the body float. 
It is calculated by Equation (1) [12]

FSF =
∑V

∑U

(1)

where FSF  is the safety factor against floating, should be 

greater than 1.3, ∑V  the resultant vertical force and ∑U  the 
total uplift force.

The overturning of a gravity dam may be calculated by dividing 
the total resisting moments by the total moments tending to 
cause overturning about the downstream toe, it is defined as 
the ratio between the resisting moments and overturning 
moments [33]

FSO =
∑Mr

∑Mo

(2)

FSO  is the safety factor against overturning, should be greater 
than 1.5, Mr  the moments resisting and Mo  the moments 
overturning.

A dam will fail in sliding at its base, or at any other level, if the 
horizontal forces causing sliding are greater than the resistance 
available to it at that level. The resistance against sliding may be 
due to friction alone, or due to friction and shear strength of the 
joint. The sliding stability is based on a safety factor as a 
measure of determining the resistance of the structure against 
sliding [12]

FSS =
μ∑V

∑H

(3)

FSS  is the safety factor against sliding which should also be 

greater than 1.0, μ  the reduced coefficient of friction, ∑V  the 

total vertical force acting on dam and ∑H  the total horizontal 
force acting on dam.

Figure 1. Concrete gravity dam: cross-Section, analysis plan and imposed forces

 According to Eletrobras [12], the calculation of the uplift 
pressure acting in the analysis plan is made considering the 
uplift pressure reduction (Hdm ) in the drainage curtain 
according to (4):

Hdm = {Hj + 1
3 ∗ (Hm − Hj ) for Hj > hg

hg + 1
3 ∗ (Hm − hg ) for Hj < hg }

(4)

where hg  is the gallery height, Hm  the upstream water level, Hj  
the downstream water level and all of them in relation to the 
concrete-rock contact (analysis plan). Those expressions 
considerer the 66% drainage curtain efficiency adopted for the 
Bureau of Reclamation [33].

3. Geometrical model of concrete gravity dams 
and problem formulation

Based on the model of concrete gravity dam depicted in Figure 
2, the cross-section of concrete gravity dam studied is defined 
by the four parameters given by Equation (5)

X = {hb , bc , bx , ht } (5)

where bc  is a parameter required to define the dam crest. Also, 
the downstream slope is specified by the bx  and ht  design 
variables and hb is the dam’s height.
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Figure 2. Geometrical model of concrete gravity dam

 The process of evaluating the overall stability of a concrete 
dam, makes use of the static equations to evaluate the 
equilibrium of rigid body of the part. In order to automate the 
calculation of the global stability of a concrete gravity dam, an 
evaluation program was developed in the Matlab language. This 
program will be used as a starting point of the research.

The evaluation program has the ability to calculate overall 
stability and dam stress from the dimensions and conditions 
provided by the designer. This algorithm returns the values of 
the safety factors, calculated by Equations (2), (3) and (4).

After completing the calculations, the program displays the 
values obtained for FSF, FSO and FSS with a message indicating 
whether these values meet the design criteria, or whether the 
study section should be resized.

Gravity dam optimization problem is explained in this section. 
The cross-sectional area of the dam is considered as an 
objective function to be minimized. An optimization problem 
subjected to design constraints can be expressed as follows:

Find X
→ L ≤ X

→
≤ X

→ U

Minimize f ( X
→ )

Subject to g ( X
→ ) ≤ 0

where f ( X
→ )  and g ( X

→ )  are the objective function and the 
constraints, respectively. X

→ L  and X
→ U  are the lower bound 

and the upper bound of the design variables, X
→

, respectively 
[23].

In this optimization problem of concrete gravity dams, the 
cross-section area of gravity dam body is considered as 
objective function, f ( X

→ )  , that should be minimized. The cross-
section area of concrete gravity dam can be determined as 
follows:

f ( X
→ ) = f (A ) = (hb ∗ bc ) + (bx − bc ) ∗ (hb − ht )

2
(6)

where f (A )  is cross-section area, and hb , bc , bx  and ht  are the 
design variables showed in Figure 2.

In the present study, the behavior and stability constraints are 
considered as the problem constraints, g ( X

→ ) . The behavior 
constraints consist on the safety factor against floating, 
overturning and sliding, calculated by Equations (2), (3) and (4)

1.3 − FSF ≤ 0

1.5 − FSO ≤ 0
1.0 − FSS ≤ 0 

 

4. The Optimization Algorithm (Optdam)

4.1 Genetic Algorithm (GA)

Genetic algorithm (GA) is a method for solving both constrained 
and unconstrained optimization problems that is based on 
natural selection, the process that drives biological evolution. It 
is an optimization and search technique based on the principles 
of genetics and natural selection [21]. An individual is any point 
fitness function can be evaluated [1].

