1,591 research outputs found

    Multi-objective model for optimizing railway infrastructure asset renewal

    Get PDF
    Trabalho inspirado num problema real da empresa Infraestruturas de Portugal, EP.A multi-objective model for managing railway infrastructure asset renewal is presented. The model aims to optimize three objectives, while respecting operational constraints: levelling investment throughout multiple years, minimizing total cost and minimizing work start postponements. Its output is an optimized intervention schedule. The model is based on a case study from a Portuguese infrastructure management company, which specified the objectives and constraints, and reflects management practice on railway infrastructure. The results show that investment levelling greatly influences the other objectives and that total cost fluctuations may range from insignificant to important, depending on the condition of the infrastructure. The results structure is argued to be general and suggests a practical methodology for analysing trade-offs and selecting a solution for implementation.info:eu-repo/semantics/publishedVersio

    Enhanced Pump Schedule Optimization For Large Water Distribution Networks To Maximize Environmental And Economic Benefits

    Get PDF
    For more than four decades researchers tried to develop optimization method and tools to reduce electricity consumption of pump stations of water distribution systems. Based on this ongoing research trend, about a decade ago, some commercial pump operation optimization software introduced to the market. Using metaheuristic and evolutionary techniques (e.g. Genetic Algorithm) make some commercial and research tools able to optimize the electricity cost of small water distribution systems (WDS). Still reducing the environmental footprint of these systems and dealing with large and complicated water distribution system is a challenge. In this study, we aimed to develop a multiobjective optimization tool (PEPSO) for reducing electricity cost and pollution emission (associated with energy consumption) of pump stations of WDSs. PEPSO designed to have a user-friendly graphical interface besides the state of art internal functions and procedures that lets users define and run customized optimization scenarios for even medium and large size WDSs. A customized version of non-dominated sorting genetic algorithm II is used as the core optimizer algorithm. EPANET toolkit is used as the hydraulic solver of PEPSO. In addition to the EPANET toolkit, a module is developed for training and using an artificial neural network instead of the high fidelity hydraulic model to speed up the optimization process. A unique measure that is called “Undesirability” is also introduced and used to help PEPSO in finding the promising path of optimization and making sure that the final results are desirable and practical. PEPSO is tested for optimizing the detailed hydraulic model of WDS of Monroe city, MI, USA and skeletonized hydraulic model of WDS of Richmond, UK. The various features of PEPSO are tested under 8 different scenarios, and its results are compared with results of Darwin Scheduler (a well-known commercial software in this field). The test results showed that in a reasonable amount of time, PEPSO is able to optimize and provide logical results for a medium size WDS model with 13 pumps and thousands of system components under different scenarios. It also is concluded that this tool in many aspects can provide better results in comparison with the famous commercial optimization tool in the market

    IEEE Access Special Section Editorial: Big Data Technology and Applications in Intelligent Transportation

    Get PDF
    During the last few years, information technology and transportation industries, along with automotive manufacturers and academia, are focusing on leveraging intelligent transportation systems (ITS) to improve services related to driver experience, connected cars, Internet data plans for vehicles, traffic infrastructure, urban transportation systems, traffic collaborative management, road traffic accidents analysis, road traffic flow prediction, public transportation service plan, personal travel route plans, and the development of an effective ecosystem for vehicles, drivers, traffic controllers, city planners, and transportation applications. Moreover, the emerging technologies of the Internet of Things (IoT) and cloud computing have provided unprecedented opportunities for the development and realization of innovative intelligent transportation systems where sensors and mobile devices can gather information and cloud computing, allowing knowledge discovery, information sharing, and supported decision making. However, the development of such data-driven ITS requires the integration, processing, and analysis of plentiful information obtained from millions of vehicles, traffic infrastructures, smartphones, and other collaborative systems like weather stations and road safety and early warning systems. The huge amount of data generated by ITS devices is only of value if utilized in data analytics for decision-making such as accident prevention and detection, controlling road risks, reducing traffic carbon emissions, and other applications which bring big data analytics into the picture

