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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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This study deals with the proposal of a combined fuzzy-genetic algorithm model able to describe the inherent uncertainties related to the 
manufacture of aluminium foams by using the dissolution and sintering process. The combined method allows taking into account both the 
uncertainty related to the model and the statistical process variability, with the aim of controlling the capability of this material at absorbing 
compression energy, for different set of process parameters. The use of genetic algorithms allows the optimization of the fuzzy supports in 
order to take into account most of the experimental data in combination with the smallest uncertainty.
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1. Introduction

Optimization in engineering problems has always been of 
great interest for solving complex and nonlinear real-world 
problems [1–3]. Among the available computational methods 
that can be used to solve optimization problems in many fields 
such as engineering and computer science [4–9], economic 
management and supply chain management [10], empirical 
methods are considered particularly useful tools, and very 
often the only available methods that can be used to speed up 
the characterization of the processes and therefore their 
optimization. This is due to the strong dynamic nature of the 
processes which are characterized by a high number of 
parameters and possible interactions among them. It is worth 
to state here that these empirical models exist only thanks to 
the experiments and are valid only within the space that is 
tested. In fact, they are exclusively built and then validated on 
the basis of the experimental findings, within the intervals of 
the investigated parameters.

In general, the decisions to be made to set-up the process 
are complex, since a wide range of alternative options must be 
evaluated, and the choice of the best one is frequently made on 
a set of conflicting criteria [11–13]. There are very different 
decision-making situations in the manufacturing environment 
and the evaluation of alternative process designs in order to 
meet the productivity and final quality requirements is one of 
the most relevant. In order to obtain effective operative and 
applicable solutions, we must consider that there will be 
aspects we are not aware of, i.e. that we do not know for 
whatever reason, among which are the lack of knowledge or 
the ignorance of what we do not know [14]. For this reason, 
there is the need for mathematical tools able to guide the 
decision-making process in environments characterized by 
high and different sources of uncertainty. The inherent attitude 
of fuzzy logic to perform decision-making and deduce control 
actions under complex and uncertain environments [15] has 
led to the study of a new field of decision analysis, the fuzzy 
decision-making. In particular, the fuzzy technique is able to 
take into account both the random error, e.g. that is associated 
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to the variability of the process, and the systematic error, e.g. 
that is due to the simplification introduced in the model thus 
involving in lack of knowledge. The fuzzy model is therefore 
able to propagate all the sources of uncertainty at the input 
level to the output quantities.

In the last decades, metal foams have become increasingly 
attractive for their interesting physical, mechanical, thermal, 
electrical and acoustic properties [16–20]. Foam combines 
part of the characteristics of a bulk metal with the structural 
advantages of a foam, offering potential for lightweight 
structures, for energy absorption, and for thermal 
management. Both the attention and the progress in 
crashworthiness of vehicles have experienced a significant 
improvement, focusing the design on the passenger safety. 
The current philosophy adopted in the automobile industry is 
to structurally harden the passenger compartment against 
collapse and intrusion. Then, the features of metallic foams 
make them suitable to applications requiring high stiffness-to-
weight ratio and efficient energy absorption. The challenge is 
to employ these innovative materials in a controlled manner 
[21]. The improvement of many manufacturing techniques has 
allowed the development of different foaming processes, 
making it possible to easily control the shape and distribution 
of the space-holders as well as the morphology of the porosity 
in the foams, promoting an improved repeatability, which 
allows designing the material properties by simply choosing 
the characteristics and the amount of the space-holder [22].

Among the different process-routes developed so far, the 
Dissolution and Sintering Process (DSP) is a valuable 
alternative thanks to its flexibility and capability to guarantee 
an easy control of the shape and distribution of the space-
holders as well as the morphology of the porosity in the foams
[22]. However, the need to tune one by one all the process 
parameters in order to meet the desired requirements for the 
considered application, consumes a lot of resources in terms of 
time, efforts and money. For this reason, empirical methods 
can be applied in order to find the optimal operational 
parameters. On the other hand, since this kind of process 
suffers from a strong process variability in terms of density of 
pores and their distribution, traditional statistical approaches 
may fail at identifying which factors are the most influential. 
On the other hand, models that include all the factors and their
interactions may be unsuitable for modelling and prediction, 
due to their complexity. Moreover, even complicated models 
still will represent only the median process leaving the user 
with little information about the dispersion around the mean. 
For this reason, more uncertain models based on expert 
systems such the fuzzy logic can be considered a valuable
alternative for modelling the experimental data and for 
simulation purposes.

