
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

12-8-2023

Explainable Intrusion Detection Systems using white box Explainable Intrusion Detection Systems using white box

techniques techniques

Jesse Ables
Mississippi State University, jha92@msstate.edu

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Ables, Jesse, "Explainable Intrusion Detection Systems using white box techniques" (2023). Theses and
Dissertations. 5986.
https://scholarsjunction.msstate.edu/td/5986

This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F5986&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/5986?utm_source=scholarsjunction.msstate.edu%2Ftd%2F5986&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

Explainable Intrusion Detection Systems

using white box techniques

By

Jesse Ables

Approved by:

Sudip Mittal (Major Professor)
Shahram Rahimi
Ioana Banicescu
Stefano Iannucci
Maxwell Young

T.J. Jankun-Kelly (Graduate Coordinator)
Jason M. Keith (Dean, College of Engineering)

A Dissertation
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Doctorate of Science

in Computer Science
in the Department of Computer Science and Engineering

Mississippi State, Mississippi

December 2023

Copyright by

Jesse Ables

2023

Name: Jesse Ables

Date of Degree: December 8, 2023

Institution: Mississippi State University

Major Field: Computer Science

Major Professor: Sudip Mittal

Title of Study: Explainable Intrusion Detection Systems using white box techniques

Pages of Study: 119

Candidate for Degree of Doctorate of Science

Artificial Intelligence (AI) has found increasing application in various domains, revolutionizing

problem-solving and data analysis. However, in decision-sensitive areas like Intrusion Detection

Systems (IDS), trust and reliability are vital, posing challenges for traditional black box AI systems.

These black box IDS, while accurate, lack transparency, making it difficult to understand the reasons

behind their decisions. This dissertation explores the concept of eXplainable Intrusion Detection

Systems (X-IDS), addressing the issue of trust in X-IDS. It explores the limitations of common

black box IDS and the complexities of explainability methods, leading to the fundamental question

of trusting explanations generated by black box explainer modules.

To address these challenges, this dissertation presents the concept of white box explanations,

which are innately explainable. While white box algorithms are typically simpler and more

interpretable, they often sacrifice accuracy. However, this work utilized white box Competitive

Learning (CL), which can achieve competitive accuracy in comparison to black box IDS. We

introduce Rule Extraction (RE) as another white box technique that can be applied to explain black

box IDS. It involves training decision trees on the inputs, weights, and outputs of black box models,

resulting in human-readable rulesets that serve as global model explanations. These white box

techniques offer the benefits of accuracy and trustworthiness, which are challenging to achieve

simultaneously.

This work aims to address gaps in the existing literature, including the need for highly accurate

white box IDS, a methodology for understanding explanations, small testing datasets, and compar-

isons between white box and black box models. To achieve these goals, the study employs CL and

eclectic RE algorithms. CL models offer innate explainability and high accuracy in IDS applica-

tions, while eclectic RE enhances trustworthiness. The contributions of this dissertation include a

novel X-IDS architecture featuring Self-Organizing Map (SOM) models that adhere to DARPA’s

guidelines for explainable systems, an extended X-IDS architecture incorporating three CL-based

algorithms, and a hybrid X-IDS architecture combining a Deep Neural Network (DNN) predictor

with a white box eclectic RE explainer. These architectures create more explainable, trustwor-

thy, and accurate X-IDS systems, paving the way for enhanced AI solutions in decision-sensitive

domains.

Key words: Intrusion Detection, Artificial Intelligence, Explainable Artificial Intelligence, Ex-
plainabile Intrusion Detection Systems, Competitive Learning, Rule Extraction

DEDICATION

To my cats Mipha and Poseidon

ii

ACKNOWLEDGEMENTS

The journey through my Ph.D. has been a long and difficult process. This process was made

much easier by having great mentors and colleagues. I would like to begin by thanking my advisor

Sudip Mittal for leading me on this journey. His deep knowledge of academia was a major factor

in my development. My ability to write and present has improved significantly since meeting him.

He has helped foster my passion for research and helped me immensely in creating this dissertation.

I would also like to thank Stefano Iannucci who caused me to begin my Ph.D. studies. He saw

potential in me as a student and offered to be my mentor. Without Stefano’s assistance, I would not

have begun my journey to becoming a Ph.D. His impressive background in research and industry

gave me one of the best foundations one could want for a successful Ph.D. career.

I would like to thank the rest of my committee members: Shahram Rahimi, Ioana Banicescu,

and Maxwell Young for their guidance and advice on this dissertation. Shahram and Ioana have

both provided critical feedback for this and all of my work. Their collective knowledge and

experience have made me a much stronger independent researcher. Max has also helped me to

look at my work outside the lens of cyber security. He has posed many insightful questions that

have helped improve my research.

I would like to thank the US Army Engineer Research and Development Center (ERDC), Dr.

Maria Seale, and other hard-working individuals at ERDC for their support of this work.

iii

Most importantly, I’m thankful to my family and friends for their unending support. My

parents, brother, and sister-in-law have all been supportive of my entire academic career. Without

their help and support throughout the years, it is doubtful I would have made it this far. My friends

online and off have been a great help to my mental fortitude. Lastly, I’m thankful to my cats Mipha

and Poseidon for their love and comfort.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER

1. INTRODUCTION . 1

1.1 Motivation . 1
1.2 Overview . 4

2. BACKGROUND AND RELATED WORKS . 7

2.1 Intrusion Detection Systems . 7
2.2 Explainable Artificial Intelligence . 8
2.3 Explainable Intrusion Detection Systems 9
2.4 Competitive Learning . 11

2.4.1 Error Based Learning vs. Competitive Learning 11
2.4.2 Competitive Learning used in Intrusion Detection 14
2.4.3 Self-Organizing Maps . 16
2.4.4 Growing Self-Organizing Maps 18
2.4.5 Growing Hierarchical Self-Organizing Maps 20

2.5 Neural Network Rule Extraction . 22

3. RESEARCH DATA . 25

3.1 NSL-KDD . 25
3.2 CIC-IDS-2017 . 28
3.3 UNSW-NB15 . 29

v

4. CREATING AN EXPLAINABLE INTRUSION DETECTION SYSTEM USING
SELF ORGANIZING MAPS . 30

4.1 Introduction . 30
4.2 X-IDS Architecture . 32

4.2.1 Pre-Modeling Phase . 34
4.2.2 Modeling Phase . 34

4.2.2.1 Quality Metrics . 34
4.2.3 Post-Modeling Explainability . 37

4.2.3.1 Local and Global Explanations 37
4.2.3.2 Unified Distance Matrix (U-Matrix) 38
4.2.3.3 Feature Value Heat Map 38

4.3 Experimental Design . 39
4.3.1 Model Parameters & Dataset Preprocessing 39
4.3.2 Explanation Generation . 40
4.3.3 Traditional Accuracy Metrics . 40

4.4 Experimental Results and Evaluation 41
4.4.1 Model Explainability . 44
4.4.2 Accuracy . 46

4.5 Conclusion . 46

5. EXPLAINABLE INTRUSION DETECTION SYSTEMS USING COMPETITIVE
LEARNING TECHNIQUES . 48

5.1 Introduction . 48
5.2 Competitive Learning X-IDS Architecture 52

5.2.1 Pre-Modeling Phase . 54
5.2.1.1 Model Parameters . 54

5.2.2 Modeling Phase . 56
5.2.2.1 Model Evaluation Metrics & Techniques 57

5.2.3 Post-Modeling Optimization Phase 58
5.2.3.1 Parameter Optimization 58
5.2.3.2 GHSOM Model Pruning 59

5.2.4 Prediction Explanation Phase . 63
5.2.4.1 Local and Global Explanations 63
5.2.4.2 Unified Distance Matrix (U-Matrix) 64
5.2.4.3 Feature Value Heat Map 65
5.2.4.4 Users Performing Tasks 65

