15 research outputs found

    Analysis of High-Performance Near-threshold Dual Mode Logic design

    Get PDF
    A novel dual mode logic (DML) model has a superior energy-performance compare to CMOS logic. The DML model has unique feature that allows switching between both modes of operation as per the real-time system requirements. The DML functions in two dissimilar modes (static and dynamic) of operation with its specific features, to selectively obtain either low-energy or high-performance. The sub-threshold region DML achieves minimum-energy. However, sub-threshold region consequence in performance is enormous. In this paper, the working of DML model in the moderate inversion region has been explored. The near-threshold region holds much of the energy saving of sub-threshold designs, along with improved performance. Furthermore, robustness to supply voltage and sensitivity to the process temperature variations are presented. Monte carol analysis shows that the projected near-threshold region has minimum energy along with the moderate performance

    Analysis of High-Performance Near-threshold Dual Mode Logic design

    Get PDF
    A novel dual mode logic (DML) model has a superior energy-performance compare to CMOS logic. The DML model has unique feature that allows switching between both modes of operation as per the real-time system requirements. The DML functions in two dissimilar modes (static and dynamic) of operation with its specific features, to selectively obtain either low-energy or high-performance. The sub-threshold region DML achieves minimum-energy. However, sub-threshold region consequence in performance is enormous. In this paper, the working of DML model in the moderate inversion region has been explored. The near-threshold region holds much of the energy saving of sub-threshold designs, along with improved performance. Furthermore, robustness to supply voltage and sensitivity to the process temperature variations are presented. Monte carol analysis shows that the projected near-threshold region has minimum energy along with the moderate performance

    Architectural and Technology Influence on the Optimal Total Power Consumption

    Full text link

    ILP-based Supply and Threshold Voltage Assignment For Total Power Minimization

    Get PDF
    In this paper we present an ILP-based method to simultaneously assign supply and threshold voltages to individual gates for dynamic and leakage power minimization. In our three-step approach, low power min-flipflop (FF) retiming is first performed to reduce the clock period while taking the FF delay/power into consideration. Next, the subsequent voltage assignment formulated in ILP makes the best possible supply/threshold voltage assignment under the given clock period constraint set by the retiming. Finally, a post-process further refines the voltage assignment solution by exploiting the remaining timing slack in the circuit. Related experiments show that the min-FF retiming plus simultaneous Vdd/Vth assignment approach outperforms the existing max-FF retiming plus Vdd-only assignment approach

    Design, analysis and implementation of voltage sensor for power-constrained systems

    Get PDF
    PhD ThesisThanks to an extensive effort by the global research community, the electronic technology has significantly matured over the last decade. This technology has enabled certain operations which humans could not otherwise easily perform. For instance, electronic systems can be used to perform sensing, monitoring and even control operations in environments such as outer space, underground, under the sea or even inside the human body. The main difficulty for electronics operating in these environments is access to a reliable and permanent source of energy. Using batteries as the immediate solution for this problem has helped to provide energy for limited periods of time; however, regular maintenance and replacement are required. Consequently, battery solutions fail wherever replacing them is not possible or operation for long periods is needed. For such cases, researchers have proposed harvesting ambient energy and converting it into an electrical form. An important issue with energy harvesters is that their operation and output power depend critically on the amount of energy they receive and because ambient energy often tends to be sporadic in nature, energy harvesters cannot produce stable or fixed levels of power all of the time. Therefore, electronic devices powered in this way must be capable of adapting their operation to the energy status of the harvester. To achieve this, information on the energy available for use is needed. This can be provided by a sensor capable of measuring voltage. However, stable and fixed voltage and time references are a prerequisite of most traditional voltage measurement devices, but these generally do not exist in energy harvesting environments. A further challenge is that such a sensor also needs to be powered by the energy harvester’s unstable voltage. In this thesis, the design of a reference-free voltage sensor, which can operate with a varying voltage source, is provided based on the capture of a portion of the total energy which is directly related to II the energy being sensed. This energy is then used to power a computation which quantifies captured energy over time, with the information directly generated as digital code. The sensor was fabricated in the 180 nm technology node and successfully tested by performing voltage measurements over the range 1.8 V to 0.8 V

    Low-Power and Programmable Analog Circuitry for Wireless Sensors

    Get PDF
    Embedding networks of secure, wirelessly-connected sensors and actuators will help us to conscientiously manage our local and extended environments. One major challenge for this vision is to create networks of wireless sensor devices that provide maximal knowledge of their environment while using only the energy that is available within that environment. In this work, it is argued that the energy constraints in wireless sensor design are best addressed by incorporating analog signal processors. The low power-consumption of an analog signal processor allows persistent monitoring of multiple sensors while the device\u27s analog-to-digital converter, microcontroller, and transceiver are all in sleep mode. This dissertation describes the development of analog signal processing integrated circuits for wireless sensor networks. Specific technology problems that are addressed include reconfigurable processing architectures for low-power sensing applications, as well as the development of reprogrammable biasing for analog circuits

    Low-Power and Programmable Analog Circuitry for Wireless Sensors

    Get PDF
    Embedding networks of secure, wirelessly-connected sensors and actuators will help us to conscientiously manage our local and extended environments. One major challenge for this vision is to create networks of wireless sensor devices that provide maximal knowledge of their environment while using only the energy that is available within that environment. In this work, it is argued that the energy constraints in wireless sensor design are best addressed by incorporating analog signal processors. The low power-consumption of an analog signal processor allows persistent monitoring of multiple sensors while the device\u27s analog-to-digital converter, microcontroller, and transceiver are all in sleep mode. This dissertation describes the development of analog signal processing integrated circuits for wireless sensor networks. Specific technology problems that are addressed include reconfigurable processing architectures for low-power sensing applications, as well as the development of reprogrammable biasing for analog circuits
    corecore