In this context, the present study is aimed at proposing a 
fuzzy uncertain model able to describe the inherent 
uncertainties related to a DSP foam manufacturing process, 
with the aim of predicting the resulting absorbing energy 
properties and the compressive deformation behaviour, for 
different set of process parameters. In particular, the use of the 
genetic algorithm allows the optimization of the support of the 
fuzzy model in order to take into account most of the 
experimental data in combination with the smallest 

uncertainty level. Then, the input uncertainty, related to both 
the process variability and the chosen model, is propagated to 
the output variables by the Transformation Method [23]. 
Finally, the process maps obtained by the application of the 
fuzzy model is used to select operational parameters in order 
to satisfy the requirement of the highest energy absorption and 
the lowest deformation in combination with the lowest level of 
uncertainty.

2. Methods

The Dissolution and Sintering Process [22] consists of four 
main steps (see Fig. 1): i) mixing the starting metal powder 
with the Space-Holder Particles (SHP); ii) compacting the 
mixture in order to obtain a green compact; iii) dissolution of 
the SHP with an appropriate solvent in order to obtain a 
cellular structure; iv) sintering of the latter structure to 
produce metallurgical bond among the metallic powders.

The overall mechanical properties of the samples were 
characterized by means of compression tests performed with a
static test machine (MTS model Alliance RT/50). Load speed 
was set at 1 mm/min. Fig. 2 reports the typical output of the 
compression tests performed.

As shown in Fig. 2, the compressive deformation 
behaviour ΔL is the sum of the deformation during the 
elastoplastic and extended plateau zone, while the mechanical 
energy absorption E is represented by the dashed area.

           

Fig. 1. Highlights of the DSP process.

Fig. 2. Typical output of the compression tests performed.
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Among the large number of process parameters, the weight 
percentage of carbamide particles (C%), their mesh size (CMS)
and the compaction speed (S) were varied according to the 
developed full factorial plan based on Design of Experiment, 
which is reported in Table 1. Moreover, in order to assess the 
process variability, 5 repetitions were performed for each 
experimental scenario investigated. It is worth to note that in 
this study, among the pressures examined in [22], only the 
value of 300 MPa was maintained, because of the change in 
shape of the carbamide particles when compacted under 
higher pressure values (i.e. 400 and 500 MPa), which does not 
ensure the realization of homogenous spherical-like cells in 
the foams (as highlighted in Fig. 3 by the dashed red circle).

Table 1. Full factorial plan: 3 terms of C% · 3 terms of CMS · 2 terms of S · 5 
replications = 90 tests.

Control factor Value Unit

C% 40 50 60 wt%
CMS 12 (0.84) 16 (1.19) 20 (1.68) - (μm)

S 1 10 mm/min

3. Results and Discussion

3.1. Experimental and Statistical Analysis

The analysis of the experimental results was carried out by 
means of the ANOVA test, shown in Table 2 and Table 3, in 
which the significant effects (i.e. p-value < 0.05, Π > 5%, F-
value > 3.984 for 1-DoF, F-value > 3.134 for 2-DoF and F-
value > 2.594 for 4-DoF) are highlighted by the bold text.    

Table 2. ANOVA table for the absorbed energy.