5.3 Experimental Design . 66
5.3.1 Model Parameters & Dataset Preprocessing 66
5.3.2 Explanation Generation . 67
5.3.3 Traditional Performative Tests 68

5.4 Experimental Results & Evaluation . 71

vi

5.4.1 Performative Results . 71
5.4.2 Explanation Generation . 74

5.4.2.1 Global Explanations . 75
5.4.2.2 Local Explanation . 76
5.4.2.3 Visual Explanations . 78
5.4.2.4 User Conclusions . 81
5.4.2.5 SOM and GHSOM Explanations 82

5.5 Conclusion . 82

6. WHITE BOX ECLECTIC RULE EXTRACTION FOR EXPLAINABLE DEEP
NEURAL NETWORK IDS . 85

6.1 Introduction . 85
6.2 X-IDS Architecture . 87

6.2.1 Pre Modeling . 88
6.2.2 Modeling . 89
6.2.3 Rule Extraction . 90
6.2.4 Post-Extraction Statistics . 93

6.3 Experimental Design . 94
6.3.1 Model Parameters & Dataset Preprocessing 94
6.3.2 Rule Extraction Parameter Experiments 95
6.3.3 Explainability Discussion . 96

6.4 Experiment Results & Evaluation . 96
6.4.1 Unbounded Eclectic Rule Extraction 98
6.4.2 Limited Leaves . 98
6.4.3 Limited Layers . 101
6.4.4 Training Data Subsets . 103
6.4.5 Limited DNN Hidden Layers . 105
6.4.6 Explainability Discussion . 105

6.5 Conclusion . 107

7. CONCLUSION AND FUTURE WORK . 108

7.1 Improving the Explainability of the GHSOM 109
7.2 Connecting Rules to the Real World . 109

REFERENCES . 111

vii

LIST OF TABLES

3.1 Selected features for the NSL-KDD and CIC-IDS-2017 using Bayesian probability
of significance [33] . 27

4.1 SOM traditional accuracy results table and comparison to black box models. . . . 45

5.1 Statistical characteristics for the NSL-KDD and CIC-IDS-2017 datasets. 54

5.2 Model Training Parameters for NSL-KDD and CIC-IDS-2017 Models. 56

5.3 Competitive Learning X-IDS results compared to state-of-the-art black box models. 70

6.1 DNN Training Parameters . 90

6.2 Results from the unbounded, leaves, and layers tests for the Eclectic RE algorithm 92

6.3 Results from the unbounded, dataset subset, and limited hidden layer tests for the
Eclectic RE algorithm . 96

viii

LIST OF FIGURES

4.1 Architecture for an Explainable Intrusion Detection System (X-IDS) utilizing Self
Organizing Maps (SOMs), based on DARPA’s recommended architecture for Ex-
plainable Artificial Intelligence (XAI) systems [28]. 33

4.2 These figures show the local and global feature explanations for both the NSL-KDD
and CIC-IDS datasets. (a)(c) Demonstrates features the SOM has chosen for a
malicious sample from the NSL-KDD and a benign sample from the CIC-IDS-2017
datasets. The more significant a feature is, the lower its value (i.e. closer to the
BMU). (b)(d) Global feature significance is calculated using Bayesian Probability
of Significance [33]. Features that have a higher significance value are much more
likely to cause a prediction to be made for benign or anomalous. 36

4.3 (a)(c)The Starburst U-Matrix shows both the most common label for each node
and the clusters the SOM has learned. Darker areas represent units that are close
Euclidean Distance-wise. Notably, we can see a clear divide between classes on the
NSL-KDD dataset as represented in the figure. (b)(d) The feature value heatmap
displays the value of a specific feature on each unit in the SOM. Lighter values
represent units with values closer to 1, while darker values show values closer to
0. The ‘dst byte’ example shows that the bottom ‘anomalous’ cluster values higher
values. 42

4.4 NSL-KDD K-means Clustering Map. This visualization can be quickly viewed to
summarize where labels cluster on the SOM. 43

5.1 A competitive learning based X-IDS architecture. The architecture is divided into
four phases: Pre-Modeling, Modeling, Post-Modeling Optimization, and Prediction
Explanation. Each phase contributes to translating raw input data into accurate pre-
dictions and useful explanations. Culminating in a user successfully completing an
associated task or being required to make changes to previous steps in the architecture. 53

ix

5.2 Visualizations created from GHSOM trained on NSL-KDD. The left hand un-
slanted visualizations represent the root GSOM. The slanted visualizations represent
GSOMs deeper in the hierarchy of GHSOM. Figure (a) shows the Unified Distance
Matrices (U-matrices), which shows the distance between nodes with darker areas
representing nodes closer together and lighter nodes representing further distances.
Figure (b) shows the feature component maps representing the values of specific
features on each node in the GSOM. Figure (c) is the Label maps which show the
class labels of the node. Figures (d), (e), and (f) represent the pruned versions of
the GHSOMs with significantly less network sizes. 60

5.3 This figure contains the results from the trained GHSOM on the CIC-IDS-2017
dataset. Since a GHSOM consists of many GSOMs, The tree map diagram displays
GSOMs and their nodes. In this tree map, the left half of the map is the root
GSOM. Within the root GSOM we can see a mixture of blue, red and yellow nodes.
Blue nodes indicate a benign label, red nodes indicate a malicious label and yellow
indicate a branch. The size of each node indicates the number of times it was chosen
as the BMU. 61

5.4 The tree map generated after pruning the GHSOM from Figure 5.3. In the previous
tree map, nodes would eventually become too small to see. The pruning process
outlined in Section 5.2.3 allows the user to see the majority of the nodes. 62

5.5 These figures show the local and global feature explanations for both the NSL-KDD
and CIC-IDS datasets. (a)(c) Demonstrates features the GSOM has chosen for
a malicious sample from the NSL-KDD and CIC-IDS-2017 datasets. The more
significant a feature is, the higher its value. (b)(d) Global feature significance is
calculated using Bayesian Probability of Significance [33]. Features that have a
higher significance value are much more likely to cause a prediction to be made for
benign or anomalous. 69

5.6 (a)(d)The Starburst U-Matrix shows both the most common label for each node
and the clusters the SOM has learned. Darker areas represent units that are close
Euclidean Distance-wise. Notably, we can see a clear divide between classes on
the NSL-KDD dataset as represented in the figure. (b)(e) K-means clustering can
be used as a simplified view of where labels appear on the SOM. In this model’s
iteration, anomalous traffic is mostly grouped on the bottom of the SOM.(c) The
feature value heatmap displays the value of a specific feature on each unit in the
SOM. Lighter values represent units with values closer to 1, while darker values
show values closer to 0. The ‘dst byte’ example shows that the bottom ‘anomalous’
cluster values higher values. 73

x

5.7 Visualizations generated from a GSOM for models trained on NSL-KDD and CIC-
IDS-2107. (a)(d) The U-matrix maintains the same properties as the SOM starburst
visualization with darker areas representing neurons closer together. (b)(e) The
Feature Component Map also shares the same properties as the SOM feature map
in Figure 5.6. (c)(f) The Neuron Label map shows the class label represented by a
red or yellow color. 80

