220,180 research outputs found

    Distributed scheduling based on multi-agent systems and optimization methods

    Get PDF
    The increasing relevance of complex systems in dynamic environments has received special attention during the last decade from the researchers. Such systems need to satisfy products or clients desires, which, after accomplished might change, becoming a very dynamic situation. Currently, decentralized approaches could assist in the automation of dynamic scheduling, based on the distribution of control functions over a swarm network of decision-making entities. Distributed scheduling, in an automatic manner, can be answered by a service coordination architecture of the different schedule components. However, it is necessary to introduce the control layer in the solution, encapsulating an intelligent service that merge agents with optimization methods. Multi-agent systems (MAS) can be combined with several optimization methods to extract the best of the two worlds: the intelligent control, cooperation and autonomy provided by MAS solutions and the optimum offered by optimization methods. The proposal intends to test the intelligent management of the schedule composition quality, in two case studies namely, manufacturing and home health care.FCT - Fundação para a Ciência e a Tecnologia (UID/CEC/00319/2019

    Laboratory Test Bench for Research Network and Cloud Computing

    Full text link
    At present moment, there is a great interest in development of information systems operating in cloud infrastructures. Generally, many of tasks remain unresolved such as tasks of optimization of large databases in a hybrid cloud infrastructure, quality of service (QoS) at different levels of cloud services, dynamic control of distribution of cloud resources in application systems and many others. Research and development of new solutions can be limited in case of using emulators or international commercial cloud services, due to the closed architecture and limited opportunities for experimentation. Article provides answers to questions on the establishment of a pilot cloud practically "at home" with the ability to adjust the width of the emulation channel and delays in data transmission. It also describes architecture and configuration of the experimental setup. The proposed modular structure can be expanded by available computing power.Comment: 5 page

    Dynamic QoS optimization architecture for cloud-based DDDAS

    Get PDF
    Cloud computing urges the need for novel on-demand approaches, where the Quality of Service (QoS) requirements of cloud-based services can dynamically and adaptively evolve at runtime as Service Level Agreement (SLA) and environment changes. Given the unpredictable, dynamic and on-demand nature of the cloud, it would be unrealistic to assume that optimal QoS can be achieved at design time. As a result, there is an increasing need for dynamic and self- adaptive QoS optimization solutions to respond to dynamic changes in SLA and the environment. In this context, we posit that the challenge of self-adaptive QoS optimization encompasses two dynamics, which are related to QoS sensitivity and conflicting objectives at runtime. We propose novel design of a dynamic data-driven architecture for optimizing QoS influenced by those dynamics. The architecture leverages on DDDAS primitives by employing distributed simulations and symbiotic feedback loops, to dynamically adapt decision making metaheuristics, which optimizes for QoS tradeoffs in cloud-based systems. We use a scenario to exemplify and evaluate the approach

    Transmitter Optimization in Multiuser Wireless Systems with Quality of Service Constraints

    Get PDF
    In this dissertation, transmitter adaptation for optimal resource allocation in wireless communication systems are investigated. First, a multiple access channel model is considered where many transmitters communicate with a single receiver. This scenario is a basic component of a. wireless network in which multiple users simultaneously access the resources of a wireless service provider. Adaptive algorithms for transmitter optimization to meet Quality-of-Service (QoS) requirements in a distributed manner are studied. Second, an interference channel model is considered where multiple interfering transmitter-receiver pairs co-exist such that a given transmitter communicates with its intended receiver in the presence of interference from other transmitters. This scenario models a wireless network in which several wireless service providers share the spectrum to offer their services by using dynamic spectrum access and cognitive radio (CR) technologies. The primary objective of dynamic spectrum access in the CR approach is to enable use of the frequency band dynamically and opportunistically without creating harmful interference to licensed incumbent users. Specifically, CR users are envisioned to be able to provide high bandwidth and efficient utilization of the spectrum via dynamic spectrum access in heterogeneous networks. In this scenario, a distributed method is investigated for combined precoder and power adaptation of CR transmitters for dynamic spectrum sharing in cognitive radio systems. Finally, the effect of limited feedback for transmitter optimization is analyzed where precoder adaptation uses the quantized version of interference information or the predictive vector quantization for incremental updates. The performance of the transmitter adaptation algorithms is also studied in the context of fading channels

    Dynamic QoS/QoE-aware reliable service composition framework for edge intelligence

    Get PDF
    Edge intelligence has become popular recently since it brings smartness and copes with some shortcomings of conventional technologies such as cloud computing, Internet of Things (IoT), and centralized AI adoptions. However, although utilizing edge intelligence contributes to providing smart systems such as automated driving systems, smart cities, and connected healthcare systems, it is not free from limitations. There exist various challenges in integrating AI and edge computing, one of which is addressed in this paper. Our main focus is to handle the adoption of AI methods on resource-constrained edge devices. In this regard, we introduce the concept of Edge devices as a Service (EdaaS) and propose a quality of service (QoS) and quality of experience (QoE)-aware dynamic and reliable framework for AI subtasks composition. The proposed framework is evaluated utilizing three well-known meta-heuristics in terms of various metrics for a connected healthcare application scenario. The experimental results confirm the applicability of the proposed framework. Moreover, the results reveal that black widow optimization (BWO) can handle the issue more efficiently compared to particle swarm optimization (PSO) and simulated annealing (SA). The overall efficiency of BWO over PSO is 95%, and BWO outperforms SA with 100% efficiency. It means that BWO prevails SA and PSO in all and 95% of the experiments, respectively