The value of the fitness function for an individual is its score. A 
population is an array of individuals. At each iteration, the 
genetic algorithm performs a series of computations on the 
current population to produce a new population. Each 
successive population is called a new generation. The best 
fitness value for a population is the smallest fitness value for 
any individual in the population [15].

To create the next generation, the genetic algorithm selects 
certain individuals in the current population, called parents, and 
uses them to create individuals in the next generation, called 
children. Typically, the algorithm is more likely to select parents 
that have better fitness values [28].

A GA allows a population composed of many individuals to 
evolve under specified selection rules to a state that maximizes 
the fitness (minimizes the cost function). The genetic algorithm 
repeatedly modifies a population of individual solutions [27].

Evolution is the basis of Genetic Algorithms. The current variety 
and success of species is a good reason for believing in the 
power of evolution. Species are able to adapt to their 
environment. They have developed to complex structures that 
allow the survival in different kinds of environments. Mating 
and getting offspring to evolve belong to the main principles of 
the success of evolution. These are good reasons for adapting 
evolutionary principles to solving optimization problems [25].

It presumes that the potential solution of a problem is an 
individual and can be represented by a set of parameters. These 
parameters are regarded as the genes of a chromosome and 
can be structured by a string of values in binary form. A positive 
value, generally known as fitness value, is used to reflect the 
degree of “good-ness” of the chromosome for solving the 
problem, and this value is closely related to its objective value 
[26].

At each step, the genetic algorithm selects individuals at 
random from the current population to be parents and uses 
them to produce the children for the next generation. They 
combine survival of the fittest among string structures with a 
structured yet randomized information exchange search 
algorithm with some of innovative flair of human search [16]. 
Over successive generations, the population evolves toward an 
optimal solution.
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It can be applied to solve a variety of optimization problems 
that are not well suited for standard optimization algorithms, 
including problems in which the objective function is 
discontinuous, nondifferentiable, stochastic, or highly 
nonlinear. The genetic algorithm can address problems of 
mixed integer programming, where some components are 
restricted to be integer-valued [10].

The genetic algorithm differs from a classical, derivative-based, 
optimization algorithm in two main ways. First, classical 
algorithms generate a single point at each iteration. The 
sequence of points approaches an optimal solution, GA 
generates a population of points at each iteration and the best 
point in the population approaches an optimal solution. The 
second difference is that classical algorithms selects the next 
point in the sequence by a deterministic computation. Instead, 
GA selects the next population by computation which uses 
random number generators.

4.2 Penalty function

In generic search methods, most applications of GAs to 
constraint optimization problems have used the penalty 
function approach of handling constraints. The penalty function 
approach involves a number of penalty parameters which must 
be set right in any problem to obtain feasible solutions [22].

It uses the penalty function in Equation (7), where infeasible 
solutions are compared based only on their constraint violation 
[8]

F ( X
→ ) = { f ( X

→ ), &if gj ( X
→ ) ≥ 0 ∀j = 1, 2, …m ,

fmax + ∑
j =1

m

Rj ⟨gj ( X
→ ) ⟩ Otherwise

(7)

where F ( X
→ )  is the penalty function, f ( X

→ )  and g ( X
→ ) , as 

shown in section 3, are the objective function and the 
constraints, respectively. Hence, ⟨gj ( X

→ ) ⟩  denotes the 
absolute value of the operand, if the operand is negative and 
returns a value zero, otherwise. The parameter Rj is the penalty 
parameter of the jh  inequality constraint. The purpose of a 
penalty parameter Rj  is to make the constraint violation gj ( X

→ )  
of the same order of magnitude as the objective function value 
f ( X

→ )  [9].

The parameter fmax  is the objective function value of the worst 
feasible solution in the population. Thus, the fitness of an 
infeasible solution not only depends on the amount of 
constraint violation, but also on the population of solutions at 
hand. However, the fitness of a feasible solution is always fixed 
and is equal to its objective function value.