Source DoF Adj.SS Adj.MS F-value p-value Π (%)

C% 2 2.82073 1.41036 4045.90 < 0.001 50.02
CMS 2 0.45969 0.22985 659.35 < 0.001 8.15
S 1 0.42745 0.42745 1226.22 < 0.001 7.58
C%*CMS 4 0.35117 0.08779 251.85 < 0.001 6.22
C%*S 2 0.44267 0.22134 634.94 < 0.001 7.85
CMS*S 2 0.92855 0.46427 1331.86 < 0.001 16.47
C%*CMS*S 4 0.18399 0.04600 131.95 < 0.001 3.26
Error 72 0.02510 0.00035 - - 0.45
Total 89 5.63934 - - - -

Table 3. ANOVA table for the compressive deformation.

Source DoF Adj.SS Adj.MS F-value p-value Π (%)

C% 2 0.75359 0.37679 919.91 < 0.001 14.36
CMS 2 0.64436 0.32218 786.58 < 0.001 12.28
S 1 0.11053 0.11053 269.86 < 0.001 2.11
C%*CMS 4 2.03194 0.50799 1240.20 < 0.001 38.72
C%*S 2 0.39850 0.19925 486.45 < 0.001 7.59
CMS*S 2 0.16417 0.08209 200.41 < 0.001 3.13
C%*CMS*S 4 1.11515 0.27879 680.64 < 0.001 21.25
Error 72 0.02949 0.00041 - - 0.56
Total 89 5.24774 - - - -

As reported in the latter tables, the weight percentage of 
carbamide particles was found to be of major influence for 
both the energy and the compressive deformation. In 
particular, increasing C% means decreasing the amount of 
energy the foam can absorb during its compression. This 
result can be attributed to the loss of rigidity of the structure 
due to the massive presence of porosities [24]. On the other 
hand, the low value of contribution percentage of mesh size of 
carbamide particles could suggest the rather low capability of 
such experimental factor to induce systematic variation in the 
energy absorption and deformation. Even compaction speed 
was found to be characterized by a very low contribution, 
especially for the compressive deformation. In any case, the 
understanding of which factor and/or interaction is significant 
or not cannot be drawn by a simple examination of p-values, 
F-values and related contribution percentages. In fact, 
experimental data are nearly homoscedastic. This determines 
Fischer’s factors largely bigger than the corresponding values 
tabulated and do not allow to deduce conclusions about the 
meaningfulness of each investigated factor and interaction
[25]. For this reason, in the present study, a sophisticated 
model based on fuzzy logic with further support of genetic 
algorithms, with the aim of minimizing the conservativeness 
of the model itself, has been selected for modelling the 
experimental data and for simulation purposes.

3.2. Fuzzy Uncertain Modelling

Based on the results of the ANOVA test, an empirical 
model of the foams manufacturing process has been proposed. 
Basically, the numerical formulation can be drawn as follows:
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In the latter equation, Out represents the output variable, 
while the empirical coefficients k0, k1, k2, k3, k4, k5, k6, and k7

are the calibration coefficients of the model, which were 
determined by nonlinear multiple regression analysis based on 
the whole experimental data set (see Table 4).

Fig. 3. SEM images of an open cell aluminium foam: a) compacted 
aluminium powders with carbamide particles; b) precursor after the 

dissolution process. The dashed red circle highlights the ovalization of the 
carbamide particles occurring for increasing compaction pressure.
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meaningfulness of each investigated factor and interaction
[25]. For this reason, in the present study, a sophisticated 
model based on fuzzy logic with further support of genetic 
algorithms, with the aim of minimizing the conservativeness 
of the model itself, has been selected for modelling the 
experimental data and for simulation purposes.

3.2. Fuzzy Uncertain Modelling

Based on the results of the ANOVA test, an empirical 
model of the foams manufacturing process has been proposed. 
Basically, the numerical formulation can be drawn as follows:
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In the latter equation, Out represents the output variable, 
while the empirical coefficients k0, k1, k2, k3, k4, k5, k6, and k7

are the calibration coefficients of the model, which were 
determined by nonlinear multiple regression analysis based on 
the whole experimental data set (see Table 4).

Fig. 3. SEM images of an open cell aluminium foam: a) compacted 
aluminium powders with carbamide particles; b) precursor after the 

dissolution process. The dashed red circle highlights the ovalization of the 
carbamide particles occurring for increasing compaction pressure.
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Table 4. Calibration coefficients.

