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Abstract

The main goal of this thesis is to contribute to the research on automated performance

anomaly detection and interference prediction by implementing Artificial Intelligence (AI)

solutions for complex distributed systems, especially for Big Data platforms within cloud

computing environments. The late detection and manual resolutions of performance

anomalies and system interference in Big Data systems may lead to performance viola-

tions and financial penalties. Motivated by this issue, we propose AI-based methodologies

for anomaly detection and interference prediction tailored to Big Data and containerized

batch platforms to better analyze system performance and e↵ectively utilize computing

resources within cloud environments. Therefore, new precise and e�cient performance

management methods are the key to handling performance anomalies and interference

impacts to improve the e�ciency of data center resources.

The first part of this thesis contributes to performance anomaly detection for in-memory

Big Data platforms. We examine the performance of Big Data platforms and justify our

choice of selecting the in-memory Apache Spark platform. An artificial neural network-

driven methodology is proposed to detect and classify performance anomalies for batch

workloads based on the RDD characteristics and operating system monitoring metrics.

Our method is evaluated against other popular machine learning algorithms (ML), as

well as against four di↵erent monitoring datasets. The results prove that our proposed

method outperforms other ML methods, typically achieving 98–99% F-scores. Moreover,

we prove that a random start instant, a random duration, and overlapped anomalies do

not significantly impact the performance of our proposed methodology.

The second contribution addresses the challenge of anomaly identification within an in-

memory streaming Big Data platform by investigating agile hybrid learning techniques. We

develop TRACK (neural neTwoRk Anomaly deteCtion in sparK) and TRACK-Plus, two

methods to e�ciently train a class of machine learning models for performance anomaly

detection using a fixed number of experiments. Our model revolves around using artificial

neural networks with Bayesian Optimization (BO) to find the optimal training dataset size

and configuration parameters to e�ciently train the anomaly detection model to achieve

high accuracy. The objective is to accelerate the search process for finding the size of the

training dataset, optimizing neural network configurations, and improving the performance
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of anomaly classification. A validation based on several datasets from a real Apache

Spark Streaming system is performed, demonstrating that the proposed methodology can

e�ciently identify performance anomalies, near-optimal configuration parameters, and a

near-optimal training dataset size while reducing the number of experiments up to 75%

compared with näıve anomaly detection training.

The last contribution overcomes the challenges of predicting completion time of container-

ized batch jobs and proactively avoiding performance interference by introducing an auto-

mated prediction solution to estimate interference among colocated batch jobs within the

same computing environment. An AI-driven model is implemented to predict the interfer-

ence among batch jobs before it occurs within system. Our interference detection model

can alleviate and estimate the task slowdown a↵ected by the interference. This model

assists the system operators in making an accurate decision to optimize job placement.

Our model is agnostic to the business logic internal to each job. Instead, it is learned

from system performance data by applying artificial neural networks to establish the com-

pletion time prediction of batch jobs within the cloud environments. We compare our

model with three other baseline models (queueing-theoretic model, operational analysis,

and an empirical method) on historical measurements of job completion time and CPU

run-queue size (i.e., the number of active threads in the system). The proposed model

captures multithreading, operating system scheduling, sleeping time, and job priorities.

A validation based on 4500 experiments based on the DaCapo benchmarking suite was

carried out, confirming the predictive e�ciency and capabilities of the proposed model by

achieving up to 10% MAPE compared with the other models.
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Chapter 1

Introduction

1.1 Problem Overview

Artificial Intelligence (AI), cloud computing, and Big Data technologies have recently

become the most impactful forms of technology innovation. According to Gartner, the

usage of cloud-based Artificial Intelligence will increase by five times from 2019, making AI

one of the top cloud services by 2023. In 2022, more than $362 billion in IT spending will be

directly or indirectly allocated toward the shift to cloud computing services during the next

years [1]. This transition will make cloud computing technology one of the most significant

forms of IT spending since the early days of the digital age [2]. In this context, the term

“cloud computing” refers to the applications delivered as services over the Internet and to

the hardware and software in the data centers that provide those services [3]. This type

of computing is ultimately attractive because it enables an organization to have a flexible

operational management model that can be characterized by an on-demand computing

paradigm, one that is based on a pay-per-use pricing model. In addition, cloud computing

provides scalability [4], low start-up costs, and a limitless IT infrastructure in a short

period of time [3]. These benefits of available computing resources and advancements in

data storage have led to the significant increase in Big Data creation over the Internet, such

as data from the Internet of Things (IoT), e-commerce, social networks, and multimedia.

1
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Due to the widespread growth of data processing within cloud computing services, it is

not uncommon for a data processing system to have multiple tenants sharing the same

computing resources, leading to performance anomalies and system interference arising

from resource contention, failures, workload unpredictability, software bugs, and several

other root causes. For instance, even though application workloads can feature intrinsic

variability in their execution time due to variability in the dataset sizes, uncertainty in

the scheduling decisions of the platform, interference from other applications, and software

contention from the other users can lead to unexpectedly long run times that are perceived

by end-users as being anomalous.

In this thesis, we focus on automated anomaly detection and interference prediction for Big

Data platforms and containerized batch technologies within cloud environments. The re-

search on automated anomaly detection and interference prediction methods is important

in practice since late detection and slow manual resolutions of anomalies in a production

environment may cause prolonged service-level agreement violations, possibly incurring

significant financial penalties [5, 6]. This leads to a demand for performance anomaly de-

tection and interference prediction in cloud computing and Big Data systems that are both

dynamic and proactive in nature [7]. The need to adapt these methods to a production

environment with very di↵erent characteristics means that black-box machine learning

techniques are ideally positioned as solutions that can automatically identify performance

anomalies and systems interference. These techniques o↵er the ability to quickly learn

baseline performance through a large amount of monitoring performance metrics, hence

identifying normal and anomalous patterns [8]. Based on the nature of input data and the

expected output, machine learning algorithms are classified into two main categories: su-

pervised learning and unsupervised learning [7]; some machine learning techniques include

classification based, regression based, neighbor based, and clustering based.

Classification techniques are a special case of supervised learning, in which the aim is to

determine whether the instances in a given feature space belong to a specific class or to

multiple classes [7]. There are popular classification techniques for anomaly identification,

such as neural networks, support vector machines, and decision trees [9]. The classification

technique is significantly a↵ected by the accuracy of the labeled data and algorithms used.
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For example, the training and testing phases for decision trees are usually faster than for

support vector machines, which involve quadratic optimization.

We also focus on Apache Spark and containerized batch job technologies. There are

various popular open source distributed data-processing frameworks related to Big Data

technologies, such as Hadoop MapReduce, Apache Storm, and Apache Spark. Among

these, in-memory processing technology like Apache Spark has become widely adopted

by industries because of its speed, generality, ease of use, and compatibility with other

Big Data systems [10]. Although Spark is developing gradually, there are currently still

shortages in comprehensive performance analysis methods specifically developed for Spark

and that can used to precisely detect performance anomalies [11]. The performance of in-

memory processing frameworks can vary considerably depending on many factors, such as

the type of input data, parallelism, application design, system configuration, and available

computing resources [11, 12]. The heterogeneity of these factors make anomaly detection

and prediction challenging, especially for critical applications. Therefore, there is a need

to deeply investigate an in-memory processing technology like Spark and its performance

bottlenecks to pinpoint the cause of a performance anomaly.

1.2 Contributions

This thesis provides solutions to assist engineers and system administrators in choosing

the appropriate anomaly detection mechanisms for their in-memory Spark Streaming Big

Data system. The proposed solution also can be used to help system operators to perform

interference-free scheduling of jobs within the system. Moreover, it can be modified to

help users in taking decisions for task placement within systems to reduce substantial

computing network resource consumption.

The following subsection provides an overview of our three main research contributions.
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1.2.1 AI Driven Anomaly Detection Methodology for In-Memory Big

Data Systems

As a first contribution, we develop neural network based methodology for anomaly detec-

tion tailored to the characteristics of Apache Spark. In particular, we explore the con-

sequences of using an increasing number and variety of monitoring metrics for anomaly

detection, showing the consequent trade-o↵s on the precision and recall of the classifiers.

We also compare methods that are agnostic of the workflow of Spark jobs by using a novel

method that leverages the specific characteristics of Spark fundamental data structure -the

resilient distributed dataset (RDD)- to improve anomaly detection accuracy.

Our proposed method is evaluated against three popular machine learning algorithms, de-

cision trees, nearest neighbor, and support vector machine. Our model is evaluated against

four variants of the performance metrics that consider di↵erent monitoring datasets. The

conducted experiments and results demonstrate that our proposed method works e↵ec-

tively and e�ciently with complex scenarios and anomalies, such as CPU contention,

memory contention, cache thrashing, and context switching anomalies. In addition, the

proposed methodology is examined with di↵erent types of overlapped anomalies. Com-

pared with other popular methods, the random instant and random duration of anomalies

was not found to have an impact on the performance of our proposed methodology. Our

results prove that our proposed method outperforms other methods, typically achieving

98–99% F-scores, while o↵ering much greater accuracy than alternative techniques in de-

tecting both the period in which anomalies occurred and their type.

1.2.2 Hybrid AI Anomaly Detection Model for Big Data Streaming Sys-

tems

The second contribution of this thesis is motivated by the di�culty of carrying out anomaly

detection within Big Data streaming systems, especially for time-varying workloads and

critical applications. Apache Spark has more than 200 configurable parameters, and some

parameters may depend on each other and a↵ect the overall performance of the plat-

form. This large and complex configurable parameter space makes it di�cult even for ex-
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pert administrators to detect and classify anomalous performance within Spark Streaming

clusters, because a certain performance level may simply depend on the chosen configura-

tion. In response to this challenge, we develop agile hybrid learning techniques -TRACK

and TRACK-Plus- for anomaly detection, which are black-box training methodologies for

performance anomaly detection within Apache Spark Streaming workloads.

TRACK and TRACK-Plus e�ciently train a class of machine learning models for perfor-

mance anomaly detection using a fixed number of experiments. TRACK revolves around

using artificial neural networks with Bayesian Optimization (BO) to find the optimal train-

ing dataset size and configuration parameters to e�ciently train the anomaly detection

model to achieve a high F-score in a short period of time. TRACK-Plus is an auto-

mated fine-grained anomaly detection solution that adds to TRACK a second Bayesian

Optimization cycle for fine-tuning the hyperparameters of artificial neural networks con-

figuration. The objective is to accelerate the search process for optimizing neural network

configurations and improve the performance of anomaly classification.

Our results indicate that our TRACK and TRACK-Plus solutions achieve a high accuracy

(95% F-score) in significantly less time (80% less than normal). A validation based on a

real dataset for the Apache Spark Streaming system has been provided to demonstrate that

the proposed methodology identifies the performance anomalies, the ideal configuration

parameters, and the training dataset size with up to 75% fewer experiments needing to

be run. Finally, our proposed solutions not only identify anomalous performance with

a high F-score but also classify anomalies, thereby saving considerable time in training

the model. In addition, the proposed model can be easily generalized to cover unforeseen

workload configurations. To the best of our knowledge, this contribution is among the

very first works to provide a comprehensive methodology for both performance anomaly

classification and the e�cient optimization of artificial neural networks to detect anomalies

within Apache Spark streaming system.
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1.2.3 Interference Prediction for Containerized Batch Jobs

The third contribution of this thesis mainly focuses on examining the behavior of colocated

batch jobs to proactively predict interference behaviors which can be used to enhance job

placement within a Big Data production environment. If such behavior is not predicted and

timely handled, it may cause savior consequences and reliability issues for critical systems

within cloud environments. Many existing approaches for detecting system interference

revolve around monitoring and collecting all the possible performance metrics of each

running batch job and testing each job behavior under di↵erent resource configurations to

predict the interference within system. These approaches are time-consuming for dynamic

complex workloads as they try to collect all the performance metrics and test all the

combinations of jobs behaviors, of which all jobs combinations needed to be profiled in

advance under various system configurations.

To overcome this issue in batch job workloads and proactively avoid performance interfer-

ence, this thesis introduces an automated prediction solution to estimate the interference

between colocated containerized batch jobs within the same computing environment. An

AI-driven model is implemented to predict the interference among workloads. This in-

terference prediction model alleviates and estimates the tasks slowdown a↵ected by the

interference among running jobs. Our model assists the system operators in making an

accurate decision to optimize batch job placement.

Our interference prediction solution is agnostic to the business logic internal to each job.

Instead, it is learned from system performance data by applying artificial neural networks.

The target is to establish the completion time prediction of the containerized batch job

within cloud environments. It uses the profiling data for individual job i and two i⇤ j jobs

before attempting to predict the completion times when more than two jobs run simulta-

neously in the system. The prediction method works without any need for measurements

from executions with more than two jobs; everything is predicted using only the available

profiling data and the AI model.

Our method learns from data by applying artificial neural networks and comparing them
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with the other three baseline models (queueing-theoretic model, operational analysis and

no model) on historical measurements of job completion time and CPU run-queue size

(i.e., the number of active threads in the system). The model is capable of capturing

multithreading, operating system scheduling, sleeping time, and job priorities. A vali-

dation based on 4500 experiments using the DaCapo benchmarking suite [13] has been

carried out, confirming the predictive e�ciency and capabilities of the proposed model.

The experimental results prove that our solution is powerful in predicting the potential

interference among containerized batch jobs and can achieve up to 10% MAPE compared

with other models. Our model is promising for microservices systems that can be extended

to cover more advanced and complex production environments.

1.3 Thesis Outline

In summary, the purpose of this thesis is to analyze and optimize the performance of

distributed Big Data and containerized batch job technologies, here with a focus on the

performance anomalies detection and interference prediction. Table 1.1 shows the structure

of the thesis. The outline of our main contributions for this thesis are as follow:

1. Chapter 1: Introduction of thesis to present the problem overview, objectives, and

contributions

2. Chapter 2: Provides background information about Big Data platforms and gives

a literature review, methods, and techniques.

3. Chapter 3: Implements a neural network-driven methodology for anomaly detection

within in-memory systems. This chapter mainly focuses on Apache Spark batch

workloads and anomaly detection to provides an introduction, motivating examples,

methodology, and results.

4. Chapter 4: Presents the hybrid ML-based model for anomaly detection within

in-memory Big Data streaming systems. This chapter provides an introduction,

literature review, motivation of our contribution, our methodology, and the final

results.

5. Chapter 5: Implements a batch completion time prediction and interference pre-
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diction solution. This chapter gives an introduction, literature review, motivation,

methodology, and the final results.

6. Chapter 6: This final chapter summarizes the thesis, provides a conclusion, and

gives future research directions.

Table 1.1: Structure of the thesis

Chapter 1
General introduction, research gaps, and thesis structure

Chapter 2
Background information and literature review

Chapter 3

Short introduction
Motivating Example

Methodology
Evaluation
Results

Conclusion

Chapter 4

Short introduction
Motivating Example

Methodology
Evaluation
Results

Conclusion

Chapter 5

Short introduction
Motivating Example

Methodology
Evaluation
Results

Conclusion

Chapter 6
General discussion, conclusion and future work

1.4 Publications

During my PhD program, I have published peer-reviewed publications, for all of which I

am the first author, except [14, 15], for which I am a joint first author. These publications

include the following:

1.4.1 Book Chapter

[15] A. Alnafessah, G. Russo Russo, V. Cardellini, G. Casale, F. Lo Presti. AI-Driven

Performance Management in Data-Intensive Applications. Book chapter within

Communication Networks and Service Management in the Era of Artificial Intelligence and
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Machine Learning book 2021. The goal of this book chapter is to overview some recurring

performance management activities for data-intensive applications, examining the role

that artificial intelligence (AI) and machine learning are playing in enhancing practices

related, among others, to configuration optimization, performance anomaly detection, load

forecasting, and auto-scaling for these software systems.

1.4.2 Journals

[16] A. Alnafessah, G. Casale. Artificial neural networks based techniques for

anomaly detection in Apache Spark. This a full paper has been accepted in Cluster

Computing Journal 2019. This paper presents an artificial neural networks driven method-

ology to quickly sift through Spark logs data and operating system monitoring metrics to

accurately detect and classify anomalous behaviors based on the Spark resilient distributed

dataset characteristics. The proposed method is evaluated against three popular machine

learning algorithms, decision trees, nearest neighbor, and support vector machine, as well

as against four variants metrics that consider di↵erent monitoring datasets. The results

prove that our proposed method outperforms other methods, typically achieving 98–99%

F-scores, and o↵ering much greater accuracy than alternative techniques to detect both

the period in which anomalies occurred and their type.

[17] A. Alnafessah, G. Casale. TRACK-Plus: Optimizing Artificial Neural Net-

works for Hybrid Anomaly Detection in Data Streaming Systems. Accepted

as a full paper in IEEE ACCESS Journal 2020. This paper introduces TRACK-Plus, a

black-box training methodology for performance anomaly detection. The method uses

an artificial neural networks-driven methodology and Bayesian Optimization to identify

anomalous performance and are validated on Apache Spark Streaming. TRACK-Plus has

been extensively validated using a real Apache Spark Streaming system and achieve a high

F-score while simultaneously reducing training time by 80% compared to e�ciently detect

anomalies.

[14] A. Alnafessah, A. U. Gias, R. Wang, L. Zhu, G. Casale, A. Filieri. Quality-Aware

DevOps Research: Where Do We Stand?. Accepted as full paper in IEEE ACCESS
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Journal 2021. This paper addresses the gap by comprehensively surveying existing e↵orts

in the area of quality-aware DevOps and categorizing them according to the stage of the

DevOps lifecycle to which they primarily contribute. The survey holistically spans across

all the DevOps stages, identify research e↵orts to improve architectural design, modeling

and infrastructure-as-code, continuous-integration/continuous-delivery (CI/CD), testing

and verification, and runtime management. The conducted analysis also outlines possible

directions for future work in quality-aware DevOps, looking in particular at AI for DevOps

and DevOps for AI software.

1.4.3 International conference papers

[18]A. Alnafessah, G. Casale. A Neural-Network Driven Methodology for Anomaly

Detection in Apache Spark. Published in proceeding of 11th International Conference

on the Quality of Information and Communications Technology (QUATIC), 2018. In this

paper we consider in particular Spark-based workloads, in which the analytic operations

are applied to a resilient distributed dataset (RDD). We develop a neural network based

methodology for anomaly detection based on knowledge of the RDD characteristics. Us-

ing experiments against multiple workloads and anomaly types, we show that our method

improves over other types of classifiers as well as against black box performance anomaly

detection.

[19] A. Alnafessah, G. Casale. TRACK: Optimizing Artificial Neural Networks

for Anomaly Detection in Spark Streaming Systems. Accepted as full paper in

the proceedings of the 13th EAI International Conference on Performance Evaluation

Methodologies and Tools (VALUETOOLS’20). In this paper we introduce, TRACK, a

new black-box training workload configuration optimization with a neural network driven

methodology to identify anomalous performance in an in-memory Big Data Spark stream-

ing platform. The proposed methodology revolves around using Bayesian Optimization

to find the optimal training dataset size and configuration parameters to train the model

e�ciently. TRACK is validated on a real Apache Spark streaming system and the results

show that the TRACK achieves the highest performance (95% for F-score) and reduces

the training time by 80% to e�ciently train the proposed anomaly detection model in the
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in-memory streaming platform.

1.4.4 Posters

[20] A. Alnafessah, G. Casale. Anomaly Detection for Big Data Technologies.

Published in Imperial College Computing Student Workshop (ICCSW 2018). The main

goal of this research is to contribute to automated performance anomaly detection for

large-scale and complex distributed systems, especially for Big Data applications within

cloud computing. Investigating automated detection of anomalous performance behaviors

by finding the relevant performance metrics with which to characterize behavior of systems.

Another contribution focusing on pinpointing the cause of a performance anomaly due to

internal or external faults.

[21] A. Alnafessah, G. Casale. AI Driven Methodology for Anomaly Detection in

Apache Spark Streaming Systems. Published in the 3rd International Conference on

Computer Applications and Information Security (ICCAIS 2020). This research introduces

a new black-box training workload configuration optimization with a neural network driven

methodology to identify anomalous performance in an in-memory Spark streaming Big

Data platform. The proposed methodology e↵ectively uses Bayesian Optimization to find

the ideal training dataset size and Spark streaming workload configuration parameters

to train the anomaly detection model. The proposed model is validated on the Apache

Spark streaming system. The results demonstrate that the proposed solution succeeds and

accurately detects many types of performance anomalies. In addition, the training time

for the machine learning model is reduced by more than 50%, which o↵ers a fast anomaly

detection deployment for system developers to utilize more e�cient monitoring solutions.
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Background

2.1 Introduction

In recent years, the prominence of Big Data has led to a growing interest in developing

intelligent data-intensive software systems in several application domains. Data-driven

systems that can extract knowledge, plan, and adapt to events through the processing,

transformation, and analysis of datasets are increasingly widespread in both industry and

society. From a technical standpoint, data-driven software systems are often built by lever-

aging features such as batch or streaming analytics, which are now easily programmable

through platforms such as Apache Spark, Hadoop/MapReduce, Storm, Flink, among oth-

ers. We outline popular Big Data processing platforms in Section 2.2 and Section 2.3.

There are various options when it comes to open source Big Data technologies for en-

terprises to work on data intensive applications and analyses. Although each of these

technologies has advantages for specific purposes (e.g., batch processing), they may not

be an ideal choice for other types of applications (e.g., streaming applications). Based

on data processing methods, these technologies can be categorized into three main ap-

proaches: batch, stream, and micro-batch processing [22]. This chapter gives an overview

of Apache Spark and other popular open source Big Data technologies while also discussing

12



2.1. Introduction 13

the essential features of common platforms used to define Big Data applications.

Although the combination of batch and streaming workloads enables richer functionality,

workload heterogeneity also means that achieving service-level objectives presents addi-

tional complexity in pinpointing the causes of performance degradation and identifying

ways to address them. For example, performance metrics in data-driven software are dif-

ficult to predict because they often depend on data properties, such as volume or velocity,

and frequently even on data type and content, making it di�cult to reason about and tune

system performance at design time. Furthermore, the combination of batch and streaming

features in software means that di↵erent system components will strive to achieve di↵erent

performance goals, that is high-throughput and high-utilization for analytics features and

low latency for stream processing operators, making the process of runtime performance

tuning a fairly heterogeneous and complex exercise.

To support these challenges, the goal of this chapter is to overview Big Data platforms

and AI management techniques for monitoring, managing, and tuning the performance

of data-intensive applications. AI methods o↵er considerable simplicity and flexibility in

choosing the features that drive the management process, despite some opaqueness in

presenting the way the models reach decisions.

Compared with traditional management methods, which either leverage low-level system

characteristics or has a sensitivity about the distribution of data, AI management methods

leverage learning on experimental datasets, hence reducing the dependence on assumptions

and shifting the attention from conceptual modeling to data collection and model training.

This o↵ers considerable potential to increase the e↵ectiveness of management methods in

situations where the system behaves according to complex and unpredictable logic, as is

often the case for systems driven by external data.

In summary, in this chapter, we examine the applicability of AI and other methods in

the context of anomaly detection and interference prediction within data intensive appli-

cations. We survey in particular studies that illustrate the versatility of AI models when

applied to popular data streaming and batch analytics platforms. Our aim in particular

is to cover a broad spectrum of AI methods, to show the range of learning techniques that
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may be applicable to the recurring management problems involved in data-driven systems.

We look at common management tasks such as platform configuration, workload forecast-

ing, monitoring, detection of performance anomalies, and interference within systems. We

also give selected examples of big data platforms and AI techniques to give an intuition

on their behavior, benefits, and limitations.

The structure of this chapter is as follows: Section 2.2, and Section 2.3 give an overview

of the essential features of common execution platforms in use to define data-intensive

applications and highlight the core performance management challenges associated with

each of these platforms. Section 2.4 provides a literature review of exciting research in

this area. Section 2.5 presents the methods and techniques that are used in this thesis.

2.2 Apache Spark

Spark is a large-scale in-memory processing technology that can support both batch and

stream data processing, which can make it easy to use because of its low cost in supporting

di↵erent types of workloads on the same engine in a production environment [10]. This

type of system is an example of a micro-batch system. The main goal of Apache Spark is to

speed up the batch processing of data by utilizing in-memory computation. According to

Apache Spark, Spark is 100 times faster than Hadoop MapReduce for in-memory analytics

[10]. Also, Spark is considered more e�cient than MapReduce for complex applications.

As an alternative to Hadoop, Spark can be deployed over Hadoop Distributed File System

(HDFS). It can also be deployed on Amazon EC2, Apache Mesos, or as a standalone

cluster. In addition, it can access numerous data sources, including HDFS, Cassandra,

HBase, Hive, and any Hadoop data source [10]. Apache Spark provides a general purposes

engine for di↵erent kinds of computations, including iterative algorithms, job batches,

streaming, and interactive queries. These di↵erent types of computation were previously

di�cult to find in the same distributed system [23]. Beyond its ability to perform batch

and stream processing, Apache Spark also has a rich library that is built on top of Spark

core engine [24].
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2.2.1 Apache Spark Core and Upper Stack

Apache Spark Core

Apache Spark core engine has a general purpose and the ability to run over di↵erent

types of cluster managers while accessing data from di↵erent resources [25]. Spark core is

implemented in Scala, and it supports many APIs in Scala, Java, Python, and R. The core

engine o↵ers basic functionalities for in-memory cluster computing, such as task scheduling,

memory management, fault recovery, and communicating with database systems [23]. In

addition, Spark engine provides the API for the main programming data abstraction -the

Resilient Distributed Dataset (RDD)- which allows for the scalability of data algorithms

with high performance. The RDD has some operations, including data transformation

and actions. Other Spark libraries and tools need these RDD operations for data analysis

algorithms.

Spark Upper Stack

As a result of the speed and general purpose of Spark core engine, the engine o↵ers a suit-

able environment on top of Apache Spark core to support di↵erent types of workloads and

computations. These workloads include Spark SQL, Spark Streaming, Spark MLlib, and

Spark GraphX applications. This upper stack o↵ers benefits to combine all components

in libraries in user applications [10]. Upper components can obtain some valuable benefits

from this kind of tight integration with Spark core engine. First, the upper components

can easily gain benefits from the continuous improvement and optimization of the lower

stack components (Spark core). Second, cost and time saving are dome of the significant

benefits for upper component users. These benefits can be achieved by o↵ering di↵erent

types of services and run them within the same system instead of having multiple systems

and running each service on an independent system. Therefore, operation and mainte-

nance are reduced for every system that needs configuration for deployment, testing, and

support.
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Figure 2.1: Spark Application Components

2.2.2 Apache Spark Application Architecture

Running the Spark application involves five main components: driver programs, cluster

managers, worker nodes, executor processes, and tasks as shown in Figure 2.1. The Spark

application runs as an independent set of processes on a cluster and is coordinated by an

object called SparkContext. This object is the entry point to Spark, and it is created in

a “driver program”, which is the main function in Spark. In cluster mode, SparkContext

has the ability to communicate with many cluster managers to allocate su�cient recourses

for the application. The cluster manager can be Mesos, YARN, or a Spark stand-alone

cluster [10].

After resources are allocated, Spark acquires “executors” for an application on the “worker

node” that provides CPU, memory, and storage resources to run the application codes in

the cluster. Each application has its own “executor” processes that run tasks (the smallest

unit of work for Spark executor) and keeps application data in the memory or disk. After

acquiring “executors”, the application code, which is defined as a JAR or Python file is

sent to the executors on worker nodes. During the final step, SparkContext sends tasks to

the executors to run [10].

This type of architecture is valuable for isolating the application from other applications

on the schedulers and executors side. Therefore, each driver program can schedule its own
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tasks, and each executor can only execute its tasks from the di↵erent applications run in

di↵erent Java Virtual Machines. As a consequence, data and message exchange cannot

be shared across Spark applications (instance of SparkContext) without using external

storage, which may negatively impact the latency of the operations being run [22].

Data Abstraction and Operation

The Spark engine provides the API for the main programming data abstraction -RDD-

which enables the scalability of data algorithms with high performance. An RDD o↵ers

operations, including data transformation and actions, that can be used by other Spark

libraries and tools for data analysis. This thesis (Chapter 3 and Chapter 4) proposes an

anomaly detection method that performs an e↵ective instantiation anomaly detection at

the level of the RDDs. Thus, we provide a brief overview of the main features of these

data structures and their relationship to the job execution flow within Spark.

Spark RDD is the core data abstraction of Apache Spark. It is an immutable distributed

collection of objects that can be executed in parallel. It is resilient because an RDD is

immutable and cannot be changed after its creation. An RDD is also distributed because

it is sent across multiple nodes in a cluster. Every RDD is further split into multiple

partitions that can be computed on di↵erent nodes. This means that the higher the

number of partitions, the larger parallelism will be. An RDD can be created by either

loading an external dataset or by paralleling an existing collection of objects in their driver

programs. One simple example of creating an RDD is by loading a text file as an RDD of

a string (using sc.textFile()) [10].

After creation, two types of operations can be applied to RDDs: transformations and

actions. A transformation creates a new RDD from an existing RDD. In addition, when

applying a transformation, it does not modify the original RDD. An example of a transfor-

mation operation is filtering data that returns a new RDD that meets the filter conditions

[26]. Some other transformation operations are map, distinct, union, sample, groupByKey,

and join. The second type of RDD operation is an action, which returns a resulting value

after running a computation and either returns it to the driver program or saves it to
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val textFile1 = sc.textFile("hdfs://...")
val wordCounts = textFile1.flatMap(line => line.split(" "))

.map(word => (word, 1))

.reduceByKey(_ + _)
wordCounts.saveAsTextFile("hdfs://...")

Figure 2.2: Simple WordCount Example

external storage, such as the Hadoop Distributed File System (HDFS). A basic example

of an action operation is First(), which returns the first element in an RDD. Other action

operations are collect, count, first, takesample, and foreach [10].

Some researchers describe transformations as lazy operations because their result is not

instantly computed [10]. They are only computed when an action (e.g., collect or count)

requires a result to be returned to the driver program [10]. This lazy operation enables

Spark to run operations more e�ciently. For example, this appears in cases where datasets

are created by (map()) and will be used in a (reduce()) and where they return just the

result of the (reduce) to the driver program instead of the larger mapped dataset [10].

This lazy evaluation optimizes memory usage in Spark.

RDDs are reliable and use a fault-tolerant distributed memory abstraction. Spark has the

ability to reliably log the transformation operation used to build its lineage graph rather

than the actual data [27]. The lineage graph keeps track of all transformations that need to

be applied to RDDs and the information about data location. Therefore, if some partition

of an RDD is missing or damaged due to node failure, there is enough information about

how it was derived from other RDDs to e�ciently recompute this missing partition in a

reliable way. Hence, missing RDDs can be quickly recomputed without needing costly data

replication. An RDD is designed to be immutable which helps in facilitating description

of lineage graphs [27].

2.2.3 Run-Time Spark Architecture

Apache Spark uses the representation of RDDs and takes into account the partitions of

cached RDDs that are available in memory. Every Spark application (e.g., Figure 2.2)

consists of jobs (Figure 2.3(a)), and each job is further divided into stages (Figure 2.3(b))
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(a) Type of dependencies: Narrow and Wide

(b) A job is divided into two stages, which second stage
has wide dependency on the first stage
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(c) Stages are divided into tasks that are equal to the
number of partitions in the same stage.

Figure 2.3: Simple DAG for WordCount example.

that depend on each other. Each stage is then composed of a collection of tasks, as shown

in Figure 2.3(c) [28].

Spark Job: A Spark job is created when an action operation (e.g., count, reduce, collect,

save, etc.) is called to run on the RDD in the user’s driver program. Therefore, each
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action operation on an RDD in the Spark application will correspond to a new job. There

will be as many jobs as the number of action operations occurring in the user’s driver

program. Thus, the user’s driver program is called an application rather than a job. The

job scheduler examines the RDD and its lineage graph to build a directed acyclic graph

(DAG) of the stages to be executed [27].

Spark Stage: Breaking the RDD DAG at the shu✏e boundaries will create stages. Each

stage contains many pipelined RDD transformation operations that do not require any

shu✏ing between operations, which is called a narrow dependency (e.g., map, filter, etc.).

Otherwise, if the stages depend on each other through RDD transformation operations that

require shu✏ing, then these are called wide dependencies (e.g., group-by, join, etc.) [27].

Therefore, every stage will contain only shu✏e dependencies on other stages, not inside the

same stage. The last stage inside the job generates results, and the stage is executed only

when its parent stages have been executed. Figure 2.3(b) shows how the job is divided

into two stages as a result of shu✏e boundaries.

Spark Task: Stage scheduling is implemented in DAGScheduler, which computes a DAG

of stages for each job and finds a minimal schedule to run that job. The DAGScheduler

submits stages as a group of tasks (TaskSets) to the task scheduler to run them on the

cluster via the cluster manager (e.g., Spark Standalone, Mesos or YARN), as shown in

Figure 2.3(c).

Scheduling: The task in Apache Spark is the smallest unit of work sent to the executor, and

there is one task per RDD partition. The dependencies among the stages are unknown to

the task scheduler. Each TaskSet contains fully independent tasks, which can run based on

the location of the data and the currently cached RDD. Each task is sent to one machine

[28]. Inside a single stage, the number of tasks is determined by the number of final RDD

partitions in the same stage.

2.2.4 Monitoring Performance

Running data-intensive applications in distributing computing requires continued moni-

toring, especially in production environments. Any late detection of anomalous behavior
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in the systems may negatively impact those systems, and they may cause prolonged perfor-

mance violations with huge financial penalties [5, 6]. Therefore, there is a need to analyze

application behavior to improve performance. Apache Spark o↵ers many monitoring op-

tions, including web UI, metrics, and external instrumentation [10, 29].

Many external tools can be used for profiling to monitor the performance of Apache

Spark applications, such as Ganglia, dstat, and JVM utilities [10]. Ganglia is a scalable

distributed system for monitoring applications that uses a dashboard to show an overview

of the overall cluster utilization and resource bottlenecks. Another tool that is used with

Spark for OS profiling is dstat, which can give fine-grained profiling on a specific node.

2.3 Other Big Data Technologies

2.3.1 Hadoop MapReduce

Hadoop1 implements the MapReduce paradigm and it is a well-known example of batch

processing platform. It is used for intensive Big Data applications starting from a single

server and can scale up to thousands of machines. Usually, MapReduce uses an existing

dataset that is stored in Hadoop Distributed File System (HDFS) before beginning to

process batch data. Processing data with native Hadoop can be paused or interrupted,

but the dataset cannot be modified. This means that if current data is changed for any

reason, the job needs to be run again.

Despite distinctive challenges arise in the area of optimal configuration of Hadoop plat-

forms, performance management has some challenges in detecting and handling straggler

tasks, which falls into the general problem area of performance anomaly detection and

mitigation. This is a result of the synchronizations between dataflow tasks that can block

progress until straggler tasks complete their activities.

1https://hadoop.apache.org/
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2.3.2 Apache Flink

Apache Flink2 is another open source distributed processing engine designed for low-

latency streaming computation. Flink relies on in-memory computation and provides a

unified API for processing both bounded and unbounded datasets [30]. However, dif-

ferently from Spark, where batching has a primary role, Flink has been designed with

streaming in mind. Indeed, Flink applications are built upon the concepts of streams and

transformations. Streams represent (possibly unbounded) data flows, while transforma-

tions are operations that given one or more streams as input, one output or more streams

as the result (e.g., filtering). A few higher-level libraries are built on top of these abstrac-

tion, easing the definition of common processing use cases (e.g., complex event processing

and graph analytics).

At runtime, Flink applications are mapped to streaming dataflows, DAGs composed of

processing nodes (often called operators), which implement transformations, connected by

streams. For execution, Flink leverages a distributed architecture, designed according to

the master-worker pattern. The master component is the JobManager, which coordinates

distributed execution and is responsible for application scheduling, checkpointing, and

recovery in case of failure. The TaskManagers (i.e., the workers) execute the application

tasks (i.e., instances of operators) and manage the data transfers between them.

Performance management of Flink applications, which are often long-running, mainly in-

volves runtime deployment and resource adaptation. First of all, varying infrastructure

conditions may require migrating operator tasks between computing nodes during exe-

cution. Flink supports migrating both stateless and stateful tasks through the savepoint

mechanism, which ensures no loss of information. Moreover, workload variability requires

dynamically scaling the parallelism of Flink applications and balancing the load across the

cluster to keep consistent performance levels over time.

2https://flink.apache.org
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Table 2.1: Summary of the key characteristics of data-processing platform.

Workloads Processing style
Platform Batch Streaming In-Memory Disk-heavy
Storm X X
Hadoop/MR X X
Spark X X X
Flink X X X

2.3.3 Apache Storm

Apache Storm3 is a popular open source platform used for distributed real-time stream

processing. The platform o↵ers very low latency for dataflow processing, making it an

ideal option for real time processing [31]. Storm dataflow topologies involve two main

node types: spouts and bolts. A spout is the source of the data stream at the input

queue and may generate data by itself [32]. A bolt instead consumes the stream, operates

transformations or computations, and ultimately produces an output stream as a result.

Every task corresponds to one operating system thread. Storm topologies execute one

or many worker processes, where each worker process maps to a separate Java virtual

machine and can execute subsets of the tasks for topology.

Performance management of Storm applications frequently involves di�cult decisions con-

cerning optimal configuration options for spouts and bolts, ranging from decisions con-

cerning bu↵er, message, and batch sizes, number of bolts, and selection of optimal waiting

strategies. There is a limited understanding of the interplay between these parameters,

posing intrinsic challenges for optimal system configuration. Moreover, the Storm system

does not automatically manage load balancing and resource scaling, thus requiring ad-

hoc performance management techniques. A summary of the key characteristics of each

platform is shown in Table 2.1.

3https://storm.apache.org
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2.4 Literature Review

System performance is often described in terms of the time taken to process some tasks

or the set rate of tasks performed with a given amount of computing resources that are

consumed within a given observation period [7]. With the growing complexity and dy-

namicity of Big Data and cloud systems, failure management requires significantly higher

levels of automation and attention [33]. Performance anomaly detection techniques are

greatly needed by Big Data and large scale systems. Performance interference and anoma-

lies have become a major concern for academic researchers of Big Data technologies over

cloud computing services. The ability to analyze data is vital to the process of detecting

anomalous and interference behavior to resilience in production systems in spite of noise

or risks arising in the production testbed (e.g., a cloud computing environment). Anoma-

lous performance can occur as a result of service operator faults [34], software failures and

user errors [35], environmental issues, and security violations [7], among others. Several

studies illustrate that most of the root causes of bottlenecks and anomalous performance

are machine resources such as computer processing units (CPUs) [36, 7, 37].

Many anomaly detection and interference prediction studies have been specifically con-

ducted for certain application domains, while others are more generic. Hodge et al.[38]

review techniques that have been developed in statistical analysis and machine learning

for anomaly detection. The study conducted in [39] provided a structured and compre-

hensive overview of the research on anomaly detection that grouped existing techniques

into di↵erent categories based on the underlying approach that they each adopted. We

point to [38] and [39] for general discussions on machine learning, statistical analysis, and

anomaly detection. Table 2.2 further shows a summary of detection techniques used in

the context of cloud computing systems. The following subsections provide an overview

about the exciting statistical and ML techniques for anomaly detection and interference

prediction within systems.
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2.4.1 Statistical Techniques

Some studies use statistical methods to detect anomalous behavior, such as Gaussian-

based detection [40, 41], regression analysis [42, 43], and correlation analysis [44, 45, 46].

Many statistical techniques depend on the assumption that the data are generated from a

particular distribution and can be brittle when assumptions about the distribution of the

data do not hold. For example, distribution assumptions often do not hold true in cases

that involve multiple dimensional real-time datasets [39]. To avoid this assumption, we

focus more on utilizing other approach, which is machine learning.

Gow et al. [47] claim that their method is an accurate way to characterize system perfor-

mance signatures and that it is not customized to the system being analyzed. The authors

explored the service measurement paradigm by utilizing a black box M/M/1 queueing

model and regression curve fitting the service time-adapted cumulative distributed func-

tion. They examined how anomaly performance can be detected by tracing any changes

in the regression parameters. Gow et al. [47] use probabilistic distribution of performance

deviation between current and old production conditions. The authors argued that this

method could be utilized to identify slow events of an application. The method that has

been used by authors [47] is worth examining in our research, specifically the anomaly

detection part because applying such a method is not specific to any certain n-tier archi-

tecture, which makes its methods a platform agnostic.

2.4.2 Machine Learning Techniques

Olumuyiwa et al. [7] argue that data mining and machine learning technologies have re-

ceived growing attention for performance anomaly detection and diagnosis by the research

community. Based on the nature of the input and the expected output, supervised learn-

ing or unsupervised learning may be used. A basic anomaly detection system observes the

performance behaviors of the targeted system to collect measurements to generate essen-

tial profiles about normal system performance [7]. This observation will continue to detect

any undesirable deviation or anomaly in performance and apply a root cause analysis to

pinpoint causes of a performance anomaly due to internal or external faults. In general,
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performance violation and anomalies are a single point or a group of data falling far away

from the expected normal region. Anomalies may be classified into four types, including

point, collective, contextual, and pattern anomalies [7]. Some of the main root causes of

anomalies are system misconfiguration, workload burstiness, and buggy application code

within Big Data and cloud computing environments.

Machine learning classification techniques are used to classify an input features into pre-

defined classes of items in order to construct a classifier that can predict the class of each

item in the dataset according to the class labels of this dataset. There are well-known

classification techniques for anomaly identification, such as neural networks, decision tree,

nearest neighbor, support vector machines, and Bayesian networks [9]. The classification

technique is significantly a↵ected by the accuracy of the labeled data and algorithms that

have been used. For example, training and testing phases of decision trees algorithms are

usually faster than in support vector machines, which involve quadratic optimization.

This thesis benefits from comparing the methods that have been shown in other works

such as [7] to choose a suitable hybrid machine-learning solutions to advance the tradi-

tional approaches. The statistical detection techniques may require an assumption about

data distribution to know prior, whereas a machine-learning technique does not need this

assumption. The following subsection shows types of machine learning in the literature,

which include supervised, unsupervised, semi-supervised learning techniques.

Supervised Learning Techniques

In a supervised learning technique, the training dataset is assumed to be available and

contains well-labeled instances to distinguish between anomalies and normal classes. An

example of a supervised technique is used in [48]. According to Gu and Wang [48], a

stream-based anomaly behavior-detection technique for online application has been used

to detect anomaly indications that relate to performance anomaly root localization. They

apply Bayesian classification methods to detect an anomaly and its root causes within

the data center. In addition, the authors [48] apply Markov models to detect the change

in the patterns of di↵erent measurement metrics for system performance. Comparing
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Markov modeling with Bayesian classification methods allows the prediction of anomalous

behaviors that will likely occur in the future within the system. The authors implemented

their experiment within the IBM system S-distributed stream processing computing clus-

ter and used a real-system workload. Based on their experiments [48], they claim that

their approach has high accuracy with low overhead while assessing anomaly prediction

performance in a clustering system.

Fulp et al. [49] use a machine learning approach to detect and predict the likelihood of

system failures using an SVM based on performance metrics from Linux system log files.

They examine a dataset that contains actual file logs of a cluster with 1024 computing

nodes. Their proposed solution achieves an acceptable level of classification performance

which is 73%. Fulp et al. [49] however, consider only one type of system failure -hard disk

failure- without examining the other common sources of systems failure, such as CPU,

cache, etc. Although SVM models are e↵ective at making a decisions from well-behaved

feature vectors, they can be more expensive for modeling variations in large datasets and

high-dimensional input features [50, 38, 39].

Stragglers are bottlenecks task-level, which are usually not a straightforward to be dis-

covered and have high impacts on big data platforms. The causes of stragglers can be

occurred as a result of data skew, resource contention and hardware failure [36, 51, 52].

Qi et al. [53] propose a white-box model that use classification and regression trees to

analyze straggler root causes. The authors use raw metrics from Apache Spark logs and

hardware sampling tools to train their model. To avoid overfitting issue, the authors use

CART tree (Classification and Regression Tree), which o↵ers some mitigation solutions.

The solution includes a pruning technique (named CCP) when the tree growth completes.

The pruning process continues for several iterations and the classification performance

metrics are checked for each node and its leaves [53]. Such a process is time consuming,

especially with intensive data streaming systems, so this study does not consider it.

While anomaly detection studies have been conducted in the literature for many purposes,

there are not enough research studies that address anomaly detection and prediction is-

sues, especially for Big Data technologies, such as Apache Spark. From the study in [48],



28 Chapter 2. Background

one of the main issues in the data streaming processing cluster is the bottleneck, which

is worth investigating more in our research. This bottleneck can occur among distributed

applications when the input queue of applications is saturated. Some reasons for a bottle-

neck include the shortage of computing resources given to an application, the violation of

data rates of processing capacity, or the application may has misconfiguration.

Unsupervised Learning Techniques

The local outlier factor (LOF) algorithm is a type of neighbor-based technique of an

unsupervised learning algorithm. The LOF algorithm is employed to detect anomalous

behavior in cloud computing in [54]. The main idea is to identify anomalous performance

by comparing the density of each instance. Any instance in low density is considered

an anomaly. To improve performance anomaly detection, the LOF requires a significant

e↵ort in collecting a complete training dataset of normal behavior for applications be-

fore the starting the detection phase. This dataset is sometimes unavailable over online

applications. Therefore, the authors [54] use an adaptive anomaly detection scheme for

a cloud system based on the LOF. They argue that their scheme can learn application

behavior in both training time and detecting time. In addition, the scheme is adaptive to

the new changes during the detection phase, which o↵ers a significant reduction of e↵ort

to collect the training dataset before the detection phase. The experimental results in [54]

show that their scheme can e↵ectively detect a performance anomaly with a low level of

computational overhead.

Lin et al. [55] propose an anomaly detection technique for infrastructure as a service

(IaaS) cloud computing environment using local outlier factor (LOF) algorithm to detect

anomalies by analyzing the reduced performance feature dataset. LOF is used to assign

a score for each group of performance metrics to assess the system behavior, where the

behavior is considered anomalous if the score exceeds the predefined threshold. The au-

thors validate their technique within a private cloud computing system that is built using

OpenStack and Xen open-source software. Their result shows that the proposed technique

outperforms principal components analysis (PCA).
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Using the basic LOF requires considerable e↵ort to collect enough datasets of normal be-

havior and requires intensive computations to calculate the distance scores of each instance

during the test phase. According to [39], it is di�cult to compute distance measurements

for streaming data, and it cannot identify contextual performance anomalies. Therefore,

it is important to keep in mind that the LOF needs to be adaptive to be used with Spark

for any contextual anomaly detection.

Semi-supervised Learning Techniques

A semi-supervised learning technique is halfway between supervised and unsupervised

learning techniques in which some training data are not labeled. It is often assumed that

labeled data constitute a normal class while the remaining unlabeled data instances are

anomalous. The author of [33] investigates autonomic anomaly detection across cloud

computing systems. Concerning feature selection, the author applied metric selection

and extraction methods to select the most relevant ones. The author applied principle

component analysis (PCA) to reduce metric dimensions and maintain the variance in

health-related data as much as possible. Moreover, semi-supervised model using decision

tree classifiers is used in [33] to reduce metric dimensionality and to identify anomalies

in the cloud systems. His experimental result shows that the method has the ability to

successfully reduce metric dimensions and identify performance-anomalous behaviors.

Table 2.2, Table 2.3 and Table 2.4 further show a summary of detection techniques used

in the context of cloud computing and distributed computing systems. Further advance-

ment in hybrid solutions holds great potential for anomaly identification systems [56, 57].

Some performance anomaly identification studies and surveys have been conducted in the

literature for di↵erent purposes [38, 7, 58, 59]; however, there is still a shortage of studies

that propose e�cient automated anomaly detection, especially for in-memory Big Data

stream processing technologies as we study in the next sections. In this chapter, we uti-

lize Bayesian optimization hyperparameter tuning and the e�ciency of neural networks to

accurately detect anomalous behavior in Big Data systems.
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Table 2.2: Summary of the state-of-the-art anomaly detection techniques

Reference Approach Detection Technique System/Environment

Gow et
al.(2013)
[47]

Statistical Regression curve fitting the
service time-adapted cumula-
tive distributed function

Online platform and configu-
ration agnostic

Wang et al.
(2011) [60]

Statistical Gaussian-based detection Online anomaly detection for
conventional data centers

Markou
and Singh
(2003) [41]

Statistical Gaussian-based detection General

Kelly
(2005) [42]

Statistical Regression analysis Globally-distributed commer-
cial Web-based, Application
& System metrics

Cherkasova
et al.
(2009) [43]

Statistical Regression analysis Enterprise web applications
and conventional data center

Agarwala
et al.
(2007) [44]

Statistical Correlation Complex enterprise online
applications and distributed
System

Peiris et al.
(2016) [45]

Statistical Correlation Orleans system, distributed
system and distributed cloud
computing services

Sharma et
al. (2013)
[46]

Statistical Virtualized cloud computing
and distributed systems

Hadoop, Olio and RUBiS.

Gu and
Wang
(2009) [48]

Machine
learning

Supervised Bayesian classifi-
cation

Online application for IBM
S-distributed stream process-
ing system

Huang et
al.(2013)
[54]

Machine
learning

Unsupervised Neighbor-based
technique (Local Outlier Fac-
tor algorithm)

General cloud computing
system

Fu (2011)
[33]

Machine
learning

Semi-supervised Principle
component analysis and
Semi-supervised Decision-
tree

Institute-wide cloud comput-
ing system

Ren et
al(2018)
[61]

Machine
learning

Anomaly detection approach
based on stage-task behav-
iors and Logistic Regression
Model

Online framework for Apache
Spark Streaming systems

Lu et al
(2018) [62]

Machine
Learning

Anomaly detection using
convolutional neural net-
works based Model

Big Data system logs using
Hadoop Distributed File Sys-
tem
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Table 2.3: Summary of the state-of-the-art anomaly detection techniques

Reference Approach Detection Technique System/Environment

Magalhaes et al.
(2010)[63]

Statistical Correlation techniques and time-
series alignment algorithms to spot
the relationship between the trans-
actions response time and the work-
load to pinpoint the occurrence of
anomalies for dynamic workloads

Web-based and
component-based ap-
plications applications

Zhang et al.
(2007) [64]

Statistical Regression-based model for estimat-
ing CPU demands by di↵erent client
transactions. The result of the re-
gression method is used to parame-
terize an analytic model of queues

Enterprise e-commerce
system and TPC-W
benchmark [65]

Kelly (2005) [66] Statistical Simple queueing-theoretic observa-
tions with standard optimization
methods for performance anomaly
detection

Distributed commercial
systems that serve real
customers

Yang et al. (2007)
[67]

Statistical
and Signal
Processing

Extending the traditional window-
based strategy by using signal-
processing techniques to filter out
recurring, background variations to
determine which resource is the
probable cause of an anomalous per-
formance in a system

Three Grid environment
applications: Cactus,
GridFTP, and a Sweep3d

Lu et al. (2017)
[68]

Statistical O↵-line approach to detect ab-
normal Spark tasks and analyze
the root causes based on statisti-
cal spatial-temporal analysis. The
mean and standard deviation of all
tasks in each stage are used to get
information about macro-awareness
on the task’s execution time

Private Apache Spark clus-
ter and SparkBench [11]

Garraghan et al.
(2016)[37]

Statistical Empirical analysis for straggler de-
tection and root-cause for batch
processes using a combination of
o✏ine execution patterns modeling
and online analytic agents for mon-
itoring

Virtualized Cloud data
centers

Bodik et al.
(2010) [69]

Hybrid Logistic regression to select a set
of relevant metric to minimize both
the prediction errors and quantile to
summarize the values of each perfor-
mance metric across all the applica-
tion servers

Enterprise cloud comput-
ing and web applications

Jallad et al.
(2020)[70]

ML Deep learning model to detect per-
formance anomaly (LSTM neural
networks) to detect unseen anoma-
lies with a low less false-positive rate

NSL-KDD open source
dataset that has six basic
categories and 41 input
features [71]
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Table 2.4: Summary of the state-of-the-art anomaly detection techniques

Reference Appr Detection Technique System/Environment

Chen et al.
(2002)[72]

Hybrid Using data mining and statistical tech-
niques to correlate the normal and failure
requests to pinpoint faults

PetStore, which is e-
commerce environment
based on the Java 2 Platform
Enterprise Edition (J2EE) for
Web and distributed systems.

