187 research outputs found

    Using ensembles for accurate modelling of manufacturing processes in an IoT data-acquisition solution

    Get PDF
    The development of complex real-time platforms for the Internet of Things (IoT) opens up a promising future for the diagnosis and the optimization of machining processes. Many issues have still to be solved before IoT platforms can be profitable for small workshops with very flexible workloads and workflows. The main obstacles refer to sensor implementation, IoT architecture, and data processing, and analysis. In this research, the use of different machine-learning techniques is proposed, for the extraction of different information from an IoT platform connected to a machining center, working under real industrial conditions in a workshop. The aim is to evaluate which algorithmic technique might be the best to build accurate prediction models for one of the main demands of workshops: the optimization of machining processes. This evaluation, completed under real industrial conditions, includes very limited information on the machining workload of the machining center and unbalanced datasets. The strategy is validated for the classification of the state of a machining center, its working mode, and the prediction of the thermal evolution of the main machine-tool motors: the axis motors and the milling head motor. The results show the superiority of the ensembles for both classification problems under analysis and all four regression problems. In particular, Rotation Forest-based ensembles turned out to have the best performance in the experiments for all the metrics under study. The models are accurate enough to provide useful conclusions applicable to current industrial practice, such as improvements in machine programming to avoid cutting conditions that might greatly reduce tool lifetime and damage machine components.Projects TIN2015-67534-P (MINECO/FEDER, UE) of the Ministerio de EconomĂ­a Competitividad of the Spanish Government and projects CCTT1/17/BU/0003 and BU085P17 (JCyL/FEDER, UE) of the Junta de Castilla y LeĂłn, all of them co-financed through European-Union FEDER funds

    Artificial intelligence driven anomaly detection for big data systems

    Get PDF
    The main goal of this thesis is to contribute to the research on automated performance anomaly detection and interference prediction by implementing Artificial Intelligence (AI) solutions for complex distributed systems, especially for Big Data platforms within cloud computing environments. The late detection and manual resolutions of performance anomalies and system interference in Big Data systems may lead to performance violations and financial penalties. Motivated by this issue, we propose AI-based methodologies for anomaly detection and interference prediction tailored to Big Data and containerized batch platforms to better analyze system performance and effectively utilize computing resources within cloud environments. Therefore, new precise and efficient performance management methods are the key to handling performance anomalies and interference impacts to improve the efficiency of data center resources. The first part of this thesis contributes to performance anomaly detection for in-memory Big Data platforms. We examine the performance of Big Data platforms and justify our choice of selecting the in-memory Apache Spark platform. An artificial neural network-driven methodology is proposed to detect and classify performance anomalies for batch workloads based on the RDD characteristics and operating system monitoring metrics. Our method is evaluated against other popular machine learning algorithms (ML), as well as against four different monitoring datasets. The results prove that our proposed method outperforms other ML methods, typically achieving 98–99% F-scores. Moreover, we prove that a random start instant, a random duration, and overlapped anomalies do not significantly impact the performance of our proposed methodology. The second contribution addresses the challenge of anomaly identification within an in-memory streaming Big Data platform by investigating agile hybrid learning techniques. We develop TRACK (neural neTwoRk Anomaly deteCtion in sparK) and TRACK-Plus, two methods to efficiently train a class of machine learning models for performance anomaly detection using a fixed number of experiments. Our model revolves around using artificial neural networks with Bayesian Optimization (BO) to find the optimal training dataset size and configuration parameters to efficiently train the anomaly detection model to achieve high accuracy. The objective is to accelerate the search process for finding the size of the training dataset, optimizing neural network configurations, and improving the performance of anomaly classification. A validation based on several datasets from a real Apache Spark Streaming system is performed, demonstrating that the proposed methodology can efficiently identify performance anomalies, near-optimal configuration parameters, and a near-optimal training dataset size while reducing the number of experiments up to 75% compared with naïve anomaly detection training. The last contribution overcomes the challenges of predicting completion time of containerized batch jobs and proactively avoiding performance interference by introducing an automated prediction solution to estimate interference among colocated batch jobs within the same computing environment. An AI-driven model is implemented to predict the interference among batch jobs before it occurs within system. Our interference detection model can alleviate and estimate the task slowdown affected by the interference. This model assists the system operators in making an accurate decision to optimize job placement. Our model is agnostic to the business logic internal to each job. Instead, it is learned from system performance data by applying artificial neural networks to establish the completion time prediction of batch jobs within the cloud environments. We compare our model with three other baseline models (queueing-theoretic model, operational analysis, and an empirical method) on historical measurements of job completion time and CPU run-queue size (i.e., the number of active threads in the system). The proposed model captures multithreading, operating system scheduling, sleeping time, and job priorities. A validation based on 4500 experiments based on the DaCapo benchmarking suite was carried out, confirming the predictive efficiency and capabilities of the proposed model by achieving up to 10% MAPE compared with the other models.Open Acces

    Machine learning for network based intrusion detection: an investigation into discrepancies in findings with the KDD cup '99 data set and multi-objective evolution of neural network classifier ensembles from imbalanced data.