Calibration coefficient
Value

Absorbed energy Deformation

k0 -1.505162 -2.230613
k1 0.022814 0.0476638
k2 0.157267 0.1306982
k3 0.347218 0.4866902
k4 -0.002149 -0.0022299
k5 -0.004427 -0.0098813
k6 -0.015723 -0.0280976
k7 0.000176 0.0005809

Then, the regression model described by the Equation 1 
was considered as the starting model for the development of 
the related fuzzy regression model, which is written as 
follows:
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In Equation 2, all the coefficients are expressed as 
triangular fuzzy numbers and they are described by 8 α-cuts 
and the interval at each α-level is discretized with 2 points. 
For each α-cut, the transformation method requires, in a 
combinatorial scheme, the evaluation of the number of points 
within the α-cut to the power of the number of fuzzy 
parameters, 8 in this case, leading to 256 evaluations. Then, 
the transformation method requires that, for each α-cut, all 
these models are evaluated obtaining for each of them the 
hypersurface of the output quantity, i.e. absorbed energy or 
total displacement, as a function of the process parameters, 
i.e. weight percentage of carbamide particles, mesh size of 
carbamide particles, and compaction speed. The fuzzy result 
for the given α-cut is then obtained by computing the 
envelope of these hypersurfaces. In other words, the fuzzy 
model is able to describe, as the membership function 
decreases, an increasing number of experimental data and, 
thanks to the genetic algorithm, with the highest degree of 
belonging to the fuzzy set defined by the model itself. In 
particular, such a degree of belonging to the fuzzy set is 
ensured according to the fitness function:
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In the latter equation, fv represents the fitness value, w
represents a weighting term, n refers to the number of data not 
taken into account, HV is the hypervolume covered by the 
combined fuzzy-genetic algorithm model and related to the 
uncertainty dispersion of the considered data. As reported in 
this equation, each term is opportunely normalized in order to 
have two comparable quantities. In particular, the first term is 
normalized by using the total number of the available data N, 
while the second term is normalized by using the hypercube 
including all the data, HC. 

The use of such a fitness function is aimed at controlling 
the highest number of considered data in combination with the 
lowest hypervolume for the lowest level of membership. Fig. 
4 shows the results of the genetic algorithm optimization for 
the absorbed energy. The experimental data are ordered for 
increasing value of absorbed energy obtained by the nominal 
regression model, represented as red asterisks, and the fuzzy 
model results, represented by the shaded area, where lighter 
zones refer to lower membership level. A similar result is 
obtained with respect to the compressive deformation, which 
is not reported for sake of briefness.

As shown in the latter figure, in all the cases it is possible 
to state that the nominal regression model (Equation 1) does
not represent any experimental data (i.e. there are no 
experimental evaluation that can fall over the model surface). 
As the level of uncertainty is increased, measured by a 
decrease in the membership function, the model 
accommodates a larger number of samples with lower 
membership level. Moreover, increasing the weight w, both 
the number of data covered by the model and the width of the 

Fig. 4. Genetic algorithm optimization: a) w = 0.1; b) w = 0.3; c) w = 0.5.

G.S. Ponticelli et al. / Procedia CIRP 00 (2019) 000–000

fuzzy bands increase. However, Fig. 4a shows that a too low 
weight value involves very few data, while if it is too high
(Fig. 4c) the dispersion of the fuzzy uncertainty bands is very 
large, even if the model is able to take into account almost all
the experimental data. Among the different weight values 
investigated, the most suitable was 0.3. It is worth to note here 
that the uncertainty level related to the fuzzy model appears to 
be not constant with respect to the parameter combination 
used during the experimental tests. In fact, the extent of the 
input uncertainty in the model, due to the choice of a specific 
confidence interval, is not only related to the accuracy of the 
regression model adopted, but also to the variability of the 
process. This effect can be therefore considered the reason for 
a non-constant level of uncertainty.