6.1 Architecture for a surrogate explainer X-IDS. It features four total phases. In the
Pre-Modeling phase, the datasets are feature engineered to be compatible with the
neural network and RE algorithm. Model parameters are also selected here. The
model is trained and tested in the Modeling phase. Here, we record important quality
and performative metrics. The trained model and dataset can then be used to extract
a ruleset. Lastly, we generate statistics for the ruleset and rules to aid the user in
their understanding. 88

6.2 These charts compare the speed up versus accuracy loss for the UNSW-NB15 and
CIC-IDS-2017 rulesets. True label accuracy is the rulesets label versus the testing
datasets labels. Model prediction accuracy is the rulesets labels versus the models’
predicted outputs. 97

6.3 These charts show the extraction speed comparison between the various tests. Most
of the results demonstrate a logarithmic scale. The outlier in Figure 6.3d is likely
due to the greedy labeling process used to train the second decision tree during the
extraction algorithm. 100

6.4 These charts demonstrate how the number of rules generated scales with the total
number of leaves and layers. Limiting the decision trees to a certain number of
leaves shows a logarithmic increase in rule generation. When limiting the total
number of layers, we see a linear increase until a plateau. 102

6.5 These charts illustrate the results from the training data subset experiments. The
results include the total time the extraction algorithm took to extract rules and the
total number of rules generated. 104

xi

CHAPTER 1

INTRODUCTION

1.1 Motivation

Artificial Intelligence (AI) has become more prevalent in our everyday lives. Increasingly,

academia, industry, and government leverage AI for problem-solving and data analysis [42]. We

have seen AI used to automate the artistic process [82], operate self-driving cars [61], make medical

diagnoses [43], and protect networking infrastructure [46]. For decision-insensitive domains,

properties such as privacy, trust, or reliability are not necessary requirements. However, for

decision-sensitive domains, such as Intrusion Detection Systems (IDS), these are critical aspects of

their functionality. Currently, the most popular approaches for IDS use black box algorithms. These

black box algorithms are primarily selected due to their high accuracy and generalizability [103].

However, do we understand why a black box IDS makes a decision? Can we trust black box

IDS to make decision-sensitive predictions? The state-of-the-art approaches for IDS, as well as

machine learning as a whole, focus on model performance through the lens of model accuracy.

This focus on model accuracy has driven the development further away from modeling approaches

that are transparent or have a clear notion of explainability. This creates a separation between

model inference and the understanding of model inference, which in turn gives the inability to

confirm model fairness, privacy, reliability, causality, and ultimately trust. This set of problems

can be solved by eXplainable Intrusion Detection System (X-IDS).

1

Currently, black box IDS have techniques that can be used to explain predictions. Modern X-IDS

use ubiquitous solutions such as Local Interpretable Model-Agnostic Explanations (LIME) [85] or

SHapley Additive exPlanations (SHAP) [60] that can be used out-of-the-box to generate local or

global feature importance charts. These explanations can be used to determine which features of

an intrusion detection dataset are the most impactful for predictions. However, these solutions are

also black box. To create explanations, these explainer modules create black box surrogates that

approximate the original model. This leads to the question, “If I cannot trust predictions from a

black box AI, how can I trust explanations from a black box explainer?"

One potential solution to these explainability and trustability problems is white box explanation

techniques. White box algorithms are innately explainable which leads to more trustworthy

predictions. As their name implies, these algorithms are transparent. Generally, white box

algorithms are simple to understand and repeatable by humans. They can be represented by

explainable visualizations or human-readable rulesets. This leads to users being able to understand

how the model works and trust the predictions they make. However, the benefit they provide with

simplicity causes issues with accuracy. These algorithms are typically not very accurate with

complex datasets. Yet, there is a white box family of algorithms that is able to be highly accurate

when compared to black box IDS.

Competitive Learning (CL) is a family of algorithms that uses competition to train neurons,

nodes, or best-fit lines. During training, these algorithms use a competitive metric such as distance

or similarity to choose winner nodes. The winner node, also known as the Best Matching Unit

(BMU), has its and its neighbor’s weights adjusted closer to the training sample. This gives those

nodes an advantage when similar training data is used, effectively creating a feature detector [48].

2

The training process continues until nodes begin to cluster together forming separations between

different kinds of data.

Rule Extraction (RE) is also a white box technique that can be used to explain black box IDS.

RE, as its name implies, extracts rules from a black box system and generates human-readable

rulesets that act as global model explanations. This is done by training one or more decision trees

on the black box model’s inputs, weights, and outputs. Each branch in the decision tree can be

extracted to form a rule. The rules are then combined to create an explainable ruleset. Using this

method alongside black box models allows the user to utilize the accuracy of black box AI and the

trustability of white box models.

These white box techniques can be effective for creating X-IDS. They can be used to address

gaps in the current literature. First, many white box IDS are often not very accurate, especially when

compared to their black box counterpart. Second, there is little methodology used to understand or

use explanations generated from an explainable system. Third, many of these white box algorithms

are only trained and tested on small datasets both in the number of samples and features. Fourth,

there is little comparison in the literature between white box and black box models. Lastly, rule

extraction explainers have limited use in deep neural network IDS. The goals of this dissertation

seek to remedy these gaps. We demonstrate that there is a class of white box algorithms that can

have competitive accuracy when compared to black box algorithms. We create a methodology

for understanding and using explanations generated from these algorithms. We train and test our

models against common IDS datasets found in the literature. These include NSL-KDD, CIC-IDS-

2017, and UNSW-NB15. Our models are compared to black box models in both explainability and

accuracy. Lastly, we design a rule extraction algorithm that can be run on large IDS datasets.

3

This dissertation chooses to use Competitive Learning (CL) and eclectic Rule Extraction (RE)

to achieve these goals. The innate explainability of CL algorithms allows them to create visual

and statistical explanations that users can use to understand the model’s reasoning. Their ability

to compress high-dimensional datasets into a 2D representation allows them to be highly accurate

on IDS datasets. Additionally, an eclectic RE algorithm is used to extract rules from a DNN IDS.

These models and techniques can be used solely as X-IDS systems or as companion explainers

for accurate black box systems. In this dissertation, the chosen approach involves creating X-IDS

using CL algorithms to build a more explainable and trustworthy IDS. Additionally, since black

box AI is a popular technique, a hybrid X-IDS is created using a Deep Neural Network (DNN)

predictor and a white box RE explainer. The contributions of this dissertation are:

• A novel X-IDS architecture featuring a SOM, built using DARPA’s proposed guidelines for
an explainable system. This system is able to produce robust, explanatory visualizations of
the SOM model and create accurate IDS predictions. We dictate a methodology for under-
standing and using explanations to further increase the accuracy of the X-IDS architecture.

• An extended X-IDS architecture featuring three CL-based algorithms, built using DARPA’s
guidelines for an explainable system. Self-Organizing Map, Growing Self Organizing Map,
and Growing Hierarchical Self Organizing Map models are used to create explanatory
visualizations and accurate predictions. The innately explainable CL models have similar
accuracy and are more trustworthy when compared to error-based learning models.

• A hybrid X-IDS architecture that uses a DNN predictor and a white box, eclectic RE
explainer. Using white box RE, the X-IDS is able to create more trustworthy explanations
than black box surrogate explainers. Additionally, experiments are run to demonstrate the
customizability of the eclectic RE algorithm so that it can be run on large IDS datasets.

1.2 Overview

This dissertation is divided into six chapters. Chapter 2 discusses the background, related

works, and algorithms used in this dissertation. This section covers important information regarding

explainable AI, intrusion detection, explainable intrusion detection, competitive learning, and rule

4

extraction. Chapter 3 overviews the datasets used in this work. This dissertation uses three datasets:

NSL-KDD, CIC-IDS-2017, and UNSW-NB15. Their historical and statistical characteristics are

discussed as well as an overview of the attacks each dataset contains.

