247 research outputs found

    Investigation of a non-linear suspension in a quarter car model

    Get PDF
    This thesis presents the study of a quarter car model which consists of a two-degree-of-freedom (2 DOF) with a linear spring and a nonlinear spring configuration. In this thesis, the use of non-linear vibration attachments is briefly explained, and a survey of the research done in this area is also discussed. The survey will show what have been done by the researches in this new field of nonlinear attachments. Also, it will be shown that this topic was not extensively researched and is a new type of research where no sufficient experimental work has been applied. As an application, a quarter car model was chosen to be investigated. The aim of the Thesis is to validate theoretically and experimentally the use of nonlinear springs in a quarter car model. Design the new type of suspension and insert it in the experimental set up, built from the ground up in the laboratory. A novel criterion for optimal ride comfort is the root mean square of the absolute acceleration specified by British standards ISO 2631-1997. A new way to reduce vibrations is to take advantage of nonlinear components. The mathematical model of the quarter-car is derived, and the dynamics are evaluated in terms of the main mass displacement and acceleration. The simulation of the car dynamics is performed using Matlab® and Simulink®. The realization of vibration reduction through one-way irreversible nonlinear energy localization which requires no pre-tuning in a quarter car model is studied for the first time. Results show that the addition of the nonlinear stiffness decreases the vibration of the sprung mass to meet optimal ride comfort standards. As the passenger is situated above the sprung mass, any reduction in the sprung mass dynamics will directly have the same effect on the passenger of the vehicle. The future is in the use of a nonlinear suspension that could provide improvement in performance over that realized by the passive, semi active and active suspension. The use of a quarter car model is simple compared to a half car model or a full car model, furthermore in the more complex models you can study the heave and the pitch of the vehicle. For the initial study of the nonlinear spring the quarter car model was sufficient enough to study the dynamics of the vehicle. Obtaining an optimum suspension system is of great importance for automotive and vibration engineer involved in the vehicle design process. The suspension affects an automobile’s comfort, performance, and safety. In this thesis, the optimization of suspension parameters which include the spring stiffness and damper coefficient is designed to compromise between the comfort and the road handling. Using Genetic algorithm an automated optimization of suspension parameters was executed to meet performance requirements specified. Results show that by optimizing the parameters the vibration in the system decreases immensely

    Harmonik etki altındaki sönümlü yapılar için geleneksel olmayan ayarlı kütle sönümleyicinin optimizasyonu

    Get PDF
    Tuned mass dampers (TMDs) are used to reduce dynamic vibrations of structures under environmental loads such as wind or seismic excitation. In this paper, the optimum design of non traditional tuned mass dampers (NT-TMD) attached to a damped main structure under harmonic excitation was investigated. Unlike the traditional TMD, the damping element in NT-TMD is directly connected to the ground. In this study, the effectiveness of NT-TMD on the attenuation of vibrations on the damped main system under harmonic load is investigated. The optimum parameters of the NT-TMD are obtained by using the hybrid pattern search (HPS) technique. According to numerical results, it is seen that non-traditional TMD is more effective than traditional TMD in reducing vibration.Ayarlı kütle sönümleyiciler (AKS) rüzgâr ve sismik etkiler gibi çevresel yükler altındaki yapıların titreşimlerinin azaltılmasında kullanılmaktadır. Bu yazıda, harmonik etki altındaki sönümlü bir ana yapıya eklenen geleneksel olmayan ayarlanmış kütle sönümleyicilerin optimum tasarımı araştırılmıştır. Geleneksel AKS’den farklı olarak, sönüm elamanı direk olarak yere bağlanmaktadır. Geleneksel olmayan AKS’nin optimum parametreleri hibrit model arama tekniği kullanılarak elde edilmiştir. Numerik sonuçlar titreşim azaltılmasında geleneksel olmayana AKS’nin geleneksel AKS’ye göre daha etkili olduğu görülmektedir

    Launching dynamic analysis for tank on the move based on dynamic simulation

    Get PDF
    Achieving high firing accuracy of tank on the move is challenging. For improving firing accuracy, better understanding launching dynamic behavior of tank firing on the move is required. This study established a rigid-flexible coupling dynamic model of tank firing on the move. Thereinto, the barrel flexibility was considered based on the FFlex body technology, and the contact-impact algorithm was used to describe the projectile-barrel interaction. With the sinusoid superposition method, a three-dimensional road surface spectrum file considering the coherence of left and right tracks was created. Based on the results obtained in simulation, this study discussed the dynamic behaviors of a tank gun system such as the barrel curvature and the influence of projectile-barrel interaction on firing accuracy of tank firing on the move, in which the factors including projectile type, driving speed and road roughness were taken into consideration. The results indicated that the barrel curvature and the muzzle vibration do not increase simply with the increase of road roughness and driving speed as common sense