Cohen et al.
(2005)[73]

ML Pattern recognition, clustering, informa-
tion retrieval, and Tree-Augmented Naive
Bayes models (TAN) are used to charac-
terize each metric and its contribution

Two distributed applications,
one runs synthetic workloads
in a private system and
the other one run real cus-
tomer services in a globally-
distributed production envi-
ronment

Fulp et al.
(2008) [49]

ML Supervised detection and prediction of the
hard disk failure using an SVM

Cluster with 1024 computing
nodes

Pannu et al.
(2012) [74]

ML Supervised one-class SVM and SVM for
self-evolving anomaly identification and
prediction

Utility cloud computing sys-
tems

Baek et al.
(2017) [75]

ML Unsupervised labeling by clustering the
training data set to create referential labels
and supervised anomaly detection model
that includes Naive Bayes, Adaboosting,
SVM, and Random Forest

Enterprise and cloud comput-
ing systems

Ren et al
(2018) [61]

ML Anomaly detection approach based on
stage-task behaviors that related to the
task execution status to classify normal
and abnormal workloads according to the
o✏ine logistic regression model for each
batch

Homogeneous Apache Spark
Yarn Cluster for streaming
workload with BigdataBench
benchmark [76]

Lu et al
(2018) [62]

ML Anomaly detection using convolutional
neural networks based model, which is im-
plemented with di↵erent filters to auto-
matically train model on the relationships
among events

Big Data system logs using
Hadoop distributed file sys-
tem

Qi et al.
(2017) [53]

ML White-box model for root-cause analysis
of performance bottleneck and straggler
based on CART decision tree

Private Apache Spark Cluster
with HiBench benchmark to
generate workloads

Yadwadkar
et al.
(2012) [77]

ML Regression decision tree model periodically
learns correlations between node level sta-
tus and task execution time

Trace from Facebook Hadoop
system and Berkeley EECS
department’s local Hadoop
cluster (icluster)

Tan et al.
(2011) [78]

ML Semi-supervised one-class anomaly detec-
tion for streaming data using random half
space trees

Open source datasets from
KDD Cup 99 dataset [79]

Pu et al.
(2020) [80]

ML Unsupervised anomaly detection that com-
bines clustering and SVM to identify
anomalies within networks

Evaluation is based on public
NSL-KDD datasets [71]
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2.4.3 Tools and Benchmarks for Big Data systems

Regarding Big Data technologies, Min et al. [11] have developed “SparkBench”, which is

an open source benchmark, particularly for Apache Spark. The authors cover four main

application categories of Spark: streaming, machine learning, graph processing, and SQL

applications. For each of these categories applications, distinct features have been iden-

tified by resource consumption (CPU, memory, disk, and network), data flow, and com-

munication pattern, which may negatively a↵ect the execution time of jobs. SparkBench

covers many workloads that are used by Spark. SparkBench has the ability to measure

job execution times and data processing rates (MB/second). The results illustrate that

increasing task parallelism to fully leverage CPU resources can reduce the time required for

job executions, however, over committing CPU resources may negatively impact execution

time as a result of CPU bottleneck [11].

Although there are many other specific benchmarks for Big Data processing such as Hi-

Bench4, GridMix5, PigMix6, and LinkBench7 for Hadoop, there are no many open source

benchmarks that are specifically designed for Apache Spark. This kind of Spark open

source benchmark helps researchers to better understand the performance metric that

may a↵ect performance of the Spark application.

Lu et al. [81] presented a benchmark for distributed computing frameworks that is called

StreamBench. The authors implemented it to enable adopting it with any stream pro-

cessing systems. This benchmark utilizes a messaging system that has the ability to

mediate between data stream providers and consumers. They utilized a messaging system

in which generated input streaming is placed to gain insight into metrics during compu-

tation. They used Apache Kafka and ZooKeeper. In addition, they proposed four types

of workload suites, including a performance workload suite, a multi-recipient performance

suite, a fault tolerance suite and a durability suite [81]. These workload suites are used to

measure and evaluate performance, fault tolerance and durability.

4https://github.com/intel-hadoop/HiBench
5https://hadoop.apache.org/docs/r1.2.1/gridmix.html
6https://cwiki.apache.org/ confluence/display/PIG/PigMix
7https://libraries.io/github/intel-hadoop/linkbench
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Lu et al. [81] validate their benchmark by applying it to Apache Spark Streaming and

Apache Storm to compare the two systems. According to their performance suites, under

default configuration, Apache Spark Streaming throughput was five times greater than

the throughput of Apache Storm. Regarding the latency, Apache Storm was considerably

less than Apache Spark with a normal workload, but latency in Storm will exceed Spark

if the workload becomes more complex and more scalable. With regard to fault tolerance

ability, the authors found that Apache Spark outperforms Apache Storm through their

durability test [81].

Although there are some benchmarks for distributing data computing systems, there are

still fewer specific benchmarks that target open source Big Data distributed streaming

frameworks in the literature. An interesting point mentioned by the authors [81] was the

change in latency when the data became more complex. Spark was not a↵ected in the

same way as Storm. Investigating the impact of changing the workload to be more complex

and scalable is crucial to understand the relation between workload and latency.

Cloud incident management has been investigated by Munteanu et al. [82]. They cover

the incident life cycle and proposed a general architecture for incident management, par-

ticularly for cloud computing. Their incident life cycle is divided into di↵erent stages,

including prevention, detection, analysis, containment, and recovery stages. In addition,

they showed a number of current solutions such as PagerDuty, Oracle Enterprise Man-

ager, IBM SmartCloud Control, and VMWare vCloud Suite. Regarding the standards,

they mentioned two approaches including ISO 20000 and ITSM that have come from

ITIL. Although Munteanu et al. [82] presented some cloud incident management tools,

most of them are commercial tools and not available as open source for academic research.

Few works exist for anomaly detection in Spark. Kay et al. [83] develop a method to

quantify end-to-end performance bottlenecks in large-scale distributed computing systems

to analyze Apache Spark performance. The authors explore the importance of disk I/O,

network I/O as causes of bottlenecks. They apply their method to examine the system

performance of two industry SQL benchmarks and one production workload. The approach

involves analysis of blocking time, using white-box logging to measure time execution for



2.5. Methods and Techniques 35

each task in order to pinpoint bottleneck root-causes.

The authors [83] find that network optimization can enhance job execution time by at most

2%. Therefore the network is not the main source of bottlenecks because there are more

data transmissions to and from disks than over the network. Optimizing straggler tasks

could enhance job execution time by at most 10% [83]. Blocked time analysis revealed

two main causes of Spark stragglers: Java garbage collection and time to transfer to and

from the disk. The authors conclude that early finding the main cause of stragglers may

enhance not only stragglers jobs, but also non-straggler job at runtime by finding and

fixing misconfiguration, which may cut execution time in half in some cases [83]. Finally,

the authors claimed that jobs are usually bottlenecked by the CPU. Therefore, this thesis

focuses more in CPU anomalies. In addition, some block time analysis lacks the generality

of the general purpose of distributed systems performance analysis tools because it needs

to use additional instrumentation within the system, unlike black-box analysis.

2.5 Methods and Techniques

In machine learning, classification techniques are needed to classify a dataset into prede-

fined classes of items in order to construct a classifier that can predict the class of each

item in the dataset according to the class labels of this dataset [84]. There are various

problems in di↵erent fields (e.g., business, medicine, education etc.) that can be solved us-

ing machine learning classification techniques. Compared with the statistical classification,

machine learning classification techniques outperform conventional statistical classification

because many statistical techniques depend on the assumption that the data are gener-

ated from a particular distribution. Therefore, the statistical model will be accurate when

that assumption satisfies the model before it can be used [39]. This constraint limits the

statistical classification model, especially when assumptions about the distribution of the

data do not hold, as in cases that involve highly dimensional real-time datasets.

In machine learning, there are two well-known challenges: 1) making the training error

as small as possible in the training phase to solve underfitting issues, 2) reducing the gap

between training error and test error to avoid overfitting the model [85]. The underfitting



36 Chapter 2. Background

issue happens when the model obtains a high error rate on the training dataset. On the

other hand, the overfitting issue happens when there is a large gap between the error rate

in the training phase and test phase.

One of the well-known critical issue for machine learning algorithms (ex: neural networks

and other classifiers) is the feature selection of appropriate input features. The objective

of feature selection is to discover the smallest set of input features and at the same time

can achieve a desirable predictive performance. Zhang [86] points out that it is crucial

to reduce the number of input features for the classifier to achieve satisfactory accuracy

with less amount of computation in the model. One of the well-known technique for

feature selection is Principle Component Analysis (PCA), which is a statistical way to

reduce dimension without losing the important information that may negatively a↵ect the

quality performance of the classifier. PCA is applied on the input dataset as a step before

training the neural network. The technique is considered a linear dimension reduction

technique that has some limitations and it is not suitable for some complex problems with

nonlinear correlation structures. This limitation can be avoided by directly applying the

neural network to conduct dimension reduction [86].

In this section, di↵erent machine classification techniques are presented in order to un-

derstand the most suitable techniques that can be utilized in examining the performance

anomalies that may occur in our testbed cluster. These techniques include neural networks,

decision trees and the nearest neighbor methods.

2.5.1 Neural Network

Neural networks are a popular technique for many classification problems. This is because

the neural network model is a data-driven self-adaptive method that can adjust itself to

the datasets without requiring knowledge about the distribution or function of the used

model [86]. Another reason for the popularity of neural networks are that it has the

ability to approximate any function with arbitrary accuracy. This has caused the neural

networks to be considered a universal functional approximation [86]. In addition, the

neural network model is a nonlinear model that o↵ers suitability and flexibility for many
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real-world complex modules, which they are considered to be a nonlinear model.

In the real world, the neural network classification models have been successfully utilized

in many di↵erent fields. For example, it has been applied in speech recognition [87, 88],

material inspection [89, 90], motor monitoring [91], error recognition [92, 93], nuclear power

plants [94, 95], clinical decision-making [96, 97, 98], cancer detection [99, 100, 101], and

intrusion detection [102, 103, 104, 105].

According to [86], learning and generalization are considered to be the most prominent

topic in the neural networks. Learning refers to the ability to approximate the underlying

adaptive behavior from the training dataset. The generalization is one of the main ad-

vantages of using the neural network, which o↵ers the ability to generalize the network by

classifying (predicting) the class of the input dataset from the same classes of the training

dataset, even if that input item has never been seen before [86]. This feature allows the

classifier to achieve a desired accuracy level when classifying new or unknown objects.

The generalization error, also called test error, is defined as the expected error on the

new input dataset, which is di↵erent from the training dataset that is used for the training

phase. The training and generalization error can vary depending on the size of the training

dataset [85].

Usually, the neural network e↵ectively fits training data with a very low level of bias, but

there are some possibilities of risk that may cause overfitting issues that instigate variances

in generalization [86]. The overfitting issue happens when there is a large gap between the

error rate in the training phase and test phase. A study in [106] illustrates that the variance

in machine learning is more critical than the learning bias in classification performance.

Therefore, many studies have been conducted to solve and mitigate the negative impact

of overfitting. Some of these solutions include cross validation [107], training with penalty

terms and weight decay and node pruning [86].

Neural Networks Components

The neural network model has a network of processing elements that are called neurons.

Each of these neurons has an input and output in which the input value a↵ects the internal
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Figure 2.4: Feedforward Neural Networks.

state of the neurons in generating the output result. The neural network model is created

by connecting a number of these neurons that are partitioned into layers to form a directed

graph. The following subsection provides an overview about the main architecture of a

neural network, which are neurons and connections.

Neurons: A neural network model has processing units called neurons that act as neurons

in the human brain. The neurons are interconnected with each other and generate a

sequence of real value for activations [108]. These neurons are distributed among the

input, middle (also called hidden) and output layers. Therefore, there are three types of

neurons or nodes: input, hidden and output neurons. The input neurons are in the input

layer and they receive data from outside the neural networks. The hidden neurons are in

the middle layers and are activated by weighted connections from the active neurons in

the previous layer. The output neurons are in the output layer and they use the activation

function in order to map the desired output.

The behavior of a neural network model is determined by a set of real-value parameters that

are called weights and biases. Another task for these neurons is to adjust these weights

of connections between neurons. Every hidden layer consists of many units (neurons),

which operate in parallel and each one is represented as a vector-to-scalar function [85].

This means that each neuron receives many inputs from many neurons in the previous

layer to compute its activation value, as shown in Figure 2.4. The activation value is

calculated by the activation function that activates neurons by receiving an input from

many other neurons in the previous layer. A well-know activation function is the Sigmoid

and it is defined in Equation (2.1), where x is input [85, 109]. This function is used to
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Figure 2.5: The Sigmoid function

produce output of Bernoulli distribution of range between 0 and 1 distribution as shown

in Figure 2.5. The Sigmoid function is saturated when its argument is a large positive

value or a very small negative value, which make function flat and insensitive to the small

changed in its input arguments. This function is used in neural networks to activate

neurons because it squashes the output to be always between 0 and 1.

�(x) =
1

1 + e�x
(2.1)

Connections and Weights: The neural networks model contains many connections

between layers, which transfer the outputs of neurons (predecessors) in one layer to the

neurons (successors) in the next layer as an input. Therefore, every connection between

hidden layers has a predecessor neuron and successor neuron. In addition, every connection

is randomly assigned a weight w. Each time a neural network model is trained can result in

a di↵erent output due to di↵erent initial weights and bias values. Consequently, di↵erent

neural networks trained on the same problem can give di↵erent outputs for the same

input features. Sometimes, retraining neural networks several times may enhance the

performance of the F-score. This is because the weights of these connections significantly

a↵ect the prediction accuracy of the neural networks [85]. If the input feature x has a

connection with a positive weight, then increasing the value of this feature will increase

the value of the prediction for y. Also, if the input feature has a negative weight, then

increasing the value of this feature will decrease the value of prediction for y [85]. If the

feature has a zero weight, then it does not have any e↵ect on the prediction. A simple
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example of using weight is a linear regression, which is shown in equation (2.2).

y = wx + b (2.2)

The parameter b is called a bias parameter, in which the output of the function is based

on b in the absence of input features. Linear regression is one of the simplest learning

algorithms that can be used in neural networks and it provides a simple overview on

how choosing the w can significantly a↵ect the general performance of the neural network

algorithm [85].

Feedforward Network

Feedforward networks are the most straightforward neural networks. An example is shown

in Figure 2.4. The main function of this type of network is to approximate function f⇤.

For example, the classifier in equation (2.3) aims to map an input x to a specific class y:

y = f⇤(x) (2.3)

In the feedforwad neural networks, the mapping is defined as in equation (2.4), where

parameter ✓ results in a better function approximation [85].

y = f(x; ✓) (2.4)

This network has three types of layers, which are input layer, hidden layer and output

layer. Each layer may have one or multiple processing elements (neurons). These neurons

are connected with another neurons in di↵erent layer and each connection has a weight

that can be adjusted in the training phase. Information is directed from the input to

the output layer, which creates a directed acyclic graph [110]. There are no feedback

connections in this type of network. The feedforward network is the basis of many other

networks such as convolutional and recurrent networks [85].

Using this type of networks with a linear model has some limitations that can be overcome.
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Linear regression and logistic regression are well-known linear models, which are considered

to e↵ectively fit the model. However, the capacity of a linear model is restricted to the

linear function, as this model does not have the ability to understand the interaction

between any two input variables [85]. In order to overcome this limitation and to make

the linear model able to represent the nonlinear function of x,� is used as a nonlinear

transformation to provide new representation of the input function x [85].

Network Architecture: In the neural networks, choosing the number of layers and

neurons and how they are connected to each other plays an important role in obtaining

a high level of accuracy for any classifier that uses a neural networks. In general, the

network is divided into layers, and each layer has a set of neurons that operate in parallel

in the same layer. Inside every layer, there are no connections among neurons. The layers

are organized in a way that one layer is a function of the previous layer [85].

Equation (2.5) defines the first layer and Equation (2.6) defines the second layer.

h1 = g1(W1x1 + b1) (2.5)

h2 = g2(W2h2 + b2) (2.6)

This chain-based architecture needs to have the suitable depth of the network (number of

layers) and the width of each layer (number of neurons in layer). Sometime choosing a

network with only one hidden layer can satisfy the fitting process for the training dataset.

Moreover, a neural network model that has more layers can often use less neurons in each

layer and can generalize a model to the test dataset, but it may require more e↵ort to

optimize the model [85]. The ideal neural networks architecture for a specific task can be

defined by performing many experiments to get the most desired accuracy.

In the real world, neural networks are considered to be more diverse, but they have the

same basic concepts of depth and width regarding the feedforward network. Depending

on the defined task of the neural networks, the architecture of the network may change,

such as in the convolutional network and recurrent network. The convolutional network is
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a specialized architecture that is used for computer vision applications, whereas the recur-

rent network is generalized from the feedforward neural networks for sequence processing

purposes [85].

Back Propagation Neural Networks

In the previous type of neural networks (feedforward), the information inside the network

flows from the input x toward hidden layers and then finally to produce output y. This

process is called forward propagation algorithm. On the other hand, back propagation al-

gorithm is about allowing the information about error to propagate back through network

to compute the gradient descent [111, 85]. Nielsen describes the back propagation algo-

rithm as the workhorse of the learning process in neural networks [112]. This is because it

shows the significant e↵ect of changing the weights and biases on the behavior of network

and cost function.

The term back propagation comes from computing the error vector backward, starting

from the last layer in the network [112]. Before the back propagation is initiated, there are

other processes that must be done first. These processes include calculating the activation

values of units and propagating them to the output units. Then the cost function will be

applied to compare the actual output error results yoP with the desired output values do.

Usually, there will be a signal error �po from each unit in the output layer. The goal of back

propagation is to reduce the amount of di↵erences between the actual output and desired

output to as much as possible [109]. This can be achieved by backward passes through

every hidden layer in order to carry the error signal to all units in the networks and to

recalculate the weights of connections in the hidden layers. Equation (2.7) provides the

recursive procedures that compute all the error signals for all the units in the hidden layers

[109]. The error measure can be written as a function of the network inputs from hidden

layer o = 1 to output layer No. who is the weight of the connection from unit in hidden

layer to output layer. The F 0 is the squashing function for the kth unit and is evaluated

at the network input (sPh ) for that unit.
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�ph = F 0(sPh )
NoX

o=1

�powho (2.7)

Neural Network Regression model

Beale et al. [113] claim that the neural networks can fit any practical function. Feed-

forward neural network model is used with activation function (e.g., sigmoid) in the hidden

layer and linear output neurons to fit multi-dimensional mapping problems, if provided

with consistent input dataset size and enough number of units in each layer. More neurons

and layers require more calculation; however, they allow the network to solve complex

problems e↵ectively.

For fitting problems, the neural network model is used to map between numeric input

datasets to a set of numeric output targets. Depending on the nature of the problem

and input datasets that are needed to be fitted, we may use di↵erent neural networks

architectures. In this thesis (Chapter 5), our target is to fit the input data (system

metrics) to predict the system throughput. The steps that are followed to develop the

neural network models include data collection, network creation, network configuration,

initialize the weights and biases, network training, validation, then the network can be

used for testing new datasets.

2.5.2 Decision Tree

In this section, a brief overview about Decision Tree algorithm is provided because it is

used in this thesis for comparison with our proposed models. Decision Tree is another type

of predictive machine learning algorithm that is used for both classification and regres-

sion models [114]. It is called Decision Tree classification when it used for classification

purposes, whereas it is called regression tree if it used for regression purposes. In this

section, we focus more on the classification tree to classify the performance if there is any

performance anomaly or not.

Decision trees are widely used due to their simplicity [114]. The classification tree algo-
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rithm is utilized in many di↵erent fields. For example, it is used in finance [115], agriculture

[116], astronomy [117], control systems [118], manufacturing [119], medicine [120] remote

sensing [121], and anomaly detection [122, 123].

Decision Tree Characteristics

Usually, classification trees are represented as hierarchical graphical structure, which fa-

cilitates the interpretation when compared to other machine learning techniques [114]. A

decision tree model has a set of nodes, which form a directed tree. The main node in the

tree is called root node that has no incoming edges, whereas all the other nodes in the tree

have only one incoming edge. The node with outgoing edges is called internal node or test

node. The others nodes with incoming edges, but without outgoing is called leave node or

a terminal node. Every internal node in the tree divides the input space into two or more

spaces depending on the function of input values [114]. In a simple decision tree, each test

node receives an input instance to split the tree to subtrees according to this input.

Instances are classified by routing them from the main node ”root node” of the tree down

to the last specific node leaf in the tree [114]. This routing process starts from the top to

bottom of the tree and it is achieved by applying classification test for every node along

with the path to route input instance to the final leaf node in that tree. Each node in

the tree has a label of its attributes which allows this nodes to classify according to these

attributes. Each branch in the tree has a label of its corresponding values [114].

The complexity of decision tree is measured by some metrics include the total number of

nodes, the total number of leaves nodes, the depth of tree, and the number of attributes

in all the tree. There are some methods that are used in the literature to control the

complexity of tree, which include stopping criteria and pruning method [114]. Sometime,

a complicated decision tree may have some limitations in the ability to generalize model.

In some cases, a simple tree may outperform the complicated tree even if the complicated

tree shows better accuracy in the training phase [114].
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Decision Tree Induction Algorithms

Inductive machine learning is about the process of learning a set of rules from the training

dataset to implement a classifier that has ability to generalize new test data. This section

provides a general overview about some popular decision tree induction algorithms. These

decision tree induction algorithms include ID3 and C4.5. These types of algorithms use

splitting criterion or pruning methods to control the complexity of tree [114]. The advan-

tages and disadvantages are presented for each algorithm.

ID3 algorithm is considered to be a simple decision tree algorithm [124]. The ID3 does not

apply pruning method and it does not handle numeric attributes or missing values. ID3

uses information gain as a splitting criterion to make algorithm stop growing if all instances

are belonging to a single value of target feature or if the best information gain is not greater

than zero [114]. The main advantage of ID3 is its simplicity to be used for learning

purposes. Although, ID3 is simple, it has many notable disadvantages include overfitting

the training data and accepting only nominal attribute. Therefore, any continuous data

needs to be converted to nominal data before using ID3 [114].

Many drawbacks in the ID3 have been tackled in C4.5 algorithm [125]. C4.5 algorithm

is an evolution of the ID3. C4.5 uses gain ratio as splitting criteria. The splitting process

ceases if the number of instances that needs to split is below a specific threshold. After the

growing phase, the error based pruning method is applied. This method is used to remove

all branches that do not add any contribution to the performance accuracy and replaces

these branches with leaf nodes [114]. Not like ID3, the C4.5 has the ability to handle

numeric attributes and also it handled missing value from the training dataset by using

corrected gain ration criteria [125]. Another advantage of C4.5 is the ability to handle

any continuous attributes by splitting the range of value attributed into two branches

(subsets). Therefore, all the attribute values above a specific threshold are located in the

first branch, whereas the all the other attribute value under the threshold are located in

the second branch.

There is an updated version of C4.5 which is CC5.0. This updated version is a commercial
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version and it provides some improvements which it has been claimed that it o↵ers more

e�cient features than C4.5 algorithm. These improvements include memory, predictive

performance, and computation time. The comparison in [114] between C4.5 and CC5.0

shows that running experiment with C4.5 takes 90 minutes, whereas CC5.0 takes only

3.5 seconds .

2.5.3 Nearest Neighbor

Nearest Neighbor machine learning technique can be applied for both classification and

regression models. Goodfellow [85] points out that k-Nearest Neighbor does not have an

explicit training or learning phase. Thus, it is called lazy algorithm. The main concept of

nearest neighbor technique has an assumption that the normal data instances usually occur

in dense neighborhoods, whereas the abnormal data instance occurs far from its closest

neighbors [39]. This type of machine learning technique requires a distance measure to

be defined between two input data instances. This distance measure can be calculated in

many di↵erent ways. Euclidean distance is often used for continuance attributes and it is

shown in Equation (2.8) [38].

vuut
nX

i=1

(xi � yi)2 (2.8)

On the other hand, a simple matching coe�cient is used for categorical attributes [39].

There are two main nearest neighbor based techniques that are used for anomaly detection

purposes. The first technique uses the distance between the data instance and its kth

nearest neighbor as a score of anomaly. The second technique it about computing the

relative density of each data instance in order to compute the score of anomaly [39].

The kth nearest neighbor is considered to be a non-parametric technique which does not

generally make any assumption on the underlying distribution and the module structure

is determined from input dataset [39]. This non-parametric feature makes kth nearest

neighbor an ideal choice if the distribution of dataset is unknown. The score of the

anomaly for the data instance is known as the distance to its kth nearest neighbor in

the input data set.
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The disadvantage of the k nearest neighbor is the lack of ability to learn about the dis-

crimination between the input features [85]. For example, if there are a group of features

x1 to x50 and the only feature x5 is noticeably influencing the result of classification (i.e.,

y = x5), then the kth Nearest Neighbor will not be able to detect the significant e↵ect

of x5 feature. Therefore, the classification output y will be calculated based on most of

the features x1 through x50, but not only on feature x5. This feature makes kth nearest

neighbor a↵ected by noise and irrelevant input features.

2.6 Summary

In the previous sections, the existing techniques that are developed in statistical analy-

sis and machine learning domains are investigated, especially those studies on anomaly

detection and interference prediction techniques. Table 2.2 shows a summary of these

state-of-the-art techniques. Some concerns are related to the use of only statistical meth-

ods, such as assumptions about the distribution of data, and many statistical methods

demonstrate sensitivity to variations in this assumption, especially for real-time datasets.

However, machine-learning techniques do not require this assumption and facilitate the

identification of performance anomalies, especially for distributed in-memory processing

technology, such as Apache Spark.

During my PhD, there have been some challenges that occurred during my research. Ac-

cording to Chandola et al. [39], the sole use of a supervised anomaly detection method

may cause some challenges that can limit the scope of its application, especially within

dynamic environments such as Big Data and cloud systems. The first challenge is the size

of the dataset of anomalous instances, which is less than a normal instance in the training

data. However, this challenge of imbalanced class distribution has been overcome in the

literature by using some machine learning techniques [126, 127, 128, 129]. The second

challenge is that obtaining accurately labeled data, particularly for the performance of

anomaly classes, is often arduous. However, some approaches provided in the literature

address this issue. One approach is to inject artificial anomalies in the system to obtain

enough anomaly labeled datasets for the training phase [130, 131].
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The third challenge is obtaining accurately labeled datasets for new and unknown anomaly

classes in the supervised machine learning technique. To overcome this challenge, unsu-

pervised and semi-supervised learning techniques can be used (if there is a need) for the

detection of performance anomalies within in-memory processing platforms. The fourth

challenge is a lack of comprehensive open source datasets for Apache Spark that can o↵er

all the system metrics with di↵erent types of workloads. Therefore, the needed datasets

will be generated from the current benchmarks and from real Big Data applications to

collect enough datasets for our proposed research; we will make them available as an open

source for public.

Although some challenges have arisen during my research, there may also some opportu-

nities to investigate new research areas. Although Apache Spark and containerized batch

systems are developing gradually, there are still shortages in comprehensive performance

analyses that are specifically built for Spark and containerized batch services within cloud

that are used to detect performance anomalies and predict system interference. The perfor-

mance of such systems can vary considerably depending on many factors, such as the type

of input data, data size, application design, system configuration, used algorithms, and

available computing resources. These factors make anomaly detection and interference

prediction more challenging, especially for critical the applications in these distributed

systems. Therefore, there is a need to deeply investigate performance bottlenecks and

pinpoint the cause of a performance anomaly and its interference to improve the overall

system performance.

Identifying the main performance metric that may a↵ect the performance of the Big Data

application is a first step in understanding the detection and prediction of performance

anomalies and any potential interference with performance. Addressing these challenge

o↵ers valuable opportunities to investigate new hybrid-learning techniques for Big Data

anomaly detection and interference prediction.
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AI Driven Anomaly Detection

Methodology for In-Memory

Systems

3.1 Introduction

Due to the widespread growth of data processing services, it is not uncommon for a data

processing system to have multiple tenants sharing the same computing resources, leading

to performance anomalies arise from resource contention, failures, workload unpredictabil-

ity, software bugs, and several other root causes. For instance, even though application

workloads can feature intrinsic variability in the execution time because of the variability

in the dataset sizes, uncertainty scheduling decisions of the platform, interference from

other applications, and software contention from the other users can lead to unexpectedly

long run times that are perceived by end-users as being anomalous.

Research on automated anomaly detection methods is important in practice since the

late detection and slow manual resolutions of anomalies in a production environment may

cause prolonged service-level agreement violations, possibly incurring significant financial

penalties [5, 6]. This leads to a demand for e↵ective performance anomaly detection

49
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methods in cloud computing and Big Data systems, which are both dynamic and proactive

in nature [7]. The need to adapt these methods to the production environment with

very di↵erent characteristics means that black-box machine learning techniques are ideally

positioned to automatically identify performance anomalies. These techniques o↵er the

ability to quickly learn baseline performance through a large space of monitoring metrics,

to identify normal and anomalous patterns later on [8].

In this chapter, we develop a neural networks based methodology for anomaly detection

tailored to the characteristics of Apache Spark. In particular, we explore the consequences

of using an increasing number and variety of monitoring metrics for anomaly detection,

showing the consequent trade-o↵s on precision, recall, and F-score of the classifiers. We

also compared methods that are agnostic of the workflow of Spark jobs by using a novel

method that leverages the specific characteristics of Spark’s fundamental data structure

-RDD- to improve anomaly detection accuracy.

Our experiments demonstrate that neural networks are both e↵ective and e�cient in de-

tecting anomalies in the presence of heterogeneous workloads and anomalies, the latter

including CPU contention, memory contention, cache thrashing, and context switching

anomalies. We further explore the sensitivity of the proposed method against other ma-

chine learning classifiers and with multiple variations on the duration and temporal oc-

currence of the anomalies.

This chapter provides an evaluation against three popular machine learning algorithms,

such as decision trees, nearest neighbor, and SVM, as well as against four variants that

consider di↵erent monitoring metrics in the training dataset. In addition, the proposed

methodology is examined for di↵erent types of overlapped anomalies.

3.2 Motivating Example

To motivate the use of machine learning approaches in anomaly detection methods for

Spark, we consider the performance of a simple statistical detection technique based on

the percentiles of the cumulative distribution function (CDF) of task execution times.
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Our goal is to use CDF percentiles to discriminate whether a given task has experienced

a performance anomaly or not.

We run a machine learning workload (K-means) on Spark system with nine di↵erent types

of tasks. K-means workload is a popular machine learning algorithm, and it has high CPU

utilization when it is run on the Apache Spark system. As discussed in Section 3.4.1,

which details the experimental environment and process, we inject CPU contention using

the stress tool for a continuous period of 17 hours, which corresponds to 100% of the total

execution time of a job. The intensity of the CPU load injected in the system amounts

to an extra 50% average utilization compared with running the same workload without

stress.

We then use the obtained task execution times to estimate the empirical Cumulative

distribution function (CDF) for the execution time of tasks conditional on their stage;

that is the population of samples that defines the CDF corresponds to the execution time

of all the tasks that are executed in that specific stage. Note that because we run 10

parallel K-means workloads, each stage and its inner tasks are executed multiple times.

We refer to this CDF as a stage CDF.

We then determine the 95th, 75th, 50th, 25th, and 10th percentiles of all the stage CDFs

and assess whether they can be used as a threshold to declare whether a job su↵ered an

execution time anomaly. When there is a continuous stress CPU anomaly, the F-score is

93%, which is acceptable. However, this technique failed to detect a short random time

CPU anomaly, achieving only 0.2% for the F-score.

We used a two-sample Kolmogorov-Smirnov test to compare the two Apache Spark stages

CDFs with and without anomalies [132]. The test result is true if the test rejects the null

hypothesis at the 5% level and false otherwise, as shown in Figure 3.1. The three types of

Apache Spark stages in Figure 3.1 illustrate that the three stages of CDFs obtained in an

experiments with and without the injection of CPU contention. The three CDFs for the

three di↵erent types of Apache Spark tasks make it di�cult to determine whether there

is an anomaly or not. For example, Figure 3.1(a) has a noticeable di↵erence in the CDFs

results for normal and abnormal Spark performance. On the other hand, Figure 3.1(b) also
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(a) CDFs for stage type 3
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(b) CDFs for stage type 7

0 20 40 60 80 100

execution time (sec)

0.2

0.4

0.6

0.8

1
4780 Tasks   (Stage Type 8), (KStest: true)

Normal
Anomaly
Prctile95 49

(c) CDFs for stage type 8

Figure 3.1: CDF for the three types of Spark tasks when there is a short 50% CPU stress
that a↵ected tasks from stage type 3.

has a noticeable di↵erence between the two experiments, but there were no performance

anomalies that occurred during all the Spark tasks in stage 7. In addition, the CPU

anomaly causes a delay while processing the tasks. This delay propagates through the

Apache Spark DAG workflow and therefore also a↵ects tasks that did not incur anomalies

period.

In conclusion, this motivating example illustrates that CDF-based anomaly detection in

Spark only at the level of execution times is significantly more prone to errors. In the next

sections, we explore more advanced and general methodology based on a machine learn-

ing technique that is capable of considering multiple monitoring metrics and pinpointing

anomalous tasks with high F-score performance metrics.
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Figure 3.2: Methodology for anomaly detection

3.3 Methodology

In this section, we present our neural network driven methodology for anomaly detection

in Apache Spark systems. A schematic view of anomaly detection detailed processes is

shown in Figure 3.2. The following subsections discuss the proposed methodology covering

the neural network model, feature selection, training, and testing.

3.3.1 Neural network model

Our methodology revolves around using a neural networks to detect anomalies in in-

memory Apache Spark environment. The standard backpropagation with a scaled con-

jugate gradient is used for the training process to update weight and bias values of the

neural networks. The scaled conjugate gradient training is normally faster than standard

gradient descent algorithms [133].

Before we initiate the backpropagation process, we calculate the activation values of units

in the hidden layer and propagate them to the output layer. A sigmoid transfer function

(non-linear activation function) is used in the hidden layer because it exists between (0 to

1), where zero means absence of the feature and one means its presence. In neural networks,

non-linearity is needed in the activation functions because it produces a nonlinear decision

boundary via non-linear combinations of the weights and inputs to the neural networks.

Sigmoid introduces non-linearity in the model of neural networks, as most of the real

classification problems are non-linear. Softmax ( exp(xi)P
j exp(xj)

) transfer function is used in the

output layer to handle classification problems with multiple classes. Then cross-entropy
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(�(y log(p) + (1� y) log(1� p))) is used as a cost function to assess the neural networks

performance and compare the actual output error results with the desired output values

(labeled data). Cross-entropy is used because it has practical advantages over other cost

functions; e.g., it can maintain good classification performance even for problems with

limited data [134].

The input layer contains a number of neurons equal to the number of input features of

Spark metrics. The size of the hidden layer is determined by using a “trial and error”

method, trying all the possible numbers between the sizes of input neurons and output

neurons [135]. A hidden layer with ten neurons has achieved the most accurate results

for our situation. The output layer of the neural network contains a number of neurons

equal to the number of target classes (normal + types of anomalies), where each neuron

generates 0 for normal behavior or 1 for anomalous behavior. For example, if there are

three types of anomalies (CPU, cache thrashing, and context switching), then the size of

the output layer is four neurons.

Backpropagation algorithm is used to allow the information about classification error to

propagate back through the network to compute the gradient. This provides a significant

e↵ect of changing the weights and biases based on the behavior of network and cost

function. Scaled conjugate gradient backpropagation is used for the training process to

updates weight and bias values according to the scaled conjugate gradient method.

3.3.2 Model training and testing

In the training process, as commonly conducted, the input dataset to the model is divided

into three smaller datasets for training, validation, and testing. The training dataset is

used for calculating the gradient and updating the network weights and biases. During

the training process, the weights and biases are constantly updated until the magnitude of

the scaled conjugate gradient reaches the minimum performance gradient or the number

of validation checks. The training process stops if the magnitude of the gradient is less

than a predefined threshold (e.g., 10�5).

The validation dataset is used for validation purposes where the error rate is decreased
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before overfitting the dataset by checking the number of validation checks. The number

of validation checks is about the number of successive iterations that the validation per-

formance fails to decrease (e.g., six successive iterations). After convergence, we save the

weights and biases at the minimum error for the validation subset. This method is called

early stopping [136]. This helps to avoid overfitting issues.

We test our proposed model with new input dataset that was collected from the Apache

Spark system. This new dataset was manually labeled in order to classify normal and

anomalous behavior of target system. With this kind of classification techniques, accuracy

is not a su�cient evaluation for a model with an imbalanced class distribution of data

[114]. Therefore, sometimes the accuracy estimation may not correctly reflect the quality

of the classifier. To avoid this issue, sensitivity and precision measures are used to evaluate

the anomaly detection classifiers, which are standard metrics for quantifying the accuracy

of the classifiers [137]. The following are the anomaly classification classes and their

notations:

• True Positive (tp): The detection method correctly detected anomaly

• True Negative (tn): The detection method correctly did not detect anomaly when

it did not exist.

• False Positive (fp): The detection method detected anomaly when it does not exist

• False Negative (fn): The detection methods missed detection of an anomaly when it

actually exists

R =
tp

tp+ fn
(3.1)

P =
tp

tp+ fp
(3.2)

F1 = 2
PR

P +R
(3.3)

Sensitivity is also called Recall, which assesses the quality of a classifier in recognizing

positive samples; it is defined in (3.1). Recall will become high when the anomaly-detection

method can detect all anomalies. The second classification performance metric is Precision,

which quantifies how many samples are classified as anomalies are indeed anomalies. This
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is defined in (3.2). The Precision assesses the reliability of the detection method when it

reports anomalies [137]. The trade-o↵ between the Recall and Precision is F-Score, which

is a summary score, and it is computed as a harmonic means of Recall and Precision. The

F-Score metric is defined in (3.3).

3.3.3 Feature selection

The objective of features selection is to discover the smallest set of features and at the same

time can achieve a desirable predictive performance. Metrics performance collection is a

crucial step to automated detection of anomalous performance behaviors by finding the

relevant performance metrics with which to characterize the behavior of systems. Many

metrics can be collected, but it is challenging to decide which metrics are more valuable

to assess system performance and pinpoint the anomalous behaviors. Our methodology

focuses on combining many performance metrics related to the general aspect of systems,

which cover memory and CPU metrics. Other internal metrics of Big Data system can be

utilized, such as metrics about the shu✏e read and jobs information. This internal and

runtime metrics may positively contribute to increase the accuracy of anomaly detection

methods.

To evaluate the impact of the choice of input monitoring features, we consider a simple

workload execution in which a K-means workload is injected with 50% CPU and memory

contention overheads using the stress tool, either continuously for the duration of the

experiment or in a 90-second period out of a total runtime execution. On top of these four

combinations, a baseline experiment is run without any contention, in order to also train

the anomaly detection method with non-anomalous traces.

More details about experimental testbed are discussed later in Section 3.4.1. Only one

node (S02) is injected by 50% CPU and memory contentions, but there was no contention

in the other servers in the Spark cluster (node S01 and S03). To evaluate the DSM1 (only

CPU metrics), the following five scenarios have been examined:

1. Running the benchmark without any contention on CPU and memory.

2. Running the benchmark with continuous contention on CPU at 50%.
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3. Running the benchmark with continuous contention on memory at 50% memory.

4. Running the benchmark with a short time (90 sec) of contention on CPU 50%.

5. Running the benchmark with a short time (90 sec) of contention on memory by 50%

of free memory.

CPU utilization of S02 for the five scenarios are shown in Figure 3.3. The mean CPU

utilization of S02 and S03 are shown in Figure 3.4.

Table 3.1: Comparison of the results among di↵erent contention scenarios on S02

Server StressMean
CPU

SD Pr95 Pr99 Iqr Memory ExeTime
Sec

S01:Non NO 0.0203 0.0389 0.0950 0.2147 0.0177 89.3239 295
S01:CPU50% NO 0.0174 0.0308 0.0663 0.1646 0.0176 89.5402 567
S01:CPU50%90s NO 0.0210 0.0359 0.0874 0.2166 0.0218 89.8094 376
S01:Mem50% NO 0.0205 0.0376 0.0768 0.2346 0.0211 90.0187 326
S01:Mem%90s NO 0.0193 0.0356 0.0715 0.2094 0.0190 90.2926 355
S02: Non NO 0.8776 0.1849 0.9519 0.9561 0.0304 81.2464 295
S02:CPU50% Yes 0.9510 0.0701 0.9799 0.9833 0.0158 81.7595 567
S02:CPU50%90s Yes 0.9152 0.0806 0.9693 0.9748 0.0315 81.9844 376
S02:Mem50% Yes 0.8656 0.1880 0.9479 0.9527 0.0318 93.2561 326
S02:Mem50%90s Yes 0.8770 0.1825 0.9513 0.9574 0.0337 85.0864 355
S03: Non NO 0.4488 0.4443 0.9489 0.9550 0.9271 90.0702 295
S03:CPU50% NO 0.2231 0.3719 0.9361 0.9504 0.3580 90.4513 567
S03:CPU50%90s NO 0.2649 0.3572 0.8831 0.9356 0.6816 91.1414 376
S03:Mem50% NO 0.4129 0.4357 0.9422 0.9507 0.9115 91.2038 326
S03:Mem50%90s NO 0.3760 0.4310 0.9402 0.9506 0.8914 91.3892 355

We compare the performance of a basic anomaly detection method, called DSM1, which

relies solely on a neural networks trained using samples collected at the operating system

level of CPU utilization, time spent by the processor waiting for I/O, and CPU steal

percentage. Table 3.1 shows a comparison of the results among five di↵erent contention

scenarios on S02 by running Spark K-means workload without contention, with continuous

50% CPU stress, with 90-sec 50% CPU stress, with continuous 50% memory stress, and

with 90 sec 50% memory stress on only S02. Table 3.1 shows the mean CPU utilization,

standard deviation, 95 percentile, 99 percentile, interquartile, memory usage, and total

execution time.

Table 3.1 shows that the di↵erent type and amounts of anomalies a↵ect mean CPU and

memory utilization in server S02 to detect the performance anomalies using DSM1 (only
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(a) S02 Without stress (b) S02 continuous stress by 50% CPU

(c) S02 with continuous stress by 50% Memory (d) S02 with short time of stress on S02 CPU 50%
for 90sec

(e) S02 with short time of stress on S02 Memory
50% for 90sec

Figure 3.3: S02 CPU utilization when single K-means workloads run on S02 With di↵erent
scenarios of stress on S02 .
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Figure 3.5: Neural network performance with DSM1 feature set in experiments with basic
CPU and memory contention (continuous or 90-sec periods)
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CPU metrics collected during the runtime of experiments). Machine learning has been

used to detect these anomalies using neural networks driven methodology (discussed in

Section 3.3.1) with DSM1. The classification performance metrics for a neural network

trained on DSM1 are summarized in Figure 3.5.

The K-means workload does not heavily use memory (see Table 3.1). Therefore, memory

contention does not have a noticeable e↵ect on the DSM1 dataset, and the F-score is as

low as 19.88% when the memory contention is temporary (see Figure 3.5). Generally,

short contention periods are harder to detect, as visible from the fact that a 90-second

CPU anomaly has an F-score of 58.05%, compared to a 77.44% F-score when there is

a continuous CPU stress injection. We interpret this as due to the fact that the neural

network model needs to train the algorithm with an enough dataset to detect memory

contention. If we repeat the same experiment after adding memory monitoring metrics,

referred to as the DSM2 dataset in Table 3.2, the F-score immediately increases from

77.44% to 99% for continuous CPU anomaly injection, highlighting the importance of

carefully selecting monitoring metrics even if they do not immediately relate to the metrics

that are mostly a↵ected by the anomaly injection.

The above results suggest that while a reduced set of core metrics can substantially de-

crease the training time of the model, an important consideration for example in online

applications, it can be counterproductive to perform feature selection by reasoning on the

root causes that generate the anomaly.

3.3.4 Training data

We assume the Spark testbed to be monitored at all machines. We considered di↵erent

levels of logging, ranging from basic CPU utilization readings to complete availability of

Spark execution logs. The logs provide details on activities related to tasks, stages, jobs,

CPU, memory, network, I/O, etc. Many metrics can be collected, but it is challenging

to decide which ones are more valuable to assess system performance and pinpoint the

anomalies, as this may depend on the workload. All data collection in our experiments

took place in the background without causing any noticeable overhead on the Spark cluster.
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In this work, we propose four methods, called dataset method 1 (DSM1), dataset method

2 (DSM2), dataset method 3 (DSM3) and dataset method 4 (DSM4).

DSM1, introduced earlier, relies solely on a neural networks trained using CPU utilization

samples. In the beginning, the utilization of system resources are measured at one-second

intervals. The CPU measurements are collected for DSM1, which are summarized later in

Table 3.2. The CPU measurements are collected, which include the percentage of CPU

utilization, the percentage of time that the CPUs are idle during an outstanding disk I/O

request, the percentage of time spent in unintended waiting by the virtual CPU, and the

percentage of time that the CPUs are idle.

DSM2 adds operating system memory usage metrics to the metrics employed by DSM1.

We have experienced a low accuracy with DSM1 combination of CPU metrics. After ob-

serving the Spark system, we notice that the memory performance was noticeably impacted

during the occurrence of di↵erent types of anomalies. Therefore, some memory metrics

are also collected for DSM2, which include the metrics in Table 3.2. The measurements

include free memory available, the amount of memory used, the percentage of memory

used, the amount of memory used as bu↵ers by the kernel, the amount of memory used

to cache data by the kernel, and the amount of memory needed for the current workload.

The third method is DSM3 is build upon the list of metrics selected in [138], which

examines the internal Spark architecture by relying on information available in the Apache

Spark log, such as Spark executors, shu✏e read, shu✏e write, memory spill, and java

garbage collection. DSM3 does not reflect the RDD DAG of Spark application.

The fourth method is DSM4 which includes comprehensive internal metrics about Spark

tasks that enable the proposed technique to track the Spark RDD DAG to detect the per-

formance anomalies. These metrics include comprehensive statistics about identificators

and execution timestamps for Spark RDDs, tasks, stages, jobs, and applications. The

detailed monitoring features used to train these four methods are listed in Table 3.2.

In the proposed methodology, we assume that the collected data is pre-processed by the

end to ensure elimination of any mislabeled training instances and to validate the datasets
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before passing them to the neural networks to improve their quality. For example, we

sanitize utilization measurements larger than 100% or less than 0% by removing the cor-

responding entries; similarly, we exclude from the datasets samples when some of the

features are missing, so that the input dataset is uniform.

All the collected metrics are time series, which are additionally labeled either as normal or

anomalous in a supervised fashion, before passing them as input to our anomaly detection

method for training, validation, and testing. In an application scenario, labeling could

either be applied using known anomalies observed in the past in production datasets or

carrying out an o✏ine training based on the forced injection of some baseline anomalies.

Features we have used to qualify the characteristics of the anomalies include information

on their start time, end time, and type (e.g., CPU, memory, etc.). These labels are used

to classify performance to be either normal or anomalous behaviors in the training phase

of the neural network.
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Table 3.2: List of performance metrics for the DSM1, DSM2, DSM3, and DSM4 methods

Methods Metrics

DSM2

DSM1

CPU utilization
Percentage of time that the CPUs were idle during outstanding
disk I/O request
Percentage of time spent in involuntary wait by the virtual
CPU
Percentage of time that the CPUs were idle
kbmemfree: free memory in KB on hostname
kbmemused: used memory in KB on hostname
X.memused: used memory in % on hostname
kbbu↵ers: bu↵er memory in KB on hostname
kbcached: cached memory in KB on hostname
kbcommit: committed memory in KB on hostname
X.commit: committed memory in % on hostname
kbactive: active memory in KB on hostname
kbinact: inactive memory in KB on hostname
kbdirty: dirty memory in KB on hostname

DSM4
DSM3

Task spill: Disk Bytes Spilled
Executor Deserialize Time
Executor Run Time
Bytes Read: Total input size
Bytes Written: total output size
Garbage Collection: JVM GC Time
Memory Bytes Spilled: Number of bytes spilled to disk
Task Result Size
Task Shu✏e Read Metrics: Fetch Wait Time, Local Blocks
Fetched, Local Bytes Read, Remote Blocks Fetched, and Re-
mote Bytes Read
Task Shu✏e write Metrics: Shu✏e Bytes Written and Shu✏e
Write Time
Stage ID
Task info: Launch Time, Finish Time, Executor CPU Time,
Executor Deserialize CPU Time, Input Records Read, Out-
put Records Written, Result Serialization Time, Total Records
Read for Shu✏e, and Total Shu✏e Records Written
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3.4 Evaluation

In this section, we introduce an evaluation for the performance anomaly detection method-

ology proposed in Section 3.3. In particular, having shown before the benefits of using an

increasingly large dataset, we focus on evaluating neural networks trained on the DSM2

and DSM4 feature sets. We use as a baseline a nearest neighbor classifier trained on the

same data.

3.4.1 Experimental Testbed

Experiments are conducted on a cluster that contains three physical servers: S01, S02,

and S03. The specifications for these servers are as follows:

1. Node S01: 16 vcores Intel(R) Xeon(R) CPU 2.30GHz, 32 GB RAM, Ubuntu 16.04.3,

and 2TB Storage.

2. Node S02: 20 vcores x Intel(R) Xeon(R) CPU 2.40GHz, 32 GB RAM, Ubuntu

16.04.3, and 130 GB Storage.

3. Node S03: 16 vcores x Intel(R) Xeon(R) CPU 1.90GHz, 32 GB RAM, Ubuntu

16.04.3, and 130 GB Storage.

The hyperthreading option is enabled on S01, S02, and S03 to make a single physical

processor resources appear as two logical processors. Apache Spark is deployed such that

S01 is a master and the other two servers are slaves (workers). Spark is configured to use

the Spark Standalone Cluster Manager, 36 executors, FIFO scheduler, and a client mode

for deployment. Node S01 hosts the benchmark to generate the Spark workload and launch

Spark jobs. The other nodes run the 36 executors. Monitoring data collection took place

in the background, with no significant overhead on the Spark system. All machines use

SAR (System Activity Reporter) and Sysstat to collect CPU, memory, I/O, and network

metrics. Log files from Spark are also collected to later extract the metrics for DSM4.
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Table 3.3: SparkBench Workloads

Application Type Workloads

Graph Computation
Data Generator
Graph Generator

SQL Queries SQL query over dataset

Machine Learning

Data Generator - K-means
Data Generator - Linear Regression
K-means
Logistic Regression

3.4.2 Workload Generation

The e↵ective use of benchmarks o↵ers opportunities to examine and understand the system

performance and identify potential areas for improvement and optimization. In general,

there are two categories of benchmarks that are framework specific and multiple framework

benchmarks. The first type is designed for a particular framework, such as SparkBench

for Apache Spark [11]. The second type of benchmark is designed to include workload for

various frameworks, such as BigBench [139], Gray sort [140], BigDataBench [76].

SparkBench covers the four main categories of Spark applications, including graph com-

putation, streaming, SQL query, and the machine learning application [11]. SparkBench

provides workload suites that include a collection of workloads that can be run either

serially or in parallel [11]. Workloads include machine learning, graph computation, and

SQL queries, as shown in Table 3.3. In this section, the K-means data generator is used

to generate various K-means datasets of di↵erent sizes (e.g., 2 GB, 8 GB, 32 GB, and 64

GB). The K-means workload is intensively used in our experiments with many alternative

configurations for Spark and SparkBench parameters to compare the performance results

under di↵erent scenarios. More than 1450 experimental runs have been conducted and

more than 3.7TB of data have been collected to examine our proposed solution. An exam-

ple of RDD DAG for K-means Spark job is shown in Figure 3.6, which has a single stage

that contains a sequence of RDD and some of them are cached (green box for map RDD).

SparkBench provides a reliable feature, which is called workload suite [11]. This feature

allows user to e↵ectively control the level of workload parallelism to stress the Spark

system. For example, the user can run n K-means workloads and m linear regressions in



66 Chapter 3. AI Driven Anomaly Detection Methodology for In-Memory Systems

Scan csv 

DeserializeToObject

mapPartitions

map

map

zip

map

Figure 3.6: DAG diagram illustrates dependencies among operations on Spark RDDs for
a single Spark stage within the K-means workload.

Table 3.4: Types of anomalies.

Type Description
CPU Spawn n workers running the sqrt() func-

tion
Memory Continuously writing to allocated memory

in order to cause memory stress.
Cache thrashing n processes perform random widespread

memory read and writes to thrash the
CPU cache.

Context switching n processes force context switching.

parallel, then launch serially k SQL workloads. Therefore, the user has the ability to chain

together di↵erent workloads with di↵erent parameter configurations and use varying levels

of parallelism.

3.4.3 Anomaly Injection

Node S02 is used to inject anomalies into the Apache Spark computing environment us-

ing stress and stress-ng tools. Table 3.4 shows a list of the four types of anomalies that

have been used throughout the experiments. Stress is used to generate memory anoma-

lies, whereas stress-ng is used to generate CPU, cache thrashing, and context switching.

Each experiment has di↵erent configurations, depending on the objective of the conducted

experiment, which will be discussed in detail in the following Section (Section 3.5).
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3.4.4 Performance Data Collection

A summary of the performance data collected is shown in Table 3.2. In addition, Spark

o↵ers a configurable metrics system that allows Spark users to report metrics to a variety

of sinks, such as HTTP, JMX, and CSV files. Corresponding to the Spark components

(workers, executor, etc.), Spark metrics are separated in di↵erent instances. Each of these

instances can configure a set of sinks to which metrics are reported [10]. We have used

this feature to store all the required performance metrics that will be used as an input

to the proposed anomaly detection technique. In addition, Spark also o↵ers the ability to

use di↵erent sets from third-party tools to monitor applications using the metric of the

system [29], which can be used in the future.