Chapter 4 is the first contribution of this dissertation. In this work, an X-IDS architecture is

created that uses Self Organizing Maps to make predictions and explanations. The architecture

is based on DARPA’s recommendations for explainable systems. The X-IDS is able to create

visual and statistical explanations that users can use to understand how and why the model makes

predictions. The experiment and evaluation for this work involve discussing the architecture’s

explainability. This includes how well the model clustered malicious and benign data and methods

for using explanations to understand the model. Additionally, traditional accuracy experiments are

run to demonstrate the model’s effectiveness compared to other black box models.

Chapter 5 extends the previous X-IDS architecture to include two more CL algorithms: Grow-

ing Self Organizing Maps (GSOM) and Growing Hierarchical Self Organizing Maps (GHSOM).

This work compares CL algorithms to their black box counterpart Error Based Learning (EBL)

algorithms. Similar to the previous work, the X-IDS architecture is based on DARPA’s recommen-

dation for explainable systems. An explainability analysis is conducted to discuss how explanations

can be used to understand the model. Explanations include both visual and statistical variants.

Lastly, a traditional performance analysis is run that allows the architecture to be compared to EBL

models found in the literature.

Chapter 6 seeks to bridge the gap in this work between black box AI and white box explainer

techniques. This work chooses to use an eclectic RE algorithm that can be used to generate

explanations for a DNN IDS. Explanations are given in the form of rulesets. Rulesets can be parsed

5

or searched to get a global understanding of the model, and rules can be returned with samples

for a local explanation. A set of experiments is run demonstrating the RE algorithm’s accuracy

and customizability. Additionally, the explainability of this method is discussed with regard to the

experiments.

Lastly, Chapter 7 concludes this work. It gives a brief summary of this dissertation’s novel

contributions. Additionally, potential future works are described.

6

CHAPTER 2

BACKGROUND AND RELATED WORKS

Chapter 2 details the relevant background knowledge needed to understand later chapters in

this dissertation. In Section 2.1, intrusion detection systems are discussed along with the current

state of the art and philosophy. Section 2.2 contains background information for explainable

artificial intelligence. Section 2.3 briefly overviews explainable intrusion detection and its various

techniques. Section 2.4 then details the various competitive learning techniques followed by a

description of rule extraction in section 2.5.

2.1 Intrusion Detection Systems

An intrusion refers to an action that obtains unauthorized access to a network or system [24].

An Intrusion Detection System (IDS) consists of tools, methods, and resources that help a Cyber

Security Operation Center (CSoC) protect an organization by detecting an intrusion [11, 65]. IDS

can be categorized into operation-based classes, such as signature, anomaly, and hybrid. Signature-

based IDS operate by preventing known attacks from accessing a network. The IDS compares

incoming network traffic to a database of known attack signatures. Notably, this method has

difficulty in preventing zero-day attacks [91]. Anomaly-based IDSs look for patterns in incoming

traffic to recognize potential threats and leverage complex AI models [19, 64, 71]. A significant

drawback of this approach is the tendency for such systems to categorize legitimate, unseen behavior

7

as anomalous. Hybrid-based IDS incorporates the design philosophy of both signature-based and

anomaly-based IDS to improve the detection rate while minimizing false positives [79, 95].

Current work on AI enabled anomaly-based IDS can be further divided into black box and white

box models [71]. White box models are considered easy to understand by an expert. This allows

the expert to analyze the decision process and understand how the model renders its decision. This

(semi-) transparent property allows white box models to be deployed in decision sensitive domains,

where auditing the decision process is a requirement. White box models may use regression-based

approaches [94], decision trees [62], and Self Organizing Maps (SOMs) [53]. Black box models,

on the other hand, have an opaque decision process. This opaqueness property makes establishing

the relationship between inputs and the decision difficult, if not outright impossible. Black box

models comprise nearly all the AI enabled state-of-the-art approaches for IDS, as the focus is

traditionally on model performance, not explainability. Examples of popular black box model

techniques are Isolation Forest [58], One-Class SVM [89], and Neural Networks [108].

2.2 Explainable Artificial Intelligence

The notion of an Explainable Artificial Intelligence system (XAI) dates back to the 1970s.

Moore et al. [67] surveyed works from the 1970s to the 1980s, detailing early methods of expla-

nations. Some early explanations consisted of canned text and code translations, such as the 1974

explainer MYCIN [92]. We can find a more current definition of XAI by the Defense Advanced

Research Projects Agency (DARPA) [28]. DARPA defines XAI as ‘systems that are able to ex-

plain their reasoning to a human user, characterize their strengths and weaknesses, and convey a

sense of their future behavior’. An XAI system that follows this definition offers some form of

8

justification for its action, leading to more trust and understanding of the system. The explanations

from an XAI system help the user not only in using and maintaining the AI model but also helping

users complete tasks in parallel with the AI system. Tasks can include doctors making medical

decisions [37, 56, 92], credit score decisions [21], detecting counterfeit banknotes [36], advance

maintenance [73], or CSoC operators defending a network [4, 22, 28].

The current literature consists of many different black box models being used alongside ex-

planation techniques. Common explainer modules for black box models are Local Interpretable

Model-agnostic Explanations (LIME) [85], SHapely Additive exPlantions (SHAP) [60], and Layer-

wise Relevance Propagation (LRP) [14]. Modern techniques for explaining black box models

consist of creating surrogate models that generate explanations either locally or globally. Other

methods involve propagating predictions backward in a neural network or decomposing a gradient.

More novel approaches have also experimented with making datasets explainable [40] or making

graphical user interfaces for explainable systems [102].

2.3 Explainable Intrusion Detection Systems

Explainable Intrusion Detection Systems (X-IDS) are still an emerging sub-genre. The need

for explainability in IDS is becoming increasingly necessary. In decision sensitive domains, black

boxes obfuscate the decision making process causing a lack of trust in predictions. The users

need to be confident in the predictions or recommendations computed by an IDS. Understandable

and trustworthy explanations allow users to perform their tasks correctly. The stakeholders of an

IDS (e.g. CSoC operators, developers, and investors) are individuals who will be dependent on

the performance of the system [71]. CSoC operators will be performing defense actions based on

9

prediction and explanation results. Developers can use explanations to fortify the model in areas

where it is weak. Investors may need explanations to help them make their company’s budgeting

decisions.

There are many examples of X-IDS being used in research today. A survey by Neupane et

al. [71] describes in detail different X-IDS systems. Many black box implementations have been

shown using libraries such as SHAP, LIME, or LRP [8,45,100]. There have also been more original

explanation frameworks, such as one that involves using the CIA triad to generate explanations [40].

White box models have also been used to create strong X-IDS architectures. The authors

of [51] created a regression-based X-IDS based on Hardware Performance Counters (HPC). This

work focuses on two types of attacks: microarchitecture and malware. Ridge Regression is used

to generate explainable results. A limitation of this work is the use of small datasets. Their model

is only trained using four features. Work by [62] and [25] create rule-based X-IDS using Decision

Trees (DT). The former work utilized Iterative Dichotomiser 3 (ID3) algorithm because of its

ability to mimic the human decision process. The latter work uses expert justification to generate

explainable results. These works are limited by their use of small datasets and the small knowledge

base generated by experts.