4.3 Optdam

Bearing in mind the importance of studying dams and 
application for evolutionary computing methods of 
optimization, the aim now is to comment on the Optdam 
program developed in Matlab. This program allows finding an 
optical dam’s cross section. The program was developed to 
cover general cross sections of dams in terms of geometry as 
showed in Figure 2.

First, a set of solutions is initialized and denoted as the initial 
population. This initialization is recommended to randomly 
cover the whole solution space or to model and incorporate 
expert knowledge. The representation determines the 

initialization process. Initial population is shown in Figure 3 [16].

Figure 3. Initial Population

 After initial population, GA scores each member of the current 
population by computing its fitness value, scales the raw fitness 
scores to convert them into a more usable range of values, then 
selects members, called parents, based on their fitness.

Some of the individuals in the current population that have 
lower fitness are chosen as elite [17]. These elite individuals are 
taken as parents for the next population. Hence, children are 
produced either by making random changes to a single parent, 
mutation, or by combining the vector entries of a pair of 
parents, crossover. Therefore, GA replaces the current 
population with the children to form the next generation [5] and 
[6]. The conception of the new generations is presented in 
Figure 4.
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Figure 4. Creating the next generation

 In summary, the GA in Matlab uses three main types of rules at 
each step to create the next generation from the current 
population:

Selection rules select the individuals, called parents, 
that contribute to the population at the next 
generation.

Crossover rules combine two parents to form children 
for the next generation.

Mutation rules apply random changes to individual 
parents to form children.

The algorithm stops when one of the stopping criteria is met. 
Figure 5 shown the convergence process. The GA parameters of 
Optdam program are shown in Table 1. Figure 6 shows a 
flowchart illustrating the process.

Figure 5. Convergence process

Table 1. GA Information

GA Parameters

Parameters Adopted

Population type Double vector

Population size 100

Fitness scaling Rank

Elite count 40

Cross-over fraction 0.8

Mutation function Constraint dependent

Cross-over function Constraint dependent

Migration direction forward

Migration fraction 0.2

Migration interval 20

Initial penalty 10

Penalty factor 100

Maximum number of generations 100

Stall generations 50

Function tolerance 10-6

Constraint tolerance 10-3

Stall time 60 (s)

Compile timeout 180 (s)
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Figure 6. Optimization algorithm

5. Example: Idealized cross-section of the Belo 
Monte HPP
The Belo Monte Hydropower Plant has a retaining wall between 
the main intake and the earth/rockfill dam, which is usually 
designed following the same criteria as a concrete gravity dam. 
In order to present the applicability of the Optdam programa in 
a practical situation, an optimization study using Optdam 
program is applied on cross-section of the retaining wall. The 
initial design of Belo Monte cross-section is shown in Figure 7.

Figure 7. Belo Monte. Cross-section of a Belo Monte retaining wall. Dimension in 
meters

 The material properties for the calculation were taken from 
commonly used values for dams built in the Belo Monte region. 

They are included in Table 2.

Table 2. Materials properties

The properties of materials

Material Value Unit

Concrete’s Young Modulus 240.00 MPa

Concrete resistance 25.00 MPa

Poison’s ratio of concrete 0.2 -

Mass density of concrete 2500 Kg/m3

Speed of pressure wave 1440 m/s

Wave reflection coefficient 0.9 -

Rock friction angle π /5 rad

Partial friction safety factor 1.5 -

Reduced coefficient of friction 0.7 -

Elasticity modulus of rock 27.580 MPa

Poison’s ratio of foundation 0.2 -

 The analyzed section presents the geometric parameters shown 
in Table 3 which also includes other important parameters for 
optimizing the section, such as hydrostatic loads and the search 
space defined from the minimum dimensions defined by the 
project specifications (such as free-board).

In this way, the lower boundary of the section is defined by the 
hydrological parameters, topographic conditions, terrain and 
other specific constraints that change. Hence, the upper 
boundary is defined by the designer, based on experience. In 
case little information is available, wide ranges can be adopted, 
since the program is able to search for the optimal.

Since the actual values of the hydrological parameters and 
other constraints are not known, for the example discussed 
here the dimensions for the lower boundary were hypothetically 
defined. In the other hand, the values of the upper border were 
defined by the values of the real section executed.

Table 3 also shows the safety factors obtained for the initial 
cross section. Since they are higher than those recommended 
by the design criteria, the geometry can be optimized, finding 
safety factors close to the minimum required.