In general, this kind of process maps can be used to select 
operational parameters in order to obtain a desired process 
output. They provide, as additional information, how much 
the uncertainty of the model and the process varies by 
changing operational parameters. This can be obtained by
inverting the model and evaluating the best combination of 
the input parameters in order to satisfy the requirements of the 
highest energy absorption (set over 85% of the maximum)
with the lowest compressive deformation (set below 40% of 
the highest level). This is useful for crashworthiness purposes. 
In fact, in crash situations, in order to ensure the safety of 
occupants inside a vehicle, the restraints structures should 
assure the highest absorption of the kinetic energy, 
minimizing crash loads transferred to the vehicle occupants, 
and on the same time these systems should control the 
deformation areas in order to maintain the adequate space in 
passenger cell and avoid intrusion of the surrounding 
structure.

The results can be represented in two-dimensional graphs 
by varying the input parameters one by one while fixing the 
others. In this way, different maps for each parameter 
combinations can be drawn. Fig. 5 shows the results obtained 
by applying the inverse fuzzy approach fixing the weight 
percentage of the carbamide to 40%, while varying the other 
two terms, i.e. the mesh size of the carbamide and the 
compaction speed. The membership level of the fuzzy model 
is represented as grey shaded area, while the experimental 
data and their occurrences as red dots (the dimension of each 
dot is proportional to the number of occurrences reported as 
green numbers respectively). The maps highlight that for C%

= 40%, in terms of energy absorption (Fig. 5a), it is possible 
to range along the whole axis of the compaction speed at the 
largest size of carbamide particles (CMS = 20) and along the 
whole axis of the mesh size at the highest compaction speed 
(S = 10 mm/min). However, the best result is given by the 
combination of the highest value of S with the smallest size of 
CMS, because it is characterized by the smallest uncertainty 
dispersion width and the darkest uncertain band. On the other 
hand, in terms of deformation (Fig. 5b), the requirement can 
be satisfied for any value, but in order to have the lowest 
uncertainty dispersion, the best combination is given by S = 1 
mm/min and CMS = 12. 

However, since the goal is to find the best solution that 
satisfy both requirements at the same time, the combination of 
the highest compaction speed and the smallest size of 

carbamide particles can be considered the optimum, even if 
the fuzzy maps suggest that in this scenario the uncertainty is 
quite dispersed compared to the average nominal value (see 
Fig. 5c). It is worth to note that also from the experimental 
point of view this can be considered the most valuable 
solution, as highlighted by the occurrences reported as green 
number in Fig. 5c.

It is important to mention here that the fuzzy inverse maps 
obtained for the other parameters combinations are not 
reported because for increasing values of C% was not possible 
to satisfy the requirement of the highest energy absorption for 
values greater than 85%: the maximum absorption energy is 
about 55% of the highest value obtained in the experimental 
tests. This result can be attributed to the fact that increasing 
the percentage of the carbamide particles, there is an increase 
of the pores density of the foam and therefore a weaker 
structure is obtained.

Fig. 5. Fuzzy inverse maps for C% = 40% with: a) E > 85%; b) ΔL < 40%; c) 
combination of E > 85% and ΔL < 40%.
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Table 4. Calibration coefficients.

Calibration coefficient
Value

Absorbed energy Deformation

k0 -1.505162 -2.230613
k1 0.022814 0.0476638
k2 0.157267 0.1306982
k3 0.347218 0.4866902
k4 -0.002149 -0.0022299
k5 -0.004427 -0.0098813
k6 -0.015723 -0.0280976
k7 0.000176 0.0005809