3.5 Results

The experiments are conducted on a cluster (described in Section 3.4.1), which consisted

of a master server (called S01) and two slave servers (S02 and S03). This cluster is isolated

from other users during the experiments. A physical cluster is used instead of a virtual

cluster to avoid any possibility of deviations in measurements. A series of experiments are

conducted on the Spark cluster to evaluate the proposed anomaly detection methods.

3.5.1 Baseline Experiment

Three experiments with di↵erent types of anomalies are injected into the Spark cluster

with random instant and random duration chosen uniformly between 0 and 240 seconds.

Each experiment encompasses a single type of anomaly: CPU contention, cache thrashing,

or context switching. We focus on evaluating neural networks trained on the DSM2 and

DSM4 feature sets. Figure 3.7 shows the F-score obtained with the proposed neural

networks classifier versus the nearest neighbor method used as a baseline. It is clear that

the neural networks model outperforms the nearest neighbor in detecting all the three

types of anomalies. Moreover, the random instant and random duration of the three types

of anomalies have little impact on the performance of the neural networks compared with

the nearest neighbor.
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Figure 3.7: F-score performance metrics of neural networks and nearest neighbor for
anomaly detection techniques

Table 3.5: Quality metrics for Neural Networks classification to detect the existence of
anomaly that may be CPU, cache thrashing or context switching.

Recall precision F-Score
1 .99 0.99

Another experiment has been conducted, which aims to generalize our model to detect the

existence of anomalies that may be CPU stress, cache thrashing stress, or context switching

stress. Three types of anomalies have been injected without overlapping to spark cluster

to train and test the neural network model. The total number of tasks is 200K tasks which

the are used for training, validation and testing. The output from the neural networks are

two classes, which are 0 for normal and 1 for anomalous. Table 3.5 reflects the capability

of the neural network model in detecting all the three types of performance anomalies.

3.5.2 Sensitivity to Training Dataset Size

Figure 3.8 depicts the impact of Spark workload size on the F-score for anomaly detec-

tion using DSM4 and three di↵erent types of algorithms, which include Neural Networks,

Decision Tree, Nearest Neighbor, and SVM. The first workload has 250 Spark tasks (mi-

cro), the second workload has 1K Spark tasks (small), the third workload has 4K Spark

tasks (medium), the fourth workload has 16K Spark tasks (large), and the fifth workload

has 64K Spark tasks (x-large). All these workloads have the same benchmark and spark
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Figure 3.8: Impact of workload size on F-score for Neural Networks, Decision Tree, Nearest
Neighbor, and SVM using DSM2 and DSM4 feature sets.

configuration. Figure 3.8 shows that the proposed technique achieved 85% F-score with a

micro Spark workload (250 tasks), whereas the F-score increased when the size of work-

load increased to reach 99% F-score for the x-large Spark workload. This proves that the

neural networks achieve higher F-score than Decision Tree, Nearest Neighbor, and SVM

even with more heavy Spark workload.

3.5.3 Sensitivity to Parallelism and Input Data Sizes

To evaluate the impact of parallelism, we consider the execution of ten parallel K-means

workloads at the same time. This represents a more complex scenario than the ones con-

sidered before since the anomalies are overlapped to resource contention and interference

e↵ects, making it di�cult for classifiers to discern whether a heightened resource usage is

due to the workload itself or an exogenous anomaly. As before, the workload input data

size is 64 GB and we consider a simple 50% CPU contention injection into the Spark clus-

ter. Figure 3.9(a) shows the minor impact on DSM2 and DSM4 when there are a single

K-means workload and 10 parallel K-means workloads with continuous CPU contention.

Each experiment took approximately 17 hours for execution. In order to evaluate the

proposed anomaly detection methods, three machine learning algorithms have been applied

to detect performance anomalies with DSM2 and DSM4 as inputs to the anomaly detection
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Figure 3.9: Impact of parallelism and input data size of workload on anomaly detection
methods.

methods. These algorithms include neural networks, decision tree, nearest neighbor, and

SVM. Figure 3.9(b) shows that the neural network model has the highest F-score, and it

selectively detects the anomalies in the Apache Spark cluster. The nearest neighbor has

the second highest F-score, then the decision tree and SVM respectively. Regarding the

execution time of each algorithm, the neural network, decision tree, nearest neighbor, and

SVM took approximately 1 minute, 3 minutes, 9 minutes, and 19 minutes respectively.
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The neural network model is more e↵ective than other algorithms. Standard classification

methods, such as SVM, do not perform well with imbalanced and skewed datasets. It

is challenging to get the optimal separation hyperplane for an SVM model trained with

imbalanced datasets. The imbalance in datasets negatively influences the performance of

most classifiers [141]. The results in Figure 3.9(b) prove that the neural network model is

more robust than the other algorithms, which are a↵ected by the size of the input data to

workloads when the input data was increased to 64 GB.

3.5.4 Classifying Anomaly Types

In this section, we assess the ability of the proposed technique not only to detect that

an experiment has su↵ered an anomaly, but also to qualify the type of anomaly. In

this experiment we consider simultaneous injection of CPU, cache thrashing, and context

switching anomalies. The classification therefore has 4 classes: normal, CPU anomalies,

cache thrashing anomalies, and context switching anomalies. The classification is at the

level of individual Spark tasks.

The total number of Spark tasks collected during the execution amount to a total of

400K tasks. Table 3.6 illustrates that DSM4 with the neural network algorithm outper-

form DSM3 and nearest neighbor technique, retaining a 99% F-score, whereas the nearest

neighbor algorithm achieves only a 70% F-score.

3.5.5 Classifying Overlapped Anomalies

Because many types of anomalies may occur at the same random time from di↵erent

sources and for various reasons in complex systems, there is a vital need to go beyond

detection of a single type of anomaly. To o↵er a solution for such need, the proposed

technique is validated with DSM4 to prove its capability to detect overlapped anomalies

when they occur at the same time. Our model is trained over many Spark workloads with

a total number of 950K Spark tasks. The proposed technique classifies the Spark perfor-

mance into seven types: normal, CPU stress, cache stress, context switching stress, CPU

with cache stress, CPU with context switching stress, and cache with context switching

stress. The proposed solution is validated with two types of Spark workload: K-means
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Table 3.6: Classification of anomaly types using DSM3 and DSM4. (Recall=R, Preci-
sion=P, and F-score=F)

DSM3:Neural Network R P F
Normal 0.99 0.81 0.89
CPU 0.21 0.97 0.34

Cache Thrashing 0.34 0.81 0.47
Context Switching 0.38 0.96 0.54
Average F-score 0.48 0.88 0.56

DSM3: Nearest Neighbor R P F
Normal 0.87 0.83 0.85
CPU 0.36 0.45 0.40

Cache Thrashing 0.29 0.30 0.29
Context Switching 0.16 0.15 0.16
Average F-score 0.42 0.43 0.42

DSM4: Neural Network R P F
Normal 1 1 1
CPU 1 1 1

Cache Thrashing 0.97 1 0.98
Context Switching 0.98 0.99 0.98
Average F-score 0.98 0.99 0.99

DSM4: Nearest Neighbor R P F
Normal 0.98 0.98 0.98
CPU 1.00 1.00 1.00

Cache Thrashing 0.76 0.73 0.75
Context Switching 0.09 0.09 0.09
Average F-score 0.71 0.70 0.70

and SQL workloads, as shown in Tables 3.7 and 3.8. The overall F-score for classifying the

Spark performance using Neural Networks and DSM4 is 98%. Finally, it is evident that

the proposed technique is capable of detecting and classifying the three types of anomalies

with more complex scenarios such as parallel workload, random occurrence and overlapped

anomalies. DSM4 is more agile and has the ability not only to detect anomalies, but also

to classify them and find the a↵ected Spark task, which is hard to do with DSM2 and

DSM3 without having comprehensive access to the Spark logs.
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Table 3.7: Classification of 7 overlapped anomalies using DSM3 and DSM4: K-means
workload. (Recall=R, Precision=P, and F-score=F)

DSM3:Neural networks R P F
Normal 0.99 0.80 0.88
CPU 0.26 0.84 0.40
Cache Thrashing 0.23 0.67 0.34
Context Switching 0.36 0.95 0.52
CPU + Cache 0.28 0.94 0.43
CPU + Context Switching 0.25 0.78 0.38
Cache + Context Switching 0.24 0.83 0.37
Average F-score 0.37 0.83 0.48
DSM3: Nearest Neighbor R P F
Normal 0.80 0.77 0.78
CPU 0.20 0.25 0.22
Cache Thrashing 0.11 0.11 0.11
Context Switching 0.16 0.16 0.16
CPU + Cache 0.18 0.19 0.19
CPU + Context Switching 0.15 0.15 0.15
Cache + Context Switching 0.15 0.15 0.15
Average F-score 0.25 0.25 0.25
DSM4: Neural Network R P F
Normal 1 1 1
CPU 1 1 1
Cache Thrashing 0.98 0.98 0.98
Context Switching 0.94 0.99 0.96
CPU + Cache 0.95 1 0.97
CPU + Context Switching 0.91 0.96 0.93
Cache + Context Switching 0.99 0.99 0.99
Average F-score 0.97 0.99 0.98
DSM4: Nearest Neighbor R P F
Normal 0.84 0.84 0.84
CPU 0.50 0.50 0.50
Cache Thrashing 0.06 0.06 0.06
Context Switching 0.12 0.12 0.12
CPU + Cache 0.13 0.13 0.13
CPU + Context Switching 0.10 0.10 0.10
Cache + Context Switching 0.12 0.12 0.12
Average F-score 0.27 0.27 0.28
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Table 3.8: Classification of 7 overlapped anomalies using DSM3 and DSM4: SQL workload.
(Recall=R, Precision=P, and F-score=F)

DSM3: Neural networks R P F
Normal 0.67 0.57 0.62
CPU 0.45 0.65 0.53
Cache Thrashing 0.42 0.51 0.46
Context Switching 0.66 0.28 0.39
CPU + Cache 0.04 0.29 0.07
CPU + Context Switching 0.21 0.24 0.22
Cache + Context Switching 0.26 0.27 0.26
Average F-score 0.39 0.40 0.37
DSM3: Nearest Neighbor R P F
Normal 0.33 0.33 0.33
CPU 0.16 0.16 0.16
Cache Thrashing 0.16 0.15 0.16
Context Switching 0.17 0.17 0.17
CPU + Cache 0.16 0.16 0.16
CPU + Context Switching 0.07 0.07 0.07
Cache + Context Switching 0.08 0.08 0.08
Average F-score 0.16 0.16 0.16
DSM4: Neural Network R P F
Normal 1 1 1
CPU 1 0.99 0.99
Cache Thrashing 0.98 1 0.99
Context Switching 1 0.98 0.99
CPU + Cache 1 1 1
CPU + Context Switching 0.97 1 0.98
Cache + Context Switching 1 0.97 0.98
Average F-score 0.99 0.99 0.99
DSM4: Nearest Neighbor R P F
Normal 0.50 0.50 0.50
CPU 0.30 0.30 0.30
Cache Thrashing 0.60 0.55 0.57
Context Switching 0.47 0.47 0.47
CPU + Cache 0.30 0.30 0.30
CPU + Context Switching 0.12 0.12 0.12
Cache + Context Switching 0.15 0.15 0.15
Average F-score 0.35 0.34 0.34
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3.6 Conclusion

This chapter introduces a challenging case that utilizes the anomaly detection techniques in

a complex Big Data and cloud computing environment. Among the various Big Data tech-

nologies, in-memory processing technology like Apache Spark has become widely adopted

by various industries. Although Spark is gradually developing, currently there is still a

shortage of anomaly detection methods for performance anomalies in Spark systems. This

chapter addresses this challenge by developing a neural networks driven methodology for

anomaly detection based on knowledge of the RDD characteristics.

Compared with CPU contention, memory contention does not have visible e↵ects on the

mean CPU usage in the Spark cluster. The anomaly detection method for Apache Spark is

significantly enhanced by using the performance metrics for both the CPU and memory of

the Spark cluster. In addition, there are no significant e↵ects of parallelism when detecting

the anomalies in the Apache Spark cluster using neural networks algorithm.

Our results demonstrate that the proposed method works e↵ectively for complex scenarios

where there are multiple types of anomalies, such as CPU contention, cache thrashing,

and context switching anomalies. Moreover, we have shown that a random start instant,

a random duration, and overlapped anomalies do not have a significant impact on the

performance of the proposed methodology.

In terms of future work, the present method is su�ciently e�cient to be considered for

online anomaly detection. Deep Learning solutions may also be explored to learn more

about complex features from the performance metrics of the Spark system, possibly leading

to even the more accurate detection and prediction of critical anomalies.



Chapter 4

Hybrid AI Anomaly Detection

Model for Big Data Streaming

Systems

4.1 Introduction

Various open source Big data platforms exist for Big Data and data-intensive application

development. Although each of these technologies has advantages for specific purposes

(e.g., batch processing), they may not be ideal choices for other types of applications (e.g.,

real-time monitoring and streaming workloads). Big Data workloads can be analyzed using

three main approaches: batch processing, stream processing, and micro-batch processing

[22]. The analysis of a large amount of static data over a certain time period can be

used for the batch processing approach. For real-time data analysis, a stream processing

platform is ideal, especially when there is a need for microsecond responses. The micro-

batch processing technique deals with streaming workloads as a sequence of smaller data

blocks that have the ability to perform near real-time processing [22].

Among the various Big Data streaming technologies, in-memory processing technology,

such as Apache Spark Streaming, has become widely adopted by industry because of its

76
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speed, generality, ease of use, and compatibility with other Big Data systems. Here, We

consider Spark Streaming workloads, in which analytic operations are applied to a resilient

distributed dataset (RDD).

Machine learning algorithms have received growing attention from the research community

because of their performance anomaly identification and diagnosis capabilities. Moreover,

machine learning classification techniques are widely used to classify inputs based on their

features into predefined classes to build a classifier that can predict the class of each

item according to class labels. There are some popular classification techniques used for

performance anomaly detection, such as neural networks, support vector machines (SVM)

[49], and Bayesian networks [9].

With the growing complexity of Big Data and cloud systems, failure management system

requires significantly higher levels of automation and attention [33]. Here, an anomaly

is defined as an abnormal behavior during the execution of an applications. It could be

the result of resource contention, hardware failures, misconfiguration, or several other root

causes. Although some studies address the challenges of performance anomaly detection for

batch processing [62, 53, 142], there is a lack of e↵ective automated performance anomaly

detection solutions specifically built for Apache Spark Streaming systems. There is a need

for a technique that can be used to e�ciently train a machine learning model to detect and

predict performance anomalies within streaming workloads in production environments.

Anomaly detection within a Big Data streaming system is considered to be more challeng-

ing, especially for time-varying workloads and critical applications in distributed systems.

Therefore, there is a need to deeply investigate in-memory processing technology per-

formance, such as Spark Streaming performance, to pinpoint the causes of performance

anomalies. This chapter addresses the challenge of anomaly identification by investigating

new hybrid learning techniques for anomaly detection within in-memory Big Data stream-

ing systems within cloud computing. We developed TRACK (neural neTwoRks Anomaly

deteCtion for sparK) and TRACK-Plus which are two methods to e�ciently train machine

learning models for performance anomaly detection using a fixed number of experiments.

TRACK o↵ers a tuning method capable of training a machine learning model with a limited



78 Chapter 4. Hybrid AI Anomaly Detection Model for Big Data Streaming Systems

budget and limited number of experiments. TRACK revolves around using artificial neural

networks with Bayesian Optimization (BO) to find the optimal training dataset size and

configuration parameters to e�ciently train the model to achieve the highest accuracy

(95% F-score) within short amount of time (saves 80% less than normal time). TRACK-

Plus is an automated fine-grained anomaly detection solution that adds to TRACK a

second Bayesian Optimization cycle for fine-tuning the hyperparameters of artificial neural

network configuration. The objective is to accelerate the search process for optimizing

neural network configurations and improve the performance of anomaly classification.

In this chapter, validation based on several datasets from a real Apache Spark Streaming

system is performed to demonstrate that the proposed methodology can e�ciently identify

performance anomalies, near-optimal configuration parameters, and a near-optimal train-

ing dataset size while reducing the number of experiments. Our results indicate that the

reduction in experimental need can be up to 75% compared with näıve anomaly detection

training. To the best of our knowledge, this solution is among the very first studies to

provide a comprehensive methodology for both performance anomaly classification and

the e�cient optimization of artificial neural networks to detect anomalies within Spark

streaming systems.

Our core contributions in this chapter are the following:

• Providing an updated discussion of existing anomaly detection techniques and al-

gorithms that should be further researched by the community invested in this chal-

lenging problem space.

• Conducting a comparative analysis of four well-known anomaly detection techniques

and algorithms to help system administrators in choosing the appropriate anomaly

detection mechanisms for their in-memory Spark Streaming Big Data system.

• Addressing the challenge of anomaly identification and classification for streaming

systems by investigating e↵ective hybrid learning techniques for anomaly detection

in Spark Streaming Big Data systems.

• Presenting a comprehensive methodology to automate the search for the ideal dataset

size with which to train the detection model and automate the tuning of neural
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networks hyperparameters, hence allowing for the identification of the most e�cient

network architecture and configuration.

The rest of the chapter is organized as follows: The prerequisite background on Apache

Spark Streaming are given in Sections 4.2. This is followed by a motivating example in

Section 4.3. The proposed methodology of this work is presented in Section 4.4, followed

by a systematic evaluation in Section 4.5 and 4.6. Finally, Section 4.7 provides a discussion

and the conclusions.

4.2 Background Information

The following subsections briefly describe the required background for Apache Spark

Streaming, Bayesian Optimization, and neural networks.

4.2.1 Apache Spark Streaming

This subsection gives an overview of a popular current open source Big Data technology

which is Apache Spark streaming. As a result of the speed and general purpose of Spark

core engine, the engine o↵ers an e↵ective environment on top of the Spark core to support

di↵erent types of libraries and computations. These libraries include Spark SQL, Spark

Streaming, Spark MLib, and Spark GraphX applications. This upper stack o↵ers the

benefits of combining all components in the libraries in user applications [10]. The upper

components library can obtain valuable benefits from the tight integration with the Spark

core engine. First, upper components can gain benefits from the continuous improvement

and optimization of the lower stack components (Spark core). Second, the cost and time

saving are significant benefits for upper component users because they o↵er di↵erent types

of services and run them within the same system instead of having multiple systems and

running each service on an independent system. Therefore, operation and maintenance

are reduced for system that needs configuration for deployment, testing, and support.

Apache Spark Stream processing has gained attention because of its wide range of data

processing applications in Big Data systems. Some reasons for the increasing level of
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interesting are the ease of use, fault tolerance of live data, and suitability of integration

with other batch processing systems. Stream data can be ingested from many streaming

sources to be processed and used by other systems [143]. Spark Streaming operates in a

way that the entire received data stream is divided into batches to be ready for processing

by the main Spark engine. The final data -the processed results- will then be in batches.

The input data stream can be fed from many di↵erent sources (e.g., Kafka, Flume, Twitter,

etc.). The stream data can be processed using some advance Spark libraries for machine

learning and graph processing algorithms. The final output data from Spark Streaming

can be pushed to databases or other systems [143].

Inside the Spark system, Spark streaming receives live stream data as an input to the

system. Then, Spark Streaming divides streaming workloads into numeors batches work-

loads, which are passed as inputs to the Spark core engine for data processing purposes. In

Spark Streaming, the high-level basic abstraction is called discretized stream (DStreams),

and it is a continuous stream of data. Each DStream is either an input data stream that is

received from other streaming sources, or it is a result of a processed data stream created

from the input streams [143].

Internally, each DStream contains a sequence of Spark Resilient Distributed Datasets

(RDDs), which are the main Spark core data abstractions. RDDs cannot be changed

and can be executed in parallel. In addition, RDDs o↵er operations, including data trans-

formation and actions, that can be used for Spark Streaming for data analysis. Each RDD

in the DStream represents data for a specific time interval. Therefore, all operations that

are applied to DStream will be applied to the RDDs within the same DStream [143].

WordCount benchmark is a conventional CPU-intensive benchmark and is widely accepted

as a standard micro-benchmark for Big Data platforms [144, 145, 146, 147]. WordCount

benchmark splits each line into multiple words, then aggregates the total count of each

word before updating an in-memory map with the word as the key and the frequency of

words as the value. The WordCount application in Spark Streaming receives a streaming

workload from local network to count number of words per messages. The Main Dstream

data are divided into many RDDs for certain time intervals. Then, some Spark operation,
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such as wide and narrow operations, are perform to count the number of words in each

Spark RDD. More details about Spark operations are discussed in Chapter 3.

4.2.2 Neural Network Model

The proposed neural network model in Section 3.3.1 is used , which contains three layers,

which input, hidden, and output layer. There are more complex neural network architec-

tures that require additional execution time and computing resources such as convolutional

neural networks, which is a type of deep neural networks. These neural networks are usu-

ally used for image processing, which has high number of input features and output classes.

The neural networks model used here has fewer input features (less than 30 features) and

output classes than what is used in image processing classification. Therefore, in our case,

neural networks with three layers achieve accurate performance classifications with less

competition process.

4.2.3 Bayesian Optimization

The proposed methodology revolves around using Bayesian Optimization (BO) to find

the optimal dataset size and configuration parameters for training the neural networks to

generalize the model so it will detect anomalous behaviors in the Spark Streaming system.

When utilizing BO, there are two main choices to make: using prior over functions and

type of acquisition function [148]. It is essential to choose prior over functions to express

assumptions about the optimized function. Due to its simplicity and tractability, we chose

the Gaussian process prior for our proposed model. There are di↵erent types of acquisition

functions, such as Expected Improvement [148], Probability of Improvement [149], Lower

Confidence Bound [150], and Per Second and Plus. Each type of acquisition function is

further discussed in [151].

The acquisition function is used to evaluate a point x based on the posterior distribution

function to guide exploration and evaluate the next point [148]. The Expected Improvement

acquisition function in [152] is used to evaluate the expected performance improvement in

the neural networks detection model f(x) and ignore any values that increase the error rate

of the model. In other words, xbest is the location of the smallest posterior mean (optimal
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workload configuration) and µQ(xbest) is the smallest value of the posterior mean. The

expected improvement can be described as follows:

EI(x) = EQ[max(0, µQ(xbest)� f(x))] (4.1)

EQ indicates the expectation assumed under the posterior distribution given the evalua-

tions of f at x1, x2, ..., xn. The time to assess the objective function may vary depending

on the region [152].

4.3 Motivating Example

In this section, we briefly illustrate the problem area and the benefits of Bayesian Opti-

mization for anomaly detection. We developed Network WordCountExp benchmark, which

is a customized benchmark for stream processing Big Data systems to generate our dataset

for training purposes (more detail in Section 4.5.2). The workloads are exponentially gen-

erated as messages to be sent to the data stream processing system with some predefined

characteristics, such as the rate of (message/sec) and the size of messages in lines. The

Spark system is monitored at all times and we consider di↵erent levels of logging, rang-

ing from Spark streaming jobs measurements to the complete availability of Spark tasks

execution logs, which we extensively evaluated in Chapter 3.

A detailed comparison is shown in Figure 4.1(a) to examine the impact of Spark streaming

workload size (number of tasks within workload) on the neural networks model and com-

pare it with other three popular algorithms in the domain of anomaly detection, which

are nearest neighbor, decision tree and SVM. Six Spark streaming workload sizes with

the same configurations are examined for sensitivity analysis, which are 1k, 10k, 20k, 30k,

40k, and 50k tasks. From Figure 4.1(a), it is evident that the neural networks model

outperforms all the other algorithms and by achieving 98% for F-score on average for the

six workloads. Regarding the execution time, the neural networks, decision tree, nearest

neighbor, and SVM took approximately 1 min, 2 min, 5 min, and 21 min respectively.

Standard classification methods, such as SVM, do not perform well with imbalanced and
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Figure 4.1: Motivation examples for TRACK.

skewed datasets. It is challenging to get the optimal separation hyperplane for an SVM

model trained with imbalanced datasets, similar to our case. The imbalance in datasets

negatively influences the performance of most classifiers. It is clear that Neural network

is the ideal choice for anomaly detection within Spark streaming system.

We examine an anomaly detection that is trained using a new neural networks model with

a single Spark streaming workload configuration (Rate 2 and Size 1000 lines) and test it

against two unseen streams workload configurations without injecting any anomaly. The

first workload has rate 11 and size 1000 ; then the model achieved a 98% for F-score. The

second workload has rate 2 and size 5000, which the neural network model achieved a 98%
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for F-score. These two experiments show that the neural networks’s performance is still

robust even though the streaming workload configurations are changed without a↵ecting

the performance of the neural network model.

The same network that is trained on a single Spark streaming workload configuration

(Rate 2 and Size 1000 lines) is used for some selected possible parameters of streaming

workloads configurations for Size (1, 10, 100, and 1000 lines) and Rate (1, 2, 4, 8, 16, and

32), with artificially injected CPU anomalies. The F-score performance of the anomaly

detection model dramatically decreased to be between 0.1% and 3%. It is clear that

the neural network, in this case, failed to detect the CPU anomalies when the streaming

workload configuration was changed. Therefore, there is a need to further train the model

on more possible configuration parameters to detect anomalies. This baseline experiment

shows that there is an important need for a solution to find the optimal dataset size and

configuration parameters of streaming workloads to train the anomaly detection model to

generalize the model to detect anomalous behaviors in in-memory Big Data systems.

Figure 4.1(b) shows some design factors and response variables (F-score) for di↵erent

streaming workload configurations where the proposed neural network is trained with a

single combination of configurations parameters (e.g., rate r and size s) and test it against

other workloads stream configurations, which include rates (1, 8, 16, and 32) and sizes (1,

10, 100, and 1000). As can be seen from Figure 4.1(b), it is not apparent which set of

workload configurations that can be used to e�ciently train the machine learning model

to achieve the highest accuracy whit less time consuming to train the model and detect

the anomalous performance in the Spark streaming system. With Network WordCount

Spark streaming application (only two parameters), it is also di�cult to find the the ideal

dataset size to e�ciently train the anomaly detection model to comprehensively cover all

the seen types of anomalies.

4.4 Methodology

In this section, we introduce TRACK and TRACK-Plus, a methodology driven by Bayesian

Optimization (BO) and neural networks to train, detect, and classify performance anoma-
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Figure 4.2: TRACK Methodology for anomaly detection)

lies in Apache Spark Streaming systems. Figure 4.2 shows the TRACK processes of

anomaly detection for the proposed method. The following subsections give a brief overview

of BO and neural networks, discuss the proposed methodology in detail, cover training,

testing, and feature selection phases.

4.4.1 Machine Learning Model

The neural networks model is used to accurately detect anomalous performance in in-

memory Big Data systems such as Apache Spark. The proposed neural network model

in Chapter 3 with backpropagation and conjugate gradient are used to train the neural

networks to update values of weights and biases in networks. The scaled conjugate is

used because it is usually faster than other gradient algorithms [133], especially for time-

dependent applications such as real time stream processing.

The neural networks model uses a Sigmoid transfer function Equation 4.2 as an activation

function, and Softmax transfer function is used in the output layer to handle classification

problems with multiple classes. For cost function, cross-entropy is used to evaluate the

performance of neural networks. Cross-entropy is used because it has practical advantages

over squared-error cost function. It can maintain good classification performance even for



86 Chapter 4. Hybrid AI Anomaly Detection Model for Big Data Streaming Systems

problems with limited data [134].

�(x) =
1

1 + e�x
(4.2)

The proposed neural networks contain three types of layers. The performance metrics

(DSM4 ) that is described in Chapter 3 is used as input features to input layer. The

hidden layer has a number of layers (1, 2, or 3) and number of neurons determined using

a trial and error method, choosing a number between the sizes of input features ni and

output classes no [135]. A hidden layer size between ni and no satisfies our goal in achieving

accurate results. In our case, the hidden layer size of 5, 10, 15, and 20 achieve 98%, 99%,

96%, and 96% F-scores, respectively. The Hidden layer with ten neurons achieves the

highest F-score with the Spark Streaming workload. The output layer contains a number

of neurons equal to the number of target classes (types of anomalies), where each neuron

generates boolean values: either 0 for normal behavior or 1 for anomalous behavior.

4.4.2 Bayesian Optimization

TRACK and TRACK-Plus use Bayesian Optimization to find the optimal training dataset

size and configuration parameters to e�ciently train the anomaly detection model to

achieve high accuracy in a short period of time. Due to its simplicity and tractability,

we chose the Gaussian process prior for our proposed model.

To improve the performance of the proposed methodology, our TRACK method uses a

customized acquisition function that utilizes time weighting and the Expected Improvement

for the acquisition function. The Expected Improvement acquisition function assesses the

current improvement in the objective function and avoids all outputs that may undermine

the performance of objective function output. In addition, the acquisition function oper-

ates such that during the evaluation of the objective function by the BO model, another

Bayesian model (time-weighting) evaluates the time of the objective function [152]. The

final acquisition function is as follows:
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Figure 4.3: Dividing dataset into DSTrain and DSTest sets for training and testing, re-
spectively.

EIPS(x) =
EI(x)

µt(x)
(4.3)

EIPS(x) =
EQ[max(0, µQ(xbest)� f(x))]

µt(x)
(4.4)

where µt(x) describes the posterior mean of the Gaussian process model timing [152]. A

coupled constraint is evaluated only by evaluating the objective function. In our case, the

objective function is the performance evaluation of the neural networks model by calculat-

ing the F-score. The coupled constraint is that the F-score of the model is not less than a

predetermined value (e.g., 90%). The model has several points that are equal to the num-

ber of all possible combination parameters of Spark Streaming workload configurations.

4.4.3 Model Training and Testing

The Spark Streaming system is randomly injected with anomalies to test the proposed

anomaly detection model. For the training process (covers local training, local validation,

and local testing), the dataset for every combination of workload configuration parameters

(e.g., size s and rate r) is divided into two sets: 75% for model training (DSTrain) and 25%

for a global testing dataset (DSTest), as shown in Figure 4.3. The local DSTrain set for

the model is divided into three subsets: local training (70%), local validation (15%), and

local testing (15%). The training subset is used to train the model, whereas the validation

subset is used to validate the model and to avoid overfitting and underfitting issues. The
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local testing subset is used to test the model against a single combination of configuration

parameters for Spark Streaming workloads. The DSTest set is used to globally test the

model, which includes 25% from each possible combination of Spark Streaming workload

configuration parameters. This subset is used to independently assess the trained model

and to generalize the model.

The streaming workload configurations consist of all the possible combinations of con-

figuration parameters of Raten and Sizem, for a total of n ⇥ m combinations (n ⇥ m

DSTrain). The training part of the dataset (DSTrain) is divided into 10 equal subsets to

find the ideal size of the training dataset. For example, the dataset DSTrain workload

configuration with rate ri and size sj is divided into 10 subsets according to the following

equation:

DSTrainri,sj = DSTrainrisj ,1 + ...+DSTrainrisj ,10 (4.5)

The total number of all the possible data subsets is n⇥m⇥ 10, so it would be challenging

and time-consuming to find the optimal combination of configuration parameters and

dataset sizes to train the model. More detailed information about TRACK and TRACK-

Plus is presented in Algorithm 1 and Algorithm 2. To assess the proposed model, we use

a well-known standard classification performance metric, which is F-score (F), defined in

Section 3.3.2 alongside the standard metrics of Precision (P) and Recall (R).
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Algorithm 1: Training and testing methodology for TRACK.
Input: Predefined anomaly detection performance F , Workload configuration

space X , and system metrics dataset D
Output: Optimal trained neural network model M, which is able to identify

anomalies within Spark Streaming with the high predefined F-score in
the least amount of time.

1 Configuring streaming workload benchmark
2 Workload generation with configuration space X
3 Streaming workload from network W ! Spark system
4 System profiling to collect performance dataset
5 Data cleaning and preprocessing ! D
6 DSTrain = 75% of D  total training dataset
7 DSTest = 25% of D  total testing dataset
8 DSTrainc is empty
9 F = 0  current f-score

10 Default Net Config : 3 layers, 10 units in hidden layer, and cross-entropy
11 i = 0
12 while ( ( F 6 F) AND (i 6 size(X )) ) do
13 Xi = EIPS(X )  acquisition function
14 DSTrainc = DSTrainc +DSTrainXi

15 M = TrainNN(DSTrainc , NetConfig )  train model on the new dataset
configuration

16 F = Max( Fscore(M(DSTest)) , F )
17 i = i+ 1
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Algorithm 2: Training and testing methodology for TRACK-Plus.
Input: Predefined anomaly detection performance F , Workload configuration

space X , and system metrics dataset D
Output: Optimal hypertuned trained neural network model M, which is able to

generate an agile model to classify anomalies within Spark Streaming
with the high predefined F-score in the least amount of time.

1 Configuring streaming workload benchmark
2 Workload generation with configuration space X
3 Neural Networks with configuration space NN
4 Streaming workload from network W ! Spark system
5 System profiling to collect performance dataset
6 Data cleaning and preprocessing ! D
7 DSTrain = 75% of D  total training dataset
8 DSTest = 25% of D  total testing dataset
9 DSTrainc is empty and F = 0  current f-score

10 Default Network Configurations : L layers, U units in hidden layer, and P
Performance function

11 i = 0
12 while ( ( F 6 F) AND (i 6 size(X )) ) do
13 Xi = EIPS(X )  acquisition function finds next workload configurations
14 DSTrainc = DSTrainc +DSTrainXi  
15 j = 0 and i = i+ 1
16 while ( ( F 6 F) AND (j 6 size(NN )) ) do
17 NetConfigj = EIPS(NN )  acquisition function finds next neural

networks configuration
18 M = TrainNN(DSTrainc , NetConfigj )  train neural network model

on the new dataset configuration
19 F = Max( Fscore(M(DSTest)) , F )
20 j = j + 1

21 M = TrainNN(DSTrainc , NetConfig )  train neural network model on
the new dataset and hyperparameters configuration

22 F = Max( Fscore(M(DSTest)) , F )
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4.4.4 Feature Selection

The Spark system is monitored at all times and we consider di↵erent levels of logging,

ranging from Spark jobs measurements to the complete availability of Spark task execution

logs, which are used in Chapter 3. These logs provide a reflection of the full details of

a Spark system performance. The performance monitoring happens in the background

without generating any noticeable overhead in the Spark system.

In this work, we extend the method proposed in Chapter 3, called DSM4, which has

been built upon the list of Spark performance metrics presented in Chapter 3. DSM4

examines the internal Apache Spark architecture and the Directed Acyclic Graph (DAG)

of the Spark application by relying on information from Apache Spark systems. This

information includes Spark executors, shu✏e read, shu✏e write, memory spill, java garbage

collection, tasks, stages, jobs, applications, identifications, and execution timestamps for

Spark resilient distributed datasets (RDDs). The collected Spark performance metrics are

in time series and manually labeled as either normal or anomalous before they are passed

as inputs to the proposed model. The proposed methodology assumes that the collected

data is pre-processed to ensure the exclusion of any mislabeled training instances and to

validate the datasets before passing them to the BO and neural networks model to improve

their quality. For example, we avoid duplicated task measurements and exclude samples

if features are missing as a result of the monitoring service level anomalies.

4.5 Evaluation

This section evaluates the proposed methodology against a random search (RS) algorithm

as a baseline for the same datasets, which are generated from the Apache Spark Streaming

system.

4.5.1 Experimental Testbed

The experiments are conducted on a Spark Streaming system with 16 core Intel(R)

Xeon(R) CPU 2.30 GHz, 32 Gb RAM, Ubuntu 16.04.3, and 2 TB of storage. The Apache
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Figure 4.4: Spark Streaming with WordCount example of DStream

Spark is deployed with the Spark Standalone Cluster Manager, 16 executors, and a first-

in-first-out scheduler option for deployment. Performance monitoring and data collection

are done in the background without causing any noticeable overhead on the system. Spark

History is used to actively record the performance metrics of internal Spark architecture,

such as Spark DAG jobs, stages, and tasks.

4.5.2 Workload Generation

To evaluate the accuracy of the proposed anomaly detection methodology, we developed

the customized Network WordCountExp benchmark for Big Data stream processing sys-

tems to generate datasets for training and testing purposes.

WordCount is a conventional CPU-intensive benchmark and is widely accepted as a stan-

dard micro-benchmark for Big Data platforms [144, 145, 146, 147, 77]. The WordCount

benchmark splits each line of text into multiple words, then aggregates the total number

of times each word appears throughout and updates an in-memory map with the words

as the key and the frequency of the words as the value. Figure 4.4 shows a WordCount

example of Spark Streaming that receives a streaming workload from a local network to

count the number of words per message. The Main DStream data is divided into many

RDDs for a certain time interval, then some Spark operations, such as wide and narrow
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operations, are done to count the number of words in each Spark RDD. More details about

Spark operations are discussed in Chapter 3.

The workloads are exponentially generated (with exponential distribution) as messages

sent through the system network to the data stream processing system with some pre-

defined characteristics such as the rate of sending messages per second and the size of

messages. WordCount is used extensively with many di↵erent configurations to evaluate

and compare the results of the proposed methodology within in-memory Spark Streaming

systems. More than 960 experiments are conducted and 230 Gb of data are collected from

the Spark Streaming system, which we use to evaluate the proposed work. The dataset

covers four types of injected anomalies within Spark Streaming workloads: normal, CPU

anomaly, cache thrashing, and context switching. CPU utilization of the Spark system is

shown with di↵erent types of anomalous performance in Figure 4.5.

4.5.3 Anomaly Injection

To inject di↵erent types of anomalies, the open-source tool (stress-ng) is used to evaluate

the proposed methodology with the Spark Streaming system (discussed in Chapter 3).

A list of performance anomalies is used to generate CPU stress, cache thrashing stress,

and context switching stress as shown in Table 3.4. The CPU stress spawns n workers to

run the sqrt() function; the cache thrashing stress causes n processes to perform random

widespread memory read-and-writes to thrash the CPU cache; and the context switching

stress has n processes that forces context switching. The injected anomaly and the used

benchmark are configured depending on the objective of the experiment, which will be

discussed in Section 4.6.
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(b) CPU anomaly is injected
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(c) Cache thrashing anomaly is injected
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(d) Context switching anomaly is injected

Figure 4.5: CPU utilization for Spark Streaming workload with normal and anomalous
performance.

4.6 Results

The proposed methodology is evaluated on an isolated Spark Streaming system, discussed

in Section 4.5.1. We avoid using a virtual Spark System, which ensures that all performance

metrics are accurately measured. The following subsection show results and advantages

of our proposed solution.

4.6.1 Finding The Ideal Dataset Size To Train the Neural Network

Model

Figure 4.6 shows a sensitivity analysis for the size of collected datasets to train the neural

network algorithms to learn complex nonlinear relationships among performance metrics
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Figure 4.6: The performance of ANNs models that is trained with training dataset that
have been collected for 1, 5, 30, and 60 min.

and detect the anomalous performance within Spark systems. It is clear that the size of

collected training data significantly impacts the ANN model, while it is challenging to find

the optimal size of the training data. The small size of training dataset causes unacceptable

F-score, whereas a large dataset may lead to a waste of computing resources.

4.6.2 Finding The Ideal Workload Configuration For Model Training

The previous discussion regarding the motivating example (Section 4.3) describes the need

to find the ideal single workload configurations set (e.g., rate ri and size sj) that could be

used to train the proposed anomaly detection model to pinpoint the abnormal behavior

with the highest possible F-score. This facilitates the use of a single workload configuration

to be generalized and used to detect anomalies with the other workload configurations.

The Spark Streaming workload has all possible combinations of rates 1, 8, 16, and 32

message/sec and sizes 1, 10, 100, and 1000 line/message, for a total of 16 combinations.

A Bayesian Optimization (BO) and neural networks model (described in Section 4.4.2 and

in 4.2.2) are used to address the need for determining the ideal single workload config-

uration (rate ri and size sj) with the minimum number of running experiments n. To

ensure accurate results, the experiments are conducted 50 times, then the average of n is

calculated. The results show that the ideal F-score is reached with the minimum num-
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Figure 4.7: Testing results on all possible combinations using Bayesian Optimization and
neural networks.

ber of running experiments (n=8 ), which is 50% less than the total number of possible

configurations (n=16 ).

Figure 4.7 shows the training process results for each workload configuration, tested on all

possible combinations of streaming workload configurations using Bayesian Optimization

and neural networks. The performance results of the proposed model when it is individ-

ually trained on each workload configuration (rate ri and size sj) and tested against all

possible combinations of streaming workload configurations using BO and neural networks.

The estimated objective value is the deviation from the ideal F-score (error = 1- F-score).

Figure 4.7 illustrates that with the given dataset, the workload configuration (r = 32,

s = 1) can be used to train the anomaly detection model to detect abnormal behavior

with all other streaming workload configurations with the highest F-scores equaling 72%

after running only 8 of 16 experiments. The next section explores a new approach to

optimize the model and obtain a higher F-score using less time in training processes.

4.6.3 Bayesian Optimization Model to Train Anomaly Detection Tech-

nique

A BO model (discussed in Section 4.4.2) is used to find the optimal size of the training

dataset and the streaming workload configurations set to achieve the highest accuracy with

the least time spent training the proposed anomaly detection model. The model training

and datasets of anomaly detection are comprehensively discussed in Section 4.4.3 and 4.4.4.
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Figure 4.8: Comparison of Bayesian Optimization (BO) and RS to detect CPU anomalies.

Table 4.1: Performance of di↵erent types of acquisition functions to reach 95% F-score.

Acquisition Functions Number of steps
BO expected-improvement 64.3

BO expected-improvement-plus 21
BO expected-improvement-per-second 30.2

BO lower-confidence-bound 54.9
BO probability-of-improvement 43.4

Figure 4.8 depicts a comparison of BO and RS to reach a predefined F-score with the

fewest training steps from the total 160 steps. The conducted experiments have workloads

containing both normal and anomalous CPU behaviors with all possible combinations of

workload configurations.

Figure 4.8 shows the average of the 50 experiments where the neural networks model is

trained using BO to achieve the predefined F-score. With BO, the trained model reaches a

95% F-score in 21 steps, whereas an RS uses 28 steps (enhanced by 25%). This proves that

the proposed model can reduce the computation by 25%. Table 4.1 shows the performance

of five types of acquisition functions that are used with BOs. The right column shows the

average number of steps for 50 experiments to find the ideal dataset size to train the model.

Two other types of anomalies may disrupt the performance of the Big Data stream pro-

cessing system. These two types are cache thrashing and context switching. The proposed

model can detect both cache thrashing and context switching anomalies with F-scores

of 80% and 95%, respectively. Figure 4.9 shows a comparison of BO and RS to reach

predefined F-scores (80% for cache stress and 90% for context switching stress) with the
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Figure 4.9: Comparison of Bayesian Optimization (BO) and RS to detect cash and context
switching anomalies.

minimum number of steps. Workloads have all possible combinations of parameters. The

proposed model outperforms RS by more than 25% and can reduce the amount of com-

putations from 160 experiments to 14, as can be seen in Figure 4.9 with cache thrashing

anomalies.

4.6.4 Sensitivity Analyses of Training Dataset Size

In this subsection, the impact of the training dataset size is examined to prove the ro-

bustness of the proposed model. The amount of anomalous Spark tasks decrease by 50%

to 75% of the anomalous workload in Section 4.6.3. Table 4.2 shows sensitivity analysis

demonstrating the impact of reducing the overall anomalous training dataset size by 50%

to 75%. BO is compared against RS to assess when each would reach ideal performance

(95% F-score) with the fewest possible steps and the least training data. Workloads con-

tains all possible combinations of rates 1, 8, 16, and 32 message/sec and sizes 1, 10, 100,

and 1000 line/message. It depicts the impact of the Spark workload training set size on the

proposed stream anomaly detection model. The BO with neural networks model achieves

the highest performance in detecting all three types of performance anomalies in Spark

Streaming systems. This proves that the proposed model is robust against changes in the

size of the overall input training datasets.
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Table 4.2: Sensitivity analysis of reducing the training dataset size

Algorithm CPU Cache Context Sw
BO 38 19.9 16

Random Search 44 24 25

Table 4.3: Testing the proposed model against new unseen workload configurations with
three types of performance anomalies.

Types of Anomalies F-score ± Standard deviation
CPU 0.93±0.01

Cache Thrashing 0.77±0.02
Context Switching 0.72±0.04

4.6.5 New Unseen Workload Configurations

This section presents the training of the proposed model with predefined workload config-

urations (rates 1, 8, 16, and 32 message/sec and sizes 1, 10, 100, and 1000 line/message)

and generalizes the model to perform just as accurately with new unseen workload con-

figurations (e.g., ri = 20 and sj = 150). In this case, the workload is more realistic and

reflects the workload characteristics of the real stream processing system in the production

environment.

For the training phase, the same BO and neural network configurations proposed in Section

4.6.3 are used to train the model on predefined workload configurations (rates 1, 8, 16,

and 32 message/sec and sizes 1, 10, 100, and 1000 line/message) to reach a 95% F-

score for detecting CPU performance anomalies. For the testing phase, the final model of

the training phase is used to detect anomalous behavior but with new unseen workload

configurations. The rate could be between 1 to 32 and the size could have ranged from 1

to 1000. The total number of possible configuration combinations is 32000.

Table 4.3 shows the F-score of the proposed model when it is tested against three types of

anomalies (i.e., CPU, cache thrashing, and context switching) with new unseen workload

configurations (rate 1 to 32 and the size 1 to 1000). Our model can be generalized to cover

unseen workload configurations. The proposed anomaly detection model can be trained on

16 workload configurations to be generalized to detect anomalies against 32000 di↵erent

workload configurations.
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Table 4.4: Performance of TRACK for detecting and classifying anomalies based on their
root causes.

Type of workload Recall Pres F-score
Normal 0.89 0.91 0.90
CPU 0.56 0.55 0.55

Cache Thrashing 0.97 0.95 0.96
Context Switching 0.54 0.56 0.55

Average 0.74 0.74 0.74

4.6.6 Detecting and Classifying Performance Anomalies

In this section, we show that TRACK not only can detect anomalous performance but also

classifies workloads into four types: normal, CPU anomaly, cache anomaly, and context

switching anomaly. The anomaly detection using TRACK achieves 74% for detecting and

classifying Spark Streaming performance, as seen in Table 4.4. The results depict the

ability to classify the root causes. The low F-score in classifying the CPU and context

switching is that there are similar performance behaviors between these anomalies, mak-

ing it challenging to di↵erentiate between them. This issue can be overcome by increasing

the number of CPU and context switching datasets to train the ML model comprehen-

sively. However, the proposed model is capable to detect the new unseen CPU and context

switching anomalies with 93% and 72% as can be seen in Section 4.6.5. The next section

introduces a new optimized version of TRACK called TRACK-Plus to find the ideal neural

network configuration to accelerate the search process and improve anomaly classification.

4.6.7 TRACK-Plus for Optimizing the Choice of Neural Networks Ar-

chitecture

The performance of TRACK-Plus is evaluated using the two BO models discussed in

Section 4.4.2. The first model BO1 is used to find the ideal dataset training size as

described in Section 4.4.3. BO1 optimizes the choices for three Spark Streaming workload

configurations, which are the rate of messages per second (1, 8, 16, and 32), message

size (1, 10, 100, and 1000), and the size of the training dataset (1 to 10). The total

number of possible configurations is 4⇥ 4⇥ 10, which comes close to 160 di↵erent possible

combinations.
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Table 4.5: All possible optimized configurations for TRACK-Plus including two BO mod-
els.

BO# Parameters Possible Configurations

BO1
Message Rate (message/sec) 1, 8, 16, or 32
Message Size (line/message) 1, 10, 100, or 1000

Training Dataset Size 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10

BO2
Number of Neurons 5, 10, 15, or 20

Number of Hidden Layers 1, 2, or 3
Performance Function mae, mse, sae, sse, or crossentropy

The objective of the second model BO2 is to automate the search to achieve the most

e�cient architecture of neural networks (with a predefined list of configurations) by op-

timizing the tuning process of the hyperparameters of the neural networks. In practice,

di↵erent configurations of hyperparameters can significantly impact the performance of

the neural networks. In this chapter, we focus more on hyperparameters related to neural

network training and structure, including the number of hidden layers, number of neurons

in each layer, and performance functions. Five well-known performance functions have

been examined in TRACK-Plus, which are:

• Mean absolute error performance function. mae = ( 1
n)

Pn
i=1 |yi � ŷi|

• Mean squared error performance function. mse = 1
n

Pn
i=1(yi � ŷi)2

• Sum absolute error performance function. sae =
Pn

i=1 |yi � ŷi|

• Sum squared error performance function. mse =
Pn

i=1(yi � ŷi)2

• Cross-entropy performance. crossentropy = �(y log(ŷ) + (1� y) log(1� ŷ))

The total number of possible configuration combinations for BO2 is 5⇥3⇥4 = 60 di↵erent

possible configurations. Details of the configuration parameters of the two BO models can

be found in Table 4.5.

Even with the limited number of configurations to train the anomaly detection technique,

TRACK-Plus o↵ers an e�cient solution in finding the ideal training dataset size and the

most e�cient neural network configurations to accurately detect the anomalous perfor-

mance within the Spark Streaming system. For example, Table 4.5, with the list of the

total number of possible configuration combinations, shows that there are 160⇥60 = 9600

possible configurations. It is clear that finding the ideal configurations with which to train



102 Chapter 4. Hybrid AI Anomaly Detection Model for Big Data Streaming Systems

Table 4.6: The ideal configuration for the neural networks.

Parameters Configurations Number of Selection

Performance Func

mae 16
mse 3
sae 21
sse 8

crossentropy 2

#Neurons/Layer

5 18
10 14
15 8
20 10

#Layers
1 25
2 9
3 16

the anomaly detection model is more time-consuming and resource intensive when using

either the traditional search or the manual configurations.

Table 4.6 shows the ideal configuration for the neural networks in terms of performance

function, number of layers, and number of neurons in each layer. The number of selection

refers to how many times the specific configuration is found to have the highest F-score

against other configurations. The average results of 50 experiments where the TRACK-

Plus optimizes the training process of anomaly detection to achieve the predefined F-score,

which is 70% (the highest possible F-score for classifying the anomalies that can be reached

using the proposed solution). With the given conditions of Spark Streaming workloads,

we find that the ideal neural networks configurations are sae performance function, five

neurons/layer, and one hidden layer.

4.7 Conclusion

To develop e↵ective fault-tolerant system performance, it is vital to detect anomalous per-

formance and service-level disruption events within data intensive systems. The growing

complexity of Big Data systems makes performance anomaly detection more challeng-

ing, especially for critical streaming workload applications in distributed systems environ-

ments. Therefore, the performance of an in-memory processing technology like Apache

Spark Streaming must be thoroughly investigated to pinpoint the causes of performance
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anomalies.

Collecting all the possible performance measurements from Big Data systems to train an

anomaly detection model is computationally expensive, especially for critical systems such

as online banking, stock trading, and air tra�c control systems. Even with the WordCount

Spark Streaming application (which only has two parameters: r and s), it is considered

time-consuming and costly to find the ideal dataset size to e�ciently train the anomaly

detection model so that it will comprehensively cover all seen and unseen anomalies.

This chapter contributes to addressing the challenge of anomalous identification by propos-

ing a new hybrid learning solutions -TRACK and TRACK-Plus- for anomaly detection

within in-memory Big Data systems. The anomaly detection and tuning methods are

developed using Bayesian Optimization and neural networks to train the model with a

limited budget and limited computing resources. As can be seen from the experimental

results, the proposed model e�ciently finds the optimal training dataset size and con-

figuration parameters to accurately identify di↵erent types of performance anomalies in

Big Data systems. The proposed model achieves the highest accuracy (95% F-score) in

significantly less time (80% less than normal). A validation based on a real dataset for

the Apache Spark Streaming system has been provided to demonstrate that the proposed

methodology can identify the performance anomalies, the ideal configuration parameters,

and the training dataset size with up to 75% fewer experiments. Finally, the proposed

solution not only identifies anomalous performance with a high F-score but also classi-

fies anomalies, thereby saving considerable time in training the model. In addition, the

proposed model can be easily generalized to cover unforeseen workload configurations.

In terms of future work, it is crucial to comprehensively investigate an anomaly detection

and prediction for systems that run both batch and stream processing workloads at the

same time. Such systems will have increased complexity and performance fluctuations,

which may need more e↵ective anomaly detection solutions. Exploring Deep Learning

algorithms may hold opportunities to accurately detect and predict performance anomalies

in distributed complex systems.