    OPTIMIZATION OF RAILWAY TRANSPORTATION HAZMATS AND REGULAR COMMODITIES

    Get PDF
    Transportation of dangerous goods has been receiving more attention in the realm of academic and scientific research during the last few decades as countries have been increasingly becoming industrialized throughout the world, thereby making Hazmats an integral part of our life style. However, the number of scholarly articles in this field is not as many as those of other areas in SCM. Considering the low-probability-and-high-consequence (LPHC) essence of transportation of Hazmats, on the one hand, and immense volume of shipments accounting for more than hundred tons in North America and Europe, on the other, we can safely state that the number of scholarly articles and dissertations have not been proportional to the significance of the subject of interest. On this ground, we conducted our research to contribute towards further developing the domain of Hazmats transportation, and sustainable supply chain management (SSCM), in general terms. Transportation of Hazmats, from logistical standpoint, may include all modes of transport via air, marine, road and rail, as well as intermodal transportation systems. Although road shipment is predominant in most of the literature, railway transportation of Hazmats has proven to be a potentially significant means of transporting dangerous goods with respect to both economies of scale and risk of transportation; these factors, have not just given rise to more thoroughly investigation of intermodal transportation of Hazmats using road and rail networks, but has encouraged the competition between rail and road companies which may indeed have some inherent advantages compared to the other medium due to their infrastructural and technological backgrounds. Truck shipment has ostensibly proven to be providing more flexibility; trains, per contra, provide more reliability in terms of transport risk for conveying Hazmats in bulks. In this thesis, in consonance with the aforementioned motivation, we provide an introduction into the hazardous commodities shipment through rail network in the first chapter of the thesis. Providing relevant statistics on the volume of Hazmat goods, number of accidents, rate of incidents, and rate of fatalities and injuries due to the incidents involving Hazmats, will shed light onto the significance of the topic under study. As well, we review the most pertinent articles while putting more emphasis on the state-of-the-art papers, in chapter two. Following the discussion in chapter 3 and looking at the problem from carrier company’s perspective, a mixed integer quadratically constraint problem (MIQCP) is developed which seeks for the minimization of transportation cost under a set of constraints including those associating with Hazmats. Due to the complexity of the problem, the risk function has been piecewise linearized using a set of auxiliary variables, thereby resulting in an MIP problem. Further, considering the interests of both carrier companies and regulatory agencies, which are minimization of cost and risk, respectively, a multiobjective MINLP model is developed, which has been reduced to an MILP through piecewise linearization of the risk term in the objective function. For both single-objective and multiobjective formulations, model variants with bifurcated and nonbifurcated flows have been presented. Then, in chapter 4, we carry out experiments considering two main cases where the first case presents smaller instances of the problem and the second case focuses on a larger instance of the problem. Eventually, in chapter five, we conclude the dissertation with a summary of the overall discussion as well as presenting some comments on avenues of future work

    Integrating operations research into green logistics:A review

    Get PDF
    Logistical activities have a significant global environmental impact, necessitating the adoption of green logistics practices to mitigate environmental effects. The COVID-19 pandemic has further emphasized the urgency to address the environmental crisis. Operations research provides a means to balance environmental concerns and costs, thereby enhancing the management of logistical activities. This paper presents a comprehensive review of studies integrating operations research into green logistics. A systematic search was conducted in the Web of Science Core Collection database, covering papers published until June 3, 2023. Six keywords (green logistics OR sustainable logistics OR cleaner logistics OR green transportation OR sustainable transportation OR cleaner transportation) were used to identify relevant papers. The reviewed studies were categorized into five main research directions: Green waste logistics, the impact of costs on green logistics, the green routing problem, green transport network design, and emerging challenges in green logistics. The review concludes by outlining suggestions for further research that combines green logistics and operations research, with particular emphasis on investigating the long-term effects of the pandemic on this field.</p