Then, the regression model described by the Equation 1 
was considered as the starting model for the development of 
the related fuzzy regression model, which is written as 
follows:
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In Equation 2, all the coefficients are expressed as 
triangular fuzzy numbers and they are described by 8 α-cuts 
and the interval at each α-level is discretized with 2 points. 
For each α-cut, the transformation method requires, in a 
combinatorial scheme, the evaluation of the number of points 
within the α-cut to the power of the number of fuzzy 
parameters, 8 in this case, leading to 256 evaluations. Then, 
the transformation method requires that, for each α-cut, all 
these models are evaluated obtaining for each of them the 
hypersurface of the output quantity, i.e. absorbed energy or 
total displacement, as a function of the process parameters, 
i.e. weight percentage of carbamide particles, mesh size of 
carbamide particles, and compaction speed. The fuzzy result 
for the given α-cut is then obtained by computing the 
envelope of these hypersurfaces. In other words, the fuzzy 
model is able to describe, as the membership function 
decreases, an increasing number of experimental data and, 
thanks to the genetic algorithm, with the highest degree of 
belonging to the fuzzy set defined by the model itself. In 
particular, such a degree of belonging to the fuzzy set is 
ensured according to the fitness function:
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In the latter equation, fv represents the fitness value, w
represents a weighting term, n refers to the number of data not 
taken into account, HV is the hypervolume covered by the 
combined fuzzy-genetic algorithm model and related to the 
uncertainty dispersion of the considered data. As reported in 
this equation, each term is opportunely normalized in order to 
have two comparable quantities. In particular, the first term is 
normalized by using the total number of the available data N, 
while the second term is normalized by using the hypercube 
including all the data, HC. 

The use of such a fitness function is aimed at controlling 
the highest number of considered data in combination with the 
lowest hypervolume for the lowest level of membership. Fig. 
4 shows the results of the genetic algorithm optimization for 
the absorbed energy. The experimental data are ordered for 
increasing value of absorbed energy obtained by the nominal 
regression model, represented as red asterisks, and the fuzzy 
model results, represented by the shaded area, where lighter 
zones refer to lower membership level. A similar result is 
obtained with respect to the compressive deformation, which 
is not reported for sake of briefness.

As shown in the latter figure, in all the cases it is possible 
to state that the nominal regression model (Equation 1) does
not represent any experimental data (i.e. there are no 
experimental evaluation that can fall over the model surface). 
As the level of uncertainty is increased, measured by a 
decrease in the membership function, the model 
accommodates a larger number of samples with lower 
membership level. Moreover, increasing the weight w, both 
the number of data covered by the model and the width of the 

Fig. 4. Genetic algorithm optimization: a) w = 0.1; b) w = 0.3; c) w = 0.5.
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fuzzy bands increase. However, Fig. 4a shows that a too low 
weight value involves very few data, while if it is too high
(Fig. 4c) the dispersion of the fuzzy uncertainty bands is very 
large, even if the model is able to take into account almost all
the experimental data. Among the different weight values 
investigated, the most suitable was 0.3. It is worth to note here 
that the uncertainty level related to the fuzzy model appears to 
be not constant with respect to the parameter combination 
used during the experimental tests. In fact, the extent of the 
input uncertainty in the model, due to the choice of a specific 
confidence interval, is not only related to the accuracy of the 
regression model adopted, but also to the variability of the 
process. This effect can be therefore considered the reason for 
a non-constant level of uncertainty.

In general, this kind of process maps can be used to select 
operational parameters in order to obtain a desired process 
output. They provide, as additional information, how much 
the uncertainty of the model and the process varies by 
changing operational parameters. This can be obtained by
inverting the model and evaluating the best combination of 
the input parameters in order to satisfy the requirements of the 
highest energy absorption (set over 85% of the maximum)
with the lowest compressive deformation (set below 40% of 
the highest level). This is useful for crashworthiness purposes. 
In fact, in crash situations, in order to ensure the safety of 
occupants inside a vehicle, the restraints structures should 
assure the highest absorption of the kinetic energy, 
minimizing crash loads transferred to the vehicle occupants, 
and on the same time these systems should control the 
deformation areas in order to maintain the adequate space in 
passenger cell and avoid intrusion of the surrounding 
structure.