Chapter 5

Interference Prediction for

Containerized Batch Jobs

5.1 Introduction

The rapid developments of Big Data technologies and data science have increased the de-

mands for productive solutions to obtain desirable performance within data centers. The

need for the e↵ective integration between data science technologies and Big Data analysis

platforms can be achieved by utilizing containerized batch architectures. Numerous Big

Data technologies started to use more e↵ective architectures, such as containerized batch

applications, to gain the benefits of modularity, service consolidation, fast prototyping of

cloud-based applications, autoscaling, flexibility, and reusability. Therefore, implement-

ing containerized batches as the building blocks of Big Data and cloud architecture can

o↵er certain advantages [153, 154]. Some recent studies have introduced the benefits of

combining Big Data technologies (such as Spark and Hadoop) with data science tools

(such as Jupyter) by using container architecture [155, 156, 157]. However, interference

among colocated containerized batch jobs causes performance unpredictability, which is

a major challenge when integrating containerized batch applications, Big Data platforms,

and cloud computing adoption, which can come with performance, cost, and revenue

implications [154]. Containerized batch workloads have unique patterns of container char-

104



5.1. Introduction 105

acteristics, completion time, performance variation, and a relative standard deviation of

response time [158]. Predicting the performance behavior and interference among colo-

cated batch jobs are even more critical for e↵ectively predicting interference within a cloud

infrastructure for Big Data analytics.

A typical data center leverages over provisioned computing resources for applications to

manage a large number of colocated jobs, fluctuating workloads, and peak demands. This

results in low utilization, hence impling high maintenance costs for the servers. Appli-

cations and systems interference can be challenging to understand and control within

production environments for two main reasons, which are inter-parameter dependencies

within cloud systems and the dependence of system performance on the nature of corre-

lations [159]. There are several factors that can illustrate the di�culty in detecting and

predicting interference within a production environment. These factors include mixes of

heterogeneous applications, unpredictable system inputs, unknown optimal system per-

formance, and corporate policy and structure [160]. All these factors cause challenges in

detecting system interference and have to be carefully and precisely addressed.

Several types of interference and performance anomalies may arise within data centers and

these can negatively impact response times, packet loss, bandwidth, and CPU utilization

[161]. In addition, interference among multiple running jobs in the same computing node

may result in performance degradation because of resource contention [162]. Interference

detection and prediction among colocated batch jobs within a container-based environment

are still not comprehensively examined in the literature [163]. Therefore, this chapter

focuses on examining the behavior of colocated jobs within cloud and Big Data systems.

Numerous existing interference detection approaches (e.g., SVM at level of containers

[164]) within batch workloads and container environments need to be deeply investigated

because they may not always be e�ciently applied within data centers. Indeed, they su↵er

from computational complexity or a high rate of false-positive alarms [165, 166]. Lately, AI

algorithms (e.g., neural networks) have attracted researchers in the domain of interference

prediction and have a noticeable role in detecting precisely the most relevant features from

massive datasets using backpropagation [166].
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Many existing approaches for detecting system interference revolve around collecting all the

possible performance metrics of each running job and testing each job behavior under dif-

ferent resource configurations to predict the interference within system. These approaches

are time-consuming, making it di�cult for dynamic complex workloads to collect all the

performance metrics and test all the combinations of jobs behaviors. In addition, many

existing solutions in the literature consider the correction of the impacts of interference

after they occur. However, there is an urgent need for a proactive solution that can predict

interference in advance to avoid any degradation of system performance, especially within

critical systems.

To overcome the issue of interference among colocated batch jobs and proactively avoiding

performance degradation within system, this chapter introduces an automated prediction

solution that can estimate interference between colocated batch jobs within the same

computing environment. An AI-driven model is implemented to predict the interference

among colocated batches and containerized jobs. This interference prediction model can

alleviate and estimate tasks slowdown arising from the interference among the running

workloads. This model assists the system operators in making an accurate decision to

optimize jobs placement.

Our interference prediction solution is agnostic of the business logic internal to each job.

Instead, it is learned from system performance data by applying artificial neural network

method. The target is to establish the completion time prediction of the batch job within

cloud and Big Data environments. We assume to have profiling data for individual job

i and two i ⇥ j jobs; then we can attempt using neural network model to predict the

completion times when more than two jobs run simultaneously in the system (e.g., two,

four, six, etc.).

The AI model is initially constructed through o✏ine training datasets that are collected

from the batch Big Data platform within the cloud system. The proposed model estimates

the job completion time (JCT), which can be used to enhance the job placement within

the system and predict any possible risk, allowing administrators to take proactive action

before performance degradation arises.
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Table 5.1: List of Dacapo jobs

Benchmarks description
Batik Image generation based

on Apache Batik. Single
threaded.

Luindex Document indexing with
Apache Lucene. Mostly
single threaded

Sunflow ray tracing. Multithreaded
Xalan Java XML/XSLT processing.

Multithreaded.
Jython Java-based scripting (Python-

like). Mostly single threaded.
Lusearch Document search with

Apache Lucene. Multi-
threaded.

The proposed model is validated against batch workloads that are available in the DaCapo

suite [13]. Dacapo is chosen because it is one of most popular Java benchmarks and is ideal

for scientific purposes and evaluation. This Dacapo suite is a Java benchmarks cited in

over 1100 scientific papers and coauthored by Intel, IBM Research, and leading academic

institutions. The following subsection provides details about the Dacapo benchmark and

experimental testbed. Dacapo benchmarks are used which have a set of Java open source,

diverse, and real-world applications with nontrivial memory loads. The DaCapo bench-

marks issuing HTTP or SOAP calls are excluded because we expected these to be more

typical of transactional workloads. The remaining benchmarks are shown in Table 5.1.

In summary, the core contributions in this chapter are as follows:

• An AI interference prediction model that is agnostic of the business logic internal to

each job. Our approach learns from data by applying artificial neural networks and

compare our model with the other three baseline models (queueing-theoretic model,

operational analysis, and an empirical method) on historical measurements of job

completion time and CPU run-queue size (i.e., the number of active threads in the

system).

• The model captures multi-threading, operating system scheduling, sleeping time,

and job priorities.
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• A validation on 4500 experiments based on the DaCapo benchmarking suite [13] has

been carried out, confirming the predictive e�ciency and capabilities of the proposed

model.

The rest of the chapter is organized as follows: the related work and motivating example

are given in Sections 5.2 and 5.3, respectively. The proposed methodology of this work

is presented in Section 5.4, followed by a comprehensive evaluation in Section 5.5. The

results of the proposed solutions are discussed in Section 5.6 Finally, Section 5.7 provides

a discussion and the conclusions.

5.2 Literature Review

In this section, we focus on the literature of systems interference within containerized and

batch jobs systems. Using a variety of performance metrics and techniques, several works

study the interference within systems . These works can be classified into two areas. The

first area focuses on learning-based techniques [167, 168], which use machine learning ap-

proaches to develop a model that can learn the behavior of normal and abnormal system

performance to detect or predict interference. For example, these studies investigate SVMs

[161], convolutional neural networks (CNNs) [165], regularized linear regression [169], col-

laborative filtering classification [170], and decision tree [171]. The second direction utilizes

analytical and formal methods to identify interference, such as completion time modeling

[172], statistical regression [173], and queueing theory [174].

Figure 5.1 presents a taxonomy for interference detection and prediction methods in the

literature. The following subsections review these two directions in the context of perfor-

mance interference detection and prediction approaches for batch workloads.

5.2.1 Learning Based Techniques

Using a decision tree algorithm, Dwyer et al. [171] propose a methodology for modeling

performance slow down on multicore systems. Although their model can classify the

system interference as high or low, it cannot quantify interference or provide a numerical
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Figure 5.1: Taxonomy of interference detection and prediction

estimation of interference. Bu et al. [175] present a task placement strategy to alleviate

and estimate the task slowdown a↵ected by the interference among virtual machines for

MapReduce tasks that are scheduling optimization at the application level. The authors

[175] use the Gauss-Newton algorithm to find an optimal solution.

Classification techniques are machine learning approaches that have the ability to assign

samples to target classes. In performance prediction, the classification approaches are

based on the assumption that tasks can be grouped into classes with similar performance

behavior. Delimitrou et al. [170] present Quasar, which uses collaborative filtering tech-

niques to quickly classify workloads for an incoming job based on a short test run of the

application; the goal here is to determine suitable computing resources to pack workloads

with the available resources. The authors assume that the workload can be partitioned

into jobs that have similar behaviors. We note that for complex workloads, it is time-

consuming to test every possible combination of job behaviors that have to be profiled

under di↵erent resource configurations to assign the behavior into a particular class. This

limitation is not discussed in [170].

Meyer et al. [168] present a supervised interference classifier model based on SVM for

classification and K-Means for clustering to improve scheduling for dynamic applications

in clouds systems; they show that their model can automatically define interference level
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ranges from applications by classifying the instances into segments and dividing the inter-

ference monitoring metrics into interference classes. Although this classification approach

predicts the class or level of interference, there is an urgent need to specify the amount of

interference among colocated services to precisely manage these services within complex

systems. This can be done using a regression model, which is not examined in [168].

Kousiouris et al. [176] present a black-box method based on genetically optimized neural

networks to investigate the degradation of system performance, comparing their model

with a linear regression method. They use a neural network model to correlate the input

training dataset with the predicted output data to find the overall dependency of the

output from the input. They provide the rationale that they use neural networks with

genetic algorithm to dynamically configure the architecture of neural networks.

Ye et al. [177] propose three machine learning regression methods -neural networks, SVM,

and linear regression- to predict container performance for container allocation based on

resource metrics. They focus on CPU, memory, and I/O to characterize Apache Spark

performance while running well-known benchmarks, including KMeans, PageRank, Sort,

and logistic regression. Their results show that the neural networks and SVM outperform

linear regression. The limitation of the proposed solution is that they consider a specific

application (Apache Spark).

Tang et al. [178] implement Fisher, a container performance prediction based on a deep

neural network model within a cloud environment; they use long short-term memory

(LSTM) to predict container performance and enhance container placement decisions in

advance. They train their neural network model on web service and database datasets.

The training datasets include 10 input features covering CPU, memory, disk, and network

performance metrics. Their results show a promising usage in the time series prediction

for container and web applications domain.

5.2.2 Formal Methods

Batch workloads, such as the workloads used in MapReduce, are sometime deployed on

physical servers to avoid performance overhead in virtualized environments [179, 180,



5.3. Motivating Example 111

181]. Sharma et al. [179] utilize spare computing resources by consolidating the batch

jobs to reduce the interference (CPU, memory, and I/O) across collocated MapReduce

applications. The scheduler they propose has two phases —job classification and dynamic

resource management— to improve system utilization. They use statistical regression

predictive models for understanding the runtime resource interference. The issue with

the proposed model is that the correction only works after the interference occurs within

system.

Kambadur et al. [160] introduce a generic measurement solution to analyze system in-

terference for large-scale applications. They use statistical estimators and performance

indicators that aggregate the normal system performance measurements to compare them

with future observed samples. The instructions per cycle (IPC) is used as an estimator

to capture cache and memory contention impacts. Their approach of using IPC counters

is not always appropriate because architectural enhancements may cause the IPC to be

improved; even the application performance is decreased for multithreaded applications.

Therefore, the proposed solution is specific for servers that are identical in every respect

(CPU type, clock speed, memory, OS, etc.).

5.3 Motivating Example

This section aims at illustrating the motivation and need for an accurate interference

prediction that can be used within a complex production environment. We demonstrate

the importance of predicting the impact of batch job interference when having colocated

batch jobs to e�ciently utilize system resources. We use testbed (shown later in Section

5.5.2) to run experiments for five minutes. Figure 5.2 shows the CPU utilization of two

types (Sunflow and Xalan) of batch jobs that run DaCapo benchmarks when they run

alone, and in the case where two, four, or six replicas of the same service run colocated.

In these experiments, the benchmarks are cyclically run. It is clear that predicting resource

utilization does not add to the actual measured utilization of job i. Adding the amount of

CPU utilization of the same multiple jobs of i for n times is not equal to the real utilization

of i batch jobs that are run simultaneously. For example, running a single Sunflow has
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Figure 5.2: Running 1, 2, 4, 6 Dacapo jobs CPU utilization

CPU utilization of 65%, while two jobs Sunflow reach 90%, four remain at 95%, and six

reach 100% CPU utilization. A similar nonadditive trend is also observed for Xalan job.

Various factors can be the reason for this, from underutilization of the CPU because of

access to other resources (e.g., bottlenecks) to dynamic voltage scaling, which changes the

CPU speed as more jobs are colocated. Overall, this experiment indicates that additive

utilization formulas, such as those common in queueing theory and operational analysis

[182] are not necessarily representative for complex workload types.

From this example, we can conclude that predicting system performance when colocated

batch jobs is challenging and needs an e�cient predicting model that can proactively

avoid performance degradation. To overcome this challenge, a neural network algorithm

can be used for the performance prediction of colocated batch jobs; however, it is not a

straightforward task and needs to be precisely configured and trained. A neural network

algorithm with backpropagation and a conjugate gradient are used for training, here by

using datasets that are collected from workloads, which run i and i ⇥ j Dacapo batch

jobs (discussed later in Section 5.5.1) are used to detect interference when more than two

unseen batch jobs at the same time (e.g., i ⇥ j ⇥ k ⇥ l). Figure 5.3 shows the R value is

a measure of how well the regression predictions approximate the real data points. The

R value for the prediction result of the testing phase for neural network model, which

is 26%. This low performance prediction of the throughput illustrates that applying the

neural network algorithm needs to be carefully tuned with precise preprocessing of the
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Figure 5.3: Regression for more than two batch jobs ( for example i⇥ j ⇥ k ⇥ l jobs).

input features to cover unseen performance behavior within system.

5.4 Methodology

The goal of this chapter is to establish a low completion time prediction error with a

small computation overhead by using a small set of profiling datasets to generalize it to

detect the unseen interference of colocated running batch jobs and containers. Profiling

data for a single job i and two jobs i ⇥ j are monitored and collected in an attempt to

predict the completion times when more than two batch jobs i ⇥ j ⇥ . . . ⇥ k run at the

same time within the same system. The proposed prediction method works without any

need for measurements from the executions with more than two jobs (e.g., i⇥ j⇥ · · ·⇥ k);

everything is predicted using only the profiling data of i and i ⇥ j jobs and the neural

networks prediction model.

A machine learning algorithm using a neural network-driven model with backpropagation

and a conjugate gradient are used to train the prediction model. In this work, the feature

selection process covers many performance metrics (such as hyperthreading, CPU nice,

RunQ, throughput, type of job, etc.) as the input features to the model for training pur-

poses. The other models, such as Queueing model, are an approximation of the real system

because there are many system features other than those things not captured (e.g., hyper-
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Figure 5.4: The proposed methodology for interference prediction.

threading, memory bandwidth, etc.). Our hypothesis is that our proposed neural network

model can handle such complexity. Figure 5.4 shows the high-level methodological dia-

gram of the proposed interference prediction. The following subsections give more details

about our proposed model and other models, which are used for comparison purposes.

5.4.1 AI Regression model

Our proposed neural network models are trained using the Levenberg-Marquardt back-

propagation algorithm (if there is no memory limitation) or scaled conjugate. The training

process of our model continues until the value of the validation error does not decrease

for n iterations (e.g., six). One to three hidden layers are used with 10 neurons, here

depending on the size of input dataset. The number of neurons can be increased if the

network accuracy is not as expected. The total input training dataset is divided into three

subsets, which are 70% for the training phase, 15% for the validation phase to generalize

the model and to stop training before overfitting, and 15% for the testing phase to make

sure that the model is generalized correctly or not.

5.4.2 Other Models

The proposed model is compared against three other models for evaluation purposes. The

other models include Queueing Network (QN) model, Operational Analysis (OA) model,

and No model. The following subsections provide more details for each of these models:
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Queueing Network (QN) model

The model aims at representing the state and CPU usage of individual threads of the

batch jobs running in the system. We first introduce our queueing-based completion time

model. The model aims at representing the state and CPU usage of individual threads of

the batch jobs running in the system. We call a thread active if it is either running or ready

for execution at a CPU core, and blocked otherwise. In order to deliver predictions in the

absence of historical data, we use state-based modelling to capture the essential features

of weighted fair queueing, which is a common form of CPU scheduling used in modern

operating systems (e.g., in the default Linux scheduler CFS). Our queueing network model

abstracts CPU scheduling in an operating system similar to Linux.

Taking Linux as a reference example, a fair queueing scheduler is available at each in-

dividual CPU core. Here the scheduler manages a set of active threads, each with an

associated weight wj . The weights wj are assigned by the kernel to the threads based on

their priority, in such a way that high priority jobs receive a larger share of the CPU core,

but without starving low priority jobs. The scheduler ensures that time slices are allocated

proportionally to the weights wj . The challenge is therefore to devise a general method to

represent this scheduling policy in the completion time prediction.

Resource contention model

In the proposed model, we internally track the mix of threads present at each CPU core

and their state. The goal is to continuously capture the time slicing behavior of the fair

queueing scheduler at each core. This can be done using the queueing network model shown

in Figure 5.5, which may be seen as a high-level abstraction of a continuous-time Markov

chain. In this Markov chain, the state is defined in terms of tuples (n11, ..., nMJ , b1, ..., bJ)

where nmj is the number of threads spawned by job j = 1, ..., J that are active at CPU

core m = 1, ...,M , and bj is the number of blocked threads of job j.

The key features of the model are as follows. The model describes moving units that

correspond to threads. Specifically, a batch job j is represented by a set of Nmax
J threads

that cyclically visit M queues, where Nmax
J represent the maximum threading level of the
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Figure 5.5: Completion time model. Threads of the same color belong to the same batch
job.

batch job, and each queue represents a logical core within the system. The model also

includes a delay node, shown at the top of the figure, in which threads reside while in

blocked state. This can happen when the CPU saturated with batch jobs.

Under context switching, the blocked threads can restart execution at any core, which

is here modelled by the fact that threads are dispatched by the scheduler randomly, and

with identical probabilities, to the cores. A job completes once all of its threads visit

Vj times the cores1. Once at the cores, threads are scheduled according to the weighted

fair queueing policy. The processing time at each core is a random variable for which we

assume to know only the mean Tj . The mean time spent in the blocking state by a thread

is instead denoted by Zj .

Input/output parameters

In order to instantiate the model, the following profiling data was collected for each job

by running it alone on the server:

• Nmax
j /N0

j : maximum/average number of active threads spawned by job j. During

profiling the jj number of active threads was collected every 5 seconds using sar

1Due to insensitivity properties of the considered queues, if Vj is unknown it is possible to assume Vj =
1, provided that Tj is replaced by the total amount of CPU time used by the threads across the Vj visits.
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-q (field: runq-sz; in our tests Linux included in this number the threads that are

currently executing on the cores).

• Cj
0: the average completion time of job j (in seconds) when running alone in the

system.

• X0
j : the average completion rate of the job (= number of times the job completes /

total duration of the experiment in seconds), when running alone in the system.

Applying Little’s law [183], the above data provides the mean blocking time of a thread:

Zj =
Nmax

j �N0
j

Nmax
j N0

j

(5.1)

This relation may be justified as follows: Nmax
j ⇥ X0

j approximates the average rate at

which threads become blocked, Nmax
j � X0

j is the average number of threads in blocked

state, thus their ratio by Little’s law provides the average time a thread spends in blocked

state. Furthermore, we estimate Tj from profiling data using a maximum-likelihood esti-

mation approach that yields the following formula in [184]:

Tj =
N0

j

(Nmax
j �N0

j )
(

Zi

M +N0
j (N

max
j � 1)/Nmax

j

) (5.2)

In addition to the above parameters, for each job j, the model will also require:

• M : the number of logical cores available on the server.

• wj : the fair queueing weight of the threads of job j. In Linux the kernel assigns a

weight wj = 1024⇥ (1.25)�nice(j), where nice(j) is the job’s priority class (also called

nice value).

Using the input parameters above, the model will output the predicted completion times

Cj for each job j, taking into account the CPU contention from all the other running batch

jobs. Note that our model does not ask to supply the statistical distributions of processing

times and blocking times. This is theoretically justified by insensitivity properties of the

queues that we are considering, which depend weakly (and in some cases do not depend
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at all) on moments other than the mean.

For the queueing model to remain valid, two main modelling assumptions should hold:

1. A1: The maximum number of threads spawned by job j during profiling, i.e. Nmax
j ,

will not significantly change in the presence of CPU contention by other jobs.

2. A2: The average time Zj a thread is in blocked state, as determined during profiling,

does not significantly change when other jobs run on the system.

We expect A1 to be valid most times, since Nmax
j typically depends on the inner logic

of the job, not on the system load. We validated this assumption in our experiments

based on the DaCapo batch jobs. For CPU-bound batch jobs, we also expect A2 to hold.

However A2 could be violated if jobs place a high utilization on I/O channels, storage, or

network, in such a way that queueing at these resources becomes the dominant factor for

completion time. Indeed, our model describes CPU contention, thus it is not designed to

predict contention at non-CPU resources. This is considered as a limitation of queueing

based model.

Operational Analysis (OA) model

While our model is rather simple to instantiate, requiring mainly measurements of the

CPU runqueue size, it may be possible to have the situation where only CPU utilization

and completion time data are available. We therefore consider another simplified predictor

model for this case, based on operational analysis laws [182], which describe the mutual

relationships between basic system measurements of completion times and rates. We

illustrate the method in the case of two batch jobs, but it is applicable to an arbitrary

number of batch jobs.

We consider two batch jobs i and j having completion times C0
i and C0

j when they run

alone in the system. Assume that they require to complete an equivalent of mi and mj

CPU cores at full utilization, out of the M available cores. We wish to predict their

completion time Ci and Cj when two jobs run together. We have two cases:

• If mi +mj < M , there will be no CPU oversubscription and the method will simply



5.4. Methodology 119

return the completion time values collected during profiling, i.e., Ci = C0
i and Cj =

C0
j

• Otherwise, we assign to each job a fraction of the CPU proportional to the average

number of cores it requires, i.e., job i receives a share si equal to:

si = M

✓
mi

mi +mj

◆
(5.3)

where S is the sum of any known sleep time that the job will incur (e.g., due to the

precedence constraints in the job stream). Since the throughput X0
i was collected

using an equivalent ofmi cores, this means that running together the two benchmarks

we expect throughput:

Xi = X�
i
si
mi

(5.4)

We linearly interpolate X0
i based on the number of available cores that is now avail-

able to job i. We can readily determine the job completion time as Ci = 1/Xi.

To obtain similar predictions in the case where we know that a job will sleep for S seconds

before becoming active, for example due to blocking waiting for data from another job.

In this case, the above predictions can be refined by adding S to the value of Ci obtained

with the formulas above. The above predictor is e↵ective with simple workloads, but falls

short for example when jobs have di↵erent priorities. In such cases, it is preferable to

adopt the queueing theory model, since it is designed explicitly to represent weighted fair

queueing.

No model

No model means that we assume the same completion time value obtained during profiling,

when the job runs alone in the system. In other words, we neither make a prediction nor

assume a resource model. This is a useful baseline as it shows what we gain from defining

a resource model as in neural networks, OA and QN.
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Table 5.2: The representation of Job names as a part of input features.

Exp Job 1 Job 2 Job 3 Job 4 Job 5 Job 6
Exp 1 1 0 0 0 1 0
Exp 2 0 0 2 0 0 0
Exp 3 0 0 1 0 1 0
Exp 4 1 0 0 1 0 0

5.4.3 Feature Selection and Model Training Options

To instantiate the model, the below profiling data were collected for each job i and two jobs

i⇥ j by running them on our cluster. Some of input features may include the following:

• types of jobs, which are represented in Table 5.2. The table shows the number and

types of running jobs.

• noht: hyperthreading

• nice: CPU nice. CPU scheduling priority, in which higher vales mean a lower priority

and lower values means higher priority. The default priority has a nice value of 0.

• sleep time: the time in between successive runs of a benchmark within the same

experiment.

• runQ: the number of active threads in the system. During profiling, the number of

active threads is collected every five seconds using sar � q (field: runq � sz; in our

tests Linux included in this number the threads that are currently executing on the

cores).

• tput: throughput

Using the input features above, the model predicts the average completion times Cj (the

average completion time of job j (in seconds) when running alone in the system) for all

running jobs, taking into account the CPU contention from all the other running batch

jobs. More input features can be collected and used to cover the performance pattern

of the benchmark behaviors. In our case, the above performance metrics are more than

enough to accurately predict the interference among colocated jobs.

The model is fed with SAR performance metrics collected for Docker containers that run

DaCapo batch jobs. The user may vary the system configurations on which the job is
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run, which may be used for the interference-aware job placement. Currently, the following

configuration factors can be varied with the tool: containerized batch job type (name

of job), whether hyperthreading is activated or not, CPU nice, and sleep time between

the runs. The training datasets DTrain of single and two jobs are used in the training

phase. The testing datasets DTest are sets of more than two running jobs that are used

for generalization and prediction purposes.

More detailed information about our methodology is presented in Algorithm 3. To as-

sess the proposed model, we use a well-known standard regression performance metric—

the mean absolute percentage error (MAPE)— to measure the prediction accuracy.The

proposed methodology aims to train the neural networks mode, which is able to predict

the throughput of colocated containerized batch jobs with a low MAPE. The methodol-

ogy covers di↵erent phases, including performance metrics collection, datasets cleaning,

building the neural networks model, training phase, and testing phase.
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Algorithm 3: Training and testing methodology for predicting interference of
colocated containerized batch jobs.
Input: Workload configuration space X , target MAPE, and system metrics

dataset D
Output: Optimal trained neural network model M, which is able to predict

throughput of colocated containerized batch jobs with the low MAPE.
1 Configuring benchmark
2 Workload generation of single and two jobs with SAR metrics and configuration

space Xtrain

3 Workload generation of more than two jobs with SAR metrics and configuration
space Xtest

4 System profiling to collect performance dataset D
5 Data cleansing and prepossessing of D ! DTrain and DTest

6 DSTrain = 75% of DTrain  total training dataset
7 DSV alidation = 15% of DTrain  total validation dataset
8 DSTest = 15% of DTrain  total testing dataset
9 F = 0  MAPE

10 Default Net Config : 3 layers, 10 units in hidden layer, and cross-entropy
11 Array F : Array that saves all the prediction results of models. i = 0
12 N = 50
13 while ( ( F 6 MAPE) AND (i 6 N ) ) do
14 M= TrainNeuralNetworks(DSTrain, DSV alidation, DSTest,

Default Net Config )
15 F = Test NeuralNetworks (M, DTest, Default Net Config )  test model

on the new dataset DTest

16 Array F (i, 1) = (F , M)
17 i = i+ 1

18 Best MAPE NN = min(Array F )  Most accurate network
19 Predicting interference among containerized batch jobs =

Best MAPE NN(DTest)
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Table 5.3: Throughput of all DaCapo jobs combinations

Benchmarks Average CPU Utilization
Batik 2.83%
Luindex 4.95%
Sunflow 55.45%
Xalan 67.03%
Jython 8.03%
Lusearch 25.99%

5.5 Evaluation

5.5.1 DaCapo benchmark

Over 4500 experiments are carried out using five di↵erent multicore servers running Ubuntu

Linux. A multithreaded benchmark typically spawns two to eight threads. Table 5.3

depicts the CPU utilization when a single DaCapo job is run alone in the system. The

Batik benchmark has the lowest CPU utilization 2.83%, whereas the Xalan benchmark

has the highest CPU utilization (67.03% ). The bar chart in Figure 5.6 presents the CPU

utilization, throughput, and RunQ performance metrics used to train the neural network

models. Jython, Lusearch, and Xalan benchmarks have the highest throughput, as shown

in Figure 5.6(b). Here, RunQ , Jython, and Lusearch have more active threads compered

with the other benchmarks. Figure 5.7 and Figure 5.8 show CPU utilization when running

each containerized DaCapo batch job, which reflect the di↵erent performance behaviors

that make the interference detection more challenging.

When running i ⇥ j benchmarks together, CPU utilization is typically around 70% to

90% on machines with 8 to 16 logical cores. When i ⇥ j ⇥ . . . ⇥ k benchmarks are run,

the machines are always saturated near 100% utilization. Table 5.4 and Figure 5.8 show

the throughput and RunQ metrics when colocated jobs are run at the same time, which

reflect the variation of system behavior. As discussed in the section of motivating example

(Section 5.3), adding the amount of CPU utilization of the same multiple job of i for n

times is not equal to the real utilization of i jobs run simultaneously. We have also varied

the benchmark mix, the hyperthreading setup, and job priorities and randomized the sleep

time in between successive runs of a benchmark within the same experiment. The default
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Figure 5.6: DaCapo benchmarks performance.

Table 5.4: Throughput and RunQ of all DaCapo jobs combinations.

Benchmarks Throughput RunQ Benchmarks Throughput RunQ
batik 0.1429 0 luindex-lusearch 7.5714 8.1429
jython 0.4286 1.7143 luindex-sunflow 6.5714 23.1429
luindex 3.0000 0.7143 luindex-xalan 6.2857 17.8571
sunflow 4.7143 25.1429 lusearch-jython 4.4286 6.1429
xalan 5.0000 22.2857 lusearch-luindex 7.5714 8.8571
batik-batik 0.2857 0 lusearch-lusearch 7.1429 15.7143
batik-jython 0.5714 3.8571 lusearch-sunflow 6.5714 19.1429
batik-luindex 3.5714 0.8571 lusearch-xalan 6.2857 13.8571
batik-lusearch 4.7143 4.2857 sunflow-batik 4.8571 22.2857
batik-sunflow 4.8571 14.1429 sunflow-jython 4.5714 15.2857
jython-batik 0.5714 1.1429 sunflow-lusearch 6.2857 25.8571
jython-jython 0.5714 5.2857 sunflow-sunflow 6.1429 34.2857
jython-luindex 3.0000 4.1429 sunflow-xalan 6.0000 27.5714
jython-lusearch 4.5714 5.2857 xalan-batik 5.2857 18.2857
jython-sunflow 4.5714 22.1429 xalan-jython 4.8571 20.4286
jython-xalan 5.0000 14.4286 xalan-luindex 7.7143 20.7143

setup was to run experiments without hyperthreading and no sleep time. Each experiment

was stopped after five minutes because the performance behavior stabilized fairly quickly.
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Figure 5.7: DaCapo jobs types and CPUs performance. The blue line is the average CPU
utilization of 5 sec, and red line is the Average CPU utilization for 60 sec.

5.5.2 Experimental Testbed

The proposed methodology is evaluated with Docker environment on an isolated Linux

cluster that contains three physical servers: S01, S02, and S03. We avoid using a virtual

environment to make sure that all the performance metrics are accurately measured. The

specifications for these servers are as follows:

1. Node S01: 8 vcores Intel(R) Xeon(R) CPU 3.70GHz, 64 GB RAM, Ubuntu 16.04.3,

and 246 GB Storage.

2. Node S02: 8 vcores x Intel(R) Xeon(R) CPU 3.70GHz, 64 GB RAM, Ubuntu 16.04.3,

and 1.1 TB Storage (includes 881 GB SSD).

3. Node S03: 32 vcores x Intel(R) Xeon(R) CPU 2.10GHz, 16 GB RAM, Ubuntu

16.04.3, and 1 TB Storage.

Monitoring data collection took place in the background, with no significant overhead on
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Figure 5.8: DaCapo jobs and performance metrics.
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(a) Correlation coe�cient (R-value) between
the output and actual target classes.
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(b) Mean absolute percentage error (MAPE).

Figure 5.9: Test of the proposed model against i⇥ j jobs

the system. All machines use sar (System Activity Reporter) and Sysstat to collect CPU,

memory, I/O, and network metrics.

5.6 Results

The following subsections provide a discussion, sensitivity analysis, and question that are

answered to validate the proposed solution.

5.6.1 Can the models capture CPU contention for two jobs?

The testing results of the proposed model against two jobs are shown in Figure 5.9. The

boxplot diagram in Figure 5.9(b) indicates the mean (blue) and median (red) of the pre-

diction error for data collected across all possible of job combinations of the benchmarks

(e.g., xalan-xalan, xalan-batik, jython-luindex, ..., etc). The blue box is the inter-quantile

range (25th-75th percentile). The R-value (Figure 5.9(a)) and MAPE (Figure 5.9(b)) for

predicting the completion time of i ⇥ j jobs are 98% and 5%, respectively. As it can be

seen in Figure 5.9(b), our model noticeably outperforms the other three models. The goal

of next subsection is to generalize the solution to cover more than i⇥ j jobs.
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Figure 5.10: Test of the proposed model for i⇥ j⇥ k⇥ l jobs against three other methods:
queueing theory, operational analysis and no model

5.6.2 Can the models capture CPU contention for more than two batch

jobs (i⇥ j ⇥ · · ·⇥ k) ?

Sometime, it is hard and time consuming to collect all the possible combination of work-

loads, especially when there are many types of jobs. For example, when there are 50 types

of batch jobs, the total possible combination to run only four colocated jobs is more than

292000. Therefore, there is a need to predict profiling of over all possible combination

of group of running batch job by training the machine learning model on a small set of

running colocated jobs (ex single and two jobs). Here, we generalize our model to predict

more than two jobs by using only the profiling of individual and two jobs. Figure 5.10

shows a comparison against the other three well-known methods: Queueing theory, oper-

ational analysis, and no model. The boxplot diagram in Figure 5.10 indicates the mean

and median of the prediction error for data collected across all possible of i⇥ j⇥ k⇥ l job

combinations of the DaCapo benchmarks (e.g., xalan-xalan-xalan-batik, jython-luindex-

xalan-batik, ...).

The proposed solution significantly outperforms other methods by achieving 9% for mean

percentage error compared with queueing theory, operational analysis, and no model,

which achieve 21%, 15%, and 68%, respectively. The proposed model not only predicts

completion time for i ⇥ j jobs with high accuracy, but also saves considerable time in

training the model to predict completion time for more than i⇥ j jobs and can easily be
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(b) Random sleep time (mean 2s)

Figure 5.11: Model comparison as sleep time increases.

generalized to cover unforeseen workload combinations.

5.6.3 How sensitive the models are to the e↵ect of sleep times?

Figure 5.11(a) illustrates the result of experiments where i⇥j⇥k⇥ l jobs are simultaneous

run without priorities and changed the sleep time between the runs. The intention is to

mimic the e↵ect of job dependencies, where sleep happens because a job waits for data to

start. The results indicate that NN, OA and QN models are rather insensitive in terms

of error after the addition of sleep times. The prediction without model would instead

face an error around 65%, which can be easily fixed by adding the amount of the sleeping

time (for example 2s) to the measured completion time values, as shown in the Figure

5.11(b). Adding n seconds of sleep time reduces two things: (1) dynamism or volatility

in the workloads making detection easier, (2) reduces the CPU utilization and makes

completion times mostly static reducing variation in its distribution making the problem

trivial. Overall, this indicates that sleep times do not represent a significant challenge for

prediction.

5.6.4 How sensitive the models are to job priorities?

Figure 5.12(a) shows results with i⇥ j ⇥ · · ·⇥ k running jobs (for example four jobs), but

with di↵erent priorities assigned to the jobs using the nice command. The nice values are
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(a) nice: +15+10+10+15
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(b) nice: +15+10+5+0-noht

Figure 5.12: Model sensitivity to job priorities: p07+15+10+5+0-noht.

indicated in the figure caption, larger nice values mean lower priority. The default priority

has a nice value of 0. The experiment demonstrates that our neural network model can

predict the e↵ect of job priorities with the lowest MAPE compared with the other three

models.

5.6.5 Can the model capture interference among containerized batch

jobs

In this section, the proposed neural network model is evaluated using containerized batch

system to examine the capability in predicting the interference among containerized batch

jobs that are run simultaneously using docker environment. Single and two jobs profiling

datasets are collected to train the neural network model, then we test the model against

four containerized batch jobs. Figure 5.13 proves that the neural networks outperform

other models by achieving 24% of MAPE. Finally, our model can be generalized to predict

interference of colocated jobs within containerized batch system.
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Figure 5.13: Predicting batch job interference within docker environment

5.7 Conclusion and Future Direction

This chapter provides an overview of the existing interference detection and prediction

studies in the literature and proposes a taxonomy of the current approaches. In addition,

a completion time prediction method is developed, featuring increasing accuracy in return

for more profiling data. The proposed neural network-driven model does not rely on

micro-architectural knowledge of systems. The model proves to be e↵ective when the

system uses or does not use job priorities or sleep time. The proposed solution predicts

the completion time for i⇥ j ⇥ . . .⇥ k containerized batch jobs with a high accuracy and

saves a considerable amount of time in training the model to predict throughput for more

than i⇥ j jobs and can easily be generalized to cover unforeseen workload combinations.

The experimental results prove that our solution is e↵ective and capable of detecting the

potential interference among containerized batch jobs and can achieve up to 10% MAPE

compared with other models. Table 5.5 summarize the comparison with the other three

interference prediction models, which prove that our solution outperforms other models.

The X means that the model can predict the interference of colocated containerized batch

jobs, whereas ⇥ means that the model dose not perform well in predicting the interference.

The proposed solution also can be used to help system operators to perform interference-

free scheduling of jobs within the system. Moreover, it can be modified to benefit users

in making decision for task placement within systems to reduce substantial computing

network resource consumption.
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Table 5.5: Comparison of NN model against the other three proposed model.

Neural Networks Baseline QT Baseline OA No Model
jobs  2 X X X ⇥
jobs > 2 X X X ⇥
Sleep time X ⇥ ⇥ X

Job priorities X ⇥ ⇥ ⇥

Our AI-driven interference prediction model has been used in an international joint project

called RADON 2, which aims to develop a model-driven DevOps framework for creating

and managing applications based on serverless computing systems. Regarding the future

direction, the introduced AI-driven solution in this chapter is promising for containerized

batch systems and can be extended to cover more advanced and complex production

environments. One possible direction is to utilize the autotuning technique developed

previously in Chapter 4 to precisely customize the architecture of the neural networks to

detect more complex interference scenarios in distributed systems. In addition, we plan

to generalize our model to cover the streaming workloads using deep learning model to

predict the interference among colocated jobs. Such adoption will intend to reach power

e�ciency and enhance computing resource utilization.

2RADON project http://radon-h2020.eu



Chapter 6

Conclusion

6.1 Summary of Thesis Achievements

This thesis explores new approaches for performance evaluation, anomaly detection, and

interference prediction of Big Data systems by implementing AI solutions. Late detection

and manual resolutions of performance anomalies and system interference in Big Data

systems within a cloud environment may lead to performance violations and financial

penalties. Motivated by this issue, we propose an AI-based methodology for anomaly

detection and interference prediction tailored to Big Data and containerized batch job

platforms to better analyze system performance and e↵ectively utilize computing resources

within cloud environments.

To achieve this, we first start in Chapter 3 by examining the performance of Big Data

platforms and justifying our choice of selecting the in-memory Apache Spark platform.

Then, we propose an artificial neural network-driven methodology for anomaly detection

for batch workloads based on knowledge of RDD characteristics to quickly sift through

Spark log data and operating system monitoring metrics to accurately detect and clas-

sify anomalous behaviors based on the Spark resilient distributed dataset characteristics.

The proposed method is evaluated against three popular machine learning algorithms -

decision trees, nearest neighbor, and SVM- as well as against four variants that consider

133
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di↵erent monitoring datasets. The results show that our proposed method outperforms

other methods, typically achieving 98–99% F-scores, and o↵ering much greater accuracy

than alternative techniques in detecting both the period in which the anomalies occurred

and their type. In Chapter 3, our experiments demonstrate that the proposed method

works e↵ectively for complex scenarios with multiple types of anomalies, such as CPU

contention, cache thrashing, and context switching anomalies. Moreover, we have shown

that a random start instant, a random duration, and overlapped anomalies do not have a

significant impact on the performance of the proposed methodology.

In Chapter 4, we address the challenge of anomaly identification within in-memory stream-

ing Big Data platforms by investigating agile hybrid learning techniques for anomaly

detection. We describe TRACK (neural neTwoRk Anomaly deteCtion in sparK) and

TRACK-Plus, two methods that can e�ciently train a classes of machine learning models

for performance anomaly detection using a fixed number of experiments. TRACK revolves

around using artificial neural networks with Bayesian Optimization (BO) to find the op-

timal training dataset size and configuration parameters to e�ciently train the anomaly

detection model to achieve high accuracy in a short period of time. TRACK-Plus is an au-

tomated fine-grained anomaly detection solution that adds to TRACK a second Bayesian

Optimization cycle for fine-tuning the hyperparameters for artificial neural network con-

figurations. The objective is to accelerate the search process for optimizing neural network

configurations and improving the performance of anomaly classification within the data

center.

A validation based on several datasets from a real Apache Spark Streaming system is per-

formed to demonstrate that the proposed methodology can e�ciently identify performance

anomalies, near-optimal configuration parameters, and a near-optimal training dataset

size while reducing the number of experiments. Our results indicate that the reduction in

experiments that need to be run can be up to 75% compared with näıve anomaly detec-

tion training. This chapter provides a comprehensive methodology for both performance

anomaly classification and the e�cient optimization of artificial neural networks to detect

anomalies within streaming systems.
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Chapter 5 overcomes the issue of colocated batch jobs and proactively avoiding perfor-

mance interference by introducing an automated prediction solution to estimate interfer-

ence between co-located batch jobs within the same computing environment. An AI-driven

model is implemented to predict the interference among batch services. This interference

detection model can alleviate and estimate the task slowdown a↵ected by the interference

among running batch jobs. This model assists the system operators in making an accu-

rate decision to optimize job placement. Our interference prediction solution (Chapter 5)

is agnostic of the business logic internal to each job. Instead, it is learned from system

performance data by applying artificial neural networks to establish the completion time

prediction of batch jobs and containers within the cloud environments. We assume to have

profiling data for the individual job (i) and two jobs (i ⇥ j) , before attempting to use

neural networks to predict the completion times when more than two jobs simultaneously

run in the system.

We compare our model with the other three baseline models (queueing-theoretic model,

operational analysis model, and an empirical model) on historical measurements of job

completion time and CPU run-queue size (i.e., the number of active threads in the sys-

tem) for containerized batch job. The proposed model captures multithreading, operating

system scheduling, sleeping time, and job priorities with in the systems. A validation based

on 4500 experiments based on the DaCapo benchmarking suite is carried out, confirming

the predictive e�ciency and capabilities of the proposed model with di↵erent system con-

figurations. The experimental results prove that our solution is e↵ective and capable of

detecting the potential interference among batch jobs, achieving up to 10% MAPE com-

pared with the other three models.

6.2 Future work

A wide range of challenges related to our topic hold the potential for further exploration

in future work. Therefore, we present several directions that we believe are the most

promising and relevant for the performance evaluation and management of Big Data and

cloud computing platforms.
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The current methodology in Chapter 3 requires a centralized node to run the AI model,

which may not be e↵ective for large-scale data centers. Distributed online detection tech-

niques that rely on a collection of neural networks may be considered for large-scale

systems. Due to the limitation of the hardware resources and validating the proposed

methodology, the current artificial neural network algorithm has been trained on o✏ine

data, which can easily generalize the algorithm to work with the online Spark systems.

In terms of future work, it would be interesting to explore online anomaly detection for

real-time applications.

It is worth examining the applicability of the proposed models in this thesis to other

Big Data platforms, such as Hadoop, Storm, and Flink. The behavior of the Apache

Spark computing framework di↵ers from the Hadoop framework. Apache Spark uses

an in-memory computing approach to store intermediate results in memory (discussed

in Section 3), whereas Hadoop uses a disk-based computing approach. Therefore, we

encourage further investigation of the use of the anomaly detection techniques proposed

in this thesis on other Big Data technologies.

The upcoming new types of applications and complex data-intensive technologies raise

new challenges for detecting and predicting anomalies in Big Data system environments.

In the future, the existing techniques will become less e�cient for identifying new types of

anomalies that have unknown and complex features. In some cases, irrelevant performance

features can conceal the presence of anomalies. Therefore, it is important to explore new

promising learning techniques to identify new and unseen types of anomalies. In the liter-

ature, Deep Learning algorithms have received attention as e↵ective solutions in a range of

complex problem domains involving supervised and unsupervised machine learning. These

techniques have been used e�ciently to detect anomalies in other systems, such as 5G net-

work systems and power plants. Deep Learning techniques may also be explored to learn

more about complex features from the performance metrics of the Spark system, possibly

leading to even more accurate detection and prediction of critical anomalies.

In terms of open challenges, it is crucial to deeply investigate anomaly detection and pre-

diction for complex systems that simultaneously contain both batch and stream processing
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workloads. These systems will have increased complexity and performance fluctuations,

which may need more e↵ective anomaly detection solutions. Exploring more advanced

machine learning algorithms may hold opportunities to accurately detect and predict the

performance anomaly in distributed heterogeneous complex systems.

The introduced AI-driven solution in chapter 5 is promising for microservices systems and

can be extended to cover more advanced streaming workloads within complex production

environments. One possible direction is to utilize the autotuning technique developed in

Chapter 4 to precisely customize the architecture of the neural networks to detect more

complex interference scenarios in distributed systems. Such adoption aims to reach power

e�ciency, enhance computing resource utilization, and optimize job scheduling.
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Appendix

Figure A.1 shows CPUs utilization when running each containerised Dacpo batch job,

which reflect di↵erent performance behaviors that makes the interference detection in our

case more challenging.
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Figure A.1: DaCapo jobs types and CPUs performance.
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A.1 Academic contributions to conferences and workshops

Table A.1: List of academic contributions to conferences and workshops

Activities Overview Date / Organizer

Publication Paper Title: QT A Quality Test-
ing Tool for Data-Intensive Appli-
cations

21/8/2018 - Annual International Con-
ference on ICT: Big Data, Cloud and
Security - ICT-BDCS 2017

Judge Graduate School PhD Summer
Showcase (Poster Competition)

14/07/2017 - Graduate School

Review

Paper Title : ADaCS A Tool for
Analyzing Data Collection

06/06/2017 - 14th European Perfor-
mance Engineering Workshop, Berlin
(Germany)

Paper about Stochastic model of
extraction time evolution compo-
nents

2/10/2017 - VALUETOOLS 2017 -
11th EAI International Conference on
Performance Evaluation Methodologies
and Tools (Valuetools 2017)

Paper about operational analysis
for virtual Server sprawl including
e�ciency, consolidation and slow-
down.

3/11/2017 - the 9th ACM/SPEC In-
ternational Conference on Performance
Engineering (ICPE 2018)

Paper about a scalable hybrid
variability for distributed systems

3/11/2017 - 6th European Conference
on Service-Oriented and Cloud Com-
puting (ESOCC2017)

Paper about a potential of Fog
Computing to improve Big Data
applications

3/11/2017 - 6th European Conference
on Service-Oriented and Cloud Com-
puting (ESOCC2017)

Paper about mining for unstruc-
tured system logs using event se-
quences to detect anomalies

12/1/2017 - The IEEE/IFIP Interna-
tional Conference on Dependable Sys-
tems and Networks (DSN)

Paper about anomaly detection
for docker container using neural
network technique

12/1/2018 - The IEEE/IFIP Interna-
tional Conference on Dependable Sys-
tems and Networks (DSN)

Paper about examining replica-
tion factor to improve perfor-
mance Hadoop Distributed file
system.

7/2/2018 - 9th ACM/SPEC Interna-
tional Conference on Performance En-
gineering (ICPE 2018)
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ABSTRACT DevOps is an emerging paradigm that reduces the barriers between developers and operations
teams to offer continuous fast delivery and enable quick responses to changing requirements within the
software life cycle. A significant volume of activity has been carried out in recent years with the aim
of coupling DevOps stages with tools and methods to improve the quality of the produced software and
the underpinning delivery methodology. While the research community has produced a sustained effort by
conducting numerous studies and innovative development tools to support quality analyses within DevOps,
there is still a limited cohesion between the research themes in this domain and a shortage of surveys that
holistically examine quality engineering work within DevOps. In this paper, we address the gap by com-
prehensively surveying existing efforts in this area, categorizing them according to the stage of the DevOps
lifecycle to which they primarily contribute. The survey holistically spans across all the DevOps stages,
identify research efforts to improve architectural design, modeling and infrastructure-as-code, continuous-
integration/continuous-delivery (CI/CD), testing and verification, and runtime management. Our analysis
also outlines possible directions for future work in quality-aware DevOps, looking in particular at AI for
DevOps and DevOps for AI software.

INDEX TERMS DevOps, CI/CD, infrastructure as code, testing, artificial intelligence, verification.

I. INTRODUCTION
The rapid evolution of cloud and virtualization technologies
over the last 15 years has brought to software vendors the
ability to easily and programmatically control a broad set
of computing resources in the execution environment of a
software system. This development has then paved the way
to increased levels of automation in the way software appli-
cations are delivered to production, for example by enabling
continuous integration of new version of the application
code. The resulting delivery paradigm, which places more
attention towards continuous re-release, unified tooling and
organizational processes, is often referred to as DevOps.
Common DevOps advances include for example continuous-
integration/continuous-delivery (CI/CD) pipelines, and

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabrizio Messina .

highly-automated orchestration and configuration solutions
for the runtime environment [1], [2].

DevOps tools and methods have also reduced the cultural
and methodological divide between developers and opera-
tors [3], leading to the formation of many new organizational
structures within software vendors, such as virtual teams
composed of both developers and operators, and the establish-
ment of new professional figures often referred to as DevOps
engineers, who center their activity on tooling and automation
across the whole application lifecycle.

Amethodology that releases application versions at a faster
pace than traditional methods is effective only if coupled with
testing tools that can reduce the likelihood of failures in pro-
duction. For this reason, quality assurance in DevOps is often
a synonym of continuous functional testing methods to check
the correctness of application prior to deployment. How-
ever, to accelerate the pace of delivery, quite often DevOps
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FIGURE 1. Stages of the DevOps Cycle. The citations indicate works that
mainly perform research in the context of that stage. Relevant sections of
this paper are also indicated.

testing methods lead to restrict the depth of scrutiny of the
software system, leaving rooms for significant defects and
bugs to still emerge in production. Several defects are related
to properties other than correctness, such as performance,
reliability, or cost. This problem has raised the attention
of many research groups, leading to several research works
that attempt to couple DevOps methods with novel forms of
rapid and automated quality assurance, centered on a broader
range of quality characteristics (e.g., performance, reliability,
availability, scalability, . . . ).

While the research community has sustained this effort by
publishing numerous studies and innovative tools and meth-
ods to support quality analyses within DevOps, there is still a
limited cohesion between the research themes in this domain
and a shortage of surveys that holistically examine quality
engineering work within DevOps. In this work, we address
this gap by offering a survey of recent efforts in the area
of quality-aware DevOps. Our work focuses on research
efforts that aim at coupling the rapid delivery of DevOps
with techniques to ensure that software artifacts also meet
quality expectations on non-functional properties. Our anal-
ysis covers several tens of papers, categorizing the different
contributions according to the software engineering area they
mainly contribute to including architectural design, model-
ing, continuous integration and delivery, infrastructure, test-
ing, verification, CI/CD and infrastructure-as-code, runtime
management. We look also at the positioning of these works
within the DevOps lifecycle stages. The paper, in particular,
reveals that a highly-diverse body of work has been published
on the subject, which yet leaves ample margins to carry out
further investigations in areas that are systematically under-
investigated from a quality angle, e.g., CI/CD & IaC and
architectural design. We further look at the state-of-the-art

on two emerging trends: AI for DevOps and DevOps for
AI software, as these are expected to dominate the DevOps
landscape in the years to come, and survey early works in
these areas.

A. THE DevOps CYCLE
The reference stages of the DevOps lifecycle we consider
are illustrated in Figure 1. The figure lists the bibliographic
references that we classify as doing research in the context of
that stage. Note that a paper may touch upon multiple stages,
in which case it is listed on all relevant stages. The stage
definitions we adopt are as follows:

• Plan: This stage aims at defining the objectives and
requirements of the software production, along with the
initial plan for updates and release across iterations.

• Develop: Based on the plan, developers focus on devel-
opment and reviewing of software code and/or IaC. Typ-
ically, in this phase the code undergoes frequent commits
on code repositories as well as integration and unit tests
based on build automation tools.

• Verify: Verification is the process to evaluate the correct-
ness of software artifacts in terms of the requirements.

• Test: In this phase, automation testing will be performed
continuously to ensure the quality of the software arti-
fact. Contrary to traditional tests, this phase can include
the release of trial versions to part of the end user base,
by means of canary testing.

• Deploy: This stage focuses on continuously
re-deployment of the software in the production environ-
ment. This phase entails the problem of configuration
management of the target platforms and resources.

• Operate: Operation in DevOps cycles deals with con-
figuration and management of the software application
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after deployment, e.g., resource provisioning and auto-
scaling. Orchestrators and other runtimemethods can be
used to automatically instantiate and adapt at run-time
the application topology and components.

• Monitor: Monitor the performance of deployed appli-
cations by collecting and analyzing usage data, which
can help to detect and identify exceptions and provide
feedback to iteratively improve the software. Contin-
uous tracing and diagnostics of production problems is
important to guide the evolution of the application across
release cycles.

The above phases are qualitatively similar to those carried out
in traditional software engineering methodologies, with the
main difference being that the process of releasing the soft-
ware artifact is continuous and highly-automated. We point
the reader to books such as [4] for additional details on the
above methodological phases.