    Doctor of Philosophy

    Get PDF
    dissertationEmerging trends such as growing architectural diversity and increased emphasis on energy and power efficiency motivate the need for code that adapts to its execution context (input dataset and target architecture). Unfortunately, writing such code remains difficult, and is typically attempted only by a small group of motivated expert programmers who are highly knowledgeable about the relationship between software and its hardware mapping. In this dissertation, we introduce novel abstractions and techniques based on automatic performance tuning that enable both experts and nonexperts (application developers) to produce adaptive code. We present two new frameworks for adaptive programming: Nitro and Surge. Nitro enables expert programmers to specify code variants, or alternative implementations of the same computation, together with meta-information for selecting among them. It then utilizes supervised classification to select an optimal code variant at runtime based on characteristics of the execution context. Surge, on the other hand, provides a high-level nested data-parallel programming interface for application developers to specify computations. It then employs a two-level mechanism to automatically generate code variants and then tunes them using Nitro. The resulting code performs on par with or better than handcrafted reference implementations on both CPUs and GPUs. In addition to abstractions for expressing code variants, this dissertation also presents novel strategies for adaptively tuning them. First, we introduce a technique for dynamically selecting an optimal code variant at runtime based on characteristics of the input dataset. On five high-performance GPU applications, variants tuned using this strategy achieve over 93% of the performance of variants selected through exhaustive search. Next, we present a novel approach based on multitask learning to develop a code variant selection model on a target architecture from training on different source architectures. We evaluate this approach on a set of six benchmark applications and a collection of six NVIDIA GPUs from three distinct architecture generations. Finally, we implement support for combined code variant and frequency selection based on multiple objectives, including power and energy efficiency. Using this strategy, we construct a GPU sorting implementation that provides improved energy and power efficiency with less than a proportional drop in sorting throughput

    Aspiration Based Decision Analysis and Support Part I: Theoretical and Methodological Backgrounds

    Get PDF
    In the interdisciplinary and intercultural systems analysis that constitutes the main theme of research in IIASA, a basic question is how to analyze and support decisions with help of mathematical models and logical procedures. This question -- particularly in its multi-criteria and multi-cultural dimensions -- has been investigated in System and Decision Sciences Program (SDS) since the beginning of IIASA. Researchers working both at IIASA and in a large international network of cooperating institutions contributed to a deeper understanding of this question. Around 1980, the concept of reference point multiobjective optimization was developed in SDS. This concept determined an international trend of research pursued in many countries cooperating with IIASA as well as in many research programs at IIASA -- such as energy, agricultural, environmental research. SDS organized since this time numerous international workshops, summer schools, seminar days and cooperative research agreements in the field of decision analysis and support. By this international and interdisciplinary cooperation, the concept of reference point multiobjective optimization has matured and was generalized into a framework of aspiration based decision analysis and support that can be understood as a synthesis of several known, antithetical approaches to this subject -- such as utility maximization approach, or satisficing approach, or goal -- program -- oriented planning approach. Jointly, the name of quasisatisficing approach can be also used, since the concept of aspirations comes from the satisficing approach. Both authors of the Working Paper contributed actively to this research: Andrzej Wierzbicki originated the concept of reference point multiobjective optimization and quasisatisficing approach, while Andrzej Lewandowski, working from the beginning in the numerous applications and extensions of this concept, has had the main contribution to its generalization into the framework of aspiration based decision analysis and support systems. This paper constitutes a draft of the first part of a book being prepared by these two authors. Part I, devoted to theoretical foundations and methodological background, written mostly by Andrzej Wierzbicki, will be followed by Part II, devoted to computer implementations and applications of decision support systems based on mathematical programming models, written mostly by Andrzej Lewandowski. Part III, devoted to decision support systems for the case of subjective evaluations of discrete decision alternatives, will be written by both authors
    corecore