Table 3. Dam information

Geometry parameters

Parameter Value Unit

Cross section area 2410 m2

Concrete volume 2410000 m3

Hydrostatic loads

Parameter Value Unit

Upstream water 70 m

Downstream water 5 m

Search Space

Design variable Lower bound (m) Upper bound (m)

hb 75 80

bc 2 10

bx 16 56

ht 2 10

Safety factors

Factor Design criteria request Achieved values

FSF 3.00 4.52

FSO 1.50 2.08

FSS 1.00 1.32

 It is worth noting that this is an example that refers to a dam 
designed and executed, not being configured as a case study, 
since the values of the constants (cohesion, angle of friction, 
specific gravity of concrete, etc.) among other specificities of the 
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project are not known with exactness.

6. Results
The optimum design of the cross-section based on retaining-
wall of Belo Monte HPP is given in Table 4. By comparing the 
solution obtained for the cross-section with the GA it's possible 
to note that the concrete volume can be significantly reduced.

Table 4. Optimization results

Optimum designs of the dam obtained by Optdam (GA)

Design variable Value Unit

hb 78 m

bc 7 m

bx 43 m

ht 7 m

FSF 4.5062 -

FSO 1.5001 -

FSS 1.0030 -

Cross section area 1824 m2

Concrete savings 586000 m3

savings percentage 24.31 %

 In order to limit the computational cost and to streamline the 
section optimization process, four stop criteria were defined for 
Optdam. They are presented in Table 1 along with the other 
program information. In order to make the program's 
functionality clearer, the stopping criteria are further analyzed 
here. The Optdam’s stopping criteria are stall generations, stall 
time, maximum number of generations and compile timeout.

Stall generations defines the number of generations in which 
there is no significant gain in the optimization of the objective 
function. Stall time defines the timeout in which there are 
generations without significant gain in optimization. Maximum 
number of generations specifies the maximum number of 
iterations the genetic algorithm performs and compile timeout 
defines the maximum time the program can take to find the 
optimal solution. Figure 8 shows the operation of the stop 
criteria in the example.

Figure 8. Stopping criteria

 Due to the rapid convergence of GA, already in the first 
generations tends to obtain satisfactory results. This makes the 
number of fifty stall generations a high measure of reliability 
that global minimum has been achieved. Since stall generations 
is the decisive stopping criterion, it is noted that the stopping 
criteria validate each other. The graph in Figure 9 presents the 
best cross section area value of the objective function in each 
generation versus the generation number. The best values and 
mean values are highlighted for each iteration.

Figure 9. GA operation

 It can be concluded that the methodology is robust for the 
problem at hand (reduction of area): As mentioned before, the 
best individuals in the first generations already feature low 
values of the cross section area.

Figure 10 shows the optimized cross section within the actual 
section. The red area shows the savings of area obtained in the 
use of Optdam. The optimal shape shown in Figure 10 implies a 
24.31% reduction in cross-section area, considering the shear 
resistance adopted.

Figure 10. Optimized section. Dimensions in meters

7. Conclusions
Cross-section optimization is one goal of dam designers. Dam 
designing must be such that not only satisfies sustaining 
condition, but also leads to minimum costs and excessive 
concrete volumes. An efficient optimization procedure is 
introduced to find the optimal shapes of concrete gravity dams 
using genetic algorithm in Matlab software. The concrete 
gravity dam body is treated as a two-dimensional structure.

An example based on a real structure has been presented. 
Results demonstrated the ability of these algorithms for this 
type of continuous optimization problem. Status of optimally 
designed dam for the algorithm is also provided for better 
assessment of safety factors. It is shown that all the constraints 
are satisfied.

This research provides useful optimization formulations for 
concrete gravity dams and can be extended to other hydraulic 
structures. The final result is a genetic algorithm program for 
shape optimization of concrete gravity dams, that is simple 
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from a mathematical point of view and is able to work with 
dams under different load and boundary conditions. In the 
presented example, the proposed method resulted in more 
than 20% reduction in cross-section area and consequently 
resulted in more than 20% reduction in with low computational 
effort.

However, it is worth mentioning that the program developed 
here makes use of the global stability conditions as limiting for 
the evaluation and selection of the cross sections, being this 
necessary but not sufficient condition in a concrete dam design 
by gravity.

Although some authors suggest that once the overall stability 
criteria are met, the stress criterion will also be satisfied [19], in 
real design situations, the cross-section obtained with Optdam 
should be later evaluated for stress criteria (usually using finite 
elements) and specific conditions that vary with each project 
(earthquakes, silting, etc.).
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