B. METHODOLOGY
Our reviewmethodology is as follows.We examine computer
science peer-reviewed journals and conference papers written
in English between 2015 and 2020. Papers are obtained with
systematic searches using Google scholar for search strings
always including ‘‘DevOps’’, one quality term between
‘‘performance’’, ‘‘scalability’’, ‘‘quality’’, ‘‘quality-aware’’,
‘‘reliability’’, ‘‘availability’’, or ‘‘survivability’’; and a third
term matching the title of the sections of this paper (e.g.,
‘‘verification’’, ‘‘CI/CD’’, etc). Books, presentations, thesis,
technical reports, white papers, and patents are excluded from
this study. After collecting the pool of paper, due to space
limitations we have narrowed down the list to around 10 in
each section. This has been done with manual screening of
each paper, trying to identify a subset of papers that was
representative of the whole category, as our goal is to illus-
trate different research challenges and approaches, rather than
exhaustively list every individual contribution.

We have aligned these collected pool of papers with
different stages of the DevOps lifecycle and presented in
Figure 1. We also present a mapping of these papers with
the considered quality attributes in Table 1. The table also
classifies the papers based on their methodology. We con-
sidered the following methodologies:‘‘Model-based’’ - if the
authors emphasize modeling abstractions, ‘‘Empirical’’ - if
the authors designed amodel-free approach and their decision
process is based on the collected static or runtime data, and
‘‘Hybrid/Other’’ - if the authors used a combination ofmodel-
based and empirical approach or other methods.

C. CONTRIBUTIONS AND ORGANIZATION
Summarizing the core contributions of this paper are as
follow:

• We survey recent works in the area of quality-aware
DevOps, outlining the main contributions and compar-
atively position them to other DevOps works within the
same field.

• We organize the surveyed papers into different cat-
egories, both globally across the survey and locally
within each research area, offering a better qualitative
understanding of the areas of main interest and current
research gaps.

• For each category, we identify open research chal-
lenges, offering several ideas for further exploration by
researchers in upcoming years.

• We outline open research directions and ongoing work
in emerging DevOps trends related to the use of AI
technology, which we expect to foster novel solutions
in the quality engineering space in the near future.

The rest of the papers is organized as follows. Sections
2-8 survey recent research work across the considered areas,
namely: architecture design (§2), model-based DevOps (§3),
CI/CD (§4), testing (§5), verification (§6), and runtime
management (§7). Each section outlines context, summariz-
ing research papers, and giving guidance for future work.
Section 8 discusses ongoing work in DevOps for AI and in
AI for DevOps. Section 9 draws conclusions.

II. ARCHITECTURE DESIGN
Context: The architecture design of today’s software systems,
particularly cloud applications, allows for a rapid extension
of features and functions with minor modifications to exist-
ing implementations. This requires increased communication
and collaboration between development and operation teams
to achieve a strong integration of coding, building, testing,
packaging, releasing, configuring and monitoring activities.
Therefore, designing the software architecture has profound
implications not just on the software, but also on the overall
DevOps delivery process. Recent research on architecture
design in the context of DevOps centers around the following
challenges:

AD1 Refactoring monolithic applications into microser-
vices;

AD2 Modeling the architectures of cloud-native applica-
tions;

AD3 Deciding architecture design variants through test-
ing or experimentation;

AD4 Adopting new architectural styles with best prac-
tices and tactics.

Quality-Aware DevOps Research: By migrating a mobile-
app backend to microservices, Balalaie et al. [5] show how
the microservices architecture could be beneficial, especially
in shipping new features and providing built-in scalability.
They also report on architectural patterns observed in migra-
tion projects, which can help practitioners and consultants to
address AD1 with a DevOps methodology.

Two papers are found to target AD2. Di Nitto et al. [48]
introduce SQUID, a framework that provides DevOps-ready
software architecture descriptions through model-based doc-
umentation of software architectures and their quality prop-
erties in DevOps scenarios. Meanwhile, Heinrich et al. [49]
propose iObserve, an approach to enriching and updating
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TABLE 1. Mapping of the reviewed paper with the quality attributes. The corresponding section of the papers are also provided.

the architectural development models of cloud-based soft-
ware applications with operational observations so that the
resulting architectural runtime models are usable during the
operation phase.

In order to tackle AD3, Avritzer et al. [19] introduce
an approach to automatically assessing the scalability of
configuration alternatives for the microservices architecture
through load testing. This approach provides a domain-
based metric that can be used to make informed decisions
about which configuration alternative to select. By contrast,
Jiménez et al. [50] proposes a framework for quality-driven
adaptive continuous experimentation. This framework dedi-
cates three feedback loops to control the satisfaction of high-
level quality goals through experiment design and conduct
experimental trials for infrastructure configuration and archi-
tecture design variants.

Reference [6], [20], [51] and [7] provide solutions to
AD4 for the microservices architectural style by practic-
ing DevOps in industrial use cases. Using OpenStack as
case study, the authors of [20] compares the efficiency of
DevOps in container-based and VM-based deployments and
explores the scalability of stateless and stateful containerized
components. Reference [51] discusses DevOps practices and
architecting tactics for developing large-scale systems, like
a Neo-Metropolis BDaaS platform. The authors of [6] show
how the properties of the microservices architecture facilitate
the scalability, agility and reliability of e-commerce applica-
tions. Differently, [7] advocates the use of microservices for
software development in connected car business and proposes
a suitable team setup for establishing a DevOps culture.
Analysis of Open Challenges: DevOps architectural work

has focused on microservices, but novel research opportuni-
ties arise to extend this research, for example by including
in architecture design also Function as a service (FaaS) ele-
ments. FaaS refers to a novel serverless computing paradigm
that may radically evolve the landscape of software architec-
tures. It enables software engineers to virtualize the business
logic of an application as individual functions registered in
the cloud. Because of advantages brought by the serverless
FaaS paradigm, software vendors tend to migrate their exist-
ing products onto FaaS platforms, e.g., AWS Lambda and

OpenFaaS. There is however a lack of approaches available in
the literature to automatically decomposing monolithic appli-
cations into architectures containing serverless functions.
Moreover, the choice of a suitable architectural granularity
is an open problem, e.g., when to prefer a serverless function
to a microservice.

III. MODEL-BASED DevOps
Context:Modeling provides a flexible and efficient means to
study the qualitative and quantitative properties of a given
system in an abstract language, thus being widely applied
in support of various development and operation activities.
As aforementioned, it can help with the architecture design of
modern software systems [48], [49]. Models can either take
the form ofmathematical models or code in a domain-specific
language to declare properties. Within this trend, models may
refer to the system or its environment. In the former case, they
provide abstractions for the software inter-dependencies or
dynamic behavior. In the latter case, they provide abstractions
to specify and automate the configuration of a target deploy-
ment environment.

This section focuses on model-based DevOps frameworks
and methods that cope with the following challenges:

MD1 Assessing the quality of systems under develop-
ment;

MD2 Optimizing system configurations in a cloud envi-
ronment;

MD3 Specifying the required underlying infrastructure as
code.

Quality-Aware DevOps Research: As a requisite for qual-
ity assurance, MD1 receives continuous attention from the
research community. Gorbenko et al. [33] provide a time-
probabilistic failure model for distributed systems that fol-
lows the service-oriented paradigm to define interaction with
clients over the Internet and clouds. A three-layer queueing
network is proposed by Barna et al. [12] for developing
autonomic management systems. This model is proven to
be robust and accurate in predicting system performance
under a variety of workloads and topologies. Take a tax fraud
detection system as an example, Perez-Palacin et al. [13]
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TABLE 2. Overview of publications on architecture design.

show the use of Petri nets for the performance analysis of
data-intensive applications. Peuster and Karl [14] present an
automatable and platform-agnostic modeling approach that
can profile the performance of an entire service function
chain at once.

MD2 is a common issue that needs to be addressed in
the deployment and operation phases so as to adapt DevOps
for a cloud environment. Guerriero et al. [10] propose
SPACE4Cloud, an integrated framework for the deployment
optimization and resource allocation of cloud applications
represented as PCM models. A proactive application place-
ment algorithm is introduced by Suk et al. [32]. This algo-
rithm uses failure indexes evaluated by modeling application
turnover and infrastructure failure as stochastic processes.
Sun et al. [11] present a stochastic model and an optimization
method to minimize the completion time, availability degra-
dation, and monetary cost of the rolling upgrade procedure
through appropriate parameterization.

The emergence of Infrastructure-as-Code (IaC) is a
response toMD3. IaC often relies on textual resource models
to configure the application environment. It is especially
useful to increase the repeatability of configuration tasks
in distributed architectures, where many dependencies exist
between software components and virtualized resources.
Comparatively to other areas surveyed in this paper, IaC
quality research is in its infancy and relatively few works
exist. Two representative examples are [8] and [9]. In [8], the
authors discuss a qualitative analysis of over 1700 IaC scripts
to identify code smells in IaC code, i.e., code snippets that
are indicative of some deeper violation of design principles
or best practices. The paper considers in particular security
smells related to cryptography, authentication and hard-coded
secrets, among others. The authors of [9] explore the use
of intent modeling as a way to ensure the correctness of
IaC. This is based on the idea of specifying IaC in terms
of the high-level final state/goal that needs to be reached,
operating at a higher level of abstraction than detailed sub-
activities. The paper focuses on the standardized TOSCA
language, which offers an implementation of this approach.
TOSCA models are also compatible with the execution of
IaC scripts in languages such as Ansible, effectively offering
polyglot IaC. Rahman et al. [52] provides a systematic survey
of quality in IaC, noting its current underdevelopment in the
research literature. They carry out an analysis of 32 publica-
tions. Within this paper, IaC work insists primarily on quality

TABLE 3. Summary of publications on model-based DevOps.

dimensions such as the reliability, repair, testing, idempo-
tency of IaC scripts.
Analysis of Open Challenges: Although the serverless

FaaS paradigm simplifies user involvement in resource allo-
cation at runtime and saves operating costs by billing execu-
tions at the function level. It is often difficult to decide the
optimal configuration of serverless functions comprising an
application, which minimizes the operating costs while satis-
fying the performance requirements. This raises the needs for
models that can accurately predict the performance of FaaS-
based applications as well as approaches that can effectively
optimize their deployment. In the literature, no work seems
to have been carried out for either.

Our survey also reveals that IaC research is still at an early
stage, and thus many outlets for research exist in develop-
ing tools to increase the quality of IaC artifacts. Because
IaC scripts can be specified using model-based declarative
languages (e.g., TOSCA) or be written with specialized lan-
guages (e.g., Ansible), a research question is how to develop
holistic and polyglot defect prediction and debugging envi-
ronments for IaC. Another potential aspect to consider in IaC
involves the quantification of costs associated to maintenance
and configuration operations. At present such costs can only
be indirectly estimated from execution logs, but there is prac-
tical business value in estimating these figures from code or
software artifacts. Lastly, the relative merits of different IaC
technical approaches used in industry are currently not well
understood in the literature. More systematic investigations
on these matters may be relevant to researchers.

IV. CONTINUOUS INTEGRATION AND DELIVERY (CI/CD)
Context: CI/CD pipelines provide the technical means to
automate recurring tasks related to deployment, testing, and
orchestration of cloud native applications. Market solutions
such as Jenkins, CircleCI, Trevis, and several others can be
used to coordinate delivery and quality checks on the appli-
cation source code and associated software artifacts, prior to
their production use. Several books and papers overview the
general properties of CI/CD, e.g., [1] discusses the broader
applicability and benefits of CI/CD in industrial context.
More recently, [2] provides a large-scale empirical study on
the impact of continuous integration on software development
practice. Strategies to concretely adopt CI/CD in organiza-
tions are exemplified in [53].
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TABLE 4. Comparing publications on CI/CD.

Quality-Aware DevOps Research: It is well known that
CI/CD finds immediate application to quality assurance via
unit testing of functional properties. For example, the practi-
tioner interviews in [54] reveal that deployability via CI/CD
and architectural design to improve test quality are relevant
dimensions in DevOps. We point the reader to a broader
overview of related testing research in Section V. We instead
here focus on innovative uses of CI/CD in the context of
quality assurance, which offer novel outlets for research.
Research in quality-aware CI/CD has centered on the follow-
ing challenges:

CC1 Performance-aware CI/CD
CC2 Data-aware CI/CD
CC3 Secure CI/CD

An example of work that addresses CC1 is [15], which
uses CI/CI to ease updates while releasing new versions
of microservices. The authors propose an architecture-based
CI/CD approach, rather than using scripts, to update the
microservices while in production. They define templates for
different architectural models based on which an application
can be updated to a target architecture using simple com-
mands. In addition, they incorporate common update strate-
gies, such CleanRedeploy, BlueGreen, Canary, etc., from
which an appropriate strategy can be selected to satisfy spe-
cific SLA requirements. They demonstrate the effectiveness
of the approach updating an application in production.

Another example of work in the context of CC1 is [46],
where the authors propose a roadmap to apply CI/CD to
incrementally maintain and parameterize application perfor-
mance models. The approach entails to react to changes in
the application source code and then apply targeted moni-
toring and statistical estimation methods to update resource
demands, probabilities of selecting particular code branches,
loop execution numbers, and other relevant parameters. Such
updates are essential to continuously evolve the quality-aware
toolchain analysis synchronously with code commits.

An instance of work that tackles CC2 is as follows. Data
stores based on query languages such as RDF can be directly
stored on systems such as Github, allowing to coordinate the
publishing of data with CI/CD pipelines. This triggers the
question on what is the inter-play between CI/CD and data
quality engineering. [40] provides an overview of tools that
can be integrated in CI/CD pipelines to continuously meet
quality requirements on data. The include utilities for RDF
serialization quality checks, ontology validation tools, data
anti-patterns, linked open quality data assessment. An exam-
ple of CI pipeline to holistically coordinate the surveyed data
quality assurance tools is described in the paper.

The recent work in [45] illustrates another approach to
quality-aware DevOps, where the goal of the study is to
continuously integrate and orchestrate a system so to ensure
security and privacy. This aligns to challenge CC3. Model-
driven engineering methods are coupled with secure DevOps
practices to allow continuous changes in the deployment envi-
ronment. This is based on a so-called ‘‘models@runtime’’
approach, where the application model is evolved directly in
the production environment in response to dynamic events
that occur therein.
Analysis of Open Challenges: The above papers exemplify

novel trends in CI/CD towards integrating in the CI/CD
pipeline the specification of data services. It is possible to
envision that similar needs will arise in connection with
AI/ML services, which require a continuous evolution of
data pipelines, learning and training services alongside the
application. CI/CD support specific to such kind of services
offers outlet for novel research.

V. DevOps TESTING
Context: DevOps has been widely adopted in enterprises,
which leads to shortened development cycles and involve-
ment of automation. With speedy iterations, the risk and cost
of quality assurance increase at the same time. Testing is of
great importance to ensure the quality of software in DevOps
practice. In particular, automating the testing process enables
continuous testing of the frequent code changes occurring
throughout the development cycle. The following challenges
are highlighted in the literature:

TS1 Automatic workload selection and specification of
target services.

TS2 Test automation frameworks to enable automatic
execution within DevOps cycles.

TS3 Employing testing strategies to adapt to frequent
changes in DevOps.

Quality-Aware DevOps Research: In the phase of test
specification, a central goal is to maximize the coverage of
new changes and specify unit tests aiming at specific and
identifiable target services or functions, to make test results
quickly actionable for developers. Besides common func-
tional testing, which is not specific of DevOps, automated
load testing allows spotting possible performance issues dur-
ing the integration phase, preventing them from manifesting
in production. In [16], Schulz et al. propose an approach of
load testing selection based on contextual information that
focuses on TS1. Workloads can be automatically selected
according to monitoring data, target services, along with
testing requirements in the proposed load testing process.

The authors in [17] focus on representative workload mod-
els for load testing of individual microservices in session-
based systems. Two algorithms are proposed to enable
extracting specific workload for the microservices under test-
ing and consequent adjustments of workload models. Such
an approach aims at only target microservices and their
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TABLE 5. Comparing publications on DevOps testing.

dependencies so that they can reduce the testing cost, address-
ing the issue of TS1.

In [18], the authors also propose to solve TS1 by introduc-
ing a behavior-driven load testing language (BDLT), which
is designed to describe performance concerns in natural lan-
guage that can be easily adopted by users. Based on BDLT,
testing workloads can be automatically generated with the
method in [16].

To enable the automated execution of tests for the purpose
of faster integration and delivery, several test automation
frameworks and tools have been proposed to address the
problem of TS2. For example, in [34], the authors address
automated testing workflows in the process of continu-
ous integration, focusing on unit tests and integration tests.
Pietrantuono et al. in [35] present a continuous software
reliability testing approach called DevOpRET. This approach
mainly involves usage monitoring and operational profile
estimation and updating. By monitoring the endpoint users,
estimated operational profile is able to be updated with the
actual user profile. At each DevOps cycle, the reliability
testing can be executed based on the continuously updated
operational profile.

In addition, testing techniques such as canary releases
and shadow/dark launches are being increasingly adopted as
strategies to automate testing execution in TS3. In an empir-
ical study on continuous experimentation [21], the authors
provide an overview of continuous experimentation prac-
tices that contain canary releases, dark launches and A/B
testing in both research and practice of DevOps. In [36],
Schermann et al. proposed a live testing model and imple-
mented a middleware, Bifrost, to specify testing strategies
and execute tests through traffic routing. Bifrost is able to
describe release techniques with multiple phases including
canary releasing, dark launching, A/B testing and gradual
rollout in YAML-based language. The authors of [47] address
the issues of dependability and security of CD pipelines,
proposing involving testing strategies, such as canary releases
and A/B testing, into building and integration pipelines
execution.
Analysis of Open Challenges: Rapid changes bring new

challenges to test specification and execution in practice.
Learning and analyzing the internal and external depen-
dencies between components at specification stages could
also inform test specifications, enabling a more effective
identification of tests that need to be re-executed after a
change, trading off test complexity for coverage. In addition,

test automation needs to meet the dynamics of iterations in
DevOps cycles. For example, the objective of each iteration
may change, which will lead to involve different test strate-
gies into the respective iteration tomeet the QA requirements.

VI. VERIFICATION IN DevOps
Context:Verification complements testing in software quality
assurance processes. Compared to testing, it leverages math-
ematical abstractions and code/model semantics to prove
the (partial) correctness of artifacts with respect to a variety
of properties.While still in their infancy, verificationmethods
tailored to DevOps are gaining traction in both industry and
academia for their potential to deliver stronger quality guar-
antees than testing. This section reviews a selection of paper
relevant to verification in DevOps (Table 6). The main open
challenges discussed through this section are summarized in
the following points:

VE1 Develop diff-time verification methods for prompt and
localized feedback to keep developers engaged

VE2 Increase compositionality and incrementality to sup-
port the analysis of large, rapidly changing code bases

VE3 Feed information from design time to runtime and
viceversa to improve runtime tasks and verification

Quality-Aware DevOps Research: Despite not as widely
adopted as testing, verification is applied at several stages of
a DevOps cycle, including, in order: design, build, diff, land,
and production times [55].
Design-time methods analyze pre-implementation soft-

ware artifacts, including goal or architectural models from
the DevOps plan and create phases. User-provided abstrac-
tions, e.g., statecharts or unambiguous dialects of UML, are
automatically translated into formal models to verify arti-
facts’ properties. For example, analytical models of perfor-
mance and reliability obtained from higher-level modeling
languages like the Palladio Component Model [56] or OASIS
TOSCA can be analyzed with numerical routines or proba-
bilistic model checking [57].
Build-time methods are usually embedded within compil-

ers and IDEs, providing quick feedback to the developers
about the module they are implementing. These are usu-
ally light-weight static analyses performed with tools like
Valgrind [41] andASan to detect buffer overflows or dangling
pointers and profile C/C++ artifacts, or FindBugs to localize
several classes of bugs in Java artifacts [42]. While most of
these methods are not specific to it, DevOps needs started
to push for adapting them into staged analyses, where static
code information computed during build time are carried on
to later development stages and runtime to enable subsequent
analyses [58]. For example, in [39], Beigi-Mohammadi et al.
exploit control flow analysis to extract security-related pred-
icates to be checked during operation, enabling automatic
adaptation actions for early countering potential attacks.
Diff-time is the gatekeeping at the end of code creation,

when submitted code waits for review and approval. Verifi-
cation methods in this phase usually completes within a few
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TABLE 6. Verification and static analysis through DevOps phases.

tens of minutes [55] to allow their reports to complement
human code reviews. The peculiarity of this phase is its
intrinsic incrementality: only portions of an artifact change
since the last run of the analysis, and they can be identified
by the diff. While few academic tools specialize for diff-time
analysis, notable industrial contributions include Facebook’s
Infer [43], Amazon’s s2n [37], and Microsoft’ Prefast [44].
Land-time occurs after a diff is approved and before release

to production. This phase is allowed longer execution time
(typically from hours to overnight) and can operate from
built and executable modules, which can be analyzed both
statically and dynamically [43]. Microsoft Prefix [44] is an
example of tools used in this stage.

Finally, in production, runtime verification methods can be
used to detect requirements violations as they happen. These
methods require the instrumentation of the application with
monitors and probes to measure specific quantities or detect
the violation of safety/security predicates [39], [57]. Methods
based on partial evaluation compute surrogate model of the
system that enable efficient verification at runtime, after cur-
rent monitoring information are gathered (e.g., [38] verifies
probabilistic properties).
Analysis of Open Challenges: Broadly speaking,

verification requires formal models and analysis algorithms.
Model-driven processes exploit human ingenuity to produce
semantically richer models of an application and its environ-
ment. While these models allow the use of established model
checking algorithms, keeping the models consistent with
the application code may be challenging in all but the few
domains where fully automated code generation is possible.
Nonetheless, where available, even partial design models
should be used in the future to improve the effectiveness of
later-stage methods. This includes, for example, the contex-
tualization of build-time verification within realistic usage
profiles specified by the designers, as well as using design
models to narrow down the relevant scenarios for diff-time
and runtime analysis, reducing the relevant search space to
cut verification time (V3). To improve diff-time verification,
research has to focus on compositional methods which enable
incremental re-analysis of only the changed parts of a code-
base [55]. This overall addresses challenge VE1. Academic
research largely underestimated so far the importance of
prompt and localized developer feedback, preferring detailed

verification reports produced overnight at land-time. How-
ever, empirical evidence from industry suggests that diff-time
verification is more effective for bug fixing and keeps devel-
opers more engaged [42]. Developing compositional verifi-
cation algorithms often requires to reduce the expressiveness
of verifiable properties, which may nonetheless allow to
intercept problems before they reach production, which falls
under challenge VE2. Adequate design-time models can also
help to narrow down the state space to be verified at later
process stages, bringing a global view hard to infer from
lower level artifacts like code or binaries. Finally, runtime
verificationmethods, whether measurement/probing based or
model-based, have the potential of observing the application
within its actual execution environment, which may differ
from design-time assumptions or land-time simulations. This
addresses challengeVE3. The ability to promptly detect issue
while the application is running can reduce the exposition
time to a bug, but also enable automatic adaptation actions to
self-protect an application or its infrastructure.

VII. RUNTIME SERVICE MANAGEMENT
Context: Runtime service management particularly concerns
dynamic resource scheduling of microservices. Microser-
vices is one of the core DevOps practices. It is a design
principle to build applications with fine-grained services. One
of the benefits arising from this is the ability to manage
each service individually. However, regardless of this ben-
efit, managing microservices at runtime is not trivial. This
involves multiple research challenges, regarding monitoring,
configuration options, decision making, etc. In a nutshell, the
following challenges were highlighted by the researchers:

RM1 Monitoring microservices
RM2 Container placement strategy
RM3 Autoscaling microservices

Quality-Aware DevOps Research: RM1 can be considered
as an ensemble of complex sub-problems. Researchers often
focus on these sub-problems rather than the overall issue. For
example, Noor et al. [25] focused on the issue of collecting
data from heterogeneous virtualization architecture. They
have developed a framework M3 using the SIGAR library
and RESTful API that collects both the system and process
level metrics through separate agents. On the other hand,
Miglierina and Tamburri [26] have focused on reducing the
complexity of monitoring configuration management. They
proposed Omnia that addresses this issue throughMonitoring
Configuration as Code. This is realized by defining a set
of vocabulary and protocols, which are used to setup and
update the monitoring configurations for popular tools like
InfluxDB, Prometheus, Grafana, etc.

RM2 is often addressed based on the scale of the comput-
ing environment. For example, in [22], Boza et al. proposed
kube-scheduler to address RM2 in a typical multi-server
setup. kube-scheduler is a performance-aware orchestrator,
based on Kubernetes, that take container placement decisions
by considering the number of available CPUs in the host
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machine and how they effect the runtime and initialization
time performance. However, considering a geo-distributed
environment like edge or fog, the placement approach needs
to be adapted to incorporate information on heterogeneous
computing environment. Rossi et al. [27] focused on this
issue and proposed ge-kube. Along with the placement issue,
ge-kube focuses on the elasticity problem as well, thus
addressing RM3. They resolved the placement issue by for-
mulating it as an optimization problem and the elasticity issue
is resolved using model-based Reinforcement Learning (RL).

Recently, compared to RM1 and RM2, RM3 has gained
more attention from the researchers. Multiple autoscalers
have been proposed to address this issue, each differing on
how the problem is perceived. In [23], Kwan et al. propose an
autoscaler, HyScale, that focuses on the performance trade-
offs between horizontal and vertical scaling. HyScale’s prin-
ciple is to scale vertically if the resources are available. If not,
it performs horizontal scaling. Rossi et al. [28] also empha-
size the use of both horizontal and vertical scaling. However,
in contrast to [23], they adopted a model-based approach.
It is based on a novel Reinforcement Learning model that
relies on approximations (state transition probabilities and
the associated costs) from monitoring data. They realized the
so-called Elastic Docker Swarm (EDS) by integrating their
method with Docker Swarm.

Another context in RM3 is coordinated scaling to solve
the bottleneck shift problem. Bauer et al. [29] present Cha-
multeon that focuses on that issue. It is based on queue-
ing models which are used to forecast system performance
and taking a coordinated scaling actions. Chamulteon also
includes a workload forecasting component, which makes
it proactive. Barna et al. [12] propose an Autonomic Man-
agement System (AMS) based on Layered Queueing Net-
work (LQN) that inherently offers coordinated autoscaling.
However, Chamulteon and AMS both do not consider vertical
scaling. In [30], Gias et al. present an autoscaler, ATOM,
that supports both horizontal and vertical scaling along with
coordinated autoscaling. Similar to AMS, ATOM is based on
LQN models but it considers both a microservice CPU share
(vertical scaling) and the number of its replicas (horizontal
scaling) during performance forecasting.

In [24], Qiu et. al present FIRM that focuses on
fine grain resource management of microservices con-
sidering resources like cache, network bandwidth, CPU,
memory, etc. However, unlike most of the approaches,
it opted for a model-free method. Their approach relies
on a combination of support vector machine and Rein-
forcement Learning to identify and allocate resources to
bottleneck microservices. Rossi et al. highlight another
important issue - decentralizing the autoscaler components
and propose a hierarchical autoscaler me-Kube [31]. Such
decentralization makes the autoscaler more scalable when
deployed in a large cluster. Although me-Kube uses queue-
ing models, it does not support coordinated scaling as they
model each microservice separately rather than the overall
application.

TABLE 7. Comparing different autoscalers for microservices.

A comparison of these autoscalers, based on different
attributes (model-based, supporting vertical scaling, proac-
tive, coordinated scaling), are presented in Table 7.
Analysis of Open Challenges: Regardless of the progress

made, there are still multiple research challenges concerning
runtime service management. A major challenge concerning
RM1 is providing support for the model-based approaches.
Thus, amonitoring framework formicroservices should focus
on providing metrics related to queueing or machine learning
models, like queue length, arrival rates, transition proba-
bilities, etc., to improve the estimates of different model-
based runtime controllers. In addition, they can also lever-
age machine learning techniques to provide insight of a
system architecture such that a model can be automatically
generated.

For a runtime controller, focusing on RM2, a major chal-
lenge is to forecast the performance of container groups
rather than a single container. A container group can repre-
sent a chain of microservices. Considering a single container
alone will only provide a partial view of performance in that
particular cluster node. On the other hand, the controllers
focusing on RM3, particularly the model-based ones, should
emphasize faster decision making. This issue can be solved
by being proactive but that requires a huge volume of data for
accurate forecasting. Thus, researchers should investigate the
effectiveness of hybrid autoscalers that combines proactive,
simple reactive and model-based reactive approaches.

VIII. EMERGING TRENDS: BRIDGING AI/ML, BIG DATA,
AND DevOps
Artificial Intelligence (AI) and machine learning (ML) algo-
rithms are being increasingly used by industry for monitoring
and development to boost performance. These techniques
offer the ability to quickly learn the pattern of baseline perfor-
mance from a large space of performance metrics to diagnose
system issues. AI/ML can play a crucial role in accelerating
DevOps efficiency for today’s dynamic and distributed data-
intensive environment. The future of DevOps will be AI,
ML, data-intensive driven, which offer potential benefits to
enhance functionality and transform how system develop-
ers and administrators can design, test, deploy, and main-
tain systems. Monitoring the modern DevOps environment
involves a high level of complexity that AI/ML techniques
can alleviate. Dealing with Exabytes of data to investigate
the root causes analysis using conventional DevOps solutions
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may lead to unexpectedly long time to identify the reason of
failures within complex distributed systems.

AI/ML solutions for DevOps are utilized to play a signif-
icant role in automating and enhancing DevOps processes.
Sun et al. [59] propose a non-intrusive automated fault diag-
nosis for public cloud (such as Amazon Web Service) and
rolling upgrade DevOps operation using system logs and
machine learning algorithm. They use performance metrics
that are collected duringmonitoring time to train theML clas-
sifier for detecting issues and to expect behavior over every
time interval within the system. Their proposed approach
achieves on average 90% for recall and precision. The study
in [59] demonstrates that using ML for fault diagnoses within
DevOps operations (such as rolling upgrade) is promising.

Real challenges for building AIOps solutions are presented
by Dang et al. [60] based on practices within Microsoft.
The term AIOps comes from Gartner to address the chal-
lenges of DevOps using AI. Dang et al. [60] mention that
AIOps is about enabling software and system engineers to
operate services efficiently using ML and AI solutions. The
added values of AIOps includes: ensuring high service qual-
ity, offering high service intelligence, increasing engineering
productivity, and decreasing operational cost. Around 60% of
firms will adopt AI and ML analytics for DevOps by 2024 to
accelerate service delivery, improve performance, and secure
systems [60].

Nogueira et al. [61] review existent research that applies
ML to optimize the quality of process within DevOps
pipeline. ML techniques have the ability to provide insight
into specific IT processes to effectively assist stakehold-
ers in recognizing improvements that are needed within
the software development life cycle. Kumar et al. [62]
present Sankie, which is an AI Platform for Azure DevOps
which is a scalable and general service that is developed to
assist and impact all stages of the modern software devel-
opment life cycle. The proposed AI platform can provide
smart and actionable recommendations to system developers
and administrators, which include training, recommending,
explaining, and evaluating. The proposed platform is used at
Microsoft and is enabled for over 50 repositories internally.

There are some DevOps solutions for AI/ML. While
AL/ML offers valuable benefits to DevOps, there are some
existing DevOps solutions for AL/ML stakeholders that
help in developing continuous efficient AL/ML services.
Ciucu et al. [63] develop a software architecture solution
that can ensure the continuous development of computer
vision applications. They examine high-performance com-
puting and GPU resource management for model implemen-
tation within data centers to enhance the integration process
and performance optimization. The integration covers soft-
ware services and microservices to orchestrate the containers
within systems to high availability services.

Palacin et al. [13] present a DevOps industrial application
that focuses on software quality evaluation tools for tax fraud
detection in the context of improving the quality and relia-
bility of Big Data. During development iterations, the impact

TABLE 8. Taxonomy for AI/ML, Big Data, and DevOps.

of quality assessment is reported with a particular focus on
the accomplishment of performance requirements during the
continuous adding of new functionalities to systems. The
authors in [13] target applications that manage billions of
invoice records. The evaluation is conducted using simulation
(SimTool), which is developed by DICE European project
developers for quality analysis. The goal is to reduce the
number of DevOps iterations.

Regarding software architecture, Di Nitto et al. [48] inves-
tigate concerns and obstacles, which are needed to be tackled
in DevOps scenarios. The authors in [48] present Specifica-
tion Quality In DevOps (SQUID), which is a framework for
software architecture. The proposed framework is evaluated
in the Big Data domain. SQUID is evaluated on a real indus-
trial DevOps scenario, to find SQUID’s pros and limitations.

Chen et al. [64] contribute to the field of Big Data
and DevOps by presenting a methodology revolve around
architecture-centric Agile Big data Analytics (AABA), which
is evaluated on many Big Data analytics projects in secu-
rity, cloud-based mobile, healthcare, etc. The authors [64]
conclude that architecture agility has a significant impact
on the rapid continuous delivery within Big data intensive
applications. Finally, it is obvious that AI/ML will play a
crucial role in improving DevOps productivity for future
dynamic and distributed data-intensive systems. The future
of DevOps will be AI, ML, data-intensive driven that offer
potential advantages to improve functionality and transform
how system developers and administrators can design, test,
deploy, and maintain systems.
Analysis of Open Challenges: While AI/ML clearly pro-

vides valuable benefits to DevOps, there are some potential
challenges that may arise in the future. This is because they
are fundamentally different from conventional applications,
and it is crucial to take into account that they have a differ-
ent development lifecycle. Another well-known challenge of
AI/ML is the availability of sufficient real-world datasets to
build, train, and test the model before deploying it into the
real production environment. In addition, the characteristic of
the systemmay continuously change, which make the AI/ML
model fail to be generalized from datasets that are used
for training purposes. Therefore, AI/ML requires continuous
model evaluating, tuning, retraining, and retesting.

A team from Microsoft illustrates that the data used in
AI systems are large, specific for each context, and compli-
cated for explaining and becoming a burden. These factors
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TABLE 9. Summary of challenges and current contributions.

make it challenging to integrate AI model on a large scale
and distributed system. Therefore, system engineers need to
carefully collect and preprocess datasets before training and
tuning AI algorithms to gain high accuracy performance.

In addition, the collected data has to be efficiently stored
and updated continuously with a predefined schema. Another
challenge is that datasets’ schema may frequently change
in a real-time, which need to be resilient with continuous
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developments when new data is ingested from large scale
systems with changeable performance characteristics [66].

When developing a large scale DevOps project, it is chal-
lenging tomaintainmodularity. This is because the AImodels
are developed in a separated and isolated environment to
ensure the prevention of interference among systems com-
ponents. These separated AI subsystems are developed by
different engineering teams, where AI services communicate
with other systems in non-obvious ways using a controlled
API that has to be precisely controlled [67], [68]. This kind
of challenge may cause error to be propagated among system
and impact the overall performance of services. There is a
need for a more advanced researches and effective solutions
to continuous update of AI models and discover the unseen
misconceptions among system components while taring data
characteristics are changing.

IX. CONCLUSION
DevOps methods have reduced the cultural and methodolog-
ical gap between developers and operators, which lead to
the formation of many new organizational structures, such
as virtual teams working on both development and oper-
ation tasks. This motivates the establishment of new pro-
fessional figures, often referred to as DevOps engineers,
who center their activity on tooling and automation across
the whole application lifecycle. DevOps paradigm allocates
more attention towards continuous re-release, unified tooling
and organizational processes. Common DevOps advances
include, for example, continuous-integration/continuous-
delivery (CI/CD) pipelines and highly-automated orchestra-
tion solutions for the run-time environment.

This survey reviews recent research to support DevOps
with quality-aware software engineering tools. The paper
reviews the context in which research was carried out
and reveals some gaps in areas such as continuous-
integration/continuous-delivery (CI/CD), incremental verifi-
cation, and infrastructure-as-code (IaC). Table 9 provides
a summary of challenges and current contributions with
the domain of quality-aware DevOps. Initial activity on the
upcoming AI for DevOps and DevOps for AI software as also
been surveyed, outlining possible directions for further work.
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ABSTRACT Software applications can feature intrinsic variability in their execution time due to interference
from other applications or software contention from other users, which may lead to unexpectedly long run-
ning times and anomalous performance. There is thus a need for effective automated performance anomaly
detection methods that can be used within production environments to avoid any late detection of unexpected
degradations of service level. To address this challenge, we introduce TRACK-Plus a black-box training
methodology for performance anomaly detection. The method uses an artificial neural networks-driven
methodology and Bayesian Optimization to identify anomalous performance and are validated on Apache
Spark Streaming. TRACK-Plus has been extensively validated using a real Apache Spark Streaming system
and achieve a high F-score while simultaneously reducing training time by 80% compared to efficiently
detect anomalies.

INDEX TERMS Apache Spark, artificial intelligence, big data, machine learning, neural networks, perfor-
mance anomalies.

I. INTRODUCTION
In-memory processing technologies used for Big Data have
been widely adopted in industry, in particular, Apache Spark
has drawn particular attention because of its speed, generality,
and ease of use. Here, we consider Apache Spark-based
streaming workloads in which analytic operations are applied
by means of resilient distributed datasets (RDDs). Our goal
is to develop automated techniques to support performance
anomaly detection. Although our focus is on a particular
platform, elements of this approach may be exploited in the
context of other stream processing systems.
Artificial Intelligence and machine learning algorithms

are being increasingly used by researchers for performance
anomaly identification and diagnosis [1]–[4]. Moreover,
machine learning classification techniques are widely used
to classify inputs based on their features into predefined
classes to build a classifier that can predict the class of

The associate editor coordinating the review of this manuscript and

approving it for publication was Youqing Wang .

each item according to class labels. Popular classification
techniques for performance anomaly detection include neural
networks, support vector machines (SVMs) [5], and Bayesian
networks [6].
The attention for anomaly detection ismotivated by the fact

that, with the growing complexity of Big Data and cloud sys-
tems, service-level management requires significantly higher
levels of automation and attention [7]. An anomaly is defined
as an abnormal behavior during the execution of a program.
It could arise due to resource contention or service level
disruptions, among several other factors. While some studies
address the challenges of performance anomaly detection
for batch processing [4], [8], [9], there is a demand for
effective automated performance anomaly detection solutions
specifically built for industrial-strength streaming systems,
such as Apache Spark. This is because the platform does
not natively report in log files either root causes of abnormal
Spark tasks or information about when anomalous scenarios
happen within the cluster [10]. Therefore, a practical solution
is needed that can efficiently train a machine learning model
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to identify performance anomalies within streaming work-
loads in production environments to produce such reports
automatically.
This work is also motivated by the difficulty of carrying

out anomaly detection within Big Data streaming systems,
especially for time-varying workloads and critical applica-
tions. Apache Spark has more than 200 configurable param-
eters, and some parameters may depend on each other and
affect the overall platform performance [11]. This large and
complex configurable parameter space makes it difficult even
for expert administrators to detect and classify anomalous
performance within Spark Streaming clusters, as some per-
formance level may simply depend on the chosen configura-
tion. Therefore, the interaction between the performance of
in-memory processing technologies and their configuration
needs to be characterized in order to pinpoint and diagnose
the root causes of anomalies, a classification task for which
artificial intelligence methods are naturally well-suited.
This paper addresses the challenge of anomaly identifi-

cation by investigating agile hybrid learning techniques for
anomaly detection. We describe TRACK (neural neTwoRk
Anomaly deteCtion in sparK) and TRACK-Plus, two
methods to efficiently train a class of machine learning
models for performance anomaly detection using a fixed
number of experiments. TRACK revolves around using arti-
ficial neural networks with Bayesian Optimization (BO)
to find the optimal training dataset size and configura-
tion parameters to efficiently train the anomaly detection
model to achieve high accuracy in a short period of time.
TRACK-Plus is an automated fine-grained anomaly detection
solution that adds to track a second Bayesian Optimiza-
tion cycle for fine-tuning the hyperparameters of artificial
neural network configuration. The objective is to accel-
erate the search process for optimizing neural network
configurations and improving the performance of anomaly
classification.
A validation based on several datasets from a real Apache

Spark Streaming system is performed to demonstrate that
the proposed methodology can efficiently identify perfor-
mance anomalies, near-optimal configuration parameters,
and a near-optimal training dataset size while reducing the
number of experiments. Our results indicate that the reduc-
tion in experimental need can be up to 75% compared to
naïve anomaly detection training. To the best of our knowl-
edge, this paper is among the very first works that pro-
vide a comprehensive methodology for both performance
anomaly classification and the efficient optimization of arti-
ficial neural networks to detect anomalies within streaming
systems.
This paper extends a preliminary abstract in [12] by provid-

ing a comprehensive evaluation and classification model for
three anomalous Spark Streaming workloads. In addition, the
proposedmethodology has also been enhanced by developing
TRACK-Plus to simultaneously configure the artificial neural
network used for anomaly detection. Our core contributions
in this paper are as follows:

• Providing an updated discussion of existing anomaly
detection techniques and algorithms that should be fur-
ther researched by the community invested in this chal-
lenging problem space.

• Conducting a comparative analysis of four well-known
anomaly detection techniques and algorithms to help
system administrators in choosing the appropriate
anomaly detection mechanisms for their in-memory
Spark Streaming Big Data system.

• Addressing the challenge of anomaly identification and
classification by investigating new hybrid learning tech-
niques for anomaly detection in Spark Streaming Big
Data systems.

• Presenting a comprehensive methodology to automate
the search for the ideal dataset size with which to train
the detection model and automate the tuning of neural
networks hyperparameters to identify the most efficient
network architecture and configuration.

The rest of the paper is organized as follows: A moti-
vating example is comprehensively discussed in Section III,
then the prerequisite background information about Apache
Spark is presented in Sections IV. The proposed method-
ology of this work is presented in Section V, followed by
a systematic evaluation in Section VI, and the results are
discussed in Section VII. Related work is overviewed in
Sections II. Finally, the VIII section presents a discussion and
conclusions.

II. RELATED WORK
Performance anomaly detection techniques are important
to optimize service levels in Big Data applications and
large-scale distributed systems. Although the root cause of
bottleneck and anomalous performance is often CPU conges-
tion [13]–[15], Big data workloads are often also cache, mem-
ory, and network intensive, requiring advance techniques for
their identification and mitigation.
Fulp et al. [5] use a machine learning approach to detect

and predict the likelihood of service level disruptions using
an SVM based on information from Linux system log files.
They examine a dataset that contains over 24months of actual
file logs from a cluster with 1024 computing nodes. Their
proposed solution achieves an acceptable level of classifica-
tion performance of 73%. Fulp et al. [5], however, consider
only one type of system failure —hard disk failure— without
examining other common sources of systems failure, includ-
ing CPU, cache, etc. Although SVM models are effective at
making decisions fromwell-behaved feature vectors, they can
be more expensive for modeling variations in large datasets
and high-dimensional input features [16]–[18].
Qi et al. [8] propose a white-boxmodel that uses classifica-

tion and regression trees to analyze straggler root causes. The
authors use raw metrics from Apache Spark logs and hard-
ware sampling tools to train their model. The conventional
decision tree algorithm has a drawback, however, which is
the issue of overfitting. To avoid this issue, the authors use
a special type of tree called a CART tree (classification and
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regression tree) which offered somemitigation solutions. The
solution includes a pruning technique (called CCP) when the
tree growth is completed. The pruning process continues for
several iterations and the classification performance metrics
are checked for each node and its leaves [8]. Such a process
is time-consuming, especially with intensive data streaming
systems, so this study does not consider it. In addition, the
presented work in [8] does not cover streaming processing
workloads.
Lin et al. [19] propose an anomaly detection technique

for infrastructure as a service (IaaS) cloud computing envi-
ronment using local outlier factor (LoF) algorithm to detect
anomalies by analyzing the reduced performance feature
dataset. LOF is used to assign a score for each group of
performance metrics to assess the system behavior, where
the behavior is considered an anomalous if the score exceeds
the predefined threshold. The authors validate their technique
within a private cloud computing system that is built using
OpenStack and Xen open-source software. Their result shows
that the proposed technique outperforms principal compo-
nents analysis (PCA).
Huang et al. [20] use an adaptive local outlier factor

(LOF), a type of neighbor-based technique, for an anomaly
detection scheme in cloud systems. They argue that their
scheme could learn application behaviors in both training and
detecting time. In addition, the scheme is adaptive to changes
during the detection phase, which potentially significantly
reduces the effort to collect the training dataset before the
detection phase. The experimental results in [20] show that
their scheme could detect performance anomalies with a low
level of computational overhead. However, using the basic
LOF requires considerable effort to collect enough datasets
of normal behavior and requires intensive computations to
calculate the distance scores of each instance during the test
phase. According to [18], it is challenging to compute dis-
tancemeasurements for complex data, and such computations
cannot identify some performance anomalies. Therefore, it is
essential to keep in mind that the LOF needs to be adapted to
be used with Spark Streaming for anomaly detection.
Table 1 further shows a summary of anomaly detection

techniques used in the context of cloud and distributed
computing systems. Further advancement in hybrid solu-
tions holds great potential for anomaly identification sys-
tems [21], [22]. Some performance anomaly identification
studies and surveys have been conducted in the literature
for different purposes [14], [17], [23], [24]; however, there
is still a shortage of studies that propose efficient auto-
mated anomaly detection, especially for in-memory Big Data
stream processing technologies as we study in the next
sections.

III. MOTIVATING EXAMPLE
In this section, we briefly illustrate the problem area and
the benefits of Bayesian Optimization for anomaly detec-
tion. We have developed the customized benchmark Network
WordCountExp for stream processing systems to generate

our dataset for training purposes, more details are given in
SectionVI-B.Messages are sent to the data stream processing
system with a fixed rate per second and number of lines per
message. The inter-arrival time of messages is exponentially
distributed. The Spark system is monitored at all times and
we consider different levels of logging, ranging from mea-
surements of Spark Streaming jobs to full recording of tasks
execution logs, more details about Spark logging may be
found in [41].
A detailed comparison is shown in Figure 1(a). The figure

depicts the impact of Spark workload size, in terms of the
number of tasks within the workload, on the neural networks
model and comparison with other three well-known algo-
rithms, namely nearest neighbor, decision tree, and support
vector machine (SVM). The F-scoremetric is used to evaluate
the accuracy of the neural network. Six training workload
sizes with the same configurations are examined for sensi-
tivity analysis, namely: 1000, 10000, 20000, 30000, 40000,
and 50000 Spark Streaming tasks. From Figure 1(a), we see
that the neural networks model outperforms all the other
algorithms, achieving 98% F-score on average for the six
different workload sizes. In comparison, the other methods
feature a F-score on average 0.8% for decision tree, 0.75%
for nearest neighbor, 0.2% for SVM. The computational
complexity of neural networks depends on architecture of
network, e.g. number of input features, number of layers,
size of layer, etc. The complexity of the proposed neural
networks is O(m⇤N 3

2 ), where m is number of iterations [42].
In terms of execution time, the neural networks, decision tree,
nearest neighbor, and SVM took approximately 1 min, 2 min,
5 min, and 21 min, respectively. This example suggests that
neural networks tend to be more effective than other AI/ML
methods for anomaly detection within the Spark Streaming
system, which motivates our interest to examine and train
these models in streaming context.
We now examine an anomaly detection model that is

trained using another neural network model. This model is
trained with a single Spark Streaming workload configu-
ration (with a rate of 2 message/sec and a size of 1000
line/message) by testing it against two unseen streaming
workload configurations without injecting any anomalies.
The first workload has a rate of 11 message/sec and a size of
1000 line/message, and the model achieves a 98% F-score.
The second workload has a rate of 2 message/sec with a
size of 5000 line/message, and the neural network model
achieves a 98% F-score. These experiments demonstrate that
the performance of the neural networks model is robust and
unaffected by changes to streaming workload configurations
when there are no anomalies.
The same neural network is now trained on a single Spark

Streaming workload configuration (with a rate of 2 mes-
sage/sec and size of 1000 line/message) is typically used
for some selected possible parameters of streaming workload
configurations for Sizes 1, 10, 100, and 1000 line/message
and rates of 1, 2, 4, 8, 16, and 32 message/sec, with artificial
CPU anomalies injected. The F-score performance of the
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TABLE 1. Summary of the state-of-the-art anomaly detection techniques.
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FIGURE 1. Motivation examples for TRACK. Figure 1(b) depicts a
sensitivity analysis of four algorithms. Figure 1(a) shows the
performance variance of neural networks with adjusted workload
configuration parameters.

anomaly detection model dramatically decreases to a small
figure between 0.1% and 3%. It is clear that the neural
networks model fails to detect the CPU anomalies when
the streaming workload configuration is changed. Therefore,
the model requires additional training with more possible
configuration parameters to detect anomalies. This baseline
experiment demonstrates the critical need for a solution
that would find the optimal dataset size and configuration
parameters of a streaming workload for training the anomaly
detection model within an in-memory Big Data system for
generalization purposes.
Figure 1(b) shows some design factors and response vari-

ables (F-scores) for different streaming workload configura-
tions where the proposed neural network model is trained
using a single combination of configurations parameters
(e.g., rate r and size s) and tested against other workloads
stream configurations, which includes rates 1, 8, 16, and 32
message/sec and sizes 1, 10, 100, and 1000 line/message.
As can be seen fromFigure 1(b), it is not apparent which set of
workload configurations would efficiently train the machine
learning model to achieve the highest accuracy in a given
time. The goal of this paper is to address the problem of joint
optimization of neural network and experimental training.

IV. BACKGROUND INFORMATION
The following subsections briefly describe required back-
ground on Apache Spark Streaming, Bayesian Optimization,
and neural networks.

A. APACHE SPARK STREAMING
Apache Spark stream processing has gained traction for a
wide range of data processing applications in Big Data sys-
tems because of its ease of use, fault tolerance of stream
data processing, and suitability of integration with other batch
processing systems. Stream data can be ingested from many
streaming sources to be processed and used by other systems
[43]. Spark Streaming operates in a way that divides the entire
received data stream into batches to be processed by the main
Spark engine. The final data, i.e., the processed results, will
consequently be segmented in batches. The input data stream
can be fed from many different sources (Kafka, Flume, Twit-
ter, etc.), and the stream data can be processed by advanced
Spark libraries for machine learning and graph processing
algorithms. The final output data from Spark Streaming can
then be pushed out to databases or other systems [43].
Inside the Spark system, live stream data is fed to the Spark

Streaming system. Spark Streaming divides the streaming
workload into many batch workloads, which are then passed
as inputs into the Spark core engine for data processing.
In Spark Streaming, high-level basic abstractions are called
discretized streams (DStreams) and are continuous streams
of data. Each DStream is either an input data stream received
from other streaming sources or it is the result of a processed
data stream created from the input streams [43].
Internally, each DStream contains a sequence of Spark

Resilient Distributed Datasets (RDDs), which are the main
Spark Core data abstractions. RDDs cannot be changed and
can be executed in parallel. In addition, RDD offers oper-
ations, including data transformation and actions, that can
be used for Spark Streaming for data analysis. Each RDD
in the DStream represents data for a specific time interval.
Therefore, all operations are applied on DStream will be
applied to the RDDs within the same DStream [43].

B. NEURAL NETWORK MODEL
The term backpropagation in neural networks comes from
computing the error vector backward, starting from the last
layer in the network [44]. Before backpropagation is initiated,
other processes are done first. These processes include calcu-
lating the activation values of units and propagating them to
the output units. Then the cost function is applied to compare
the actual output error results yoP with the desired output
values do. There is usually the signal error �Po from each unit
in the output layer. The goal of backpropagation is to reduce
the amount of difference between the actual output and the
desired output as much as possible [45]. This can be achieved
by backward passes through every hidden layer in order to
carry the error signal to all units in the neural networks and
to recalculate the weights of connections in the hidden layers.
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FIGURE 2. TRACK-Plus methodology for anomaly detection.

Equation (1) provides the recursive procedures that compute
all error signals �

p
h for all units in the hidden layers [45]. The

F 0 is the derivative of squashing function for the kth unit in
the neural network and is evaluated at the network input (sPh )
for that unit, where P is the input features vector, No number
of units in output layer, h is a hidden unit, o is an output unit,
andwho is theweight of the connection between unit in hidden
and output layer.

�
p
h = F 0(sPh )

NoX

o=1

�powho (1)

The traditional neural networks contain three layers, which
input, hidden, and output layer. There are more complex
structures of neural networks that require additional execu-
tion time and computing resources such as convolutional
neural networks, a type of deep neural networks. These neural
networks are usually used for image processing. The neural
networks model used here has fewer input features (less
than 30 features) and output classes than what is used in
image processing classification. Therefore, in our case, neu-
ral networks with three layers achieve accurate performance
classifications.

C. BAYESIAN OPTIMIZATION
The proposed methodology revolves around using Bayesian
Optimization (BO) to find the optimal dataset size and con-
figuration parameters for training the neural network to gen-
eralize the model so it will detect anomalous behaviors in the
Spark Streaming system.
When utilizing BO, there are two main choices to make:

using prior over functions and type of acquisition function
[46]. It is essential to choose prior over functions to express
assumptions about the optimized function. There are different
types of acquisition functions, such as Expected Improvement
[46], Probability of Improvement [47], Lower Confidence
Bound [48], and Per Second and Plus. Each type of acqui-
sition function is further discussed in [49].