    Get PDF
    For the last decade it has become commonplace to evaluate machine learning techniques for network based intrusion detection on the KDD Cup '99 data set. This data set has served well to demonstrate that machine learning can be useful in intrusion detection. However, it has undergone some criticism in the literature, and it is out of date. Therefore, some researchers question the validity of the findings reported based on this data set. Furthermore, as identified in this thesis, there are also discrepancies in the findings reported in the literature. In some cases the results are contradictory. Consequently, it is difficult to analyse the current body of research to determine the value in the findings. This thesis reports on an empirical investigation to determine the underlying causes of the discrepancies. Several methodological factors, such as choice of data subset, validation method and data preprocessing, are identified and are found to affect the results significantly. These findings have also enabled a better interpretation of the current body of research. Furthermore, the criticisms in the literature are addressed and future use of the data set is discussed, which is important since researchers continue to use it due to a lack of better publicly available alternatives. Due to the nature of the intrusion detection domain, there is an extreme imbalance among the classes in the KDD Cup '99 data set, which poses a significant challenge to machine learning. In other domains, researchers have demonstrated that well known techniques such as Artificial Neural Networks (ANNs) and Decision Trees (DTs) often fail to learn the minor class(es) due to class imbalance. However, this has not been recognized as an issue in intrusion detection previously. This thesis reports on an empirical investigation that demonstrates that it is the class imbalance that causes the poor detection of some classes of intrusion reported in the literature. An alternative approach to training ANNs is proposed in this thesis, using Genetic Algorithms (GAs) to evolve the weights of the ANNs, referred to as an Evolutionary Neural Network (ENN). When employing evaluation functions that calculate the fitness proportionally to the instances of each class, thereby avoiding a bias towards the major class(es) in the data set, significantly improved true positive rates are obtained whilst maintaining a low false positive rate. These findings demonstrate that the issues of learning from imbalanced data are not due to limitations of the ANNs; rather the training algorithm. Moreover, the ENN is capable of detecting a class of intrusion that has been reported in the literature to be undetectable by ANNs. One limitation of the ENN is a lack of control of the classification trade-off the ANNs obtain. This is identified as a general issue with current approaches to creating classifiers. Striving to create a single best classifier that obtains the highest accuracy may give an unfruitful classification trade-off, which is demonstrated clearly in this thesis. Therefore, an extension of the ENN is proposed, using a Multi-Objective GA (MOGA), which treats the classification rate on each class as a separate objective. This approach produces a Pareto front of non-dominated solutions that exhibit different classification trade-offs, from which the user can select one with the desired properties. The multi-objective approach is also utilised to evolve classifier ensembles, which yields an improved Pareto front of solutions. Furthermore, the selection of classifier members for the ensembles is investigated, demonstrating how this affects the performance of the resultant ensembles. This is a key to explaining why some classifier combinations fail to give fruitful solutions

    Evolving fuzzy and neuro-fuzzy approaches in clustering, regression, identification, and classification: A Survey

    Get PDF
    Major assumptions in computational intelligence and machine learning consist of the availability of a historical dataset for model development, and that the resulting model will, to some extent, handle similar instances during its online operation. However, in many real world applications, these assumptions may not hold as the amount of previously available data may be insufficient to represent the underlying system, and the environment and the system may change over time. As the amount of data increases, it is no longer feasible to process data efficiently using iterative algorithms, which typically require multiple passes over the same portions of data. Evolving modeling from data streams has emerged as a framework to address these issues properly by self-adaptation, single-pass learning steps and evolution as well as contraction of model components on demand and on the fly. This survey focuses on evolving fuzzy rule-based models and neuro-fuzzy networks for clustering, classification and regression and system identification in online, real-time environments where learning and model development should be performed incrementally. (C) 2019 Published by Elsevier Inc.Igor Škrjanc, Jose Antonio Iglesias and Araceli Sanchis would like to thank to the Chair of Excellence of Universidad Carlos III de Madrid, and the Bank of Santander Program for their support. Igor Škrjanc is grateful to Slovenian Research Agency with the research program P2-0219, Modeling, simulation and control. Daniel Leite acknowledges the Minas Gerais Foundation for Research and Development (FAPEMIG), process APQ-03384-18. Igor Škrjanc and Edwin Lughofer acknowledges the support by the ”LCM — K2 Center for Symbiotic Mechatronics” within the framework of the Austrian COMET-K2 program. Fernando Gomide is grateful to the Brazilian National Council for Scientific and Technological Development (CNPq) for grant 305906/2014-3

