27,250 research outputs found

    Convex Relaxations for Gas Expansion Planning

    Full text link
    Expansion of natural gas networks is a critical process involving substantial capital expenditures with complex decision-support requirements. Given the non-convex nature of gas transmission constraints, global optimality and infeasibility guarantees can only be offered by global optimisation approaches. Unfortunately, state-of-the-art global optimisation solvers are unable to scale up to real-world size instances. In this study, we present a convex mixed-integer second-order cone relaxation for the gas expansion planning problem under steady-state conditions. The underlying model offers tight lower bounds with high computational efficiency. In addition, the optimal solution of the relaxation can often be used to derive high-quality solutions to the original problem, leading to provably tight optimality gaps and, in some cases, global optimal soluutions. The convex relaxation is based on a few key ideas, including the introduction of flux direction variables, exact McCormick relaxations, on/off constraints, and integer cuts. Numerical experiments are conducted on the traditional Belgian gas network, as well as other real larger networks. The results demonstrate both the accuracy and computational speed of the relaxation and its ability to produce high-quality solutions

    Optimization of the long-term planning of supply chains with decaying performance

    Get PDF
    This master's thesis addresses the optimization of supply and distribution chains considering the effect that equipment aging may cause over the performance of facilities involved in the process. The decaying performance of the facilities is modeled as an exponential equation and can be either physical or economic, thus giving rise to a novel mixed integer non-linear programming (MINLP) formulation. The optimization model has been developed based on a typical chemical supply chain. Thus, the best long-term investment plan has to be determined given production nodes, their production capacity and expected evolution; aggregated consumption nodes (urban or industrial districts) and their lumped demand (and expected evolution); actual and potential distribution nodes; distances between the nodes of the network; and a time horizon. The model includes the balances in each node, a general decaying performance function, and a cost function, as well as constraints to be satisfied. Hence, the investment plan (decision variables) consists not only on the start-up and shutdown of alternative distribution facilities, but also on the sizing of the lines satisfying the flows. The model has been implemented using GAMS optimization software. Results considering a variety of scenarios have been discussed. In addition, different approaches to the starting point for the model have been compared, showing the importance of initializing the optimization algorithm. The capabilities of the proposed approach have been tested through its application to two case studies: a natural gas network with physical decaying performance and an electricity distribution network with economic decaying performance. Each case study is solved with a different procedure to obtain results. Results demonstrate that overlooking the effect of equipment aging can lead to infeasible (for physical decaying performance) or unrealistic (for economic decaying performance) solutions in practice and show how the proposed model allows overcoming such limitations thus becoming a practical tool to support the decision-making process in the distribution secto

    Robust Multi-Objective Sustainable Reverse Supply Chain Planning: An Application in the Steel Industry

    Get PDF
    In the design of the supply chain, the use of the returned products and their recycling in the production and consumption network is called reverse logistics. The proposed model aims to optimize the flow of materials in the supply chain network (SCN), and determine the amount and location of facilities and the planning of transportation in conditions of demand uncertainty. Thus, maximizing the total profit of operation, minimizing adverse environmental effects, and maximizing customer and supplier service levels have been considered as the main objectives. Accordingly, finding symmetry (balance) among the profit of operation, the environmental effects and customer and supplier service levels is considered in this research. To deal with the uncertainty of the model, scenario-based robust planning is employed alongside a meta-heuristic algorithm (NSGA-II) to solve the model with actual data from a case study of the steel industry in Iran. The results obtained from the model, solving and validating, compared with actual data indicated that the model could optimize the objectives seamlessly and determine the amount and location of the necessary facilities for the steel industry more appropriately.This article belongs to the Special Issue Uncertain Multi-Criteria Optimization Problem
    corecore