V. METHODOLOGY
In this section, we introduce TRACK and TRACK-Plus,
methodology driven by Bayesian Optimization (BO) and
neural networks to train and detect, classify performance
anomalies in Apache Spark Streaming systems. Figure 2
shows the TRACK processes of anomaly detection.

A. MACHINE LEARNING MODEL
The neural networks model is used to accurately detect
anomalous performance within in-memory Big Data systems
such as Apache Spark. The proposed neural networks model
in [41] with backpropagation and conjugate gradients is used
to train the neural networks to update values of weights and
biases in networks. The scaled conjugate is used because it
is often faster than other gradient algorithms [50], especially
for time-dependent applications such as real-time stream
processing.
The neural networks model uses a Sigmoid transfer func-

tion equation(2) as an activation function, where x includes
values of input values to neuron, wights, and bias. Softmax
transfer function is used in the output layer to handle classifi-
cation problemswithmultiple classes of anomalies. For a cost
function, cross-entropy is used to evaluate the performance
of neural networks model. Cross-entropy is used because it
has significant practical advantages over squared-error cost
functions [51].

� (x) = 1
1 + e�x

(2)

The proposed neural networks contain three types of lay-
ers. The first type of layer is the input layer, which includes a
number of neurons equal to the number of input features. The
second type of layer is the hidden layer, which has a number
of layers (1, 2, or 3) and number of neurons determined using
a trial and error method, choosing a number between the
sizes of input features ni and output classes no [52]. A hidden
layer size between ni and no satisfies our goal in achieving
accurate results. In our case, the hidden layer size of 5,
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10, 15, and 20 achieve 98%, 99%, 96%, and 96% F-scores,
respectively. The Hidden layer with ten neurons achieves the
highest F-score with the Spark Streaming workload. The out-
put layer contains a number of neurons equal to the number
of target classes (types of anomalies), where each neuron
generates boolean values: either 0 for normal behavior or 1 for
anomalous behavior.
TRACK and TRACK-Plus use Bayesian Optimization

to find the optimal training dataset size and configuration
parameters to efficiently train the anomaly detection model
to achieve high accuracy in a short period of time. Due to
its simplicity and tractability, we chose the Gaussian process
prior for our proposed model. The acquisition function is
used to evaluate a point x based on the posterior distribution
function to guide exploration and evaluate the next point [46].
The Expected Improvement acquisition function in [53]

is used to evaluate the expected performance improvement
in the neural networks detection model f (x) and ignore any
values that increase the error rate of themodel. In other words,
xbest is the location of the smallest posterior mean (optimal
workload configuration) and µQ(xbest ) is the smallest value
of the posterior mean. The expected improvement can be
described as follows:

EI (x) = EQ[max(0, µQ(xbest )� f (x))] (3)

EQ indicates the expectation assumed under the posterior
distribution given the evaluations of f at x1, x2, . . . , xn. The
time to assess the objective function may vary depending on
the region [53].
To improve the performance of the proposed methodology,

our TRACK method uses a customized acquisition func-
tion that utilizes time weighting and the Expected Improve-
ment for the acquisition function. The Expected Improvement
acquisition function assesses the current improvement in the
objective function and avoids all outputs that may undermine
the performance of objective function output. In addition, the
acquisition function operates such that during the evaluation
of the objective function by the BO model, another Bayesian
model (time-weighting) evaluates the time of the objective
function [53]. The final acquisition function is as follows:

EIPS(x) = EI (x)
µt (x)

(4)

EIPS(x) = EQ[max(0, µQ(xbest )� f (x))]
µt (x)

(5)

where µt (x) describes the posterior mean of the Gaussian
process model timing [53]. A coupled constraint is evaluated
only by evaluating the objective function. In our case, the
objective function is the performance evaluation of the neu-
ral networks model by calculating the F-score. The coupled
constraint is that the F-score of the model is not less than
a predetermined value (e.g., 90%). The model has several
points that are equal to the number of all possible combination
parameters of Spark Streaming workload configurations.

Algorithm 1: Training and Testing Methodology for
TRACK
Input: Predefined anomaly detection performance F ,

Workload configuration space X , and system
metrics dataset D

Output: Optimal trained neural network modelM,
which is able to identify anomalies within
Spark Streaming with the high predefined
F-score in the least amount of time.

Configuring streaming workload benchmark
Workload generation with configuration space X
Streaming workload from networkW ! Spark system
System profiling to collect performance dataset
Data cleansing and preprocessing! D
DSTrain = 75% of D total training dataset
DSTest = 25% of D total testing dataset
DSTrainc is empty
F = 0 current f-score
Default_Net_Config: 3 layers, 10 units in hidden layer,
and cross-entropy
i = zero
while ( ( F 6 F) AND (i 6 size(X )) ) do

Xi = EIPS(X ) acquisition function
DSTrainc = DSTrainc + DSTrainXi  
M = TrainNN(DSTrainc, NetConfig ) train
model on the new dataset configuration
F = Max( Fscore(M(DSTest)), F )
i = i+ 1

B. MODEL TRAINING, VALIDATION AND TESTING
The Spark Streaming system is randomly injected with
anomalies to test the proposed anomaly detection model.
For the training process (covers local training, local valida-
tion, and local testing), the dataset for every combination of
workload configuration parameters (e.g., size s and rate r)
is divided into two sets: 75% for model training (DSTrain)
and 25% for a global testing dataset (DSTest), as shown in
Figure 3. The local DSTrain set for the model is divided into
three subsets: local training (70%), local validation (15%),
and local testing (15%). The training subset is used to train
the model, whereas the validation subset is used to validate
themodel and to avoid overfitting and underfitting issues. The
local testing subset is used to test the model against a single
combination of configuration parameters for Spark Stream-
ing workloads. The DSTest set is used to globally test the

FIGURE 3. Dividing dataset into DSTrain and DSTest sets for training and
testing, respectively.
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model, which includes 25% from each possible combination
of Spark Streaming workload configuration parameters. This
subset is used to independently assess the trained model and
to generalize the model.
The streaming workload configurations consist of all the

possible combinations of configuration parameters of Raten
and Sizem, for a total of n ⇥ m combinations (n ⇥ m
DSTrain). The training part of the dataset (DSTrain) is divided
into 10 equal subsets to find the ideal size of the training
dataset. For example, the dataset DSTrain workload config-
uration with rate ri and size sj is divided into 10 subsets
according to the following equation:

DSTrainri,sj = DSTrainrisj,1 + . . . + DSTrainrisj,10 (6)

The total number of all the possible data subsets is
n⇥ m⇥ 10, so it would be challenging and time-consuming
to find the optimal combination of configuration param-
eters and dataset sizes to train the model. More detailed
information about TRACK and TRACK-Plus is presented
in Algorithm 1 and Algorithm 2. To assess the proposed
model, we use a well-known standard classification perfor-
mance metric, which is F-score (F), defined in the Appendix
alongside the standard metrics of Precision (P) and Recall
(R). Further information is provided in the Appendix about
Precision, Recall, and F-score.

C. FEATURE SELECTION
The Spark system is monitored at all times and we consider
different levels of logging, ranging from Spark jobs measure-
ments to the complete availability of Spark task execution
logs, which are used in [41]. These logs provide a reflection
of the full details of a Spark system performance. The per-
formance monitoring happens in the background without
generating any noticeable overhead in the Spark system.
In this work, we extend the method proposed in [41],

called DSM4, which has been built upon the list of Spark
performance metrics presented in [41]. DSM4 examines the
internal Apache Spark architecture and the Directed Acyclic
Graph (DAG) of the Spark application by relying on informa-
tion from Apache Spark systems. This information includes
Spark executors, shuffle read, shuffle write, memory spill,
java garbage collection, tasks, stages, jobs, applications, iden-
tifications, and execution timestamps for Spark resilient dis-
tributed datasets (RDDs). The collected Spark performance
metrics are in time series and manually labeled as either
normal or anomalous before they are passed as inputs to the
proposed model. The proposed methodology assumes that
the collected data is pre-processed to ensure the exclusion of
any mislabeled training instances and to validate the datasets
before passing them to the BO and neural networks model to
improve their quality. For example, we avoid duplicated task
measurements and exclude samples if features are missing as
a result of the monitoring service level anomalies.

VI. EVALUATION
This section evaluates the proposed methodology using
a random search (RS) algorithm as a baseline for the

Algorithm 2: Training and Testing Methodology for
TRACK-Plus
Input: Predefined anomaly detection performance F ,

Workload configuration space X , and system
metrics dataset D

Output: Optimal hypertuned trained neural network
modelM, which is able to generate an agile
model to classify anomalies within Spark
Streaming with the high predefined F-score in
the least amount of time.

Configuring streaming workload benchmark
Workload generation with configuration space X
Neural Networks with configuration space NN
Streaming workload from networkW ! Spark system
System profiling to collect performance dataset
Data cleansing and preprocessing! D
DSTrain = 75% of D total training dataset
DSTest = 25% of D total testing dataset
DSTrainc is empty and F = 0 current f-score
Default_Network_Configurations: L layers, U
units in hidden layer, and P Performance function
i = zero
while ( ( F 6 F) AND (i 6 size(X )) ) do

Xi = EIPS(X ) acquisition function finds next
workload configurations
DSTrainc = DSTrainc + DSTrainXi  
j = zero and i = i+ 1
while ( ( F 6 F) AND (j 6 size(NN )) ) do

NetConfigj = EIPS(NN ) acquisition
function finds next neural networks
configuration
M = TrainNN(DSTrainc, NetConfigj ) train
neural network model on the new dataset
configuration
F = Max( Fscore(M(DSTest)), F )
j = j+ 1

M = TrainNN(DSTrainc, NetConfig ) train
neural network model on the new dataset and
hyperparameters configuration
F = Max( Fscore(M(DSTest)), F )

same datasets, which are generated from the Apache Spark
Streaming system.

A. EXPERIMENTAL TESTBED
The experiments are conducted on a Spark Streaming system
with 16 core Intel(R) Xeon(R) CPU 2.30 GHz, 32 Gb RAM,
Ubuntu 16.04.3, and 2 TB of storage. The Apache Spark
is deployed with the Spark Standalone Cluster Manager,
16 executors, and a first-in-first-out scheduler option for
deployment. Performance monitoring and data collection are
done in the background without causing any noticeable over-
head on the system. Spark History is used to actively record
the performance metrics of internal Spark architecture, such
as Spark DAG jobs, stages, and tasks.
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FIGURE 4. CPU utilization for Spark Streaming workload with normal and anomalous performance.

B. WORKLOAD GENERATION
To evaluate the accuracy of the proposed anomaly detection
methodology, we developed the customized WordCountExp
benchmark for Big Data stream processing systems to gener-
ate datasets for training and testing purposes. The workloads
are exponentially generated (with exponential distribution)
as messages sent through the system network to the data
stream processing system with some predefined character-
istics such as the rate of sending messages per second and
the size of messages. WordCountExp is used extensively
with many different configurations to evaluate and compare
the results of the proposed methodology within in-memory
Spark Streaming systems. More than 960 experiments are
conducted and 230 Gb of data are collected from the Spark
Streaming system, which we use to evaluate the proposed
work. The dataset covers four types of injected anomalies
within Spark Streaming workloads: normal, CPU anomaly,
cache thrashing, and context switching. CPU utilization of
the Spark system is shown with different types of anomalous
performance in Figure 4.
WordCount is a conventional CPU-intensive benchmark

and is widely accepted as a standard micro-benchmark for
Big Data platforms [37], [54]–[57]. The WordCount bench-
mark splits each line of text into multiple words, then aggre-
gates the total number of times each word appears throughout
and updates an in-memory map with the words as the key
and the frequency of the words as the value. Figure 5 shows
a wordcount example of Spark Streaming that receives a
streamingworkload from a local network to count the number

FIGURE 5. Spark Streaming with WordCount example of DStream.

of words per message. The Main DStream data is divided
into many RDDs for a certain time interval, then some Spark
operations, such as wide and narrow operations, are done to
count the number of words in each Spark RDD. More details
about Spark operations are discussed in [41].

C. ANOMALY INJECTION
To inject different types of anomalies, the open-source tool
(stress-ng) is used to evaluate the proposed methodology
with the Spark Streaming system [41]. A list of performance
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TABLE 2. Types of anomalies.

anomalies is used to generate CPU stress, cache thrashing
stress, and context switching stress as shown in Table 2.
The CPU stress spawns n workers to run the sqrt() function;
the cache thrashing stress causes n processes to perform
random widespread memory read-and-writes to thrash the
CPU cache; and the context switching stress has n processes
that forces context switching. The injected anomaly and the
used benchmark are configured depending on the objective of
the experiment, which will be discussed in Section VII.

VII. RESULTS
The proposed methodology is evaluated on an isolated Spark
Streaming system, discussed in Section VI-A.We avoid using
a virtual Spark System, which ensures that all performance
metrics are accurately measured.

A. FINDING THE IDEAL WORKLOAD CONFIGURATION
FOR MODEL TRAINING
The previous discussion regarding the motivating example
(Section III) describes the need to find the ideal single work-
load configurations set (e.g., rate ri and size sj) that could
be used to train the proposed anomaly detection model to
pinpoint the abnormal behavior with the highest possible
F-score. This facilitates the use of a single workload con-
figuration to be generalized and used to detect anomalies
with the other workload configurations. The Spark Streaming
workload has all possible combinations of rates 1, 8, 16, and
32 message/sec and sizes 1, 10, 100, and 1000 line/message,
for a total of 16 combinations.
A Bayesian Optimization (BO) and neural networks model

(described in Section IV-C and in IV-B) are used to address
the need for determining the ideal single workload configura-
tion (rate ri and size sj) with the minimum number of running
experiments n. To ensure accurate results, the experiments
are conducted 50 times, then the average of n is calculated.
The results show that the ideal F-score is reached with the
minimum number of running experiments (n=8), which is
50% less than the total number of possible configurations
(n=16).
Figure 6 shows the performance results of the proposed

model when it is individually trained on each workload con-
figuration (rate ri and size sj) and tested against all possible
combinations of streaming workload configurations using
BO and neural networks. The estimated objective value is
the deviation from the ideal F-score (error = 1- F-score).

FIGURE 6. Training process results for each workload configuration,
tested on all possible combinations of streaming workload configurations
using Bayesian Optimization and neural networks.

Figure 6 illustrates that with the given dataset, the workload
configuration (r = 32, s = 1) can be used to train the
anomaly detection model to detect abnormal behavior with
all other streaming workload configurations with the highest
F-scores equaling 72% after running only 8 of 16 experi-
ments. The next section explores a new approach to optimize
the model and obtain a higher F-score using less time in
training processes.

B. BAYESIAN OPTIMIZATION MODEL TO TRAIN ANOMALY
DETECTION TECHNIQUE
A BO model (discussed in Section IV-C) is used to find the
optimal size of the training dataset and the streaming work-
load configurations set to achieve the highest accuracy with
the least time spent training the proposed anomaly detection
model. The model training and datasets of anomaly detec-
tion are comprehensively discussed in Section V-B and V-C.
Figure 7 depicts a comparison of BO and RS to reach
a predefined F-score with the fewest training steps from
the total 160 steps. The conducted experiments have work-
loads containing both normal and anomalous CPU behaviors
with all possible combinations of workload configurations.
Figure 7 shows the average of the 50 experiments where
the neural networks model is trained using BO to achieve
the predefined F-score. With BO, the trained model reaches
a 95% F-score in 21 steps, whereas an RS uses 28 steps
(enhanced by 25%). This proves that the proposed model can
reduce the time and computation process by 25%. Table 3
shows the performance of five different types of acquisition
functions that are used with BOs.
Two other types of anomalies may disrupt the performance

of the Big Data stream processing system. These two types

TABLE 3. Performance of different types of acquisition functions to reach
95% F-score. The right column shows the average number of steps
for 50 experiments to find the ideal dataset size to train the model.
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FIGURE 7. Comparison of Bayesian Optimization (BO) and RS for
reaching a predefined F-score with the fewest training steps. Workloads
have all possible combinations of parameters and CPU anomalies.

FIGURE 8. Comparison of BO and RS to reach predefined F-scores (80%
for cache stress and 90% for context switching stress) with the minimum
number of steps. Workloads have all possible combinations of
parameters.

are cache thrashing and context switching. The proposed
model can detect both cache thrashing and context switching
anomalies with F-scores of 80% and 95%, respectively.
Figure 8 shows that the proposed model outperforms RS by
more than 25% and can reduce the amount of computations
from 160 experiments to 14, as can be seen in Figure 8 with
cache thrashing anomalies.

C. SENSITIVITY ANALYSES OF TRAINING DATASET SIZE
In this subsection, the impact of the training dataset size is
examined to prove the robustness of the proposed model.
The amount of anomalous Spark tasks decrease by 50% to
75% of the anomalous workload in Section VII-B. Table 4
depicts the impact of the Spark workload training set size on
the proposed stream anomaly detection model. The BO with
neural networks model achieves the highest performance in
detecting all three types of performance anomalies in Spark

TABLE 4. Sensitivity analysis demonstrating the impact of reducing the
overall anomalous training dataset size by 50% to 75%. BO is compared
against RS to assess when each would reach ideal performance
(95% F-score) with the fewest possible steps and the least training data.
Workloads contains all possible combinations of rates 1, 8, 16, and
32 message/sec and sizes 1, 10, 100, and 1000 line/message.

TABLE 5. Testing the proposed model against new unseen workload
configurations with three types of performance anomalies.

Streaming systems. This proves that the proposed model is
robust against changes in the size of the overall input training
datasets.

D. NEW UNSEEN WORKLOAD CONFIGURATIONS
This section presents the training of the proposed model
with predefined workload configurations (rates 1, 8, 16, and
32 message/sec and sizes 1, 10, 100, and 1000 line/message)
and generalizes the model to perform just as accurately with
new unseen workload configurations (e.g., ri = 20 and
sj = 150). In this case, the workload is more realistic and
reflects the workload characteristics of the real stream pro-
cessing system in the production environment.
For the training phase, the same BO and neural net-

work configurations in Section VII-B are used to train the
model on predefined workload configurations (rates 1, 8,
16, and 32 message/sec and sizes 1, 10, 100, and 1000
line/message) to reach a 95% F-score for detecting CPU
performance anomalies. For the testing phase, the final model
of the training phase is used to detect anomalous behav-
ior but with new unseen workload configurations. The rate
could be between 1 to 32 and the size could have ranged
from 1 to 1000. The total number of possible configuration
combinations is 32k.
Table 5 shows the performance of the proposed model

when it is tested against three types of anomalies
(i.e., CPU, cache thrashing, and context switching). As seen
in Table 5, the proposed anomaly detection model can
be trained on 16 workload configurations to be general-
ized to detect anomalies against 32k different workload
configurations.

E. DETECTING AND CLASSIFYING PERFORMANCE
ANOMALIES
In this section, we show that TRACK will not only detect
anomalous performance but also classify workloads into four
types: normal, CPU anomaly, cache anomaly, and context
switching anomaly. The anomaly detection using TRACK
achieves 74% for detecting and classifying Spark Streaming
performance, as seen in Table 6. The next section introduces
a new optimized version of TRACK called TRACK-Plus to
find the ideal neural network configuration to accelerate the
search process and improve anomaly classification.

F. TRACK-PLUS FOR OPTIMIZING THE CHOICE OF
NEURAL NETWORKS ARCHITECTURE
The performance of TRACK-Plus is evaluated using the
two BO models discussed in Section IV-C. The first BO1
is used to find the ideal dataset training size as described
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TABLE 6. Performance of TRACK for detecting and classifying anomalies
based on their root causes.

TABLE 7. All possible optimized configurations for TRACK-Plus including
two BO models.

in Section V-B. BO1 optimizes the choices for three Spark
Streaming workload configurations, which are the rate of
messages per second (1, 8, 16, and 32), message size (1, 10,
100, and 1000), and the size of the training dataset (1 to 10).
The total number of possible configurations is 4 ⇥ 4 ⇥ 10,
which comes close to 160 different possible combinations.
The objective of the second BO2 is to automate the search

to achieve the most efficient architecture of neural networks
(with a predefined list of configurations) by optimizing the
tuning process of the hyperparameters of the neural net-
works. In practice, different configurations of hyperparam-
eters can significantly impact the performance of the neural
networks. In this study, we focus more on hyperparameters
related to neural network training and structure, including
the number of hidden layers, number of neurons in each
layer, and performance functions. Five well-known perfor-
mance functions have been examined in TRACK-Plus, which
are mean absolute error, mean squared error, sum abso-
lute error, sum squared error, and cross-entropy. The total
number of possible configuration combinations for BO2 is
5⇥ 3⇥ 4 = 60 different possible configurations. Details of
the configuration parameters of the two BO models can be
found in Table 7.
Even with the limited number of configurations to train the

anomaly detection technique, TRACK-Plus offers an efficient
solution in finding the ideal training dataset size and the
most efficient neural network configurations to accurately
detect the anomalous performance within the Spark Stream-
ing system. For example, Table 7, with the list of the total
number of possible configuration combinations, shows that
there are 160 ⇥ 60 = 9600 possible configurations. It is
clear that finding the ideal configurations with which to train
the anomaly detection model is more time-consuming and

TABLE 8. The ideal configuration for the neural networks in terms of
performance function, number of layers, and number of neurons in each
layer.

resource intensive when using either the traditional search or
the manual configurations.
Table 8 shows the average results of 50 experiments where

the TRACK-Plus optimizes the training process of anomaly
detection to achieve the predefined F-score, which is 70%
(the highest possible F-score for classifying the anomalies).
With the given conditions of Spark Streaming workloads,
we find that the ideal neural networks configurations are
sae performance function, five neurons/layer, and one hidden
layer.

VIII. CONCLUSION
To develop effective fault-tolerant system performance, it is
vital to detect anomalous performance and service level dis-
ruption events within data intensive systems. The growing
complexity of Big Data systems makes performance anomaly
detection more challenging, especially for critical streaming
workload applications in distributed systems environments.
Therefore, the performance of in-memory processing tech-
nology like Apache Spark Streaming must be thoroughly
investigated to pinpoint the causes of performance anomalies.
Collecting all possible performance measurements from

Big Data systems to train the anomaly detection system is
computationally expensive, especially for critical systems
such as online banking, stock trading, and air traffic control
systems. Even with the WordCount Spark Streaming appli-
cation (only has two parameters r and s), it is considered a
time-consuming and costly intensive computing to find the
ideal dataset size to efficiently train the anomaly detection
model so it will comprehensively cover all seen and unseen
anomalies.
This paper contributes by addressing the challenge of

anomalous identification by proposing a new hybrid learning
solutions, TRACK and TRACK-Plus, for anomaly detection
within in-memory Big Data systems. The anomaly detection
and tuning method are developed using Bayesian Optimiza-
tion and neural networks to train the model with a limited
budget and limited computing resources. As can be seen from
the experimental results, the proposed model efficiently finds
the optimal training dataset size and configuration parameters
to accurately identify different types of performance anoma-
lies in Big Data systems. The proposed model achieves the

146624 VOLUME 8, 2020



A. Alnafessah, G. Casale: TRACK-Plus: Optimizing Artificial Neural Networks

highest accuracy (95% F-score) in significantly less time
(80% less than normal). A validation based on a real dataset
for the Apache Spark Streaming system has been provided
to demonstrate that the proposed methodology identifies
the performance anomalies, the ideal configuration param-
eters, and the training dataset size with up to 75% fewer
experiments. Finally, the proposed solutions not only identi-
fies anomalous performance with a high F-score but also clas-
sifies anomalies, thereby saving considerable time in training
the model. In addition, the proposed model can be easily
generalized to cover unforeseen workload configurations.
In terms of future work, it is crucial to deeply investigate

an anomaly detection and prediction for systems that contain
both batch and stream processing workloads at the same
time. Such systems will have more increasing complexity
and performance fluctuation, which may need more effective
anomaly detection solutions. Exploring deep Learning algo-
rithmsmay hold opportunities to accurately detect and predict
the performance anomaly in distributed complex systems.

APPENDIXES
Recall (also called Sensitivity) and Precision performance
measures are used in this paper to evaluate Track and
Track-Plus for anomaly detection classifiers. These perfor-
mance metrics are commonly used and standard metrics for
quantifying the accuracy of the classifiers [58]. The following
are the anomaly classification classes and their notations:

• True positive (tp): a correct detection of anomalies
• False positive (fp): a detection of anomalies when it does
not exist

• False negative (fn): a missed detection of anomalies
when it exists.

R = tp
tp+ fn

(7)

R is the Recall and it answers this question: of all the sam-
ples which are anomalies, how many of those are correctly
detected?. Recall assesses the effectiveness of a classifier in
identifying positive samples.Recallwill become higher when
the anomaly detection classifier can detect all anomalies.

P = tp
tp+ fp

(8)

P is Precision and it answers this question: how many
of those samples which are labeled as anomaly are actually
anomaly?. Precision quantifies class agreement on howmany
samples classified as positive (anomaly) are, indeed, positive.
It assesses the reliability of the detection method when it
detects anomalies.

F = 2
PR

P+ R
(9)

F-score reflects the relations between data’s anomalous
labels and those given by a classifier. F-score captures the
trade-off between Recall and Precision. It shows a summary
score computed for harmonic mean of Recall and Precision.

Throughout this paper, we use the F-score as the main per-
formance metric. The formulas of Recall, Precision, and F-
score reflect the quality of classifier in detecting the positive
samples (anomalies in our case), without paying significance
attention on the correct classification [59].
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Abstract
Late detection and manual resolutions of performance anomalies in Cloud Computing and Big Data systems may lead to

performance violations and financial penalties. Motivated by this issue, we propose an artificial neural network based
methodology for anomaly detection tailored to the Apache Spark in-memory processing platform. Apache Spark is widely

adopted by industry because of its speed and generality, however there is still a shortage of comprehensive performance

anomaly detection methods applicable to this platform. We propose an artificial neural networks driven methodology to
quickly sift through Spark logs data and operating system monitoring metrics to accurately detect and classify anomalous

behaviors based on the Spark resilient distributed dataset characteristics. The proposed method is evaluated against three

popular machine learning algorithms, decision trees, nearest neighbor, and support vector machine, as well as against four
variants that consider different monitoring datasets. The results prove that our proposed method outperforms other

methods, typically achieving 98–99% F-scores, and offering much greater accuracy than alternative techniques to detect

both the period in which anomalies occurred and their type.

Keywords Performance anomalies ! Apache Spark ! Neural network ! Big data ! Machine learning ! Artificial intelligence !
Resilient distributed dataset (RDD)

1 Introduction

Cloud computing and Big Data technologies have become
one of the most impactful forms of technology innovation

[16]. Cloud Computing provides scalability [10], low start-

up costs [6], and a virtually limitless IT infrastructure that
can be provisioned in a short period of time [5]. The

combined benefits of available computing resources and

advancements in data storage encourage a significant
increase in Big Data creation over the Internet, such as data

from the Internet of Things (IoT), e-commerce, social

networks, and multimedia, increasing the popularity of in-
memory data processing technologies, such as Apache

Spark [4].

Due to the widespread growth of data processing ser-
vices, it is not uncommon for a data processing system to

have multiple tenants sharing the same computing resour-
ces, leading to performance anomalies due to resource

contention, failures, workload unpredictability, software

bugs, and several other root causes. For instance, even
though application workloads can feature intrinsic vari-

ability in execution time due to variability in the dataset

sizes, uncertainty scheduling decisions of the platform,
interference from other applications, and software con-

tention from the other users can lead to unexpectedly long

running times that are perceived by end-users as being
anomalous.

Research on automated anomaly detection methods is

important in practice since late detection and slow manual
resolutions of anomalies in a production environment may

cause prolonged service-level agreement violations, pos-

sibly incurring significant financial penalties [12, 40]. This
leads to a demand for performance anomaly detection in

cloud computing and Big Data systems that are both

dynamic and proactive in nature [21]. The need to adapt
these methods to production environment with very
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different characteristics means that black-box machine

learning techniques are ideally positioned to automatically
identify performance anomalies. These techniques offer the

ability to quickly learn the baseline performance from a

large space of monitoring metrics to identify normal and
anomalous patterns [36].

In this paper, we develop a neural network based

methodology for anomaly detection tailored to the char-
acteristics of Apache Spark. In particular, we explore the

consequences of using an increasing number and variety of
monitoring metrics for anomaly detection, showing the

consequent trade-offs on precision and recall of the clas-

sifiers. We also compared methods that are agnostic of the
workflow of Spark jobs with a novel method that leverages

the specific characteristics of Spark’s fundamental data

structure, the resilient distributed dataset (RDD) to improve
anomaly detection accuracy.

Our experiments demonstrate that neural networks are

both effective and efficient in detecting anomalies in the
presence of a heterogeneous workloads and anomalies, the

latter including CPU contention, memory contention, cache

thrashing and context switching anomalies. We further
explore the sensitivity of the proposed method against

other machine learning classifiers and with multiple vari-

ations on the duration and temporal occurrence of the
anomalies.

This paper extends an earlier work [2] by providing an

evaluation against three popular machine learning algo-
rithms, decision trees, nearest neighbor, and support vector

machine (SVM), as well as against four variants that con-

sider different monitoring metrics in the training dataset. In
addition, the proposed methodology is examined with

different types of overlapped anomalies. The rest of the

paper is organized as follows: prior art and prerequisite
background on in-memory technologies are given in Sect.

2, followed by a motivating example in Sect. 3. The pro-

posed methodology of this work is presented in Sect. 4,
followed by systematic evaluation in Sect. 5. Finally,

Sect. 6 gives conclusions and outlines future work.

2 Background

2.1 Related work

We point to [9] and [19] for general discussions on
machine learning, statistical analysis, and anomaly detec-

tion. Table 1 further shows a summary of detection tech-

niques used in the context of cloud computing systems.
Some studies have used statistical methods to detect

anomalous behavior, such as Gaussian-based detection

[31, 43], regression analysis [11, 23], and correlation
analysis [1, 34, 38]. Many statistical techniques depend on

the assumption that the data are generated from a particular

distribution and can be brittle when assumptions about the
distribution of the data do not hold. For example, distri-

bution assumptions often do not hold true in cases that

involve highly dimensional real-time datasets [9].
Gow et al. [17] propose a method to characterize system

performance signatures. The authors explored the service

measurement paradigm by utilizing a black box M/M/1
queueing model and regression curve fitting the service

time-adapted cumulative distributed function. They exam-
ined how anomaly performance can be detected by tracing

any changes in the regression parameters. Gow et al. [17]

use probabilistic distribution of performance deviation
between current and old production conditions. The authors

argued that this method could be utilized to identify slow

events of an application. The method that has been used by
authors [17] is worth examining in our research, specifi-

cally the anomaly detection part because applying such a

method is not specific to any certain n-tier architecture,
which makes its methods a platform agnostic. We focus

here on methods that address these limitations based on

machine learning techniques such as classification, neigh-
bor-based methods, and clustering, either with supervised

or unsupervised learning approaches [21].

Gu and Wang propose a supervised Bayesian classifi-
cation technique in [18] to detect anomaly indications that

relate to performance anomaly root localization. They

apply Bayesian classification methods to detect an anomaly
and its root, alongside Markov models to detect the change

in the patterns of different measurement metrics. Com-

bining Markov modeling with Bayesian classification
methods allows the prediction of anomalous behaviors that

will likely occur in the future.

The local outlier factor (LOF) algorithm is a type of
neighbor-based technique for unsupervised anomaly

detection, as shown for cloud computing systems in [20].

The main idea is to identify anomalies by comparing the
local density deviation of a data point (instance) with its

neighbors. Each instance with a lower density than its

neighbors is considered an anomaly.
The work in [14] considers the cloud computing system

and applies principal component analysis (PCA) to reduce

metric dimensions and maintain the data variance. Semi-
supervised decision tree classifiers are used to reduce

metric dimensionality and to identify anomalies.

Few works exist for anomaly detection in Spark.
Ousterhout et al. [33] develop a method to quantify end-to-

end performance bottlenecks in large-scale distributed

computing systems to analyze Apache Spark performance.
The authors explore the importance of disk I/O, network

I/O as causes of bottlenecks. They apply their method to

examine the system performance of two industry SQL
benchmarks and one production workload. The approach
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involves analysis of blocking time, using white-box log-

ging to measure time execution for each task in order to
pinpoint bottleneck root-causes.

Support vector machines [41] algorithm is used for

anomaly detection in the form of one class SVM. This
algorithm uses one class to learn the regions, which contain

boundary of training data instance [9]. Kernels can be used

to learn complex areas. Each test instance is used to
determine that instance is located inside the learned region

(normal instance) or outside the learned region (anoma-

lous). The anomaly detection techniques using SVM are
used for intrusion detection [25], documents classification

[30], and cloud systems [15]. Although one-class SVM is

effective at making a decision from well-behaved feature
vectors, it can be more expensive for modeling the varia-

tion in large datasets and high-dimensional input features

[9, 13, 19].
Convolution neural networks are widely used for a

variety of learning tasks. They are commonly more effec-

tive for image classification issues than fully connected
feedforward neural networks. In large images, where

thousands or millions of weights are needed to train the

network, issues such as slow training time, overfitting, and
underfitting issues can be alleviated using convolutional

neural networks, which have the ability to reduce the size

of input features (e.g., a matrix of image size) to lower
dimensions using convolutions operations [28]. In our case,

the proposed neural networks based techniques for anom-

aly detection in Apache Spark cluster has less number of
input features and output classes than what is used in image

processing classification, making less relevant the use of

techniques such as convolutional neural networks.

2.2 Apache Spark

Apache Spark is a large-scale in-memory processing

technology that can support both batch and stream data

processing [4]. The main goal of Apache Spark is to speed
up the batch processing of data through in-memory com-

putation. Spark can be up to 100 times faster than Hadoop

MapReduce for in-memory analytics [4]. The core engine
of Apache Spark offers basic functionalities for in-memory

Table 1 Summary of the state-of-the-art techniques

References Approach Detection technique System/environment

Gow et al. [17] Statistical Regression curve fitting the service time-adapted
cumulative distributed function

Online platform and configuration agnostic

Wang et al.
[42]

Statistical Gaussian-based detection Online anomaly detection for conventional data
centers

Markou and
Singh [31]

Statistical Gaussian-based detection General

Kelly [23] Statistical Regression analysis Globally-distributed commercial web-based,
application and system metrics

Cherkasova
et al. [11]

Statistical Regression analysis Enterprise web applications and conventional data
center

Agarwala et al.
[1]

Statistical Correlation Complex enterprise online applications and
distributed system

Peiris et al.
[34]

Statistical Correlation Orleans system, distributed system and distributed
cloud computing services

Sharma et al.
[38]

Statistical Virtualized cloud computing and distributed systems Hadoop, Olio and RUBiS

Gu and Wang
[18]

Machine
learning

Supervised Bayesian classification Online application for IBM S-distributed stream
processing system

Huang et al.
[20]

Machine
learning

Unsupervised neighbor-based technique (local outlier
factor algorithm)

General cloud computing system

Fu [14] Machine
learning

Semi-supervised principle component analysis and Semi-
supervised Decision-tree

Institute-wide cloud computing system

Fu et al. [15] Machine
Learning

One class and two class support vector machines Cloud computing environments

Ren et al. [35] Machine
learning

Anomaly detection approach based on stage-task behaviors
and logistic regression model

Online framework for Apache Spark streaming
systems

Lu et al. [29] Machine
Learning

Anomaly detection using convolutional neural networks
based model

Big Data system logs using Hadoop distributed file
fystem
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cluster computing, such as task scheduling, memory man-

agement, fault recovery, and communicating with database
systems [22].

Running Spark application involves five main compo-

nents, including driver programs, cluster managers, worker
nodes, executor processes, and tasks as shown in Fig. 1.

The Spark application runs as an independent set of pro-

cesses on a cluster, which are coordinated by an object
called SparkContext. This object is the entry point to

Spark, and it is created in a driver program, which is the
main function in Spark. In cluster mode, SparkContext has

the ability to communicate with many cluster managers to

allocate sufficient resources for the application. The cluster
manager can be Mesos, YARN, or a Spark stand-alone

cluster [4].

2.2.1 Resilient distributed datasets

Spark engine provides the API for the main programming
data abstraction, which is the Resilient Distributed Dataset

(RDD) to enable the scalability of data algorithms with

high performance. RDD offers operations, including data
transformation and actions, that can be used by other Spark

libraries and tools for data analysis. This paper proposes an

anomaly detection method that performs in its most
effective instantiation anomaly detection at the level of the

RDDs. We thus briefly overview the main features of these

data structures and their relationship to the job execution
flow within Spark.

The RDD is Spark’s core data abstraction. It is an

immutable distributed collection of objects that can be
executed in parallel. It is resilient because an RDD is

immutable and cannot be changed after its creation. An

RDD is distributed because it is sent across multiple nodes
in a cluster. Every RDD is further split into multiple par-

titions that can be computed on different nodes. This means

that the higher the number of partitions, the larger paral-
lelism will be. RDD can be created by either loading an

external dataset or by paralleling an existing collection of

objects in their driver programs. One simple example of

creating an RDD is by loading a text file as an RDD of
string (using sc.textFile()) [4].

After creation, two types of operations can be applied to

RDDs: transformations and actions. A transformation
creates a new RDD from an existing RDD. In addition,

when applying a transformation, it does not modify the

original RDD. An example of transformation operation is
filtering data that returns a new RDD that meets filter

conditions [37]. Some other transformation operations are
map, distinct, union, sample, groupByKey, and join. The

second type of RDD operation is an action, which returns a

resulting value after running a computation and either
returns it to the driver program or saves it to external

storage, such as Hadoop Distributed File System (HDFS).

A basic example of an action operation is First(), which
returns the first element in an RDD. Other action operations

are collect, count, first, takesample, and foreach [4].

RDDs are reliable and use a fault-tolerant distributed
memory abstraction. Spark has the ability to reliably log

the transformation operation used to build its lineage graph

rather than the actual data [44]. The lineage graph keeps
track of all transformations that need to be applied to RDDs

and information about data location. Therefore, if some

partition of an RDD is missing or damaged due to node
failure, there is enough information about how it was

derived from other RDDs to efficiently recompute this

missing partition in a reliable way. Hence, missing RDDs
can be quickly recomputed without needing costly data

replication. An RDD is designed to be immutable to

facilitate describing lineage graphs [44].

2.2.2 Jobs, stages, and tasks

Every Spark application consists of jobs , each job is fur-

ther divided into stages that depend on each other. Each

stage is then composed of a collection of tasks as shown in
Fig. 2 [3].

Spark Job. A Spark job is created when an action

operation (e.g., count, reduce, collect, save, etc.) is called
to run on the RDD in the user’s driver program. Therefore,

each action operation on RDD in the Spark application will

correspond to a new job. There will be as many jobs as the
number of action operations occurring in the user’s driver

program. Thus, the user’s driver program is called an

application rather than a job. The job scheduler examines
the RDD and its lineage graph to build a directed acyclic

graph (DAG) of the stages to be executed [44].

Spark Stage. Breaking the RDD DAG at shuffle
boundaries will create stages. Each stage contains many

pipelined RDD transformation operations that do not

require any shuffling between operations, which is called
narrow dependency (e.g., map, filter, etc.). Otherwise, ifFig. 1 Spark application components
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stages depend on each other through RDD transformation

operations that require shuffling, these are called wide

dependencies (e.g., group-by, join, etc.) [44]. Therefore,
every stage will contain only shuffle dependencies on other

stages, but not inside the same stage. The last stage inside

the job generates results and the stage is executed only
when its parent stages are executed. Figure 2 shows how

the job is divided into two stages as a result of shuffle

boundaries.
Spark Task. The stage scheduling is implemented in

DAGScheduler, which computes a DAG of stages for each

job and finds a minimal schedule to run that job. The
DAGScheduler submits stages as a group of tasks (Task-

Sets) to the task scheduler to run them on the cluster via the

cluster manager (e.g., Spark Standalone, Mesos or YARN)
as shown in Fig. 2.

Scheduling. The task in Apache Spark is the smallest

unit of work that is sent to the executor, and there is one
task per RDD partition. The dependencies among stages

are unknown to the task scheduler. Each TaskSet contains

fully independent tasks, which can run based on the loca-
tion of data and the current cached RDD. Each task is sent

to one machine [3]. Inside a single stage, the number of

tasks is determined by the number of the final RDD par-
titions in the same stage.

3 Motivating example

In order to motivate the use of machine learning approa-

ches in anomaly detection methods for Spark, we consider
the performance of a simple statistical detection technique

based on percentiles of the cumulative distribution function

(CDF) of task execution times. Our goal is to use CDF
percentiles to discriminate whether a given task has expe-

rienced a performance anomaly or not.

We run a KMeans Spark workload with nine different
types of tasks. More details about Spark experimental

testbed and process are provided in Sect. 5.1. We inject

CPU contention using the stress tool for a continuous
period of 17 h, which corresponds to 100% of the total

execution time of a job. The intensity of the CPU load

injected in the system amounts to an extra 50% average
utilization compared to running the same workload without

stress.
We then use the obtained task execution times to esti-

mate the empirical CDF for the execution time of tasks

conditional on their stage; i.e., the population of samples
that defines the CDF corresponds to the execution time of

all tasks that executed in that specific stage. Note that since

we run 10 parallel K-means workloads, each stage and its
inner tasks are executed multiple times. We shall refer to

this CDF as a stage CDF.

We then determine the 95th, 75th, 50th, 25th, and 10th
percentiles of all the stage CDFs and assess whether they

can be used as a threshold to declare whether a job suffered

an execution time anomaly. When there is a continuous
stress CPU anomaly, the F-score is 93%, which is

acceptable. However, this technique failed to detect a short

random time CPU anomaly by achieving only 0.2% for the
F-score.

We used a two-sample Kolmogorov–Smirnov test to

compare the two stages CDFs with and without anomalies
[27]. The test result is true if the test rejects the null

hypothesis at the 5% level, and false otherwise, as shown in

Fig. 3. The three types of Spark stages in Fig. 3 illustrate
three stages CDFs obtained in an experiment with and

without injection of CPU contention. The three CDFs for

the three different types of tasks make it difficult to
determine whether there is an anomaly or not. For example,

Fig. 3 has a noticeable difference in the CDFs for normal

and abnormal performance. On the other hand, Fig. 3 also
has a noticeable difference between the two experiments,

but there were no anomalies occurred during all tasks in

stage 7. In addition, the CPU anomaly causes a delay while
processing the tasks. This delay propagates through the

Spark DAG workflow and therefore also affects tasks that

did not incur anomalies period.

Fig. 2 Spark DAG for a WordCount application with two stages each
consisting of three tasks
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In conclusion, this motivating example illustrates that

CDF-based anomaly detection in Spark only at the level of
execution times is significantly prone to errors. In the next

sections, we explore more advanced and general method-

ology based on a machine learning technique that is cap-
able of considering multiple monitoring metrics and

pinpointing anomalous tasks with high F-score perfor-

mance metrics.

4 Methodology

In this section, we present our neural network driven

methodology for anomaly detection in Apache Spark sys-
tems. A schematic view of anomaly detection detailed

processes is shown in Fig. 4. The following subsections

discuss the proposed methodology which covers the neural
network model, feature selection, training, and testing.

4.1 Neural network model

Our methodology revolves around using a neural network

to detect anomalies in Apache Spark environment. The
standard backpropagation with a scaled conjugate gradient

is used for the training process to update weight and bias

values of the neural network. The scaled conjugate gradient

training is normally faster than standard gradient descent
algorithms [32].

Before we initiate the backpropagation process, we

calculate the activation values of units in the hidden layer
and propagate them to the output layer. A sigmoid transfer

function (non-linear activation function) is used in the

hidden layer because it exists between (0 to 1), where zero
means absence of the feature and one means its presence.

In neural networks, non-linearity is needed in the activation

functions because it produces a nonlinear decision bound-
ary via non-linear combinations of the weights and inputs

to the neural networks. Sigmoid introduces non-linearity in

the model of neural networks, as most of the real classifi-
cation problems are non-linear. Softmax transfer function is

used in the output layer to handle classification problems

with multiple classes. Then cross-entropy is used as a cost
function to assess the neural network performance and

compare the actual output error results with the desired
output values (labeled data). Cross-entropy is used because

it has practical advantages over other cost functions; e.g., it

can maintain good classification performance even for
problems with limited data [24].
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Fig. 3 CDF for the three types of Spark tasks under a short 50% CPU stress affecting tasks in stage type 3

Fig. 4 Methodology for
anomaly detection
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4.1.1 Structure of model

The proposed neural networks contain three layers, which
are input, hidden, and output layer. The input layer con-

tains a number of neurons equal to the number of input

features. The size of the hidden layer is determined by
using a ‘‘trial and error’’ method, choosing a number

between the sizes of input neurons and output neurons [39].

A hidden layer with ten neurons has achieved the most
accurate results for our situation as shown in Table 2. The

output layer of the neural network contains a number of

neurons equal to the number of target classes (types of
anomalies), where each neuron generates boolean values,

which are 0 for normal behavior or 1 for anomalous

behavior. For example, if there are three types of anomalies
(CPU, cache thrashing, and context switching), then the

size of the output layer will be three neurons and each of

them outputs a boolean value.

4.2 Model training and testing

In the training process, the input data to the model is

divided into three smaller subsets, called training (70%),

validation (15%), and testing (15%) sets. The training set is
used for calculating the gradient and updating the network

weights and biases. During the training process, the

weights and biases are updated continuously until the
magnitude of the scaled conjugate gradient reaches the

minimum gradient.

The validation set is used to avoid overfitting. The error
rate during the validation phase is decreased until the

magnitude of the gradient is less than a predefined

threshold (e.g., 10"5) or hits the maximum number of

validation checks. The number of validation checks is the
number of successive iterations in which the validation

performance fails to decrease (we use a maximum of six

successive iterations). After convergence, we save the
weights and biases at the minimum error for the validation

subset. The early stopping method we have described

above is known to avoid overfitting issues [7].
A third subset is used for testing purposes. It is inde-

pendently used to assess the ability of the trained model to

be generalized. Throughout the paper, we use as the main

test metric the standard F-score (F), which is defined in the

Appendix alongside the standard notions of Precision
(P) and Recall (R).

4.3 Feature selection

To evaluate the impact of the choice of input monitoring

features, we consider a simple workload execution in
which a K-means workload is injected with 50% CPU and

memory contention overheads using the stress tool, either
continuously for the duration of the experiment or in a 90-s

period out of a total runtime execution. This includes five

different scenarios, which are Non, CPU50%,
CPU50%90s, Mem50%, and Mem50%90. First scenario

Non is for running the benchmark without any contention

on CPU and memory, second scenario CPU50 is for run-
ning the benchmark with continuous contention on CPU at

50%, third scenario CPU50%90s is for running the

benchmark with a short time (90 s) of contention on CPU
50%, fourth scenario Mem50% is for running the bench-

mark with continuous contention on memory at 50% of

free memory, and fifth scenario Mem50%90s is for running
the benchmark with a short time (90 s) of contention on

memory by 50% of free memory.

We compare the performance of a basic anomaly
detection method, called DSM1, which relies solely on a

neural network trained using samples collected at the

operating system level of CPU utilization, time spent by
the processor waiting for I/O, and CPU steal percentage.

Table 3 shows a comparison of the system performance

metrics among different contention scenarios on S02. The
classification performance metrics for a neural network

trained on this basic set of measures are summarized in

Fig. 5.
The K-means workload does not heavily use memory

(see Table 3). Therefore, memory contention does not have

a noticeable effect on the DSM1 dataset, and the F-score is
as low as 19.88% when the memory contention is tempo-

rary (see Fig. 5). This is because DSM1 does not consider

the memory metrics for Spark cluster. Generally, short
contention periods are harder to detect, as visible from the

fact that a 90-s CPU anomaly has an F-score of 58.05%,

compared to a 77.44% F-score when there is a continuous
CPU stress injection. We interpret this as due to the fact

that the neural network needs to train the algorithm with a

bigger dataset to detect memory contention. If we repeat
the same experiment after adding memory monitoring

metrics, referred to as the DSM2 dataset in Table 4, the

F-score immediately increases from 77.44 to 99% for
continuous CPU anomaly injection, highlighting the

importance of carefully selecting monitoring metrics even

if they do not immediately relate to the metrics that are
mostly affected by the anomaly injection.

Table 2 Impact of hidden layer size on F-score for Neural Networks
using DSM4 feature sets

Hidden layer size (neurons) F-score

5 0.98

10 0.99

15 0.96

20 0.96
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The above results suggest that while a reduced set of

core metrics can substantially decrease the training time of
the model, an important consideration for example in

online applications, it can be counterproductive to perform

feature selection by reasoning on the root causes that
generate the anomaly.

4.4 Training data

We assume the Spark testbed to be monitored at all
machines. We considered different levels of logging,

ranging from basic CPU utilization readings to complete

availability of Spark execution logs. The logs provide
details on activities related to tasks, stages, jobs, CPU,

memory, network, I/O, etc. Many metrics can be collected,

but it is challenging to decide which ones are more valu-
able to assess system performance and pinpoint the

anomalies, as this may depend on the workload. All data
collection in our experiments took place in the background

without causing any noticeable overhead on the Spark

cluster.
In this work, we propose four methods, called dataset

method 1 (DSM1), dataset method 2 (DSM2), dataset

method 3 (DSM3) and dataset method 4 (DSM4). DSM1,
introduced earlier, relies solely on a neural network trained

using CPU utilization samples. DSM2 adds operating

system memory usage metrics to the metrics employed by
DSM1. The third method is DSM3 is build upon the list of

metrics selected in [45], which examines the internal Spark

architecture by relying on information available in the
Apache Spark log, such as Spark executors, shuffle read,

shuffle write, memory spill, and java garbage collection.

DSM3 does not reflect the RDD DAG of Spark application.
The fourth method is DSM4 which includes comprehensive

internal metrics about Spark tasks that enable the proposed

technique to track the Spark RDD DAG to detect the
performance anomalies. These metrics include compre-

hensive statistics about identificators and execution times-

tamps for Spark RDDs, tasks, stages, jobs, and
applications. The detailed monitoring features used to train

these four methods are listed in Table 4.

In the proposed methodology, we assume that the col-
lected data is pre-processed by the end to ensure elimina-

tion of any mislabeled training instances and to validate the

CPU50%

CPU50%90sec

Mem50%

Mem50%90sec

Scenarios
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Fig. 5 Neural network performance with DSM1 feature set for
experiments with basic CPU and memory contention (continuous or
90-s periods)

Table 3 Running Spark
K-means workload without
contention(Non), with
continuous 50% CPU stress
(CPU50%), with 90-s 50% CPU
stress (CPU50%90s), with
continuous 50% memory stress
(Mem50%), and with 90 s 50%
memory stress on only S02
(Mem%90s)

Server Stress MeanCPU SD Pr95 Pr99 Iqr UsedMem ExeTimeSec

S01:Non No 0.0203 0.0389 0.0950 0.2147 0.0177 89.3239 295

S01:CPU50% No 0.0174 0.0308 0.0663 0.1646 0.0176 89.5402 567

S01:CPU50%90s No 0.0210 0.0359 0.0874 0.2166 0.0218 89.8094 376

S01:Mem50% No 0.0205 0.0376 0.0768 0.2346 0.0211 90.0187 326

S01:Mem%90s No 0.0193 0.0356 0.0715 0.2094 0.0190 90.2926 355

S02: Non No 0.8776 0.1849 0.9519 0.9561 0.0304 81.2464 295

S02:CPU50% Yes 0.9510 0.0701 0.9799 0.9833 0.0158 81.7595 567

S02:CPU50%90s Yes 0.9152 0.0806 0.9693 0.9748 0.0315 81.9844 376

S02:Mem50% Yes 0.8656 0.1880 0.9479 0.9527 0.0318 93.2561 326

S02:Mem50%90s Yes 0.8770 0.1825 0.9513 0.9574 0.0337 85.0864 355

S03: Non No 0.4488 0.4443 0.9489 0.9550 0.9271 90.0702 295

S03:CPU50% No 0.2231 0.3719 0.9361 0.9504 0.3580 90.4513 567

S03:CPU50%90s No 0.2649 0.3572 0.8831 0.9356 0.6816 91.1414 376

S03:Mem50% No 0.4129 0.4357 0.9422 0.9507 0.9115 91.2038 326

S03:Mem50%90s No 0.3760 0.4310 0.9402 0.9506 0.8914 91.3892 355

It is clear that the different type and amounts of anomalies affect mean CPU and memory utilization in
server S02
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datasets before passing them to the neural networks to

improve their quality. For example, we sanitize utilization

measurements larger than 100% or less than 0% by
removing the corresponding entries; similarly, we exclude

from the datasets samples when some of the features are

missing, so that the input dataset is uniform.

All the collected metrics are time series, which are

additionally labeled either as normal or anomalous in a
supervised fashion, before passing them as input to our

anomaly detection method for training, validation, and

testing. In an application scenario, labeling could either be
applied using known anomalies observed in the past in

production datasets or carrying out an offline training based

on the forced injection of some baseline anomalies. Fea-
tures we have used to qualify the characteristics of the

anomalies include information on their start time, end time,
and type (e.g., CPU, memory, etc.).