There are a few notable works for white box clustering algorithms. These works utilize the

SOM as a means of creating accurate models and trustworthy explanations. Langin et. al. [53]

created an algorithm called ANNaBell Island. This work seeks to expand the explainability of the

SOM’s output. SOM outputs are used to create 3D color-separated hexagonal landscapes. This

allows the user to distinguish between different types of attacks and classifications. Notably, this

work’s main focus is on the explainability of the SOM and not the accuracy. They use a small

10

dataset to demonstrate the usefulness of their algorithm. Wickramasinghe et. al. [101] use various

visualization techniques to make SOMs more explainable. They utilize the U-matrix, t-SNE,

histograms, and heatmaps to create visual and statistical explanations. This work primarily focuses

on the explainability of the SOM and not on its accuracy.

2.4 Competitive Learning

In this section, the theoretical and practical aspects of Competitive Learning (CL) algorithms

are described. CL covers a range of algorithms wherein parts of the model compete against one

another to represent one aspect of a dataset. This is opposed to a different method of training

models known as Error Based Learning (EBL). In the following section, CL is discuss and how it

compares to EBL. Current CL based intrusion detection systems are also discussed. Lastly, various

CL algorithms that are used later in the dissertation are explained.

2.4.1 Error Based Learning vs. Competitive Learning

Neural network training algorithms can be divided into a few categories. One of the most

popular categories is Error Based Learning (EBL). The core principle behind EBL is optimization.

EBL models are trained through a process known as Empirical Risk Minimization (ERM). Through

this process, the Machine Learning (ML) algorithm works to minimize a parameter known as ‘loss’,

which is a metric that measures how poorly a model predicted a specific sample. If the model is

correct, loss is given a value of 0, otherwise, loss will be a value greater than 0. Common loss

functions include Binary Cross Entropy, Mean Absolute Error, and Poisson. To make use of the

loss function, ML algorithms employ an ERM technique. Gradient Descent (GD) is one of the

most well known techniques for this purpose. GD works by calculating the slope or gradient at

11

a given point of a loss function. Normally, this strategy is applied to convex functions, but ML

applications are rarely so orderly. After calculating the gradient, GD then takes a step down the

slope. A step can be done for every training sample or a batch of training samples. This changes

the weights and biases of a neural network in an effort to lower the loss. This process repeats until

the algorithm has converged as close as possible to 0.

The next set of algorithms that can be used is Competitive Learning (CL). CL consists of

unsupervised algorithms where nodes compete with one another over the right to activate for input

data. There are also a few variants of these algorithms that use probabilistic methods rather than

neural networks. CL algorithms follow three tenets [86]: (i) all units are the same at the start

except for their randomly selected weights, (ii) the ‘strength’ of each unit is limited, and (iii) units

compete to represent a sub-set or ‘cluster’ of the input data. Using these tenets, nodes in a CL

algorithm can represent abstract patterns or features in data. Nodes compete by being closer to

the input data. Generally, this is calculated through euclidean distance. The randomly selected

weights are then adjusted to be closer to the input data. There are a few common algorithms that

implement this tactic: SOMs, K-Means Clustering, and Expectation-Maximization (EM) mixture

modeling [88].

One can already begin to see the difference between CL and EBL. Neurons in EBL algorithms

represent an activation function rather than mimicking input data. EBLs train towards the goal of

minimizing loss from these activation functions. On the other hand, the nodes of CL algorithms

contain a vector that is similar to the input data. Training these nodes allow these algorithms

to slowly converge toward the inputted samples. Another major difference between these two

learning styles is their supervised/unsupervised nature. Many EBLs require a supervised based

12

learning style such that their loss function can be calculated. However, CL algorithms are able to be

trained in an unsupervised manner. Data labels are not needed during the training process. Another

advantage for CL based methods is that they tend to be innately explainable. Since the model works

to represent clusters in training data, the model can be data-mined for various visual and statistical

explanations. Since both the model and explanations are generated in a white box manner, the

explanations can be seen as more trustworthy. The same cannot be said for many EBL methods.

As mentioned in a previous section, frameworks such as SHAP [60] or LIME [85] may be required

to make EBL neural networks explainable. These explanation frameworks are, themselves, black

box. Therefore, the explanations they generate may not be as trustworthy as white box alternatives.

Lastly, the two algorithm sets predict data differently. EBL algorithms predict data using a loss

threshold that causes neuron activation while CL predicts based on proximity.

Generating explanations for EBL and CL algorithms also differ. EBL algorithms are categor-

ically known as black box algorithms. It is difficult to discern what process the algorithm took

to create predictions. To remedy this, one can use a surrogate model method such as Local Inter-

pretable Model-agnostic Explanations (LIME) [85], SHapely Additive exPlantions (SHAP) [60],

and Layer-wise Relevance Propagation (LRP) [14]. These surrogate models create explanations

generally through processes such as perturbation or probabilistic set theory. There are two major

problems with using these approaches. First, the use of these algorithms is effectively using a black

box to explain a black box. The process for generating the explanations can be difficult to under-

stand, so it may be more difficult for users to trust the explanations. Secondly, surrogate generators

can be computationally expensive. Not only does one need to train a model, they must then train

a surrogate model afterwards. CL algorithms remedy these problems. Since the algorithms are

13

already white box, they can easily be explained. Users can create their own custom explanations

that they can trust. Additionally, the computational complexity is generally limited by the size of

the CL algorithm’s map of nodes.

2.4.2 Competitive Learning used in Intrusion Detection

In the past, CL algorithms have been used to create many IDS. These studies focused on

building accurate IDS and did not discuss explainability. Among these approaches, SOMs were

used to create both host-based [55] and network-based [23, 76, 84] IDS. The majority of these

methods simply trained a SOM based IDS and illustrated mappings between data points and the

associated Best Matching Unit (BMU). The approaches described in [6, 84] use multiple SOMs

in conjunction with one another to create a more effective IDS. Only one approach [23] discussed

the false positive rate and accuracy of a SOM-based IDS. Their method for prediction involved

assigning a label to BMUs based on the training dataset. Using this approach meant that not

all SOM units were assigned a label. The authors utilized Gaussian Mixture Modeling (GMM)

to make predictions when a testing sample was similar to an unlabeled unit. In our previous

work [4], we created an X-IDS architecture based on DARPA’s recommended architecture. One

of its main features is having user input for correcting or modifying the model or its explanations.

Using this architecture, we were able to achieve an accuracy of 91% on NSL-KDD and 80% on

CIC-IDS-2017.

In addition, we can look at instances of GSOM-based IDS. A multi-agent GSOM proposed by

Palomo et al. [78] was created with the goal of being more accurate on datasets with many different

attack types. The Growing SOM should be able to continuously grow as it discovers new attack

14

types. Their IDS was able to achieve a 90% accuracy and a 1% false positive rate on the KDD

CUP 1999 dataset using 38 different attacks. A novel GSOM algorithm was developed in [81]

and called Statistics-Enhanced Direct Batch Growth Self-Organizing Map (SE-DBGSOM). One

of the goals of using this updated algorithm is to improve the efficiency of inserting new nodes.

The authors note that their algorithm improves upon previous GSOMs by reducing the number of

‘unnecessary’ nodes. This improves both runtime and false positive rates. SE-DBGSOM was able

to achieve a greater than 99% accuracy on KDD99 and CICIDS2017 datasets with false positive

rates as low as .6%.

GHSOMs have also made an impact in the field of IDS. One inspiring work that created a

GHSOM IDS is from the authors Ippoliti et al. [39]. They create an Adaptive GHSOM (A-GHSOM)

that uses dynamic normalization scaling, an adaptive growth thresholds, and confidence filtering

for reducing inconsistent predictions. We can find other works that make other modifications like

adding new metrics for numeric and symbolic data [77], enhancing map initialization and weight

distribution [87], and changing growing conditions [105]. Many of these implementations were

testing using KDD CUP 1999 or NSL-KDD to great effect.