    Efficient Learning Machines

    Get PDF
    Computer scienc

    Optimising WLANs Power Saving: Context-Aware Listen Interval

    Get PDF
    Energy is a vital resource in wireless computing systems. Despite the increasing popularity of Wireless Local Area Networks (WLANs), one of the most important outstanding issues remains the power consumption caused by Wireless Network Interface Controller (WNIC). To save this energy and reduce the overall power consumption of wireless devices, a number of power saving approaches have been devised including Static Power Save Mode (SPSM), Adaptive PSM (APSM), and Smart Adaptive PSM (SAPSM). However, the existing literature has highlighted several issues and limitations in regards to their power consumption and performance degradation, warranting the need for further enhancements. This thesis proposes a novel Context-Aware Listen Interval (CALI), in which the wireless network interface, with the aid of a Machine Learning (ML) classification model, sleeps and awakes based on the level of network activity of each application. We focused on the network activity of a single smartphone application while ignoring the network activity of applications running simultaneously. We introduced a context-aware network traffic classification approach based on ML classifiers to classify the network traffic of wireless devices in WLANs. Smartphone applications’ network traffic reflecting a diverse array of network behaviour and interactions were used as contextual inputs for training ML classifiers of output traffic, constructing an ML classification model. A real-world dataset is constructed, based on nine smartphone applications’ network traffic, this is used firstly to evaluate the performance of five ML classifiers using cross-validation, followed by conducting extensive experimentation to assess the generalisation capacity of the selected classifiers on unseen testing data. The experimental results further validated the practical application of the selected ML classifiers and indicated that ML classifiers can be usefully employed for classifying the network traffic of smartphone applications based on different levels of behaviour and interaction. Furthermore, to optimise the sleep and awake cycles of the WNIC in accordance with the smartphone applications’ network activity. Four CALI power saving modes were developed based on the classified output traffic. Hence, the ML classification model classifies the new unseen samples into one of the classes, and the WNIC will be adjusted to operate into one of CALI power saving modes. In addition, the performance of CALI’s power saving modes were evaluated by comparing the levels of energy consumption with existing benchmark power saving approaches using three varied sets of energy parameters. The experimental results show that CALI consumes up to 75% less power when compared to the currently deployed power saving mechanism on the latest generation of smartphones, and up to 14% less energy when compared to SAPSM power saving approach, which also employs an ML classifier

    Machine learning for network based intrusion detection : an investigation into discrepancies in findings with the KDD cup '99 data set and multi-objective evolution of neural network classifier ensembles from imbalanced data

    Get PDF
    For the last decade it has become commonplace to evaluate machine learning techniques for network based intrusion detection on the KDD Cup '99 data set. This data set has served well to demonstrate that machine learning can be useful in intrusion detection. However, it has undergone some criticism in the literature, and it is out of date. Therefore, some researchers question the validity of the findings reported based on this data set. Furthermore, as identified in this thesis, there are also discrepancies in the findings reported in the literature. In some cases the results are contradictory. Consequently, it is difficult to analyse the current body of research to determine the value in the findings. This thesis reports on an empirical investigation to determine the underlying causes of the discrepancies. Several methodological factors, such as choice of data subset, validation method and data preprocessing, are identified and are found to affect the results significantly. These findings have also enabled a better interpretation of the current body of research. Furthermore, the criticisms in the literature are addressed and future use of the data set is discussed, which is important since researchers continue to use it due to a lack of better publicly available alternatives. Due to the nature of the intrusion detection domain, there is an extreme imbalance among the classes in the KDD Cup '99 data set, which poses a significant challenge to machine learning. In other domains, researchers have demonstrated that well known techniques such as Artificial Neural Networks (ANNs) and Decision Trees (DTs) often fail to learn the minor class(es) due to class imbalance. However, this has not been recognized as an issue in intrusion detection previously. This thesis reports on an empirical investigation that demonstrates that it is the class imbalance that causes the poor detection of some classes of intrusion reported in the literature. An alternative approach to training ANNs is proposed in this thesis, using Genetic Algorithms (GAs) to evolve the weights of the ANNs, referred to as an Evolutionary Neural Network (ENN). When employing evaluation functions that calculate the fitness proportionally to the instances of each class, thereby avoiding a bias towards the major class(es) in the data set, significantly improved true positive rates are obtained whilst maintaining a low false positive rate. These findings demonstrate that the issues of learning from imbalanced data are not due to limitations of the ANNs; rather the training algorithm. Moreover, the ENN is capable of detecting a class of intrusion that has been reported in the literature to be undetectable by ANNs. One limitation of the ENN is a lack of control of the classification trade-off the ANNs obtain. This is identified as a general issue with current approaches to creating classifiers. Striving to create a single best classifier that obtains the highest accuracy may give an unfruitful classification trade-off, which is demonstrated clearly in this thesis. Therefore, an extension of the ENN is proposed, using a Multi-Objective GA (MOGA), which treats the classification rate on each class as a separate objective. This approach produces a Pareto front of non-dominated solutions that exhibit different classification trade-offs, from which the user can select one with the desired properties. The multi-objective approach is also utilised to evolve classifier ensembles, which yields an improved Pareto front of solutions. Furthermore, the selection of classifier members for the ensembles is investigated, demonstrating how this affects the performance of the resultant ensembles. This is a key to explaining why some classifier combinations fail to give fruitful solutions.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Power-Aware Job Dispatching in High Performance Computing Systems