The results can be represented in two-dimensional graphs 
by varying the input parameters one by one while fixing the 
others. In this way, different maps for each parameter 
combinations can be drawn. Fig. 5 shows the results obtained 
by applying the inverse fuzzy approach fixing the weight 
percentage of the carbamide to 40%, while varying the other 
two terms, i.e. the mesh size of the carbamide and the 
compaction speed. The membership level of the fuzzy model 
is represented as grey shaded area, while the experimental 
data and their occurrences as red dots (the dimension of each 
dot is proportional to the number of occurrences reported as 
green numbers respectively). The maps highlight that for C%

= 40%, in terms of energy absorption (Fig. 5a), it is possible 
to range along the whole axis of the compaction speed at the 
largest size of carbamide particles (CMS = 20) and along the 
whole axis of the mesh size at the highest compaction speed 
(S = 10 mm/min). However, the best result is given by the 
combination of the highest value of S with the smallest size of 
CMS, because it is characterized by the smallest uncertainty 
dispersion width and the darkest uncertain band. On the other 
hand, in terms of deformation (Fig. 5b), the requirement can 
be satisfied for any value, but in order to have the lowest 
uncertainty dispersion, the best combination is given by S = 1 
mm/min and CMS = 12. 

However, since the goal is to find the best solution that 
satisfy both requirements at the same time, the combination of 
the highest compaction speed and the smallest size of 

carbamide particles can be considered the optimum, even if 
the fuzzy maps suggest that in this scenario the uncertainty is 
quite dispersed compared to the average nominal value (see 
Fig. 5c). It is worth to note that also from the experimental 
point of view this can be considered the most valuable 
solution, as highlighted by the occurrences reported as green 
number in Fig. 5c.

It is important to mention here that the fuzzy inverse maps 
obtained for the other parameters combinations are not 
reported because for increasing values of C% was not possible 
to satisfy the requirement of the highest energy absorption for 
values greater than 85%: the maximum absorption energy is 
about 55% of the highest value obtained in the experimental 
tests. This result can be attributed to the fact that increasing 
the percentage of the carbamide particles, there is an increase 
of the pores density of the foam and therefore a weaker 
structure is obtained.

Fig. 5. Fuzzy inverse maps for C% = 40% with: a) E > 85%; b) ΔL < 40%; c) 
combination of E > 85% and ΔL < 40%.
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4. Conclusions

In the present study a combined fuzzy-genetic algorithm 
methodology able to model the experimental data available 
from a metal foam manufacturing process was proposed. The 
aim was to select the manufacturing operational parameters in 
order to satisfy the requirements of the highest absorption of 
energy in combination with the lowest compressive 
deformation. In fact, for the purpose of energy absorption 
during crash of vehicles, it is necessary to maximize the 
energy absorbed during the impact while reducing the 
maximum deformation in order to maintain the adequate 
space in passenger cell. Moreover, the use of such a 
methodology gave as additional information how much the 
uncertainty of the model and the process varies by changing 
those operational parameters.

In particular, the input parameters were considered as 
triangular fuzzy numbers, and the Transformation Method 
was used to handle uncertainty propagation to the response 
variables. The genetic algorithm was used to optimize the 
support of each fuzzy parameter in order to find the best 
combination in terms of the maximum number of 
experimental data considered and the smallest hypervolume 
containing such data.

Inverting the model, by using the largest mesh size of 
carbamide particles and the highest compaction speed the best 
results in terms of energy absorption, deformation and 
uncertainty level can be achieved while using a 40% of 
carbamide. While, for greater values of carbamide particles
percentage only a lower level of absorbed energy is 
achievable, i.e. the maximum absorption energy is about 55% 
of the highest value obtained in the experimental tests. This 
result can be attributed to the fact that increasing the 
percentage of the carbamide particles, there is an increase of 
the pores density of the foam and therefore a weaker structure 
is obtained.

In conclusion, as highlighted by the matching of the 
experimental results with the darkest areas of the fuzzy maps, 
which represents the most suitable combination of input 
parameters for a desired output, the fuzzy-genetic algorithm 
can be considered a valid and helpful tool in predicting, 
controlling and managing the output variables, proving to be 
practical for modelling complex and variable manufacturing 
processes.
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