The final two methods for CL algorithms, EM mixture modeling and K-means clustering, have

also been used to create effective intrusion detection systems. Both Bahrolo et al. [12] and Hammad

et al. [35] have created EM mixture model IDS that attempt to categorize the different attacks in

IDS datasets. Another work uses a combination of decision trees and EM mixture modeling to

create an effective IDS with an accuracy of 94.2% on the NSL-KDD dataset [15]. There are a

few notable works that use K-means clustering or an ensemble featuring K-means to categorize

or predict anomalies. Two methods combine K-means with a Naive Bayes classifier to achieve

15

high detection rates on KDD’99 and ISCX 2012 [70, 96]. In Li et al. [54], their IDS using solely

K-means clustering records a detection rate of 82% on the KDD’99 dataset.

Part of this work focuses on the SOM family of CL algorithms. These innately explainable

algorithms have been shown in previous works to be highly accurate for intrusion detection. Their

simple-to-understand nature is conducive to obtaining great explainable algorithms. In addition, the

weights generated by the SOM algorithms are easily visualized for explanations. In the following

sections, we describe in detail how each of the SOM algorithms operates.

2.4.3 Self-Organizing Maps

Self Organizing Maps (SOMs), sometimes referred to as Kohonen Maps [47,74], Kohonen Self

Organizing Maps [29], or Kohonen Networks [50], are a class of unsupervised machine learning

algorithms. SOMs are comprised of a network of individual nodes, each of which has a feature

vector of the same size as the dimension of training data. Some implementations also include

a (x,y) coordinate to allow node movement in a two-dimensional (2D) space. This 2D space is

typically represented as a square or a hexagonal grid, to easily visualize the represented space.

POPSOM, outlined in Algorithm 1, is the SOM algorithm chosen for this work [106]. It takes

four inputs: the number of rows (n), the number of columns (m), the learning rate (LR), and

the total number of epochs (T). Radius is also a common parameter that needs to be set in most

SOM algorithms, however, POPSOM calculates its initial radius using 𝑛, 𝑚, and LR. The 𝑛 and 𝑚

determine the size of the map, while 𝐿𝑅 is how aggressive the model adjusts its weights. The SOM

trains for a total of 𝑇 epochs before finishing. The algorithm begins by selecting a random training

sample. Then, the Best Matching Unit (BMU) is calculated by finding the smallest euclidean

16

Algorithm 1 POPSOM Algorithm
Input: Rows (n), Columns (m), Learning Rate (LR), Total Epochs (T)
Output: Weights (W)

BEGIN
1: Allocate n * m element array W
2: for each node in W do
3: Allocate N element array with random values [0,1]
4: end for
5: for Each Training Epoch in T do
6: Pick a training sample
7: Find Best Matching Unit using Euclidean Distance
8: Update BMU elements: 𝑤𝑖 = 𝑤𝑖 − _ ∗ (𝑤𝑖 − 𝑖𝑖)
9: Update BMU Neighbors

10: Update Learning Rate
11: end for
12: return 𝑊

END

distance from the training sample to a SOM node. After the BMU is found, it and its neighbors are

updated using the formula 𝑤𝑖 = 𝑤𝑖 − _ ∗ (𝑤𝑖 − 𝑖𝑖), where 𝑤 is the set of BMU weights and 𝑖 is the

set of feature values. _ is the learning rate function that considers the current training iteration, the

chosen 𝐿𝑅, and the distance from the BMU. Lastly, the learning rate, neighborhood radius, and

current iteration numbers are updated. The function _ works in a way that it decreases during the

course of the training process.

SOMs have some unique advantages that come with their application. The first is algorithmic

simplicity. As shown in Algorithm 1, the brevity of the algorithm helps to maintain the desired

properties of algorithmic decomposability and tractability. Additionally, due to its unsupervised

nature, SOMs can work on a variety of datasets and applications (e.g. data mining and discovery),

not just prediction [75]. By design, SOMs convert high-dimensional data into a lower dimensional

representation. This representation can be topologically clustered and explained through visual-

17

izations [76]. One challenge that comes with the application of SOMs is the selection of the size

parameters, as the size does not dynamically adjust and there is no best size heuristic [16]. Finally,

another challenge with SOMs is their scalability, both in their time complexity, 𝑂 (𝑁2), and space

complexity. More methods, such as those in [59], are needed to address these challenges.

2.4.4 Growing Self-Organizing Maps

SOMs were further improved by dynamically growing the 2D represented space. The Growing

Self-Orginaizing Maps (GSOM) was created by Bernd Fritzke in his impactful work [27]. Their

work kept the square architecture common to SOMs, but allowed it to grow by adding columns

or rows dynamically. Future implementations would implement systems that allowed the SOM to

grow node-by-node rather than with full rows or columns [5]. The training process of the GSOM

is very similar to that of the SOM other than the growing process.

The GSOM algorithm chosen for this paper is the Direct Batch Growing Self-Organizing Map

(DBGSOM) [99]. Its psuedocode can be found in Alg. 2. It takes three inputs: the dataset’s

dimensions (D), Spread Factor (SF), and Learning Rate (LR). 𝐷 is the number of features a dataset

has. SF determines how quickly new nodes are generated. 𝐿𝑅 is the same as in the SOM. Another

important variable that is not selected by the user is the Cumulative Error (CE). Each node in the

GSOM has a 𝐶𝐸 value. 𝐶𝐸 is the sum of all the differences between a sample and its BMU. This

value slowly accumulates over the course of training.

DBGSOM follows similar tenets as the original GSOM algorithm. The main difference is that

it generates new neighboring nodes in a batch process. It is initialized with four starter nodes

with randomized weights between 0 and 1. A growth threshold is calculated based on SF which

18

Algorithm 2 DBGSOM Algorithm
Input: Data Dimension (D), Spread Factor (SF), Learning Rate (LR), Total Epochs (T)
Output: Weights (W)

BEGIN
Initialization

1: Initialize 4 starter nodes with random Weights W [0,1]
2: Calculate Growth Threshold (GT): 𝐺𝑇 = −𝐷 ∗ 𝑙𝑛(𝑆𝐹)

Growing Phase
3: for Each Training Epoch in T do
4: Reset Cumulative Error (CE) for all nodes to 0
5: Present training samples
6: Determine BMU using Euclidean Distance
7: Update BMU and Neighboring weights
8: Calculate CE for all BMUs
9: for all non-boundary nodes do

10: Distribute CE to neighbors
11: end for
12: for all boundary nodes CE > GT do
13: Grow depending on number of available neighbor positions
14: end for
15: end for
16: return 𝑊

END

19

is static throughout the training process. After the DBGSOM is initialized, it enters the Growing

Phase. All nodes have their CE reset to 0. Training the GSOM is now similar to training a SOM.

Each training sample is presented to the map, and its respective BMU is found. The BMU has its

weights and CE updated based on the training sample. Additionally, all neighbors of the BMU

have their weights updated. After all of the training data has been used to update weights, we find

all non-boundary nodes. For each of these nodes, we distribute their CE to their neighbors. Lastly,

all boundary nodes for which 𝐶𝐸𝑖 > 𝐺𝑇 have a new neighbor node generated next to it.

A major advantage of using this algorithm is the undefined size of the map. SOMs are limited

in the fact that they use an unchanging number of nodes. If a map is too small, then different labels

from the dataset can begin to merge or take over one another. On the other hand, a larger map may

lead to many useless nodes taking up processing time. GSOMs solve this issue by adding new

nodes as needed. When the dataset processes a new idea (or a new attack in the case of an IDS

dataset), a new set of nodes can be generated with similar weights.