    Economic impact of energy saving techniques in cloud server

    Get PDF
    In recent years, lot of research has been carried in the field of cloud computing and distributed systems to investigate and understand their performance. Economic impact of energy consumption is of major concern for major companies. Cloud Computing companies (Google, Yahoo, Gaikai, ONLIVE, Amazon and eBay) use large data centers which are comprised of virtual computers that are placed globally and require a lot of power cost to maintain. Demand for energy consumption is increasing day by day in IT firms. Therefore, Cloud Computing companies face challenges towards the economic impact in terms of power costs. Energy consumption is dependent upon several factors, e.g., service level agreement, virtual machine selection techniques, optimization policies, workload types etc. We address a solution for the energy saving problem by enabling dynamic voltage and frequency scaling technique for gaming data centers. The dynamic voltage and frequency scaling technique is compared against non-power aware and static threshold detection techniques. This helps service providers to meet the quality of service and quality of experience constraints by meeting service level agreements. The CloudSim platform is used for implementation of the scenario in which game traces are used as a workload for testing the technique. Selection of better techniques can help gaming servers to save energy cost and maintain a better quality of service for users placed globally. The novelty of the work provides an opportunity to investigate which technique behaves better, i.e., dynamic, static or non-power aware. The results demonstrate that less energy is consumed by implementing a dynamic voltage and frequency approach in comparison with static threshold consolidation or non-power aware technique. Therefore, more economical quality of services could be provided to the end users

    DyMo: Dynamic Monitoring of Large Scale LTE-Multicast Systems

    Full text link
    LTE evolved Multimedia Broadcast/Multicast Service (eMBMS) is an attractive solution for video delivery to very large groups in crowded venues. However, deployment and management of eMBMS systems is challenging, due to the lack of realtime feedback from the User Equipment (UEs). Therefore, we present the Dynamic Monitoring (DyMo) system for low-overhead feedback collection. DyMo leverages eMBMS for broadcasting Stochastic Group Instructions to all UEs. These instructions indicate the reporting rates as a function of the observed Quality of Service (QoS). This simple feedback mechanism collects very limited QoS reports from the UEs. The reports are used for network optimization, thereby ensuring high QoS to the UEs. We present the design aspects of DyMo and evaluate its performance analytically and via extensive simulations. Specifically, we show that DyMo infers the optimal eMBMS settings with extremely low overhead, while meeting strict QoS requirements under different UE mobility patterns and presence of network component failures. For instance, DyMo can detect the eMBMS Signal-to-Noise Ratio (SNR) experienced by the 0.1% percentile of the UEs with Root Mean Square Error (RMSE) of 0.05% with only 5 to 10 reports per second regardless of the number of UEs

    Power allocation for multiband coded OFDM systems with limited feedback

    Get PDF
    In this paper, we study the power allocation for multiband coded OFDM systems. With limited feedback, we propose an effective power allocation method across OFDM bands to maximize the throughput and achieve the quality of service target. To facilitate the proposed method, two optimization algorithms based on greedy and dynamic programming principles are discussed. The trade-off between performance and complexity is provided. Simulation results show that the proposed power allocation mechanism allows a signal to noise ratio gain of 2 dB at a goodput of 2.5 bit per second per Hz over the multiband OFDM systems with equal power allocation

    Cloud Servers: Resource Optimization Using Different Energy Saving Techniques

    Get PDF
    Currently, researchers are working to contribute to the emerging fields of cloud computing, edge computing, and distributed systems. The major area of interest is to examine and understand their performance. The major globally leading companies, such as Google, Amazon, ONLIVE, Giaki, and eBay, are truly concerned about the impact of energy consumption. These cloud computing companies use huge data centers, consisting of virtual computers that are positioned worldwide and necessitate exceptionally high-power costs to preserve. The increased requirement for energy consumption in IT firms has posed many challenges for cloud computing companies pertinent to power expenses. Energy utilization is reliant upon numerous aspects, for example, the service level agreement, techniques for choosing the virtual machine, the applied optimization strategies and policies, and kinds of workload. The present paper tries to provide an answer to challenges related to energy-saving through the assistance of both dynamic voltage and frequency scaling techniques for gaming data centers. Also, to evaluate both the dynamic voltage and frequency scaling techniques compared to non-power-aware and static threshold detection techniques. The findings will facilitate service suppliers in how to encounter the quality of service and experience limitations by fulfilling the service level agreements. For this purpose, the CloudSim platform is applied for the application of a situation in which game traces are employed as a workload for analyzing the procedure. The findings evidenced that an assortment of good quality techniques can benefit gaming servers to conserve energy expenditures and sustain the best quality of service for consumers located universally. The originality of this research presents a prospect to examine which procedure performs good (for example, dynamic, static, or non-power aware). The findings validate that less energy is utilized by applying a dynamic voltage and frequency method along with fewer service level agreement violations, and better quality of service and experience, in contrast with static threshold consolidation or non-power aware technique

    Design and analysis of a tool for planning and simulating dynamic vertical transport

    Get PDF
    Nowadays, most of the main companies in the vertical transport industry are researching tools capable of providing support for the design process of elevator systems. Numerous decisions have to be taken to obtain an accurate, comfortable, and high-quality service. Effectively, the optimization algorithm is a key factor in the design process, but so are the number of cars being installed, their technical characteristics, the kinematics of the elevator group, and some other design parameters, which cause the selection task of the elevator system to be a complex one. In this context, the design of decision support tools is becoming a real necessity that most important companies are including as part of their strategic plans. In this article, the authors present a user-friendly planning and simulating tool for dynamic vertical traffic. The tool is conceptualized for giving support in the planning and design stage of the elevator system, in order to collaborate in the selection of the type of elevator (number, type of dynamic, capacity, etc.) and the optimization algorithm
    • …
    corecore