5 Evaluation

In this section, we introduce an evaluation for the perfor-

mance anomaly detection methodology proposed in
Sect. 4. In particular, having shown before the benefits of

using an increasingly large dataset, we focus on evaluating

neural networks trained on the DSM2 and DSM4 feature
sets. We use as a baseline a nearest neighbor classifier

trained on the same data.

5.1 Experimental testbed

Experiments are conducted on a cluster that contains three
physical servers: S01, S02, and S03. The specifications for

these servers are as follows:

1. Node S01: 16 vcores Intel(R) Xeon(R) CPU 2.30GHz,

32 GB RAM, Ubuntu 16.04.3, and 2TB Storage.

2. Node S02: 20 vcores 9 Intel(R) Xeon(R) CPU
2.40GHz, 32 GB RAM, Ubuntu 16.04.3, and 130 GB

Storage.

3. Node S03: 16 vcores 9 Intel(R) Xeon(R) CPU
1.90GHz, 32 GB RAM, Ubuntu 16.04.3, and 130 GB

Storage.

The hyperthreading option is enabled on S01, S02, and S03

to make a single physical processor resources appear as
two logical processors. Apache Spark is deployed such that

S01 is a master and the other two servers are slaves

(workers). Spark is configured to use the Spark Standalone
Cluster Manager, 36 executors, FIFO scheduler, and a

client mode for deployment. Node S01 hosts the bench-

mark to generate the Spark workload and launch Spark
jobs. The other nodes run the 36 executors. Monitoring

data collection took place in the background, with no sig-

nificant overhead on the Spark system. All machines use
sar (System Activity Reporter) and Sysstat to collect CPU,

memory, I/O, and network metrics. Log files from Spark

are also collected to later extract the metrics for DSM4.

Table 4 List of performance metrics for the DSM1, DSM2, DSM3,
and DSM4 methods

Methods Metrics

DSM2

DSM1

CPU utilization
Percentage of time that the CPUs were
idle during outstanding disk I/O re-
quest
Percentage of time spent in involun-
tary wait by the virtual CPU
Percentage of time that the CPUs were
idle
kbmemfree: free memory in KB on
hostname
kbmemused: used memory in KB on
hostname
X.memused: used memory in % on
hostname
kbbu�ers: bu�er memory in KB on
hostname
kbcached: cached memory in KB on
hostname
kbcommit: committed memory in KB
on hostname
X.commit: committed memory in % on
hostname
kbactive: active memory in KB on
hostname
kbinact: inactive memory in KB on
hostname
kbdirty: dirty memory in KB on host-
name

DSM4
DSM3

Task spill: Disk Bytes Spilled
Executor Deserialize Time
Executor Run Time
Bytes Read: Total input size
Bytes Written: total output size
Garbage Collection: JVM GC Time
Memory Bytes Spilled: Number of
bytes spilled to disk
Task Result Size
Task Shu�e Read Metrics: Fetch Wait
Time, Local Blocks Fetched, Local
Bytes Read, Remote Blocks Fetched,
and Remote Bytes Read
Task Shu�e write Metrics: Shu�e
Bytes Written and Shu�e Write Time
Stage ID
Task info: Launch Time, Finish Time,
Executor CPU Time, Executor Deseri-
alize CPU Time, Input Records Read,
Output Records Written, Result Se-
rialization Time, Total Records Read
for Shu�e, and Total Shu�e Records
Written
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5.2 Workload generation

SparkBench provides workload suites that include a col-
lection of workloads that can be run either serially or in

parallel [26]. Workloads include machine learning, graph

computation, and SQL queries, as shown in Table 5. In this
section, the K-means data generator is used to generate

various K-means datasets of different sizes (e.g., 2 GB, 8

GB, 32 GB, and 64 GB), a default number of clusters
(K ¼ 2), and a seed value 127L. The K-means workload is

intensively used in our experiments with many alternative

configurations for Spark and SparkBench parameters to
compare the performance results under different scenarios.

More than 1450 experiments have been conducted and

more than 3.7TB of data have been collected to examine
our proposed solution. An example of RDD DAG for

K-means Spark job is shown in Fig. 6, which has a single

stage that contains a sequence of RDD operations (e.g.,
Scan csv, DeserializeToObject, mapPartitions, etc.). These

RDDs operations depend on each other and some may be

cached.

5.3 Anomaly injection

Node S02 is used to inject anomalies into the Apache Spark

computing environment using stress and stress-ng tools.

Table 6 shows a list of the four types of anomalies that
have been used throughout the experiments. Stress is used

to generate memory anomalies, whereas stress-ng is used

to generate CPU, cache thrashing, and context switching.

Each experiment has different configurations, depending
on the objective of the conducted experiment, which will

be discussed in detail in the following (Sect. 5.4).

5.4 Results

The experiments are conducted on a cluster (described in
Sect. 5.1), which consisted of one master server (called S1)

and two slave servers (called S02 and S03). This cluster
was isolated from other users during the experiments. A

physical cluster was used instead of a virtual cluster to

avoid any possibility of deviations in measurements. A
series of experiments are conducted on the Spark cluster to

evaluate the proposed anomaly detection technique.

5.4.1 Baseline experiment

Three experiments with different types of anomalies are
injected into the Spark cluster with random instant and

Table 5 SparkBench workloads

Application type Workloads

Graph computation Data generator

Graph generator

SQL queries SQL query over dataset

Machine learning Data generator—K-means

Data generator—linear regression

K-means

Logistic regression

Table 6 Types of anomalies

Type # Description

CPU Spawn n workers running the sqrt() function

Memory Continuously writing to allocated memory in order to cause memory stress

Cache thrashing n processes perform random widespread memory read and writes to thrash the CPU cache

Context switching n processes force context switching

Fig. 6 DAG diagram illustrates
dependencies among operations
on Spark RDDs for a single
Spark stage within the K-means
workload
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random duration chosen uniformly between 0 and 240 s.

Each experiment encompasses a single type of anomaly:
CPU contention, cache thrashing, or context switching. The

average number of samples that are used to train and test

model for every experiment is 64K samples. We focus on
evaluating neural networks trained on the DSM2 and

DSM4 feature sets. Figure 7 shows the F-score obtained

with the proposed neural network classifier versus the
nearest neighbor method used as a baseline. It is clear that

the neural network outperforms the nearest neighbor
algorithm in detecting all the three types of anomalies.

Moreover, the random instant and random duration of the

three types of anomalies have little impact on the perfor-
mance of the neural networks compared with the nearest

neighbor.

5.4.2 Sensitivity to training set size

Figure 8 depicts the impact of Spark workload size on the
F-score for anomaly detection using DSM4 and four dif-

ferent types of algorithms, which include Neural Networks,

Decision Tree, Nearest Neighbor, and SVM. The first
workload has 250 Spark tasks (micro), the second work-

load has 1K Spark tasks (small), the third workload has 4K

Spark tasks (medium), the fourth workload has 16K Spark
tasks (large), and the fifth workload has 64K Spark tasks

(x-large). All these workloads have the same benchmark

and spark configuration. Figure 8 shows that the proposed
technique achieved 85% F-score with a micro Spark

workload (200 tasks), whereas the F-score increased when

the size of workload increased to reach 99% F-score for the
x-large Spark workload. This proves that the neural

networks achieve higher F-score than Decision Tree,

Nearest Neighbor, and SVM even with more heavy Spark
workload.

5.4.3 Sensitivity to parallelism and input data sizes

In this section, we consider the execution of ten parallel

K-means workloads at the same time. This represents a
more complex scenario than the ones considered before

since the anomalies are overlapped to resource contention
effects, making it difficult for classifiers to discern whether

a heightened resource usage is due to the workload itself or

an exogenous anomaly. As before, the workload input data
size is 64 GB and we consider 50% CPU contention

injection into the Spark cluster. Figure 9 shows the minor

impact on DSM2 and DSM4 when there are a single
K-means workload and 10 parallel K-means workloads

with continuous CPU contention.

Each experiment took approximately 17 h for execution.
In order to evaluate the proposed anomaly detection

methods, four machine learning algorithms have been

applied to detect performance anomalies with DSM2 and
DSM4 as inputs to the anomaly detection methods. These

algorithms include neural networks, decision tree, nearest

neighbor, and SVM. Figure 9 shows that the neural net-
work has the highest F-score, and it selectively detects the

anomalies in the Apache Spark cluster. The nearest

neighbor has the second highest F-score, then the decision
tree and SVM respectively. Regarding the execution time

of each algorithm, the neural network, decision tree,

nearest neighbor, and SVM took approximately 1 min, 3
min, 9 min, and 19 min respectively. The neural network is

more effective than other algorithms. The results in Fig. 9

prove that the neural network is more robust than the other
three algorithms, which are affected by the size of the input
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data to workloads when the input data was increased to 64

GB.

5.4.4 Classifying anomaly types

In this experiment we assess the ability of the proposed
technique not only to detect that an experiment has suffered

an anomaly, but also to qualify the type of anomaly. In this

experiment we consider simultaneous injection of CPU,
cache thrashing, and context switching anomalies. The

classification therefore has four classes: normal, CPU

anomalies, cache thrashing anomalies, and context
switching anomalies. The classification is at the level of

individual Spark tasks.

The total number of Spark tasks collected during the

execution amount to a total of 400K tasks. Table 7 illus-

trates that DSM4 with the neural network algorithm out-
perform DSM3 and nearest neighbor technique, retaining a

99% F-score, whereas the nearest neighbor algorithm

achieves only a 70% F-score.

5.4.5 Classifying overlapped anomalies

Because many types of anomalies may occur at the same

random time from different sources and for various reasons
in complex systems, there is a vital need to go beyond

detection of a single type of anomaly. To offer a solution

for such need, the proposed technique is validated with
DSM4 to prove its capability to detect overlapped

anomalies when they occur at the same time. We trained

our model over many Spark workloads with a total number
of 950K Spark tasks. The proposed technique classifies the
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Fig. 9 Impact of parallelism and input data size of workload on
anomaly detection methods

Table 7 Classification of anomaly types using DSM3 and DSM4

DSM3: neural
network

R P F

Normal 0.99 0.81 0.89

CPU 0.21 0.97 0.34

Cache thrashing 0.34 0.81 0.47

Context switching 0.38 0.96 0.54

Average F-score 0.48 0.88 0.56

DSM3: nearest neighbor R P F

Normal 0.87 0.83 0.85

CPU 0.36 0.45 0.40

Cache thrashing 0.29 0.30 0.29

Context switching 0.16 0.15 0.16

Average F-score 0.42 0.43 0.42

DSM4: neural network R P F

Normal 1 1 1

CPU 1 1 1

Cache thrashing 0.97 1 0.98

Context switching 0.98 0.99 0.98

Average F-score 0.98 0.99 0.99

DSM4: nearest neighbor R P F

Normal 0.98 0.98 0.98

CPU 1.00 1.00 1.00

Cache thrashing 0.76 0.73 0.75

Context switching 0.09 0.09 0.09

Average F-score 0.71 0.70 0.70

R recall, P precision, and F F-score
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Spark performance into seven types: normal, CPU stress,

cache stress, context switching stress, CPU and cache
stress, CPU and context switching stress, and cache and

context switching stress. The proposed solution is validated

with two types of Spark workload: K-means and SQL
workload, as shown in Tables 8 and 9. The overall F-score

for classifying the Spark performance using Neural Net-

works and DSM4 is 98%. Finally, it is evident that the
proposed technique is capable of detecting and classifying

the three types of anomalies with more complex scenarios
such as parallel workload, random occurrence and over-

lapped anomalies. DSM4 is more agile and has the ability

not only to detect anomalies, but also to classify them and
find the affected Spark task, which is hard to do with

DSM2 and DSM3 without having comprehensive access to

the Spark logs.
The conducted experiments and the obtained results

show interesting implications that prove the importance of

utilizing memory performance metrics and the internal
metrics of Apache Spark architecture. After adding mem-

ory monitoring metrics, referred to as the DSM2 dataset in

Table 3, the F-score of anomaly detection readily increases
from 77.44% to 99% (as discussed in Sect. 4.3) for CPU

anomaly injection, highlighting the importance of carefully

selecting monitoring metrics, even if they are not intuitive
to relate to the anomaly. Another implication includes the

importance of optimizing the use of the internal features of

Spark architecture and dependencies between RDDs, as
done in the DSM4 dataset in Table 4, and its components

to accurately detect and classify anomalous behaviors

based on the Spark resilient distributed dataset (RDD)
characteristics.

6 Conclusion

Although Apache Spark is developing gradually, currently
there is still a shortage of anomaly detection methods for

performance anomalies for such in-memory Big Data

technologies. This paper addresses this challenge by
developing a neural network driven methodology for

anomaly detection based on knowledge of the RDD

characteristics.
Our experiments demonstrate that the proposed method

works effectively for complex scenarios with multiple

types of anomalies, such as CPU contention, cache
thrashing, and context switching anomalies. Moreover, we

have shown that a random start instant, a random duration,

and overlapped anomalies do not have a significant impact
on the performance of the proposed methodology.

The current methodology requires a centralized node

that runs the neural network, which may not be effective
for large scale data centers. Distributed online detection

techniques that rely on a collection of neural networks may

be considered for large scale systems. Due to the limitation

on the hardware resources and to validate the proposed
methodology, the current artificial neural networks

Table 8 Classification of 7 overlapped anomalies using DSM3 and
DSM4: K-means workload

DSM3: neural networks R P F

Normal 0.99 0.80 0.88

CPU 0.26 0.84 0.40

Cache thrashing 0.23 0.67 0.34

Context switching 0.36 0.95 0.52

CPU ? cache 0.28 0.94 0.43

CPU ? context
switching

0.25 0.78 0.38

Cache ? context
switching

0.24 0.83 0.37

Average F-score 0.37 0.83 0.48

DSM3: nearest neighbor R P F

Normal 0.80 0.77 0.78

CPU 0.20 0.25 0.22

Cache thrashing 0.11 0.11 0.11

Context switching 0.16 0.16 0.16

CPU ? cache 0.18 0.19 0.19

CPU ? context switching 0.15 0.15 0.15

Cache ? context switching 0.15 0.15 0.15

Average F-score 0.25 0.25 0.25

DSM4: neural network R P F

Normal 1 1 1

CPU 1 1 1

Cache thrashing 0.98 0.98 0.98

Context switching 0.94 0.99 0.96

CPU ? cache 0.95 1 0.97

CPU ? context switching 0.91 0.96 0.93

Cache ? context switching 0.99 0.99 0.99

Average F-score 0.97 0.99 0.98

DSM4: nearest neighbor R P F

Normal 0.84 0.84 0.84

CPU 0.50 0.50 0.50

Cache thrashing 0.06 0.06 0.06

Context switching 0.12 0.12 0.12

CPU ? cache 0.13 0.13 0.13

CPU ? context switching 0.10 0.10 0.10

Cache ? context switching 0.12 0.12 0.12

Average F-score 0.27 0.28 0.27

R recall, P precision, and F F-score
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algorithm has been trained on offline data, which can easily

generalize it to work with the online Spark systems.

In terms of future work, it would be interesting to
explore online anomaly detection. Deep Learning tech-

niques may also be explored to learn more about complex

features from the performance metrics of the Spark system,

possibly leading to even more accurate detection and pre-

diction of critical anomalies.
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Precision, Recall, and F-score

Sensitivity and Precision measures are used to evaluate the

anomaly detection classifiers, which are standard metrics

for quantifying the accuracy of the classifiers [8]. The
following are the anomaly classification classes and their

notations: true positives (tp), true negative (tn), false pos-

itives (fp), and false negatives (fn).
Throughout the paper, we use as main test metric the F-

score (F), which is defined as follows:

R ¼ tp

tpþ fn
P ¼ tp

tpþ fp
F ¼ 2

PR

Pþ R
ð1Þ

where R is the Recall, which assesses the quality of a

classifier in recognizing positive samples, and P is Preci-
sion, which quantifies how many samples classified as

anomalies are indeed anomalies. Recall will become high

when the anomaly-detection method can detect all
anomalies. The Precision assesses the reliability of the

detection method when it reports anomalies. The trade-off

between the Recall and Precision is captured by the F-
score, which is a summary score, and it is computed as the

harmonic mean of Recall and Precision.
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ABSTRACT
Due to the growth of Big Data processing technologies and cloud
computing services, it is common to have multiple tenants share the
same computing resources, which may cause performance anom-
alies. There is an urgent need for an e�ective performance anomaly
detection method that can be used within the production environ-
ment to avoid any late detection of unexpected system failures.
To address this challenge, we introduce, TRACK, a new black-box
training workload con�guration optimization with a neural net-
work driven methodology to identify anomalous performance in
an in-memory Big Data Spark streaming platform. The proposed
methodology revolves around using Bayesian optimization to �nd
the optimal training dataset size and con�guration parameters to
train the model e�ciently. TRACK is validated on a real Apache
Spark streaming system and the results show that the TRACK
achieves the highest performance (95% for F-score) and reduces
the training time by 80% to e�ciently train the proposed anomaly
detection model in the in-memory streaming platform.

CCS CONCEPTS
• Computing methodologies → Arti�cial intelligence; Ma-
chine learning; • Security and privacy → Intrusion/anomaly
detection and malware mitigation.

KEYWORDS
Performance Anomalies, Apache Spark, Arti�cial Intelligence, Neu-
ral Network, Big Data, Machine Learning
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1 INTRODUCTION
There are various options for open-source Big Data technologies for
data-intensive applications. Among various Big Data technologies,
in-memory processing technology, such as Apache Spark, has be-
come widely adopted by industries because of its speed, generality,
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ease of use, and compatibility with other Big Data systems. We here
consider Spark based streaming workloads.

With the growing complexity of Big Data and cloud systems,
failure management requires signi�cantly higher levels of automa-
tion and attention. An anomaly is de�ned as an abnormal behavior
during the execution of a program. While some studies address the
challenges of performance anomaly detection for batch processing
[8], there is a lack of e�ective automated performance anomaly de-
tection solutions speci�cally built for Apache Spark streaming sys-
tems. There is a need for a technique that can be used to e�ciently
train a machine learning model to detect performance anomalies
within streaming workloads in production environments.

This paper contributes to address the challenge of anomaly iden-
ti�cation by investigating new hybrid learning techniques for in-
memory Big Data systems. We developed and optimized arti�cial
neural neTwoRks based methodology for Anomaly deteCtion in
sparK streaming systems (TRACK), which has a tuning method
capable of training a machine learning model with a limited budget
and number of experiments. TRACK revolves around using neural
networks with Bayesian Optimization (BO) to �nd the optimal train-
ing dataset size and con�guration parameters to e�ciently train the
model to achieve the highest accuracy (95% F-score) and reduces
the training time by 80%. A validation based on real datasets from
Apache Spark streaming system is provided to demonstrate that
the proposed methodology identi�es performance anomalies, the
ideal con�guration parameter, and the optimal training dataset size
while reducing the number of experiments by 75%.

2 RELATED WORK
Performance anomaly detection techniques are highly needed by
Big Data and large scale systems. Several studies illustrate that most
of the root causes of bottleneck and anomalous performance are
machine resources such as computer processing units (CPUs) [2].

Fulp et al. [4] use a machine learning approach to detect and
predict the likelihood of system failures using an SVM based on
information of Linux system log �les. Although SVM models are
e�ective at making decisions from well-behaved feature vectors,
they can be more expensive for modeling the variation in large
datasets and high-dimensional input features [3]. Qi et al. [8] pro-
pose a white-box model that uses classi�cation and regression trees
to analyze straggler root causes.

In this paper, we utilize the performance of Bayesian optimiza-
tion hyperparameter tuning and the e�ciency of neural networks
to accurately detect anomalous behavior in Big Data systems. Some
performance anomaly identi�cation studies have been conducted
in the literature for di�erent purposes. However, currently there
is still a shortage in studies that o�er e�cient automated anomaly
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Figure 1: Motivation examples for TRACK.

detection, especially for in-memory Big Data stream processing
technologies, such as Apache Spark streaming.

3 MOTIVATING EXAMPLE
Here we demonstrate that the neural networks is more accurate
than other well-known algorithms. For our experiments, the work-
loads are exponentially generated as messages to be sent to the data
stream processing system with some prede�ned characteristics,
such as the rate of (message/sec) and the size of messages in lines. A
detailed comparison is shown in Figure 1(a) to examine the impact
of Spark workload size (number of tasks) on the neural networks
model and compares it with the nearest neighbor, decision tree,
and SVM. Six Spark streaming workload sizes with the same con-
�gurations are examined for sensitivity analysis, which are 1k, 10k,
20k, 30k, 40k, and 50k tasks. From Figure 1(a), it is evident that the
neural networks model outperforms all the other algorithms.

We examine a baseline experiment to prove that there is an im-
portant need for a solution to �nd the optimal dataset size and
con�guration parameters of stream workload to train the anomaly
detection model to generalize the model to detect anomalous be-
haviors in in-memory Big Data systems. Figure 1(b) shows some
design factors and response variables (F-score) for di�erent stream-
ing workload con�gurations where the proposed neural network
is trained with a single combination of con�gurations parameters
(e.g., rate r and size s) and test it against all the other workloads

Figure 2: TRACK Methodology for anomaly detection)

stream con�gurations, which include rates (1,8,16, and 32) and sizes
(1,10,100, and 1000). As can be seen from Figure 1(b), it is not ap-
parent which set of workload con�gurations that can be used to
e�ciently train the machine learning model to achieve the highest
accuracy with less time consuming to train the model and detect
the anomalous performance in the Spark streaming system. With
WordCount Spark streaming application (only two parameters ), it
is also challenging to �nd the ideal dataset size to e�ciently train
the anomaly detection model to comprehensively cover all the seen
types of anomalies.

4 METHODOLOGY
In this section, we introduce TRACK, which is Bayesian Optimiza-
tion (BO) and neural network driven methodology to train and
detect performance anomalies in Apache Spark streaming systems.
Figure 2 shows the TRACK processes of anomaly detection for
the proposed method. The following subsections give a brief in-
formation about BO, neural network, training, testing, and feature
selection.

4.1 Neural Network Model
The proposed neural networks model in [1] with backpropaga-
tion and conjugate gradient are used to train the neural networks
to update values of weights and biases in networks. The scaled
conjugate is used because it is usually faster than other gradient
algorithms [7], especially for time-dependent applications such
as real time stream processing. The neural networks model uses
a Sigmoid transfer function (f (G) = 1/(1 + 4�x ) as an activation
function, and Softmax transfer function is used in the output layer
to handle classi�cation problems with multiple classes. For cost
function, cross-entropy is used to evaluate the performance of neural
networks. Cross-entropy is used because it has signi�cant, practical
advantages over squared-error cost function [5].

The proposed neural networks contain three layers. The �rst
layer is the input layer that includes a number of neurons equal
to the number of input features. The second layer is the hidden
layer, which has a number of neurons that is determined by using
a trial and error method, choosing a number between the sizes of
input features =8 and output classes => [9]. The hidden layer size
between =8 and => satis�es our goal in achieving accurate results.
The output layer contains a number of neurons equal to the number
of target classes (types of anomalies), where each neuron generates
boolean values, which are 0 for normal behavior or 1 for anomalous
behavior.
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4.2 Bayesian Optimization
The proposedmethodology revolves around using BO to �nd the op-
timal dataset size and con�guration parameters to train the neural
networks to generalize the model to detect the anomalous behaviors
in the Spark streaming system.

When doing Bayesian optimization, there are two main choices
to make, which are prior over functions and acquisition function.

Expected-Improvement function in [6] is used as an acquisition
function to evaluate the expected amount of performance improve-
ment in the neural network detection model 5 (G) and ignore any
values that cause an increase in the error rate of the model. In other
words, G14BC is the location of the smallest posterior mean (optimal
workload con�guration), and `& (G14BC ) is the smallest value of the
posterior mean. The expected improvement can be described as
follows ⇢� (G) = ⇢& [<0G (0, `& (G14BC ) � 5 (G))]. ⇢& indicates the
expectation taken under the posterior distribution given evalua-
tions of 5 at G1, G2, ..., G= . The time to assess the objective function
may vary over some range of points depending on the region [6].

4.3 Model Training and Testing
The Streaming workload con�gurations consist of all possible com-
binations of con�guration parameters of '0C4= and (8I4< , which
in total will be = ⇤< combinations (= ⇤< DSTrain). The training
part of the dataset (DSTrain) is divided into 10 equal subsets to �nd
the ideal size dataset. For example, the dataset DSTrain workload
con�guration with rate A8 and size B 9 is divided into 10 subsets
according to ⇡()A08=A8 ,B 9 = ⇡()A08=A8B 9 ,1 + .... + ⇡()A08=A8B 9 ,10.

The total number of all possible data subsets is =⇤<⇤10, which is
hard and time consuming to �nd the optimal con�guration combi-
nations parameters and dataset size to train the model. More details
information is presented in Algorithm 1. To assess the proposed
model, we use a well-known standard classi�cation performance
metric, which is F-score (F).

4.4 Feature Selection
In this work, we extend our previous proposed method called
dataset method four (DSM4), which is built upon a list of Spark
performance metrics that are presented in [1]. DSM4 examines the
comprehensive internal Spark architecture and Directed Acyclic
Graph Spark application by relying on information from the Apache
Spark systems, such as Spark executors, shu�e read, shu�e write,
memory spill, java garbage collection, tasks, stages, jobs, appli-
cations, and execution timestamps for Spark resilient distributed
datasets (RDDs). The collected Spark performance metrics are in
time series and manually labeled either as normal or anomalous,
before passing them as inputs to the proposed model.

5 EVALUATION
This section provides an evaluation of the proposed methodology.
We use a random search (RD) algorithm as a baseline on the same
datasets, which are generated fromApache Spark Streaming system.

To evaluate the accuracy of the proposed anomaly detection
methodology, we developed Network WordCountExp benchmark,
which is a customized benchmark for stream processing Big Data
systems to generate our dataset for datasets generation and training
purposes.Wordcount is a conventional CPU-intensive benchmark

Algorithm 1: Training and testing methodology for
TRACK
Input: Prede�ned anomaly detection performance F ,

Con�guration space X, and system metrics dataset
D

Output: Optimal trained neural network modelM, which
is able to identify anomalous performance in Spark
streaming platform with highest prede�ned
accuracy with less amount of time

1 Con�guring streaming workload benchmark
2 Workload generation with con�guration space X
3 Streaming workload from local network N ! Spark system
4 System pro�ling to collect dataset of performance metrics
5 Data cleansing and preprocessing! D
6 ⇡()A08= = 75% of D  total training dataset
7 ⇡()4BC = 25% of D  total testing dataset
8 � = 0 and ⇡()A08=2 is empty current f-score and

training data
9 while ( � 6 F ) do
10 X8 = ⇢�%( (X) acquisition function �nds next

con�guration
11 ⇡()A08=2 = ⇡()A08=2 + ⇡()A08=-8  adding current

dataset to the previous dataset
12 M = TrainNN(⇡()A08=2 ) train neural network

model on the new dataset con�guration
13 F = �B2>A4 (M(DSTest))
14 Algorithm
15 end

and is widely accepted as a standard micro-benchmark for big
data plat forms. The workloads are exponentially generated (with
exponential distribution). More than 570 experiments and 135 GB of
data have been collected from the Spark streaming system, which
we used them to evaluate the proposed work. To inject di�erent
types of anomalies, an open source tools (stress-ng) have been used
to evaluate the proposedmethodologywith Spark streaming system.
A list of performance anomalies is used to generate CPU stress,
cache thrashing stress, and context switching stress.

6 RESULTS
6.1 Finding The Ideal Single Workload

Con�guration For Model Training
From the previous discussion about motivation example (Section
3), there is a need for a solution to �nd the ideal single workload
con�guration (e,g,. Rate A8 and Size B 9 ) that can be used to train
the proposed anomaly detection model to pinpoint the abnormal
behavior with highest possible F-score. This will facilitate the us-
ing of single workload con�guration to be generalized and used
to detect anomalies with the other workload con�gurations. The
Spark Streaming workload is used with all possible combinations
of Rate (1, 8, 16, ,and 32) and Size (1, 10, 100, and 1000), which are 16
combinations in total.

A Bayesian optimization and Neural Networks models (described
in Section 4.2 and 4.1) are used to address the need of determining
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Figure 3: Comparison between Bayesian Optimization and
Random Search to reach a prede�ned F-Score with the most
minimum number of steps. Workload has all the possible
combination of parameters and CPU anomalies.

the ideal single workload con�guration (Rate A8 and Size B 9 ) with
the minimum number of running experiments n. To get an accurate
result, we repeated the experiments for 50 times then calculate the
average of n. The result shows that the ideal F-score is reached with
a minimum number of running experiments (n=8), which is less by
50% of the total number of possible con�guration (n=16).

6.2 Bayesian Optimization Model to Train
Anomaly Detection Technique

A Bayesian Optimization model (discussed in Section 4.2) is used to
�nd the optimal size of the training dataset and the stream work-
load con�gurations set to achieve the highest accuracy with less
amount of time in training the proposed anomaly detection model.
Figure 3 depicts a comparison between Bayesian Optimization and
Random Search to reach a prede�ned F-Score with the most pos-
sible minimum number of training steps from the total number
of steps, which are 160 steps. The conducted experiments have
workloads that contain normal and CPU anomalous behaviors with
all the possible combinations of workload con�gurations. Figure
3 shows the average of 50 experiments that the neural networks
train with Bayesian Optimization to achieve the prede�ned F-score.
With Bayesian Optimization, the trained model reaches 95% F-score
in 21 steps, whereas 28 steps using a random search (enhanced by
25%). This proves that the proposed model can reduce the time and
computation process by 25%.

There are other two types of anomalies, which may disrupt the
performance of the stream processing system. These two types
are cache thrashing and context switching. The proposed model
can detect the cache thrashing and context switching anomalies
with F-score equal 80% and 95% respectively. The proposed model
outperforms the Random Search by more than 25% and can reduce
the amount of computations from 160 experiments to 14.

6.3 New Unseen Workload Con�gurations
The goal of this section is to train the proposed model on prede�ned
workload con�gurations (Rate (1, 8, 16, ,and 32) and Size (1, 10,
100, and 1000)) and generalize the model to perform accurately as
well with unseen new workload con�gurations (e,g,. A8 = 20 and
B 9 = 150). In this case, the workload is more realistic and re�ects
the workload characteristics of the stream processing system.

For the training phase, the same Bayesian Optimization and Neu-
ral Networks con�gurations in Section 6.2 are used to train the
model on prede�ned workload con�gurations (Rate (1, 8, 16, and 32)
and Size (1, 10, 100, and 1000)) to reach 95% F-score for detecting the
CPU performance anomalies. For the testing phase, the �nal model
of the training phase is used to detect anomalous behavior but with
new unseen workload con�gurations. Rate can be between 1 to
32 and size can be between 1 to 1000. With the three anomalous
workloads (CPU, cache thrashing, and contexts switching), the F-
score and standard deviations are 0.93±0.01 for CPU, 0.77±0.02 for
cache thrashing, and 0.72±0.04 for context switching. The proposed
anomaly detection model has the ability to be trained on 16 work-
load con�gurations to be generalized to detect anomalies against
32000 di�erent workload con�gurations.

7 CONCLUSION
This paper contributes to addresses the challenge of anomalous
identi�cation by proposing a new hybrid learning solution, TRACK,
for anomaly detection in in-memory Big Data systems. The anomaly
detection and tuning method are developed using Bayesian Opti-
mization and neural networks to train the model with a limited bud-
get and computing resources. As can be seen from the experimental
results, the proposed model can �nd the optimal training dataset
size and con�guration parameters to accurately identify di�erent
types of performance anomalies in Big Data systems. The proposed
model achieves the highest accuracy (95% F-score) and reduces the
execution time by 80%. A validation based on a real dataset for the
Apache Spark streaming system is provided to demonstrate that
the proposed methodology identi�es the performance anomalies,
the ideal con�guration parameter, and training dataset size with
up to 75% fewer experiments. In addition, the proposed model can
be easily generalized to cover unforeseen workload con�gurations.
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ABSTARCT  
Cloud computing, Artificial Intelligence, and Big Data technologies have recently become one of the 
most impactful forms of technology innovation. It is common to have multiple users share the same 
computing resources. This practice noticeably leads to performance anomalies. For instance, some 
applications can feature variability in processing time due to interference from other applications, or 
software contention from the other users, which may lead to unexpectedly long execution time and be 
considered anomalous. There is an urgent need for an automated effective performance anomaly detection 
method that can be used within the production environment for the streaming system to avoid any late 
detection of unexpected system failures. To address this challenge, we introduce a new black-box training 
workload configuration optimization with a neural network driven methodology to identify anomalous 
performance in an in-memory Spark streaming Big Data platform. The proposed methodology effectively 
uses Bayesian Optimization to find the ideal training dataset size and Spark streaming workload 
configuration parameters to train the anomaly detection model. The proposed model is validated on the 
Apache Spark streaming system. The results demonstrate that the proposed solution succeeds and 
accurately detects many types of performance anomalies. In addition, the training time for the machine 
learning model is reduced by more than 50%, which offers a fast anomaly detection deployment for 
system developers to utilize more efficient monitoring solutions. 
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Abstract

The main goal of this research is to contribute to automated performance anomaly detection for

large-scale and complex distributed systems, especially for Big Data applications within cloud

computing. The main points that we will investigate are:

Automated detection of anomalous performance behaviors by finding the relevant perform-

ance metrics with which to characterize behavior of systems.

Performance anomaly localization: To pinpoint the cause of a performance anomaly due to

internal or external faults.

Investigation of the possibility of anomaly prediction. Failure prediction aims to determine

the possible occurrences of catastrophic events in the near future and will enable system

developers to utilize e�ective monitoring solutions to guarantee system availability.

Assessment for the potential of hybrid methods that combine machine learning with tradi-

tional methods used in performance for anomaly detection.

The topic of this research proposal will o�er me the opportunity to more deeply apply my

interest in the field of performance anomaly detection and prediction by investigating and using

novel optimization strategies. In addition, this research provides a very interesting case of utilizing

the anomaly detection techniques in a large-scale Big Data and cloud computing environment.

Among the various Big Data technologies, in-memory processing technology like Apache Spark

has become widely adopted by industries as result of its speed, generality, ease of use, and

compatibility with other Big Data systems. Although Spark is developing gradually, currently

there are still shortages in comprehensive performance analyses that specifically build for Spark

and are used to detect performance anomalies. Therefore, this raises my interest in addressing

this challenge by investigating new hybrid learning techniques for anomaly detection in large-

scale and complex systems, especially for in-memory processing Big Data platforms within cloud

computing.
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Abstract—In cloud computing services, multiple tenants shar-
ing the same computing resources can cause performance
anomalies, either due to normal or malicious user behaviors.
When a Big Data application is deployed over a private or
public cloud and does not perform as well as expected, it is
however challenging to reliably detect a performance anomaly
and minimize its consequences. We here consider in particular
Spark-based workloads, in which the analytic operations are
applied to a resilient distributed dataset (RDD). We develop a
neural network based methodology for anomaly detection based
on knowledge of the RDD characteristics. Using experiments
against multiple workloads and anomaly types, we show that
our method improves over other types of classifiers as well as
against black box performance anomaly detection.

Index Terms—Performance anomalies, Apache Spark, Neural
Network, Resilient Distributed Dataset (RDD)

I. INTRODUCTION

Anomalies can arise for various reasons, such as interfer-
ence from other applications and software bugs. Any late
detection and manual resolutions of anomalous behavior in
systems may negatively impact cloud and Big Data systems
because they may cause prolonged performance violations
with a significant financial penalty [1] [2]. Therefore, perfor-
mance anomaly detection in cloud computing and Big Data
systems must be dynamic and proactive in nature [3].

Many effective solutions leverage the power of machine
learning techniques to identify security and performance
anomalies. These techniques offer the ability to quickly sift
through massive metric space to identify normal and anoma-
lous patterns [4]. Based on the nature of input data and
expected output, machine-learning algorithms are classified
into two main categories: supervised learning and unsuper-
vised learning [3]. Some machine learning techniques include
classification-based, neighbor-based, and clustering-based.

Classification techniques are a special case of supervised
learning. The aim of these techniques is to determine whether
the instances in a given feature space belong to a specific class
or to multiple classes [3]. There are well-known classification
techniques for anomaly identification, such as neural networks,
support vector machines, and Bayesian networks [5]. The clas-
sification technique is significantly affected by the accuracy
of the labeled data and algorithms that have been used. For
example, training and testing phases for decision trees are

usually faster than for support vector machines, which involve
quadratic optimization.

There are various popular open source distributed data-
processing frameworks related to Big Data technologies, such
as Hadoop MapReduce, Apache Storm, and Apache Spark.
Among these various Big Data technologies, in-memory pro-
cessing technology like Apache Spark has become widely
adopted by industries because of its speed, generality, ease
of use, and compatibility with other Big Data systems [6].
Although Spark is developing gradually, there are currently
still shortages in comprehensive performance analyses that
are specifically developed for Spark and are used to detect
performance anomalies [7]. The performance of in-memory
processing frameworks can vary considerably depending on
many factors, such as the type of input data, data size,
application design, system configuration, algorithms used, and
available computing resources [7] [8]. These factors make
anomaly detection more challenging, especially for critical
applications in such distributed systems. Therefore, there is a
challenging need to deeply investigate in-memory processing
technology like Spark performance bottlenecks and to pinpoint
the cause of a performance anomaly to improve it.

The main contribution of this paper is developing a neural
network based methodology for anomaly detection that is
able to improve the accuracy of anomaly detection based
on knowledge of the RDD characteristics. The conducted
experiments and results demonstrate that the proposed method
works effectively and efficiently with complex scenarios and
anomalies, such as CPU contention, memory contention, cache
thrashing and context switching anomalies. Compared with
other popular methods, the random instant and random du-
ration of anomalies did not impact the performance of our
proposed methodology.

The rest of the paper is organized as follows: some existence
works are discussed in Section II. Basic information about in-
memory Big Data technology is provided in Section III. The
methodology of this work is presented in Section IV, and the
evaluation of methodology is discussed in Section V. All the
experimental results and findings are presented in Section VI,
and Section VII gives the summary and future work.
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II. RELATED WORK

System performance is often described in terms of the time
taken to process some tasks or the set rate of tasks performed
with a given amount of computing resources that are consumed
within a given observation period [3]. With the growing com-
plexity and dynamicity of Big Data and cloud systems, failure
management requires significantly higher levels of automation
and attention [9]. Performance anomalies have become a major
concern for academic researchers of Big Data technologies
over cloud computing services. The ability to analyze data
is vital to the process of detecting anomalous behavior to
resilience in production systems in spite of noise or risks
arising in the production testbed (e.g., a cloud computing
environment). Anomalous performance can occur as a result of
service operator faults [10], software failures and user errors
[11], environmental issues, and security violations [3], among
others.

Many anomaly detection studies have been specifically
conducted for certain application domains, while others are
more generic. The survey in [12] extensively investigates
many techniques that have been developed in statistical anal-
ysis and machine learning domains, especially for anomaly
detection techniques. The study conducted in [13] provided
a structured and comprehensive overview of the research
on anomaly detection that grouped existing techniques into
different categories based on the underlying approach that they
each adopted.

Data mining and machine learning technologies have re-
ceived growing attention for performance anomaly detection
and diagnosis by the research community. Based on the nature
of the input and the expected output, supervised learning or
unsupervised learning may be used. A basic anomaly detection
system observes the performance behaviors of the targeted
system to collect measurements to generate essential profiles
about normal system performance [3]. This observation will
continue to detect any undesirable deviation or anomaly in
performance and apply a root cause analysis to pinpoint causes
of a performance anomaly due to internal or external faults.

Machine learning classification techniques are used to clas-
sify an input features into predefined classes of items in order
to construct a classifier that can predict the class of each item
in the dataset according to the class labels of this dataset.
There are well-known classification techniques for anomaly
identification, such as neural networks, decision tree, nearest
neighbor, support vector machines, and Bayesian networks [5].
The classification technique is significantly affected by the
accuracy of the labeled data and algorithms that have been
used.

In a supervised learning technique, the training dataset
is assumed to be available for use and contains correctly-
labeled instances to distinguish between anomalies and normal
classes. An example of a supervised technique is used in [14].
According to Gu and Wang [14], a stream-based anomaly
behavior-detection technique for online application has been
used to detect anomaly indications that relate to performance

anomaly root localization. They apply Bayesian classification
methods to detect an anomaly and its root. In addition, the
authors [14] apply Markov models to detect the change in the
patterns of different measurement metrics.

The local outlier factor (LOF) algorithm is a type of
neighbor-based technique of an unsupervised learning algo-
rithm. The LOF algorithm was employed to detect anomalous
behavior in cloud computing systems in [15]. The main idea is
to identify anomaly by comparing the density of each instance.
Any instance in low density is considered an anomaly. To
improve performance anomaly detection, the LOF requires a
significant effort in collecting a complete training dataset of
normal behavior for applications over cloud computing before
the detection phase. This dataset is sometimes unavailable over
online applications. Therefore, the authors [15] use an adaptive
anomaly detection scheme for a cloud system based on the
LOF.

Backpropagation neural network is a popular technique
for many classification problems. This is because the neural
network is a data-driven self-adaptive method that can adjust
itself to the datasets without requiring knowledge about the
distribution or function of the used model [16]. Another
reason for the using neural network is that it has the ability
to approximate any function with arbitrary accuracy. This
has caused the neural network to be considered a universal
functional approximation [16].

Learning and generalization are considered to be the most
prominent topic in the neural network. Learning refers to
the ability to approximate the underlying adaptive behavior
from the training dataset. The generalization is one of the
main advantages of using the neural network, which offers the
ability to generalize the network by classifying (predicting) the
class of the input dataset from the same classes of the training
dataset, even if that input item has never been seen before [16].
This feature allows the classifier to achieve a desired accuracy
level when classifying new or unknown objects.

While anomaly detection studies have been conducted in
the literature for many purposes, there are not enough research
studies that address anomaly detection and prediction issues,
especially for in-memory Big Data technologies, such as
Apache Spark.

III. BACKGROUND ON APACHE SPARK

Apache Spark is a large-scale in-memory processing tech-
nology that can support both batch and stream processing data,
which can make it easy with a low cost to support different
types of workloads on the same engine in a production
environment [6]. This type of system is an example of a micro-
batch system. Spark offers general solutions for different data
processing types and it provides built-in tools to support other
services, such as graph analysis and machine learning. The
main goal of Apache Spark is to speed up the batch processing
of data by utilizing in-memory computation. According to
Apache Spark, Spark can be up to 100 times faster than
Hadoop MapReduce for in-memory analytics [6].
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Apache Spark provides a general purposes engine for differ-
ent kinds of computation, including iterative algorithms, job
batches, streaming, and interactive queries. These different
types of computation were previously difficult to find sup-
ported altogether in the same distributed system [17]. Beyond
the ability to perform batch and stream processing, Apache
Spark also has a rich library that is built on top of Spark core
engine [18].

Fig. 1. Spark Application Components

1) Apache Spark Application Architecture: Running Spark
application involves five main components, including driver
programs, cluster managers, worker nodes, executor processes,
and tasks as shown in Fig.1. The Spark application runs as an
independent set of processes on a cluster and coordinates by
an object called SparkContext. This object is the entry point
to Spark, and it is created in a “driver program”, which is
the main function in Spark. In cluster mode, SparkContext
has the ability to communicate with many cluster managers
to allocate sufficient recourses for the application. The cluster
manager can be Mesos, YARN, or a Spark stand-alone cluster
[6].

2) Resilient Distributed Datasets: The anomaly detection
method we propose performs in its most effective instantiation
anomaly detection at the level of Spark’s Resilient Distributed
Datasets (RDDs). We thus briefly overview the main features
of these data structures and their relationship to the job
execution flow within Spark.

The RDD is Spark’s core data abstraction. It is an immutable
distributed collection of objects that can be executed in par-
allel. It is resilient because an RDD is immutable and cannot
be changed after its creation. An RDD is distributed because
it is sent across multiple nodes in a cluster. Every RDD is
further split into multiple partitions that can be computed on
different nodes. This means that the higher the number of
partitions, the larger parallelism will be. RDD can be created
by either loading an external dataset or by parallelized an
existing collection of objects in their driver programs. One
simple example of creating an RDD is by loading a text file
as an RDD of string (using sc.textFile()) [6].

Every Spark application (e.g., Fig.2) consists of jobs
(Fig.3(a)), and each job is further divided into stages (Fig.3(b))
that depend on each other. Each stage is then composed of
a collection of tasks (Fig.3(c)) [19]. A Spark job is created
when the action operation (e.g., count, reduce, collect, save,

etc.) is called to run on the RDD in the user’s driver program.
Therefore, each action operation on RDD in the Spark appli-
cation will correspond to a new job. There will be as many
jobs as the number of action operations occurring in the user’s
driver program. Thus, the user’s driver program is called an
application rather than a job. The job scheduler examines the
RDD and its lineage graph to build a directed acyclic graph
(DAG) of the stages to be executed [20].

Breaking the RDD DAG at shuffle boundaries will create
the stages. Each stage contains many pipelined RDD transfor-
mation operations that do not require any shuffling between
operations, which is called narrow dependency (e.g., map,
filter, etc.). On the other hand, the stages inside the single
job are divided into many stages, which depend on each other
when there are RDD transformation operations that require
shuffling which is called wide dependency (e.g., group-by,
join, etc.) [20]. Therefore, every stage will contain only shuffle
dependencies on other stages, but not inside the same stage.
The last stage inside the job generates results, and the stage
is executed only when its parent stages are executed. Fig.3(b)
shows how the job is divided into two stages as a result of
shuffle boundaries.

The stage scheduling is implemented in DAGScheduler,
which computes a DAG of stages for each job and finds a
minimal schedule to run that job. The DAGScheduler submits
stages as a group of tasks (TaskSets) to the task scheduler to
run them on the cluster via the cluster manager (e.g., Spark
Standalone, Mesos or YARN) as shown in Fig. 3(c).

The task in Apache Spark is the smallest unit of work
that is sent to the executor, and there is one task per RDD
partition. The dependencies among stages are unknown to the
task scheduler. Each TaskSet contains fully independent tasks,
which can run based on the location of data and the current
cached RDD. Each task is sent to one machine [19]. Inside a
single stage, the number of tasks is determined by the number
of the final RDD partitions in the same stage.

Fig. 2. Simple WordCount Example

IV. METHODOLOGY

The main goal of this research is to contribute to perfor-
mance anomaly detection for Big Data applications within
cloud computing. In this section, we present our neural net-
work driven methodology for anomaly detection in Apache
Spark environment. This methodology covers monitoring the
environment, model building, training, and testing.

A. Monitoring
The monitoring process is needed to observe the system to

identify the normal and anomalous behaviors. This includes
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(a) Type of dependencies: Narrow and Wide

(b) A job is divided into two stages, which second stage has wide
dependency on the first stage

(c) Stages are divided into tasks that are equal to the number of
partitions in the same stage.

Fig. 3. Simple DAG for WordCount example.

monitoring all machines and activities of that system. These
activities may be related to tasks, stages, jobs, CPU, memory,
network, I/O, etc. Many metrics can be collected, but it
is challenging to decide which metrics are more valuable
to assess system performance and pinpoint the anomalous
behaviors.

In the beginning, the utilizations of system resources were
measured at one-second intervals. The CPU measurements
were collected, which are summarized in Table I. After observ-
ing the Spark system, we notice that the memory performance
was noticeably impacted during the occurrence of different

types of anomalies. Therefore, some memory metrics were
also collected, which include the metrics in Table I.

Other performance data were collected from Apache Spark
log files to provide an understanding of how Spark works to
launch jobs and tasks to executors. This data contains compre-
hensive statistics about the Spark metrics, building upon the
list of metrics selected in [21], and includes information about
tasks, RDD, stages, jobs, and applications. The measurements
of the internal Spark metrics are summarized in Table I. All
data collection took place in the background without causing
any noticeable overhead on the Spark Cluster.

It is crucial to reduce the number of input features for the
classifier to achieve satisfactory accuracy with less amount of
computation in the model [16]. Therefore, the collected data
is pre-processed to eliminate any mislabeled training instances
and validate the datasets before passing them to the neural
networks to improve the quality of datasets. For example, any
metric is messing or any utilization measurements are larger
than 100% or less than 0% will be removed.

All the collected metrics are labeled either as normal or
anomaly before passing them as input to our anomaly detec-
tion method for training, validation, and testing. During the
experiment, Spark cluster is artificially injected by anomaly
and at the same time the comprehensive information about
anomaly is recorded for labeling purposes for training phase of
machine learning algorithms. This information about anoma-
lies includes start time, end time, and type of anomalies. These
labels are used to classify performance to be either a normal
or anomalous behaviors in the training phase of the neural
network. In cases where production data has known anomalies,
then such labeling step is not needed.

B. Build Model
We built our model using backpropagation neural networks

with scaled conjugate gradient for training process to update
weight and bias values according to the scaled conjugate
gradient method. To define a pattern recognition of anomalies,
the collected performance metrics (discussed in Section IV-A)
are arranged as input columns in a matrix. Then, the set of
labels is arranged in a matrix that has one column which
contains either 0 for normal or 1 for an anomaly.

Before we initiate the backpropagation process, we calculate
the activation values of units in the hidden layer and prop-
agating them to the output layer. Sigmoid transfer function
is used in the hidden layer to introduce nonlinearity in the
model of neural networks. Then the Cross Entropy is used
as a cost function to assess the network performance and
compare the actual output error results with the desired output
values (labeled data). The Cross Entropy is used because it
has practical advantages over other cost functions, such as
mean squared error. It can maintain the performance even for
problems with limited data [22].

Backpropagation algorithm is used to allow the information
about classification error to propagate back through the net-
work to compute the gradient. This provides a significant effect
of changing the weights and biases based on the behavior of
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TABLE I
LIST OF PERFORMANCE METRICS THAT ARE COLLECTED

Resources Metrics

CPU
• CPU utilization
• percentage of time that the CPUs were idle during

outstanding disk I/O request
• percentage of time spent in involuntary wait by the

virtual CPU
• percentage of time that the CPUs were idle

Memory

• kbmemfree: free memory in KB on hostname
• kbmemused: used memory in KB on hostname
• X.memused: used memory in % on hostname
• kbbuffers: buffer memory in KB on hostname
• kbcached: cached memory in KB on hostname
• kbcommit: commited memory in KB on hostname
• X.commit: commited memory in % on hostname
• kbactive: active memory in KB on hostname
• kbinact: inactive memory in KB on hostname
• kbdirty: dirty memory in KB on hostname

Spark Logs
• Stage info: Stage ID, Executor Deserialize CPU

Time, Executor Deserialize Time,
• Executor Run Time, Executor CPU Time, Finish

Time of stage, Launch Time of stage
• Task spill: Disk Bytes Spilled, Memory Bytes

Spilled
• Task shuffle read: Local Blocks Fetched, Local

Bytes Read, Remote Blocks Fetched, Remote Bytes
Read, and Fetch Wait Time

• Task Shuffle Write: Shuffle Write Time, Shuffle
Bytes Written

• Garbage Collection: JVM GC Time

network and cost function. Scaled conjugate gradient back-
propagation is used for training process to updates weight and
bias values according to the scaled conjugate gradient method.
The Scaled conjugate gradient training method is used because
it is much faster than standard gradient descent algorithms
[23].

C. Training
In training process, all the collected metrics of Spark tasks

and RDD have labels that specify if the task has been affected
by the injected artificial anomalies or not. These labels are
used to train the neural networks in detecting pattern of anoma-
lies based on knowledge of the tasks and RDD characteristics.
All the performance metrics about Spark RDD and tasks that
are discussed in Section IV-A will be passed as inputs to the
input layer of the neural network. The output layer on neural
network contains a single neuron because there is a single
target value that generates either 0 for normal behavior or 1
for anomalous behavior.

The input dataset to the model is divided into three subsets
for training, validation, and testing. The first subset is used
for calculating the gradient and updating the network weights
and biases. During the training process, the weights and
biases are constantly updated until the magnitude of scaled
conjugate gradient reaches the minimum performance gradient
or number of validation checks. Therefore, the training process

will stop if the magnitude of the gradient is less than 1e-5.
This is the default limit and it can be adjusted.

The second subset is used for validation purpose where the
error rate is decreased before overfit dataset by checking the
number of validation checks. The number of validation checks
is about the number of successive iterations that the validation
performance fails to decrease. By default, this number is set
to be 6. If the error rate is not decreasing for 6 successive
iterations, the training will enforce to stop. At this point,
we saved the weight and biases at the minimum error for
the validation subset. This method called early stopping [24].
This will avoid issues of overfitting dataset. The test subset is
independently used to assess generalization of the method.

D. Testing

We test our proposed model with new input dataset that was
collected from the system. This new dataset was manually
labeled in order to classify normal and anomalous behavior
of target system. With this kind of classification techniques,
accuracy is not a sufficient evaluation for a model with an
imbalanced class distribution of data [25]. Therefore, some-
times the accuracy estimation may not correctly reflect the
quality of the classifier. To avoid this issue, sensitivity and
precision measures are used to evaluate the anomaly detection
classifiers, which are standard metrics for quantifying the
accuracy of the classifiers [26]. The following are the anomaly
classification classes and their notations:

• True Positive (tp): The detection method correctly de-
tected anomaly

• True Negative (tn): The detection method correctly did
not detect anomaly when it did not exist.