2.4.5 Growing Hierarchical Self-Organizing Maps

The SOM field would enter another Renaissance in the form of the Growing Hierarchical

Self-Organizing Map (GHSOM). The authors, Dittenbach et al., changed the growing algorithm

to not only grow horizontally but also vertically (i.e. hierarchically) [26]. Each layer of the

GHSOM consists of independent GSOMs. For every node in a GSOM, a child GSOM can be

generated. The original GHSOM algorithm uses a Growing Grid similar to the authors above [27].

This paper has chosen to use another implantation known as Directed Batch Growing Hierarchical

Self-Organizing Map (DBGHSOM) [99]. A major problem with GSOMs is that the map could

20

grow to be incredibly large, thus causing performance issues and clustering errors. Using vertical,

hierarchical growth, the GHSOM can avoid this problem by creating many smaller GSOMs.

Algorithm 3 DBGHSOM Algorithm
Input: Data Dimension (D), Spread Factor (SF), Learning Rate (LR), Total Epochs (T)
Output: Weights (W)

BEGIN
Initialization

1: Same as Alg. 2
Horizontal Growing Phase

2: Same as Alg 2
Vertical Growing Phase

3: Calculate the Sum of all CE (SE)
4: Calculate the Vertical Threshold VT = LR ∗ SE
5: for All nodes with CE > VT do
6: Create new child DBGSOM
7: Train new child DBGSOM using Alg. 2
8: end for
9: return 𝑊

END

The pseudocode for the hierarchical GSOM used in this paper can be found in Alg. 3.

DBGHSOM has 3 phases: initialization, horizontal growing, and vertical growing. The parameters,

initialization, and horizontal growing phases are the same as DBGSOM. A 2-by-2 set of nodes is

created and initialized. After the first horizontal growing phase, a vertical growth threshold (VT)

is calculated. The vertical growth threshold is a percentage of the total cumulative error of a map.

For any node 𝐺𝑇𝑖 > 𝑉𝑇 , we create a new DBGSOM. This child GSOM is trained just like its

parent.

GHSOMs share some of the benefits that its predecessor has, like being able to dynamically

grow. Additionally, they have the benefit of both graphically and abstractly represent data in a

21

hierarchical structure. This form of growth allows for the GHSOM to learn of new attacks as the

training data introduces them. The various roots in a GHSOM can be created to have different

representations of what constitutes an attack. However, a notable issue with GHSOMs is their

ability to grow into thousands of sub-trees and roots, causing performance issues. This problem

can be addressed through a pruning process discussed in the next section.

2.5 Neural Network Rule Extraction

Rule Extraction (RE) algorithms are a family of techniques used to generate textual rulesets

from neural networks. RE can be categorized into three families: decompositional, pedagogical,

and eclectic [30]. The decompositional approach opens up the black box and uses neuron weights

and activations to generate rules. This approach generates rules layer-to-layer starting from the

output and final hidden layer. It then steps backward connecting hidden to its next hidden layer,

finally connecting the input layer to the first hidden layer. A substitution algorithm is used to create

a ruleset from this chain of rules. Conversely, the pedagogical approach maintains the model’s

black box nature. It maps model inputs to outputs and uses this mapping to train a DT. Notably,

this approach typically trains only a single tree. Lastly, there is the eclectic approach. Eclectic

algorithms use a mixture of decompositional and pedagogical techniques. In this type of algorithm,

each hidden layer is used to generate its own textual ruleset. These rulesets can be concatenated

together to explain the whole of the network. In this work, we chose to use an eclectic-type RE

algorithm. The customizable nature of the algorithm allows us to make design choices that benefit

IDS datasets.

22

Eclectic algorithms lead themselves to be more useful for intrusion detection and its large

datasets. Decompositional algorithms such as DeepRed [109] have an exponential runtime com-

plexity [107]. This complexity is due to how this algorithm substitutes rules from the input layer to

the output layer. However, using an eclectic algorithm, we can mitigate this. We do not necessarily

need to use every layer. We can increase the speed of our algorithm by limiting the percentage of

layers we generate rulesets for. An important benefit of decomposition approaches is how pure a

rule’s genealogy is. By this we mean, there is a path through each hidden layer’s DT from input

to output. This approach may be considered more trustworthy than the eclectic approach. The

eclectic approach generates rulesets for each layer. Each layer’s weights are correlated with the

output of the network. So, unlike the decompositional approach, there is no direct path from input

to output.

Algorithm 4 DNN Rule Extraction
Input: Dataset (X), Model (M), Decision Tree Algorithm (DT)
Output: Final Ruleset (R)

BEGIN
1: 𝑅 = 𝑠𝑒𝑡 ()
2: 𝑌 ′ = M.predict(X)
3: for hidden layer ℎ𝑖 in M do
4: 𝑋′ = ℎ𝑖 (𝑋)
5: ℎ𝑖𝑑𝑑𝑒𝑛𝑑𝑡 = DT(𝑋′, 𝑌 ′)
6: 𝑅𝑢𝑙𝑒𝑠ℎ𝑖𝑑𝑑𝑒𝑛 = ExtractRules(ℎ𝑖𝑑𝑑𝑒𝑛𝑑𝑡)
7: 𝑌 = 𝑅𝑢𝑙𝑒𝑠ℎ𝑖𝑑𝑑𝑒𝑛 (𝑋′)
8: 𝑖𝑛𝑝𝑢𝑡𝑑𝑡 = 𝐷𝑇 (𝑋,𝑌)
9: 𝑅.𝑎𝑑𝑑 (ExtractRules(𝑖𝑛𝑝𝑢𝑡𝑑𝑡))

10: end for
11: return 𝑅

END

23

The pseudo-code for the algorithm we implemented can be found in Algorithm 4. The algorithm

takes input of a dataset (X), a DNN model (M), and a decision tree algorithm (DT). It trains two

decision trees per layer that we can extract rules from to generate a ruleset. The algorithm begins

by initializing an empty set (𝑅) that will be used to store future rules. We then used the trained

model to generate predicted labels for our dataset (𝑌 ′). We then loop through each hidden layer

(ℎ𝑖). For each hidden layer, we generate a new dataset (𝑋′). This dataset is generated by obtaining

the hidden values created by the hidden neurons on each layer. We can then use our hidden value

dataset (𝑋′) and our predicted labels (𝑌 ′) to train our hidden value decision tree (ℎ𝑖𝑑𝑑𝑒𝑛𝑑𝑡). After

the decision tree is trained, we can extract the rules from the tree using a depth-first search approach

(ExtractRules()). Once we have our rules extracted, we use the rules to generate a list of labels (𝑌).

These labels are used in conjunction with the original dataset to create the final input-to-output

decision tree (𝑖𝑛𝑝𝑢𝑡𝑑𝑡). The same depth-first search algorithm is used to extract the rules which are

then added to the ruleset (𝑅). More information about our specific implementation can be found

in Section 6.2.3.

24

CHAPTER 3

RESEARCH DATA

This chapter discusses the three intrusion detection datasets used in this dissertation. The three

datasets are NSL-KDD, CIC-IDS-2017, and UNSW-NB15. These three datasets are ubiquitously

used in the area. The following sections will give brief statitical overviews of each dataset and

quickly discuss why they are used in this work. Additionally, each attack is defined so that the

reader can form a general understanding of the datasets.

3.1 NSL-KDD

NSL-KDD is an intrusion detection dataset created by the University of New Brunswick in

2009 [97]. It is a revised version of the KDD’99 dataset. NSL-KDD seeks to correct issues with

the KDD’99 dataset. First, it removes many of the redundant samples. Second, NSL-KDD is made

to be more challenging than its predecessor. This dataset was chosen because of its wide use in

the literature. Using it allows this work to be compared to past work and can be used to show

architecture scalability. This dataset consists of 148,517 samples, 43 features, and a contamination

rate of 48.1%. NSL-KDD was synthetically created using a network simulator.