    Get PDF
    This works deals with the power-aware job dispatching problem in supercomputers; broadly speaking the dispatching consists of assigning finite capacity resources to a set of activities, with a special concern toward power and energy efficient solutions. We introduce novel optimization approaches to address its multiple aspects. The proposed techniques have a broad application range but are aimed at applications in the field of High Performance Computing (HPC) systems. Devising a power-aware HPC job dispatcher is a complex, where contrasting goals must be satisfied. Furthermore, the online nature of the problem request that solutions must be computed in real time respecting stringent limits. This aspect historically discouraged the usage of exact methods and favouring instead the adoption of heuristic techniques. The application of optimization approaches to the dispatching task is still an unexplored area of research and can drastically improve the performance of HPC systems. In this work we tackle the job dispatching problem on a real HPC machine, the Eurora supercomputer hosted at the Cineca research center, Bologna. We propose a Constraint Programming (CP) model that outperforms the dispatching software currently in use. An essential element to take power-aware decisions during the job dispatching phase is the possibility to estimate jobs power consumptions before their execution. To this end, we applied Machine Learning techniques to create a prediction model that was trained and tested on the Euora supercomputer, showing a great prediction accuracy. Then we finally develop a power-aware solution, considering the same target machine, and we devise different approaches to solve the dispatching problem while curtailing the power consumption of the whole system under a given threshold. We proposed a heuristic technique and a CP/heuristic hybrid method, both able to solve practical size instances and outperform the current state-of-the-art techniques

    Explainable Intrusion Detection Systems using white box techniques

    Get PDF
    Artificial Intelligence (AI) has found increasing application in various domains, revolutionizing problem-solving and data analysis. However, in decision-sensitive areas like Intrusion Detection Systems (IDS), trust and reliability are vital, posing challenges for traditional black box AI systems. These black box IDS, while accurate, lack transparency, making it difficult to understand the reasons behind their decisions. This dissertation explores the concept of eXplainable Intrusion Detection Systems (X-IDS), addressing the issue of trust in X-IDS. It explores the limitations of common black box IDS and the complexities of explainability methods, leading to the fundamental question of trusting explanations generated by black box explainer modules. To address these challenges, this dissertation presents the concept of white box explanations, which are innately explainable. While white box algorithms are typically simpler and more interpretable, they often sacrifice accuracy. However, this work utilized white box Competitive Learning (CL), which can achieve competitive accuracy in comparison to black box IDS. We introduce Rule Extraction (RE) as another white box technique that can be applied to explain black box IDS. It involves training decision trees on the inputs, weights, and outputs of black box models, resulting in human-readable rulesets that serve as global model explanations. These white box techniques offer the benefits of accuracy and trustworthiness, which are challenging to achieve simultaneously. This work aims to address gaps in the existing literature, including the need for highly accurate white box IDS, a methodology for understanding explanations, small testing datasets, and comparisons between white box and black box models. To achieve these goals, the study employs CL and eclectic RE algorithms. CL models offer innate explainability and high accuracy in IDS applications, while eclectic RE enhances trustworthiness. The contributions of this dissertation include a novel X-IDS architecture featuring Self-Organizing Map (SOM) models that adhere to DARPA’s guidelines for explainable systems, an extended X-IDS architecture incorporating three CL-based algorithms, and a hybrid X-IDS architecture combining a Deep Neural Network (DNN) predictor with a white box eclectic RE explainer. These architectures create more explainable, trustworthy, and accurate X-IDS systems, paving the way for enhanced AI solutions in decision-sensitive domains
    • …
    corecore