• False Positive (fp): The detection method detected
anomaly when it does not exist

• False Negative (fn): The detection methods missed detec-
tion of an anomaly when it actually exists

R =
tp

tp+ fn
(1)

P =
tp

tp+ fp
(2)

F1 = 2
PR

P +R
(3)

Sensitivity is also called Recall, which assesses the quality
of a classifier in recognizing positive samples; it is defined
in (1). Recall will become high when the anomaly-detection
method can detect all anomalies. The second classification
performance metric is Precision, which quantifies how many
samples are classified as anomalies are indeed anomalies. This
is defined in (2). The Precision assesses the reliability of the
detection method when it reports anomalies [26]. The trade-
off between the Recall and Precision is F-Score, which is a
summary score, and it is computed as a harmonic means of
Recall and Precision. The F-Score metric is defined in (3).
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V. EVALUATION

In this section, we introduce an evaluation for our methodol-
ogy of performance anomaly detection for in-memory process-
ing big data technologies. This can be achieved by generating a
real workload with anomalies, collecting performance metrics,
applying anomaly detection technique, and evaluating the clas-
sification performance metrics to examine the efficiency of the
proposed solution. The rest of this section discusses in details
the experimental testbed, workload generation, performance
metrics collection, and evaluation of our anomaly detection
framework.

A. Experimental Testbed
The experiments were conducted on a cluster that contains

three physical servers, which are S01, S02, and S03. The
specifications for these servers are as follow:

1) Node S01: 16 vcorcs Intel(R) Xeon(R) CPU 2.30GHz,
32 GB RAM, Ubuntu 16.04.3, and 2TB Storage.

2) Node S02: 20 vcores x Intel(R) Xeon(R) CPU 2.40GHz,
32 GB RAM, Ubuntu 16.04.3, and 130 GB Storage.

3) Node S03: 16 vcores x Intel(R) Xeon(R) CPU 1.90GHz,
32 GB RAM, Ubuntu 16.04.3, and 130 GB Storage.

The Apache Spark is deployed on the cluster where S01
is a master and the other two servers are slaves (workers).
Spark was configured to use the Spark Standalone Cluster
Manager, 36 executors, FIFO scheduler, and a client mode
for deployment. Node S01 hosts the SparkBench benchmark
to generate the Spark workload and launch Spark jobs. Node
S02 is used to inject some anomalies and contentions into
the Apache Spark computing environment. To inject these
anomalies, some open source tools have been used in our
experiments. These tools include stress and stress-ng. In
addition, many performance metrics have been collected from
the Spark cluster. We used the sar (System Activity Reporter)
monitoring tool to evaluate application performance. This tool
collects valuable performance data for CPU, memory, I/O, and
network. More information about the used benchmark and data
collection process is provided in Section (V-B), and Section
(V-C) respectively.

B. Benchmarks and Workload Generation
The effective use of benchmarks offers opportunities to

examine and understand the system performance and identify
potential areas for improvement and optimization. In general,
there are two categories of benchmarks that are framework
specific and multiple framework benchmarks. In our research,
SparkBench is used because it is designed specifically for
Spark to provide a comprehensive set of workloads and to
cover the four main categories of Spark application, including
graph computation, streaming, SQL query, and the machine
learning application.

SparkBench is being developed at the Spark Technology
Center at IBM. It is an open source benchmark, and it offers
many types of workloads, such as machine learning, graph
computation, and SQL queries. In our research, the KMeans
data generator is used to generate various KMeans datasets

with different sizes (e.g., 2 GB, 8 GB, 32 GB, and 64
GB). The KMeans workload has been intensively used in our
experiments with many different configurations of Spark and
SparkBench parameters to compare the performance results of
different scenarios.

SparkBench provides a reliable feature, which is called
workload suite [7]. This suite may include a collection of
one or many workloads that can be run either serially or
in parallel. Therefore, the user can effectively control the
level of workload parallelism to stress the Spark system. For
example, the user can run five KMeans workloads and two
linear regressions in parallel, then launch serially three SQL
workloads. Therefore, the user has the ability to chain together
different workloads with different parameter configurations
and use many levels of parallelism. This feature of parallelism
facilitates the job of developing simulations of a real-world
production environment.

C. Performance Data Collection
The performance metrics are collected from all the machines

in the Spark cluster using the sar open source monitoring tool
in Linux Sysstat package to measure the utilizations of system
resources at one second intervals. This tool collects valuable
performance data from CPU, memory, I/O, and network. The
CPU and memory measurements are discussed in Section
IV-A. All data collection took place in the background without
having any overhead on the Spark system.

In addition, Spark offers a configurable metrics system that
allows Spark users to report metrics to a variety of sinks,
such as HTTP, JMX, and CSV files. Corresponding to the
Spark components (workers, executor, etc.), Spark metrics are
separated in different instances. Each of these instances can
configure a set of sinks to which metrics are reported [6].
In addition, Spark also offers the ability to use different sets
from third-party tools to monitor applications using the metric
of the system [27], which can be used in the future.

VI. EXPERIMENTAL RESULTS
The experiments were conducted on a cluster (described in

Section V-A), which consisted of one master server (called S1)
and two slave servers (called S02 and S03). This cluster was
isolated from other users during the experiments. A physical
cluster was used instead of a virtual cluster to avoid any
possibility of deviations in measurements. This guarantees that
the contention on CPU, memory, and disk are caused from our
side, not from the contention that may occur among VMs in
the visualized environment.

The objective is to examine the performance metrics and
Spark RDD to detect performance anomalies in in-memory
big data framework. A series of experiments were conducted
on the Spark cluster to evaluate and address the following
research questions:

A. RQ1: How well does the method perform with different

time durations of anomalies?

To address this question, five experiments have been con-
ducted to examine the impact of disruption to CPU and mem-
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ory with a different time (continuous and 90sec stress). Only
S02 has been injected by 50% CPU and memory contentions.
There was no contention in the other servers in the cluster.
These experiments cover the following five scenarios that have
been examined:

1) Running the benchmark without any contention on CPU
and memory

2) Running the benchmark with continuous contention on
CPU by 50%

3) Running the benchmark with continuous contention on
memory by 50% of free memory

4) Running the benchmark with a short time (90 sec) of
contention on CPU 50%

5) Running the benchmark with a short time (90 sec) of
contention on memory by 50% of free memory

Fig. 4. Mean CPU utilization of S02 and S03

Fig.4 shows the mean CPU utilization of S02 and S03. Table
II shows the comparison of results among different contention
scenarios on S02. To detect the performance anomalies, CPU
metrics have been collected during the runtime of experiments.
Machine learning has been used to detect these anomalies. The
neural network has been applied with only CPU metrics, and
the performance metrics that quantify detection techniques are
summarized in Fig.5. CPU utilization of S02 with short 50%
CPU contention (90 sec) is shown in Fig.6.

Fig. 5. Performance metrics that quantify detection techniques in section
VI-A.

The memory contention for both scenarios (continuous and
90 sec) does not have visible effects on the mean CPU usage as
shown in Table II. The KMeens workload does not heavily use
memory. Therefore, short time memory contention (90 sec) has

not affected mean CPU utilization and has not been effectively
detected by the classifier, as it achieved 19.88% F-score. The
short time contention on CPU (90 sec) has been detected with
an F-score of 58.05%, whereas short time (90sec) contention
on memory has been misclassified with an F-Score of 19.88%.
This is because: 1) the neural network needs to train the
algorithm with a bigger dataset to detect memory contention.
2) short CPU contention ”90 sec” has a greater effect on
mean CPU utilization, which facilitates the detection of CPU
contention.

Fig. 6. S02 CPU utilization when single KMeans workloads run on S02 with
a short time of CPU 50% stress on S02

B. RQ2: How well does the method detect anomalies with

different types of performance metrics?

Two experiments have been conducted to examine anomaly
detection techniques using the same configuration of neural
networks in RQ1 (Section VI-A). In addition to the CPU met-
rics, more performance metrics related to memory (discussed
in V-C) were collected in order to optimize the performance
of anomaly detection methods. In the first experiment, a single
KMeans workload was run without any contention. In the
second experiment, a single KMeans workload was launched,
and the Spark cluster was injected with a continuous CPU
anomaly for the duration of the experiment.

The CPU and memory metrics have been collected to
apply the machine learning algorithms. After considering both
the collected memory and CPU metrics, the performance
metrics of F-Score increased to be (%99) for Neural networks.
Before adding the memory metrics to the anomaly detection
technique, the performance metrics was %77.44 for F-Score.
Therefore, the anomaly detection method for Apache Spark is
significantly enhanced by using performance metrics for both
the CPU and memory.

C. RQ3: How well does the method detect anomalies with

different parallelism and input data sizes of workloads?

In this section, two experiments have been conducted. Each
experiment runs ten parallel KMeans workloads at the same
time. Each workload has an input data size of 64 GB. The first
experiment was launched without injecting any contention to
the CPU, whereas the second experiment, a continuance 50%
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TABLE II
RUNNING SPARK KMEANS WORKLOAD WITHOUT CONTENTION, WITH CONTINUOUS 50% CPU STRESS, WITH 90 SEC 50% CPU STRESS, WITH

CONTINUOUS 50% MEMORY STRESS, AND WITH 90 SEC 50% MEMORY STRESS ON ONLY S02.

Server Stress MeanCPU SD Pr95 Pr99 Iqr UsedMem ExeTimeSec
S01:Non NO 0.0203 0.0389 0.0950 0.2147 0.0177 89.3239 295.0000

S01:CPU50% NO 0.0174 0.0308 0.0663 0.1646 0.0176 89.5402 567.0000
S01:CPU50%90s NO 0.0210 0.0359 0.0874 0.2166 0.0218 89.8094 376.0000

S01:Mem50% NO 0.0205 0.0376 0.0768 0.2346 0.0211 90.0187 326.0000
S01:Mem%90s NO 0.0193 0.0356 0.0715 0.2094 0.0190 90.2926 355.0000

S02: Non No 0.8776 0.1849 0.9519 0.9561 0.0304 81.2464 295.0000
S02:CPU50% Yes 0.9510 0.0701 0.9799 0.9833 0.0158 81.7595 567.0000

S02:CPU50%90s Yes 0.9152 0.0806 0.9693 0.9748 0.0315 81.9844 376.0000
S02:Mem50% Yes 0.8656 0.1880 0.9479 0.9527 0.0318 93.2561 326.0000

S02:Mem50%90s Yes 0.8770 0.1825 0.9513 0.9574 0.0337 85.0864 355.0000
S03: Non NO 0.4488 0.4443 0.9489 0.9550 0.9271 90.0702 295.0000

S03:CPU50% NO 0.2231 0.3719 0.9361 0.9504 0.3580 90.4513 567.0000
S03:CPU50%90s NO 0.2649 0.3572 0.8831 0.9356 0.6816 91.1414 376.0000

S03:Mem50% NO 0.4129 0.4357 0.9422 0.9507 0.9115 91.2038 326.0000
S03:Mem50%90s No 0.3760 0.4310 0.9402 0.9506 0.8914 91.3892 355.0000

CPU contention, was injected in S02. The parameters of two
experiments were configured, as shown in TableIII.

TABLE III
CONFIGURATION OF SPARK WORKLOAD FOR EXPERIMENT FOR RQ3.

Exp # Contention Data size K Seed Parallelism
1 No Contention 64GB 2K 127L Yes
2 50% CPU Contention 64GB 2K 127L Yes

Each experiment took approximately 17 hours for execution.
In order to compare the proposed anomaly detection method,
three machine learning algorithms have been applied to detect
performance anomaly. These algorithms include neural net-
works, decision tree, and nearest neighbor. Fig.7 depicts that
the neural network has the highest F-score, and it selectively
detects the anomalies in the Apache Spark cluster. The nearest
neighbor is the second highest F-score, then the decision
tree. Regarding the time it takes to apply each algorithm,
the neural network, decision tree, and nearest neighbor took
approximately 1 min, 3 min, and 9 min, respectively. The
neural network is more effective than the other algorithms. The
results in Fig.7 prove that the three algorithms were affected
by the size of the input data to workloads when the input
data were increased to 64 GB. The neural network is affected
by 1%, decision tree by 6%, and nearest neighbor by 4%.
Moreover, there were no significant effects of parallelism on
neural networks for detecting the anomalies in Apache Spark
cluster.

D. RQ4: To what extent can the detection method identify

anomalies with random occurrence and duration?

To have more complex and realistic experiments, three
experiments with three different type of anomalies were in-
jected into the Spark cluster with random instant and random
duration from 0sec to 240sec. These anomalies include CPU,
cache thrashing and context switching. For the cache thrashing
scenario, many processes were launched to perform random
wide spread memory read and writes to thrash the CPU cache.
In order to inject context switching anomalies, many processes

Fig. 7. Performance metrics for machine learning algorithms with 50%CPU
contention on only S02

were launched to force context switching. The three exper-
iments have been conducted to examine anomaly detection
techniques using the same configuration Spark workload in
Table III.

This time, more performance data about the internal metrics
of Spark were collected from Apache Spark log files. This
includes information about RDD, tasks, stages, jobs, and ap-
plications (discussed in Section IV-A). Two machine learning
algorithms were used to compare the performance of detection
methods. These algorithms include neural networks and near-
est neighbor. Fig.8 shows performance metrics of F-score for
neural networks and nearest neighbor for anomaly detection.
From Fig.8, it clear that the neural networks outperform the
nearest neighbor algorithm in detecting all the three types of
anomalies. Therefore, the random instant and random duration
of the three types of anomalies did not impact the performance
of neural networks compared with the nearest neighbor.

VII. CONCLUSION

This paper provides a challenging case of utilizing the
anomaly detection techniques in a complex Big Data and
cloud computing environment. Among the various Big Data
technologies, in-memory processing technology like Apache
Spark has become widely adopted by industries. Although
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Fig. 8. F-score performance metrics of neural networks and nearest neighbor
for anomaly detection techniques

Spark is developing gradually, currently there are still short-
ages in comprehensive performance analyses that specifically
build for Spark and are used to detect performance anomalies.
This paper focuses on addressing the challenge of detecting the
anomalies by developing a neural network based methodology
for anomaly detection that is able to improve the accuracy of
anomaly detection based on knowledge of the RDD character-
istics. Compares with CPU contention, the memory contention
does not have visible effects on the mean CPU usage in
the Spark cluster. The anomaly detection method for Apache
Spark is significantly enhanced by using performance metrics
for both the CPU and memory of Spark cluster. In addition,
there were no significant effects of parallelism on detecting the
anomalies in Apache Spark cluster using the neural networks.
The conducted experiments and results demonstrate that the
proposed method works effectively for complex scenarios and
anomalies, such as CPU contention, cache thrashing and con-
text switching anomalies. Moreover, the random instant and
random duration anomalies did not impact the performance of
our proposed solution.

Future work will focus on extended evaluation of an accu-
rate anomaly detection technique that can continuously learn
from the Spark environment about the new types of anomalies
that may affect Spark performance. Therefore, Deep Learn-
ing techniques will be explored to obtain efficient solutions
using supervised and unsupervised machine learning for in-
memory frameworks. Deep Learning will be used to learn
more complex features from the performance metrics of the
Spark system, which can lead to more accurate detection and
prediction of critical anomalies.
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Data-intensive applications have attracted considerable attention in re-

cent years. Business organizations are increasingly becoming data-driven

and therefore look for novel ways to collect, analyze, and leverage the data

at their disposal. The goal of this chapter is to overview some recurring per-

formance management activities for data-intensive applications, examining

the role that AI and machine learning are playing in enhancing practices

related, among others, to configuration optimization, performance anomaly

detection, load forecasting, and auto-scaling for this class of software sys-

tems.

Keywords: Performance management, AI, Data-intensive applications,

batch analytics, streaming
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1.1. Introduction
In recent years, the prominence of Big data has led to a growth in interest for

developing intelligent data-intensive software systems in several application

domains. Data-driven systems that can extract knowledge, plan, and adapt to

events through processing, transformation, and analysis of datasets are thus

increasingly widespread in both industry and society.

From a technical standpoint, data-driven software systems are often built

by leveraging features such as batch analytics or streaming, now easily pro-

grammable through in-memory platforms such as Apache Spark, Hadoop/MapRe-

duce, Storm, Flink, among others. We outline popular data processing plat-

forms in Section 1.2. Although the combination of batch and streaming work-

loads enables richer functionalities, workload heterogeneity also means that

achieving service levels objectives presents additional complexity in pinpoint-

ing causes of performance degradation and identifying tunings to address them.

For example, performance metrics in data-driven software are di�cult to pre-

dict as they often depend on data properties, such as volume or velocity, and

frequently even on data type and content, making it di�cult to reason about

and tune system performance at design time. Furthermore, the combination of

batch and streaming features in a software means that di↵erent system com-

ponents will strive to achieve di↵erent performance goals, i.e., high-throughput

and high-utilization for analytics features and low-latency for stream processing

operators, making the process of runtime performance tuning a fairly hetero-

geneous and complex exercise.

To support these challenges, the goal of this chapter is to overview AI

management techniques that are available in the literature to manage and tune

the performance of data-intensive applications. AI methods o↵er considerable

2



simplicity and flexibility in choosing the features that drive the management

process, in spite of some opaqueness in presenting the way the models reach

decisions.

Compared to traditional management methods, which either leverage low-

level system characteristics or use mathematical modeling abstractions, AI

management methods leverage learning on experimental datasets that reduce

dependence on assumptions and shift the attention from conceptual modeling

to data-collection and model training. This o↵ers considerable potential to in-

crease the e↵ectiveness of management methods in situations where the system

behaves according to complex and unpredictable logic, as it is often the case

for systems driven by external data.

Summarizing, in this chapter we examine the applicability of AI methods

in the context of data-intensive applications. We survey in particular stud-

ies that illustrate the versatility of AI models when applied to popular data

streaming and batch analytics platforms. Our aim in particular is to cover a

broad spectrum of AI methods, in order to inform the reader on the range of

learning techniques that may be applicable to recurring management problems

involved in data-driven systems. We look at common management tasks such

as platform configuration, workload forecasting, resource scaling, monitoring

and detection of performance anomalies. We also give selected examples to

build an intuition on their behavior, benefits and limitations.

1.2. Data-processing frameworks
In this section, we overview the essential features of common execution plat-

forms in use to define data-intensive applications. A summary of the key char-
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Table 1.1: Summary of the key characteristics of data-processing
platform.

Workloads Processing style

Platform Batch Streaming In-Memory Disk-heavy

Storm X X
Hadoop/MR X X
Spark X X X
Flink X X X

acteristics of each platform is shown in Table 1.1. The section also highlights

core performance management challenges associated to each of these platforms.

1.2.1. Apache Storm

Apache Storm1 is a popular open source platform used for distributed real-time

stream processing. The platform o↵ers very low latency for dataflow processing,

making it an ideal option for real time processing Toshniwal et al. [2014].

Storm dataflow topologies involves two main node types: spouts and bolts. A

spout is the source of the data stream at the input queue and may generate

data by itself Shahrivari [2014]. A bolt instead consumes the stream, operates

transformations or computations, and ultimately produces an output stream

as a result. Every task corresponds to one operating system thread.

Performance management of Storm applications frequently involves di�-

cult decisions concerning optimal configuration options for spouts and bolts,

ranging from decisions concerning bu↵er, message, and batch sizes, number of

bolts, and selection of optimal waiting strategies. There is a limited under-

standing of the interplay between these parameters, posing intrinsic challenges

1http://storm.apache.org/
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for optimal system configuration. Moreover, the Storm system does not auto-

matically manage load balancing and resource scaling, thus requiring ad-hoc

performance management techniques.

1.2.2. Hadoop MapReduce

Hadoop implements the MapReduce paradigm and it is a well-known exam-

ple of batch processing platform. It is used for intensive Big Data applica-

tions starting from a single server and can scale up to thousands of machines

2.Usually, MapReduce uses an existing dataset that is stored in Hadoop Dis-

tributed File System (HDFS) before beginning to process batch data. Process-

ing with native Hadoop can be paused or interrupted, but the dataset cannot

be modified. This means that if current data is changed for any reason, the job

needs to be run again.

Despite distinctive challenges arise in the area of optimal configuration of

Hadoop platforms, over the years performance management has insisted in par-

ticular on the problem of detecting and handling straggler tasks, which falls

into the general problem area of performance anomaly detection and mitiga-

tion. This is a result of the synchronizations between dataflow tasks that can

block progress until straggler tasks complete their activities.

2https://hadoop.apache.org/
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1.2.3. Apache Spark

Apache Spark3 is a large-scale in-memory processing framework that can sup-

port both batch and stream data processing, which can make it easy with a low

cost to support di↵erent types of workloads on the same engine in a production

environment, such as those arising from graph analysis and machine learning

applications. Compared to older solutions such as Hadoop, the main goal of

Apache Spark is to speed up batch processing by utilizing in-memory compu-

tation. Thanks to a reduced use of intermediate storage of processing results,

Spark is orders of magnitude faster than Hadoop for in-memory analytics.

Spark can be deployed over Hadoop as an alternative to MapReduce, as

well as on Amazon EC2, Apache Mesos, or as a standalone cluster. In addition,

it can access many data sources, including HDFS, Cassandra, HBase, Hive,

Tachyon, and any Hadoop data source. Spark provides a general purpose engine

for di↵erent kinds of computation, including iterative algorithms, job batches,

streaming, and interactive queries. These di↵erent types of computation were

previously di�cult to find in the same distributed system Karau et al. [2015].

Beyond the ability to perform batch and stream processing, Spark also provides

a rich library that is built on top of its core engine Meng et al. [2016].

In terms of performance management, Apache Spark has around 200 com-

plex parameter configurations (e.g., executors, CPU cores, memory, shu✏e

behavior, compression), which may significantly impact the overall Spark sys-

tem performance Herodotou et al. [2020]. The microarchitectural behaviors of

Spark are di↵erent from those of other Big Data technologies. The Spark core

data abstraction is the Resilient Distributed Dataset (RDD), which cannot be

3https://spark.apache.org/
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modified and RDD can be executed in parallel on di↵erent nodes. In addition,

Spark needs more advanced auto tuning solutions to boost its performance

within production environment. Therefore, precisely performance management

to optimally manage and auto-tune Spark is needed to increase the performance

e�ciency of such a complex system and immediately gain advantages of cost

and time saving.

1.2.4. Apache Flink

Apache Flink Carbone et al. [2015] is another open source distributed pro-

cessing engine designed for low-latency streaming computation. Analogously

to Spark, Flink relies on in-memory computation and provides a unified API

for processing both bounded and unbounded datasets. However, di↵erently

from Spark, where batching has a primary role, Flink has been designed with

streaming in mind. Indeed, Flink applications are built upon the concepts of

streams and transformations. Streams represent (possibly unbounded) data

flows, while transformations are operations that, given one or more streams as

input, output one or more streams as the result (e.g., filtering). A few higher-

level libraries are built on top of these abstraction, easing the definition of

common processing use cases (e.g., complex event processing, graph analyt-

ics).

At runtime, Flink applications are mapped to streaming dataflows, DAGs

composed of processing nodes (often called operators), which implement trans-

formations, connected by streams. For execution, Flink leverages a distributed

architecture, designed according to the master-worker pattern. The master

component is the JobManager, which coordinates distributed execution and
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is responsible for application scheduling, checkpointing, and recovery in case

of failure. The TaskManagers (i.e., the workers) execute the application tasks

(i.e., instances of operators) and manage the data transfers between them.

Performance management of Flink applications, which are often long-running,

mainly involves runtime deployment and resource adaptation. First of all, vary-

ing infrastructure conditions may require migrating operator tasks between

computing nodes during execution. Flink supports migrating both stateless

and stateful tasks through the savepoint mechanism, which ensures no loss of

information. Moreover, workload variability requires dynamically scaling the

parallelism of Flink applications and balancing the load across the cluster to

keep consistent performance levels over time. To this end, load prediction tech-

niques can be helpful to proactively adapt application configuration.

1.3. State of the art
We review in this section the existing techniques for dealing with the most

relevant performance management issues in the context of data-intensive ap-

plications, with particular emphasis on AI-based approaches.

1.3.1. Optimal configuration

As a consequence of the availability of numerous configuration parameters,

their optimization is a critical task in the domain of data-intensive systems. The

goal of configuration optimization is to find the ideal configuration with respect

to the system performance. Various automated parameter tuning methods have

been proposed in the literature, which are discussed in the following sections .
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1.3.1.1. Traditional approaches

Gunawan and Lau [2011] propose a parameter tuning framework based on De-

sign of Experiments (DOE) approach. Their goal is to find an initial range of

parameter values for automated tuning using a factorial experiment design to

screen and rank all the parameters, so as to focus the search on the most in-

fluencing parameters. In addition, Gunawan and Lau [2011] examine Response

Surface methodology, which is a model-based approach within DOE that can

be used to quantify the e↵ect of each parameter to find the most promising

initial range for the vital parameter values. Their approach can be integrated

with existing automated parameter tuning configuration, called ParamILS and

Randomized Convex Search (RCS). Their method seams promising for both

discrete and continuous parameter configuration settings.

Shi et al. [2014] introduce MRTuner from IBM, which is a tool to enable

holistic optimization for MapReduce jobs. Their design uses an e�cient search

algorithm (Grid-based Search) to find the optimal execution plan. Around

twenty configuration parameters are investigated to understand the relation-

ships that have a noticeable impact on MapReduce performance. The tool is

evaluated using HiBench on two Hadoop clusters. Their results show MRTuner

has low latency and can find accurate execution plans.

Bilal and Canini [2017] examine an automatic parameter tuning framework

for stream processing platforms. Gray-Box, Black-box analysis, and a rule-

based optimization method are combined, and configuration parameters are

initialized using Latin Hypercube Sampling. Hill Climbing Algorithm is used

to explore the configuration space. Bilal and Canini [2017] evaluate using three

benchmark applications within the Apache Storm streaming system. They find

that rule-based can converge up to five times faster than other approaches,
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making it suitable for parameter tuning within stream processing platforms.

1.3.1.2. AI approaches

Amachine learning approach is used by Chen et al. [2015] to appropriately tune

configuration parameters of Hadoop. Their approach has two stages, which are

the prediction stage to estimate the performance of a MapReduce job and the

optimization stage to repeatedly search for the optimal configuration param-

eters. The authors claim that their method can improve Hadoop performance

up to eight times compared with traditional methods.

Wang et al. [2016] introduce a parameter tuning method based on binary

classification and multi-classification for Apache Spark systems. Decision trees

are used for auto-tuning of configurations with four di↵erent types of work-

loads, which are Sort, Wordcount, Grep and NavieBayes workloads from Big-

DataBench benchmark. Their experimental results show that the proposed

method can improve Spark performance on average by 36% compared to de-

fault Spark configuration.

Hernández et al. [2018] optimize parallelism for data-intensive platforms

using machine learning. They use Boosted regression trees are used as the

authors claim that they have the lowest variance compared with other algo-

rithms. In addition, they argue that decision trees are interpretable, which

means that it is possible to quantify the impact of collected features on the

overall performance. They evaluate proposed solution using a benchmark of

15 di↵erent Spark applications running on YARN. The results show that their

task parallelization method is capable of improving the performance of Spark

by 51%.

Bayesian Optimization (BO) is an e↵ective and e�cient method for auto-

10



tuning systems and machine learning algorithms. Joy et al. [2016] propose a

framework that uses BO to tune hyperparameters of data-intensive applica-

tions. Their idea is dividing the data into small chunks with the same size to

boost the search by applying BO tuning in parallel. To validate the performance

of their framework, they use the proposed method to tune two machine learn-

ing algorithms, Deep Neural Networks (DNN) and Support Vector Machines

(SVM). BO o↵ers e↵ective hyperparameters tuning with less computational

overhead.

Jamshidi and Casale [2016] tackles the challenging issue of finding opti-

mal configurations for a data-intensive streaming system by proposing auto-

tuning methods that can help systems administrators to determine the near-

optimal configurations with a limited budget of experiments. Their solution

revolves around BO for configuration optimization, which utilizes Gaussian

Processes (GP) to continuously capture posterior distributions of configura-

tion space for the application. Their method works in a way that the optimal

configurations will eventually be discovered. The authors validate the proposed

method using a Storm clsuter in the cloud.

Yigitbasi et al. [2013] examine and explore a machine learning model to

tune the configuration parameters of Hadoop and MapReduce. They use Sup-

port Vector Regression (SVR) to a smart search algorithm in terms of the

e↵ectiveness of parameter space exploration. Their results show that SVR ob-

tains higher accuracy than Starfish auto-tuner, which uses a cost-based search

model.

Liao et al. [2013] illustrate that the Hadoop platform has hundreds of config-

uration parameters that have very complicated interactions. This wide config-

uration space makes it time-consuming for system administrators to optimally
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tune the Hadoop parameters. They provide an evaluation to automate the tun-

ing process of Hadoop based on a cost-based and machine learning approach

(neural network, SVR, multiple linear regression, and decision trees).

Di Sanzo et al. [2012] provide a study about auto-tuning cloud-based in-

memory transactional data grids configuration by using a machine learning

black-box approach. They use artificial neural networks (ANN) to optimize

the dynamic selection of the amount of cache servers and the replication level

of data objects to reduce the cost of cloud system operations. They conduct

preliminary experiments based on a synthetic benchmark and a real data grid

system that is run on Amazon EC2 virtual servers. The authors conclude that

the ANN-based approach is e↵ective for tuning transactional data grids. There

are some additional works related to optimal configuration using CART tree

Nguyen et al. [2018], long short-term memory (LSTM) Fang et al. [2019], re-

gression trees, nearest neighbor Berral et al. [2015], and reinforcement learning

Peng et al. [2017].

1.3.1.3. Example: AI-based optimal configuration

In this section, we illustrate the e↵ectiveness of BO for finding optimal con-

figurations by searching through the configuration space. The goal of BO is

to utilize the prior knowledge and evidence to optimize the posterior at each

evaluation step, to reduce the gap between the actual global optimization and

expected optimization for the model Brochu et al. [2010]. Compared with tra-

ditional search algorithms (grid search, random search and manual tuning),

Alnafessah and Casale [2020] show that how BO can facilitate parameter tun-

ing with more parameters and fewer number of experiments to find optimal

configurations.
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Figure 1.1: Comparison between Bayesian Optimization and Random Search to

reach the highest F-score

BO is an ideal choice to find the optimal training dataset size and config-

uration parameters to e�ciently and e↵ectively train the anomaly detection

model to achieve high F-score in a short period of time. Before applying BO,

there are two main choices that need to be carefully make, which is the prior

over functions and type of acquisition function Snoek et al. [2012]. We use

Gaussian Processes (GP), which are stochastic processes defined by the prop-

erty that any finite set of N points induces a multivariate Gaussian distribution

Snoek et al. [2012], Shahriari et al. [2015]. They are are e�cient for uncertainty

estimation. We use the Expected Improvement acquisition function that Snoek

et al. [2012] provide for configuration space with high uncertainty and high

estimated value to evaluate a point x to sample based on the posterior distri-

bution function to guide exploration. It can trade-o↵ between exploration of

the configuration search space and exploitation of current promising subspace.

Figure 1.1 shows a comparison between BO and random search in achiev-

ing the high performance training of the machine learning algorithm (ANNs
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in our case) to e�ciently detect anomalies (CPU, Cache Thrashing, and Con-

text Switching) within Apache Spark Streaming datasets that Alnafessah and

Casale [2020] provides with predefined F-score. For CPU anomaly detection,

the BO can optimally train the anomaly detection model using 10 combina-

tions of configurations, whereas the random search needs 14 combinations of

configurations on average. In addition, BO outperforms the random search in

training the AI model for detecting CPU, cache and context switching anoma-

lies.

1.3.2. Performance anomaly detection

System performance is often described in terms of the time taken to process

a set of tasks with a given amount of computing resources that are consumed

within a given observation period Ibidunmoye et al. [2015]. The growing com-

plexity and dynamicity of cloud systems and data-intensive technologies re-

quires significantly higher levels of automation and significant attention Fu

[2011]. Performance anomalies have become a major concern for developers

and academic researchers particularly for Big Data and Artificial Intelligence

technologies over cloud computing systems. Anomalous performance can occur

as a result of service operator faults Oppenheimer et al. [2003], system failures,

user errors Pertet and Narasimhan [2005], environmental issues, and security

violations Ibidunmoye et al. [2015], among others.

Many anomaly detection studies are generic, while others are specifically

conducted for certain application domains (e.g., data-intensive applications,

networking, web based application, etc). There are studies that provide an

overview about techniques that have been developed in traditional statistical
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Figure 1.2: A taxonomy of anomaly detection techniques generalizing the ones in

Sebestyen et al. [2018], Hodge and Austin [2004], Chandola et al. [2009].

approaches and machine learning techniques for anomaly identification Hodge

and Austin [2004], Chandola et al. [2009], Ibidunmoye et al. [2015]. Figure 1.2

shows a taxonomy of existing anomaly detection techniques that is build on

common taxonomy based on Sebestyen et al. [2018], Hodge and Austin [2004],

Chandola et al. [2009].

1.3.2.1. Traditional approaches

Statistical techniques are the earliest approaches used for performance anomaly

detection. Lu et al. [2017] use a statistical o✏ine approach to detect abnormal

Apache Spark tasks and analyze the root causes based on statistical spatial-

temporal analysis. They use some features related to execution time, memory

usage, garbage collection, and data locality of each Spark task to determine the

degree of abnormal tasks. They use mean and standard deviation of all tasks

in each stage to decide the threshold and to get information about macro-

awareness on the task execution time. They analyze performance issues using
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factor combination criteria for every performance anomaly based on weighted

factors. They validate their method on a private Spark cluster and SparkBench

Li et al..

Kelly [2005] examines how to get insights about performance issues of glob-

ally distributed systems using simple queueing theoretic observations together

with standard optimization methods. The author obtain extensive empirical

results from three distributed commercial production systems that serve real

customers.

Yang et al. [2007] propose an anomaly detection and diagnosis solution

within grid environments using statistical and signal processing approaches.

Their work extends the traditional window-based strategy by using signal pro-

cessing to filter out recurring background variations and determine which re-

source is the probable cause of an anomalous performance in a system. They

use window averaging, which is a widely used statistical anomaly identifica-

tion technique because it is simple and e�cient. The anomalies are injected into

three grid systems (Cactus, GridFTP, and Sweep3d) at random time intervals.

1.3.2.2. AI approaches

Research on automated anomaly detection is essential in practice because any

late detection or slow manual resolution of performance anomalies in a real

production environment may cause prolonged service-level agreement viola-

tions and significant financial penalties Dean et al. [2012], Tan et al. [2012].

This leads to a demand for performance anomaly detection solutions in cloud

computing and data intensive systems that are both dynamic and proactive

in nature Ibidunmoye et al. [2015]. The need to develop these methods for

production environment with very di↵erent characteristics means that AI is
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ideally positioned for system diagnosis to automatically identify performance

anomalies. These techniques provide the capability to quickly learn baseline

performance characteristics through a large monitoring metrics space in order

to distinguish normal and anomalous patterns Rogers and Girolami [2016].

Classification techniques aim to determine whether the instances in a given

feature space belong to a particular class or multiple classes Ibidunmoye et al.

[2015]. There are popular classification techniques for anomaly identification,

such as ANNs, SVM, and nearest neighbor. The classification technique is sig-

nificantly a↵ected by the accuracy of the labeled data and algorithms that have

been used. For example, the training and testing processes for decision trees

algorithms are usually faster than SVM, which involve quadratic optimization.

Alnafessah and Casale [2018] propose an ANN-driven methodology for

anomaly identification, particularly for Apache Spark. The authors use a ma-

chine learning approach to quickly sift through Spark logs and system monitor-

ing metrics to precisely detect and classify anomalous behaviors. The authors

evaluate the proposed method against three popular machine learning algo-

rithms, decision trees, nearest neighbor, and SVM, as well as against four dif-

ferent monitoring datasets. Their results show that the recommended method

has ability to classify overlapped anomalies and outperforms other methods

by obtaining 98%-99% F-scores, and o↵ering much higher performance than

alternative techniques to detect both the period in which anomalies occurred

and their type.

Lu et al. [2018] utilize convolutional neural networks (CNN) for perfor-

mance anomaly diagnosis for Big Data system logs, and specifically for the

Hadoop Distributed File System (HDFS) logs. They implement the proposed

model with di↵erent filters to automatically train model on the relationships
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among events. The CNN is configured to have logkey2vec embeddings, three 1D

convolutional layers, dropout layer, fully connected softmax layer, and max-

pooling. The authors provide a comparison between CNNs and other well-

known networks such as Long Short Term Memory networks (LSTM) and

Multilayer Perceptron (MLP). The experimental results show that the CNN

model is more accurate and faster in detecting anomalies than LSTM and MLP

for HDFS logs.

Fulp et al. [2008] predicting system failures using Support Vector Machines

algorithm (SVM) for binary classification based on system log files. The pro-

posed approach utilizes advantages of the sequential nature of logs and uses

use a sliding window of messages to predict the likelihood of system failure

within that has 1024 computing nodes. The SVM associates the messages to

a class of normal or abnormal event. Their results show that the proposed

solution can predict hard disk failure with 73% accuracy. Fu et al. [2012] pro-

pose a hybrid anomaly identification Framework using one-class and two-class

SVM algorithms. They claim that their approach does require prior knowl-

edge about system failure history and o↵ers self adapt learning from observing

system failure within cloud environment.

There are several other studies in the literature that deal with stragglers.

Yadwadkar and Choi [2012] introduce a proactive straggler avoidance regres-

sion decision tree model that periodically learns correlations between node

level status and task execution time for MapReduce logs. The authors jus-

tify the choice of regression trees by showing the fast prediction of stragglers.

They apply their method on a trace from Facebook Hadoop system and Berke-

ley EECS department’s local Hadoop cluster (icluster). Qi et al. [2017] use a

white-box model that utilizes classification and regression trees for root causes
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analyses for Spark logs and hardware sampling tools to train their model. A

special type of tree called a CART tree (classification and regression tree) is

used to mitigate overfitting issues. They use a customized prune method for

several iterations to improve analysis accuracy and the classification perfor-

mance metrics are checked for each node and its leaves. The authors applied

their method on Spark with HiBench benchmark.

Based on the local neighborhoods of event, the neighbor-based technique

uses unsupervised learning to analyze data instances. This technique can dis-

tinguish an anomalous instance among normal instances because normal in-

stances usually occur in dense neighborhoods, whereas anomalous instances

occur far from their closest neighbors (Chandola et al. [2009]). Huang et al.

[2013] propose a special type of neighbor-based technique, called local outlier

factor (LOF), for an anomaly identification that can learn system behaviors

during training and detecting time within cloud computing environment. They

argue that their method is adaptive to changes, detects contextual anomalies,

and requires less e↵ort for collecting performance metrics for training process.

1.3.2.3. Example: ANNs-based anomaly detection

Classification techniques aim to determine whether the instances in a given

feature space belong to a particular class or multiple classes Ibidunmoye et al.

[2015]. ANNs algorithms are the most popular classification technique for

anomaly identification. This is because ANNs represent a data-driven, non-

linear and self-adaptive method that can adjust itself to the given datasets

without requiring prior knowledge about the distribution or function of the

used model, and generalize the models even to input data that has never been

seen before Zhang [2000]. These advantages have caused ANNs to be considered
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a universal functional approximation.

One of the well-known critical issues for ANNs and other classifiers is fea-

ture selection. The objective of feature selection is to discover the smallest set

of appropriate input features and at the same time achieve the desirable pre-

dictive performance. It is crucial to reduce the number of input features for

the classifier to achieve satisfactory accuracy with reduced computation in the

model Zhang [2000].

We use Backpropagation and conjugate gradients to train ANNs, that is to

update values of weights and biases in the network. We use scaled conjugate

because it is often fast Møller [1993], especially for time-dependent applica-

tions. Sigmoid transfer function is often used as an activation function in the

hidden layer because it exists between (0 to 1), where zero means absence of

the feature and one means its presence. In addtion, we use Softmax transfer

function in the output layer to handle classification problems with multiple

classes (e.g., normal, CPU anomaly, cache thrashing anomaly, context switch-

ing anomaly). For a cost function, we use cross-entropy to evaluate the per-

formance and compare the actual output error results with the desired output

values (labeled data). We use Cross-entropy because it has significant practical

advantages over squared-error cost functions Kline and Berardi [2005].

The input layer contains a number of neurons equal to the number of input

features. The size of the hidden layer is determined by using a “trial and error”

method, by trying all the possible numbers between the sizes of input neurons

and output neurons Sheela and Deepa [2013]. The output layer contains a

number of neurons equal to the number of target classes (normal + types of

anomalies).

Figure1.3 shows a sensitivity analysis for the size of collected datasets to
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Figure 1.3: The performance of ANNs models that is trained with training dataset

that have been collected for 1, 5, 30, and 60 min.

train the neural network algorithms to learn complex nonlinear relationships

among performance metrics and detect the anomalous performance within

Spark systems. It is clear that the size of collected training data significantly

impact the ANN model, while it is challenging to find the optimal size of the

training data. The small size of training dataset causes unacceptable F-score,

whereas a large dataset may lead to a waste of computing resources.

1.3.3. Load prediction

Data streaming applications usually deal with unbounded data flows, meaning

that they are kept in execution indefinitely. As a consequence, these appli-

cations likely face di↵erent working conditions over time (e.g., varying work-

loads), hence requiring dynamic resource management solutions to keep ac-

ceptable performance. Indeed, researchers have spent a lot of e↵ort aiming to

enhance streaming systems with online adaptation capabilities and, in particu-
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lar, elasticity, that is the ability to dynamically acquire and release computing

resources Hummer et al. [2013] as needed. To this end, there are two main

research directions so far, revolving around (i) application load prediction and

(ii) auto-scaling policies. In this section, we focus initially on load prediction.

1.3.3.1. Traditional approaches

Given the variability that often characterizes streaming workloads, predicting

the application processing load in the future (e.g., application input data rate)

is a di�cult yet important task for driving resource management with foresight.

To this end, traditional time series forecasting methods can be useful in the

context of streaming applications. For instance, Imai et al. [2018] use the well-

known ARIMA model for workload forecasting. They additionally consider an

online regression approach for predicting the maximum sustainable through-

put of streaming applications, and scale the number of virtual machines (VMs)

allocated to the system accordingly. Kombi et al. [2019] instead exploit regres-

sion techniques to predict the input rate of Storm operators, and drive the

application auto-scaling. They consider three prediction models, respectively

based on linear, logarithmic, and exponential regression, and select the best

model to use at runtime based on fitting accuracy observed in the previous

iteration.

1.3.3.2. AI approaches

AI techniques often allow to outperform traditional forecasting approaches

for workload and resource utilization prediction. For instance, Zacheilas et al.

[2015] use GPs for predicting the future input rate and processing latency of

operators, and hence drive horizontal elasticity of complex event processing
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applications running on top of Storm. Their elasticity algorithm exploits the

uncertainty estimation provided by GPs to avoid making auto-scaling deci-

sions whenever the uncertainty level is considered too high. Hu et al. [2019]

instead use SVR for predicting resource usage of Spark Streaming applications,

and allocate virtual machines for the cluster so as to meet SLA requirements.

Runsewe and Samaan [2017] also target Spark Streaming and leverage Layered

Hidden Markov Models to predict the resource usage of multiple applications

running on a Spark cluster. Based on the obtained predictions, they scale the

Spark cluster as needed.

A few works have investigated the use of NNs to predict the future load of

data streaming applications. Lombardi et al. [2018] propose ELYSIUM, a multi-

level elasticity solution for Storm, which controls both the operator parallelism

and the number of worker nodes in the Storm cluster. ELYSIUM relies on NNs

for predicting both (i) the application input rate in the near future, and (ii)

the CPU utilization of each application operator based on the input rate.

Mu et al. use DNNs for multi-step operator performance prediction. They

define two prediction strategies based on DNNs, to be used, respectively, on

o✏ine and online collected metrics. They use ensemble learning techniques to

merge the o✏ine and online predictions, and obtain the final prediction, which

can be used to drive auto-scaling. Xu et al. [2019] rely on DNNs as well, to

predict operator performance online. Specifically, they exploit Recurrent DNNs

to make accurate performance predictions, which also account for interference

due to co-located operators (i.e., operators deployed in the same worker node).

They integrate this solution in Storm, and their experiments show that it

outperforms ARIMA- and SVR-based approaches for prediction. Khoshkbar-

foroushha et al. [2017] instead exploit Mixture Density Networks to estimate
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resource usage of streaming applications as probability density functions. They

show how the resulting distribution based workload prediction can be applied

to drive both auto-scaling and application admission control in presence of

SLAs.

1.3.4. Scaling techniques

Data-intensive systems largely exploit parallelism to e�ciently process high-

volume datasets. For streaming applications, whose datasets are collected in

real-time and hence are not known at deployment time, scaling the amount of

computing resources at runtime is fundamental to avoid the risk of under- or

over-provisioning resources.

1.3.4.1. Traditional approaches

As extensively surveyed in Röger and Mayer [2019], researchers so far have

investigated a large number of approaches to devise auto-scaling policies for

streaming systems, including, e.g., queueing theory, control theory, state-space

based methods, and, recently, AI. Existing solutions can be classified as either

reactive and proactive. Reactive solutions make auto-scaling decisions in re-

sponse to observed changes (e.g., increase in the application input data rate),

whilst proactive approaches try to adapt the application deployment before

observing changes, based on predictions.

Among the reactive approaches, threshold-based policies are widely adopted.

According to these policies, auto-scaling actions are triggered whenever one

or more observed metrics (e.g., resource utilization, throughput) violate pre-

defined threshold values Castro Fernandez et al. [2013], Gedik et al. [2014].
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Other works instead rely on models to periodically evaluate the expected ap-

plication performance or resource utilization, and trigger scaling actions ac-

cordingly. For instance, Lohrmann et al. [2015] rely on queueing theory to

model application performance, and make horizontal scaling decisions so as to

meet response time requirements.

Among the proactive auto-scaling solutions, several works present policies

that exploit load prediction to make scaling decisions. Indeed, most the pre-

diction solutions mentioned in the previous section, are complemented with

auto-scaling mechanisms. A di↵erent approach is considered in De Matteis

and Mencagli [2016], where model predictive control is used to proactively scale

streaming operators, also combining horizontal and vertical elasticity.

1.3.4.2. AI approaches

The behavior of traditional auto-scaling solutions often depends on manu-

ally configured parameters, and AI-based approaches aim at overcoming this

limitation. For instance, Reinforcement Learning (RL) is a class of methods

allowing agents (e.g., resource managers) to learn policies by direct interaction

with their environment (e.g., managed applications). RL has been adopted

by several works to derive auto-scaling policies for streaming applications at

runtime. For instance, Heinze et al. [2014] use the SARSA algorithm, relying

on a reward function that captures the di↵erence between current operator

CPU utilization and target utilization values. Similarly, Cheng et al. [2018]

rely on the well-known Q-learning algorithm to adapt the amount of resources

allocated to jobs running in Spark Streaming. They consider a performance-

oriented reward function that accounts for throughput and latency. Lombardi

et al. [2018] also use Q-learning to automatically tune the parameters for a
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threshold-based auto-scaling algorithm.

Russo Russo et al. [2019] consider the auto-scaling problem in presence of

heterogeneous computing resources to host parallel operator instances. They

use linear function approximation to deal with the large model state space, and

investigate model-based initialization to speedup the learning process. Their

reward function accounts for the amount of allocated resources, the adaptation

cost, and a SLO violation penalty.

1.3.5. Example: RL-based auto-scaling policies

RL agents learn by experience the actions to perform in order to maximize

a cumulative reward over time (Sutton and Barto [2018]). We define the task

faced by RL agents as an infinite-horizon, discrete-time Markov Decision Pro-

cess (MDP), where agents perform an action at every time step, selected ac-

cording to their policy and the observed current state. Following action ex-

ecution, agents get a reward and possibly enter a new state. Their goal is

maximizing the (discounted) cumulative reward over the infinite time horizon.

The auto-scaling problem for a streaming operator could be modeled as

follows. Considering a slotted time model, we define the state at time step i,

si, as the pair (ki,�i), where 1  ki  Kmax denotes the operator parallelism,

and �i the monitored input rate (discretized using a suitable quantum). Actions

in this model represent scaling operations that alter the parallelism level, hence

they are selected from the set A = {�1, 0,+1}, except for the states where no

further scale-out (or, scale-in) is allowed.

In the context of resource management, it is often convenient to reason

in terms of cost instead of reward. Therefore, we define the cost c(s, a, s0)
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paid for operating the system in state s0 after taking action a in s, and let

the reward r(s, a, s0) = �c(s, a, s0). Depending on the specific scenario, the

cost function may capture di↵erent aspects. We define it as a weighted sum

of three cost components: resources cost (proportional to the operator par-

allelism level), adaptation cost (capturing the overhead due to scaling), and

performance violation cost (paid whenever the chosen configuration does not

satisfy performance requirements).

Most RL algorithms rely on the so-called Q-function Q(s, a), which es-

timates the cumulative discounted reward obtained in the long-term when

choosing action a in s. The most popular RL algorithm is Q-learning, which

performs a single Q update at every time step:

Qnew(si, ai) � (1� ↵)Qold(si, ai) + ↵

✓
ri + �max

a0
Qold(si+1, a

0)

◆
(1.1)

where ri is the reward obtained at time i, and ↵ 2 (0, 1) is the learning rate. Q-

learning is easy to implement, and guarantees convergence to the optimal policy

as infinite exploration is provided. However, to achieve faster convergence, in

practice it is worth including any available knowledge about the model in

the learning algorithm (model-based RL). For instance, the concept of post-

decision state (PDS) (Mastronarde and van der Schaar [2011]) can be used to

separate the known system dynamics (e.g., impact of a scaling action on the

parallelism) from the unknown ones (e.g., input rate variations), and let the

agent only learn the latter. To demonstrate the benefits provided by PDS, we

simulated the execution of a data streaming operator under varying input data

rate, using the RL-based auto-scaling policy. Figure 1.4 shows a sample of the

workload we used, and the average reward accumulated over time by the RL

agent, in the case of plain Q-learning and Q-learning with PDS. We can note
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Figure 1.4: Streaming workload in a simulated experiment (left), and average

reward obtained by RL-based auto-scaling agents (right).

that the PDS-based agent clearly outperforms plain Q-learning, as it exploits

the available knowledge about the system and needs to learn fewer parameters.

This model can be extended to account for other adaptation mechanisms

(e.g., operator migration), infrastructure characteristics, or to include more

general workload characterizations. As more complex models are used, how-

ever, the state space often grows significantly, requiring, e.g., function approx-

imation techniques for manipulating the Q-function. To this end, Deep RL is

receiving growing interest, where DNNs are used to approximate Q.

1.4. Summary and conclusion
Table 1.2 summarizes the mapping of AI models to management and resource

allocation activities we have referenced through this chapter. Our analysis re-

veals that AI-driven optimal configuration and anomaly detection in data-

intensive applications have received considerable attention already, covered a
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Table 1.2: Summary of the AI techniques considered for performance management of
data-intensive systems: X: in this chapter, ⇤: in extended bibliography.

AI method Opt. Config. Anom. Det. Load Pred. Scaling

Neural networks X X X
Boosted regr. trees X
CART X X
Decision trees X X
Gaussian processes X X
LSTM X X
Nearest neighbor X X
RL X X
SVMs X X X

broad range of methods. In spite of this, certain techniques, such as reinforce-

ment learning, still present open room for further investigation.

As mentioned, performance management for data streaming systems ben-

efits from runtime load prediction, which is often coupled with auto-scaling

or admission control mechanisms. Neural networks, and in particular DNNs,

have received the largest share of attention so far, as they have been shown

to outperform other techniques, like SVMs and GPs. The adoption of other

approaches, already used for forecasting in other domains, including, e.g., long-

short term memory (LSTM) models and Regression Trees, could be the subject

of future investigation.

As regards the definition of auto-scaling control policies for data-intensive

applications, only RL techniques have been exploited so far. Nevertheless, as

the class of RL methods is quite large and complex, this research direction

is far from being completely explored. Among the main issues to be tackled

when adopting RL algorithms, state space explosion is critical in the context

of performance management, as it limits the granularity and completeness of
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the application and performance models used by the agents. To overcome this

issue, Deep RL (DRL) algorithms exploit DNNs for approximate learning in

otherwise intractable tasks. For instance, Li et al. [2018] have recently applied

DRL for controlling the placement of streaming operators over a cluster of

machines. Further investigations are needed in the literature to understand

the potential of Deep RL in the management of data-intensive systems.

In conclusion, the chapter has shown that AI methods are already sub-

ject to intense research work across various management areas, with the areas

of optimal configuration and anomaly detection being the most mature. The

richness and the rapid evolution of the AI research landscape o↵er consider-

able opportunities to further raise the maturity of AI methods. Our analysis

reveals that, although significant work already exists in this area, load predic-

tion and scaling techniques would particularly benefit from a broader research

investigation.
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