    Heat Transfer Modelling and Simulation of a 120 mm Smoothbore Gun Barrel During Interior Ballistics

    Get PDF
    Understanding the heat transfer phenomenon during interior ballistics and consequently presenting a realistic model is very important to predict the temperature distribution inside the cannon barrel, which influences the gun wear and the cook-off. The objective of this work is to present a new detailed numerical model for the prediction of thermal behaviour of a cannon barrel by combining PRODAS interior ballistics simulation with COMSOL simulation. In this study, a numerical model has been proposed for the heating behaviour of a 120 mm smoothbore cannon barrel, taking into account the combustion equation of the JA-2 propellant. Temperature dependent thermophysical properties of product gases were used for the calculation of the convective heat transfer coefficient inside the barrel. Projectile position, velocity of the projectile, gas temperature inside the barrel, volume behind the projectile and mass fraction during interior ballistics have been obtained by PRODAS software and used in the numerical model performed by COMSOL multiphysics finite element modelling and simulation software. Temperature simulations show that maximum wall temperature inside the cannon barrel is observed after 3 ms from fire, when maximum value of the convective heat transfer coefficient inside the barrel is observed. The results reveal that the convective heat transfer coefficient of burned gases inside the gun has major effect than the burned gas temperature on the heat transfer phenomenon

    Application of an Improved Genetic Algorithm for Optimal Design of Planar Steel Frames

    Get PDF
    Genetic Algorithm (GA) is one of the most widely used optimization algorithms. This algorithm consists of five stages, namely population generation, crossover, mutation, evaluation, and selection. This study presents a modified version of GA called Improved Genetic Algorithm (IGA) for the optimization of steel frame designs. In the IGA, the rate of convergence to the optimal solution is increased by splitting the population generation process to two stages. In the first stage, the initial population is generated by random selection of members from among AISC W-shapes. The generated population is then evaluated in another stage, where the member that does not satisfy the design constraints are replaced with stronger members with larger cross sectional area. This process continues until all design constraints are satisfied. Through this process, the initial population will be improved intelligently so that the design constraints fall within the allowed range. For performance evaluation and comparison, the method was used to design and optimize 10-story and 24-story frames based on the LRFD method as per AISC regulations with the finite element method used for frame analysis. Structural analysis, design, and optimization were performed using a program written with MATLAB programming language. The results show that using the proposed method (IGA) for frame optimization reduces the volume of computations and increases the rate of convergence, thus allowing access to frame designs with near-optimal weights in only a few iterations. Using the IGA also limits the search space to the area of acceptable solutions

    Optimisation of racing car suspensions featuring inerters

    Get PDF
    Racing car suspensions are a critical system in the overall performance of the vehicle. They must be able to accurately control ride dynamics as well as influencing the handling characteristics of the vehicle and providing stability under the action of external forces. This work is a research study on the design and optimisation of high performance vehicle suspensions using inerters. The starting point is a theoretical investigation of the dynamics of a system fitted with an ideal inerter. This sets the foundation for developing a more complex and novel vehicle suspension model incorporating real inerters. The accuracy and predictability of this model has been assessed and validated against experimental data from 4- post rig testing. In order to maximise overall vehicle performance, a race car suspension must meet a large number of conflicting objectives. Hence, suspension design and optimisation is a complex task where a compromised solution among a set of objectives needs to be adopted. The first task in this process is to define a set of performance based objective functions. The approach taken was to relate the ride dynamic behaviour of the suspension to the overall performance of the race car. The second task of the optimisation process is to develop an efficient and robust optimisation methodology. To address this, a multi-stage optimisation algorithm has been developed. The algorithm is based on two stages, a hybrid surrogate model based multiobjective evolutionary algorithm to obtain a set of non-dominated optimal suspension solutions and a transient lap-time simulation tool to incorporate external factors to the decision process and provide a final optimal solution. A transient lap-time simulation tool has been developed. The minimum time manoeuvring problem has been defined as an Optimal Control problem. A novel solution method based on a multi-level algorithm and a closed-loop driver steering control has been proposed to find the optimal lap time. The results obtained suggest that performance gains can be obtained by incorporating inerters into the suspension system. The work suggests that the use of inerters provides the car with an optimised aerodynamic platform and the overall stability of the vehicle is improved

    Aluminium foam production control by using a combined fuzzy-genetic algorithm model

    Get PDF
    Abstract This study deals with the proposal of a combined fuzzy-genetic algorithm model able to describe the inherent uncertainties related to the manufacture of aluminium foams by using the dissolution and sintering process. The combined method allows taking into account both the uncertainty related to the model and the statistical process variability, with the aim of controlling the capability of this material at absorbing compression energy, for different set of process parameters. The use of genetic algorithms allows the optimization of the fuzzy supports in order to take into account most of the experimental data in combination with the smallest uncertainty

    Proceedings of the Twenty Second Nordic Seminar on Computational Mechanics

    Get PDF

    A Summary of NASA Rotary Wing Research: Circa 20082018

    Get PDF
    The general public may not know that the first A in NASA stands for Aeronautics. If they do know, they will very likely be surprised that in addition to airplanes, the A includes research in helicopters, tiltrotors, and other vehicles adorned with rotors. There is, arguably, no subsonic air vehicle more difficult to accurately analyze than a vehicle with lift-producing rotors. No wonder that NASA has conducted rotary wing research since the days of the NACA and has partnered, since 1965, with the U.S. Army in order to overcome some of the most challenging obstacles to understanding the behavior of these vehicles. Since 2006, NASA rotary wing research has been performed under several different project names [Gorton et al., 2015]: Subsonic Rotary Wing (SRW) (20062012), Rotary Wing (RW) (20122014), and Revolutionary Vertical Lift Technology (RVLT) (2014present). In 2009, the SRW Project published a report that assessed the status of NASA rotorcraft research; in particular, the predictive capability of NASA rotorcraft tools was addressed for a number of technical disciplines. A brief history of NASA rotorcraft research through 2009 was also provided [Yamauchi and Young, 2009]. Gorton et al. [2015] describes the system studies during 20092011 that informed the SRW/RW/RVLT project investment prioritization and organization. The authors also provided the status of research in the RW Project in engines, drive systems, aeromechanics, and impact dynamics as related to structural dynamics of vertical lift vehicles. Since 2009, the focus of research has shifted from large civil VTOL transports, to environmentally clean aircraft, to electrified VTOL aircraft for the urban air mobility (UAM) market. The changing focus of rotorcraft research has been a reflection of the evolving strategic direction of the NASA Aeronautics Research Mission Directorate (ARMD). By 2014, the project had been renamed the Revolutionary Vertical Lift Technology Project. In response to the 2014 NASA Strategic Plan, ARMD developed six Strategic Thrusts. Strategic Thrust 3B was defined as the Ultra-Efficient Commercial VehiclesVertical Lift Aircraft. Hochstetler et al. [2017] uses Thrust 3B as an example for developing metrics usable by ARMD to measure the effectiveness of each of the Strategic Thrusts. The authors provide near-, mid-, and long-term outcomes for Thrust 3B with corresponding benefits and capabilities. The importance of VTOL research, especially with the rapidly expanding UAM market, eventually resulted in a new Strategic Thrust (to begin in 2020): Thrust 4Safe, Quiet, and Affordable Vertical Lift Air Vehicles. The underlying rotary wing analysis tools used by NASA are still applicable to traditional rotorcraft and have been expanded in capability to accommodate the growing number of VTOL configurations designed for UAM. The top-level goal of the RVLT Project remains unchanged since 2006: Develop and validate tools, technologies and concepts to overcome key barriers for vertical lift vehicles. In 2019, NASA rotary wing/VTOL research has never been more important for supporting new aircraft and advancements in technology. 2 A decade is a reasonable interval to pause and take stock of progress and accomplishments. In 10 years, digital technology has propelled progress in computational efficiency by orders of magnitude and expanded capabilities in measurement techniques. The purpose of this report is to provide a compilation of the NASA rotary wing research from ~2008 to ~2018. Brief summaries of publications from NASA, NASA-funded, and NASA-supported research are provided in 12 chapters: Acoustics, Aeromechanics, Computational Fluid Dynamics (External Flow), Experimental Methods, Flight Dynamics and Control, Drive Systems, Engines, Crashworthiness, Icing, Structures and Materials, Conceptual Design and System Analysis, and Mars Helicopter. We hope this report serves as a useful reference for future NASA vertical lift researchers
    corecore