The NSL-KDD dataset contains four different kinds of attacks: Denial of Service (DoS), User to

Root (U2R), Remote to Local (R2L), and Probing. The DoS is an attack that affects the availability

of a service, usually causing that service to be unreachable due to too many connection attempts.

25

However, in general a U2R attack affects the confidentiality or integrity of data. Malicious users, by

some means, may gain root access to a system and may be able to view or modify data as they please.

Similarly, a R2L attack is one where attackers may gain remote access to a machine for which they

should not have access. Lastly, probing is a method of information gathering achieved by attackers.

This attack looks for known compromised modules that are connected to the internet. While the

features (see Table 3.1) of NSL-KDD mainly pertain to tcp/ip packet information, there are also

features relating to traffic and content. Traffic features contain information about the duration and

amount of connections. Content features contain information about data that the attackers sent in

the packet. As mentioned previously, this dataset allows our work to be compared to older IDS

and X-IDS works found in the literature. A brief overview of the statistical characteristics of this

dataset can be found in Table 5.1.

26

Table 3.1: Selected features for the NSL-KDD and CIC-IDS-2017 using Bayesian probability of
significance [33]

NSL-KDD
Feature Name Feature Description Feature Name Feature Description

src_bytes
(Source Bytes) Number of bytes from source to destination dst_bytes

(Destination Bytes) Number of bytes from destination to source

Count
Number of connections to the same
host as the current connection at a

given interval

srv_count
(Service Count)

Number of connections to the same
service as the current connection at a

given interval
dst_host_count

(Destination
Host Count)

Number of connections to the same
destination

dst_host_srv_count
(Destination Host
Service Count)

Number of connections to the same
destination that use the same service

CIC-IDS-2017
Feature Name Feature Description Feature Name Feature Description
Flow Bytes/s Number of flow bytes per second Flow Duration Duration of the flow in microsecond

Flow IAT Max
(Flow Inter-Arrival

Time Max)

Maximum time between two packets
sent in the flow

Fwd IAT Total
(Forward Inter-Arrival

Time Total)

Total time between two packets
sent in the forward direction

Flow Packets/s Number of flow packets per
second Destination Port Port the package was destined for

Bwd IAT Total
(Backward Inter-Arrival

Time Total)

Total time between two packets sent in
the backward direction

Fwd Packets/s
(Forward Packets/s)

Number of forward packets per
second

Flow IAT Min
(Flow Inter-Arrival

Time Min)

Minimum time between two packets
sent in the flow Packet Length Variance Variance length of a packet

Flow IAT Mean
(Flow Inter-Arrival

Time Mean)

Mean time between two packets
sent in the flow

Fwd IAT Max
(Forward Inter-Arrival

Time Max)

Maximum time between two packets
sent in the forward direction

Idle Max Maximum time a flow was idle
before becoming active Idle Mean Mean time a flow was idle

before becoming active

Idle Min Minimum time a flow was idle
before becoming active

Flow IAT Std Flow
(Inter-Arrival Time
Standard Deviation)

Standard deviation time between two
packets sent in the flow

Bwd IAT Max
(Backward Inter-

Arrival Time Max)

Maximum time between two packets
sent in the backward direction

27

3.2 CIC-IDS-2017

CIC-IDS-2017 was created by the same authors of NSL-KDD [90]. The authors evaluated 11

intrusion detection datasets since 1998 and found that these datasets were not reliable. CIC-IDS-

2017 was created to feature modern attacks and modern benign network traffic. This dataset is

chosen not only because of its wide use in the literature but also because of its size and modern

attacks. Compared to the other datasets used for this dissertation, CIC-IDS-2017 is relatively large.

It contains 2,827,876 samples, 79 features, and a contamination rate of 19.8%. CIC-IDS-2017 was

synthetically created over 5 days.

The dataset includes six types of attacks: Brute Force, Heartbleed, Botnet, Denial of Service,

Distributed Denial of Service (DDoS), Web, and Infiltration. A Brute Force attack is a common

type of attack whereby a malicious actor tries millions of passwords in an attempt to gain access

to a user or administrator account. This type of attack will use resources such as the ‘rockyou.txt’

common password list and can affect all aspects of the CIA triad. Heartbleed is a confidentiality

attack that exploits a weakness in the OpenSSL library [18]. Abusing this bug allows attackers

access to encrypted data by reading straight from a compromised system’s memory. A Botnet

attack refers to the involvement of a set of machines used by an attacker to perform a malicious

task. It can affect confidentiality, availability, and integrity. The DDoS attacks differ slightly from

the DoS attacks in that this type of attack originates from many different hosts. The Web attacks

consist of various SQL injections and Cross-Site Scripting attacks that can affect the confidentiality

and integrity of data. Lastly, Infiltration attacks exploit vulnerable software on a user’s system to

allow an attacker to gain backdoor access potentially affecting all CIA tenets.

28

3.3 UNSW-NB15

The final dataset used in this work is UNSW-NB15. This dataset was created by the University

of New South Wales in 2015 [68]. UNSW-NB15 was created to address some of the limitations

associated with NSL-KDD. Additionally, it was created with attacks that were modern at the time.

This dataset has been chosen because it contains more modern data than NSL-KDD and it has seen

some use in the literature. Though the dataset contains over 2 million samples, this work chooses

to use UNSW’s provided training and testing datasets. Combined, they have a total of 257,637

samples, 45 features, and a contamination rate of 63.9%.

UNSW-NB15 contains 9 types of attacks: fuzzers, analysis, backdoors, DoS, exploits, generic,

reconnaissance, shellcode, and worms. Fuzzer attacks use a program that creates random or

semi-random inputs that are used to probe network-connected programs for bugs. Analysis attacks

employ various port, spam, and HTML attacks. Backdoors are attacks that seek to bypass security

layers. Exploits are known security vulnerabilities that can be attacked. Generic attacks are a

technique used to attack block-cipher encrypted data. Reconnaissance encompasses all attacks that

gather information. Shellcode is a payload attack that attacks known security exploits in programs.

Lastly, worms are attacks that replicate themselves in order to spread to other computers.

29

CHAPTER 4

CREATING AN EXPLAINABLE INTRUSION DETECTION SYSTEM USING SELF

ORGANIZING MAPS

4.1 Introduction

The use of Artificial Intelligence (AI) in cyber-defense solutions, particularly Intrusion De-

tection Systems (IDS), has been gaining traction to protect against a wide range of cyber attacks.

While these AI models have high detection rates, high false positive and false negative rates can

dissuade a security analyst from using an AI enabled IDS [63]. These IDS built using AI and deep

learning methods are black boxes, meaning a security analyst will have little to no explanations

and clarifications on why a model made a particular prediction. With the rise in cyber attacks on

critical infrastructure, government organizations, and business networks, there is a pressing need

for an explainable, automated detection system that can provide real-time aid to an analyst.

Intrusion Detection Systems are generally utilized as part of a larger cybersecurity defense effort

at an organization generally located in a Cyber-Security Operations Center (CSoC). These systems

monitor networks and automate attack detection by comparing network activity to the signature of

known attacks or by detecting behavior that is anomalous to benign network patterns [83]. Through

these methods, a security analyst can use an IDS to detect improper use, unauthorized access, or

the abuse of a network. Analysts can then create mitigating strategies to minimize damages and

30

costs of the malicious behavior. The usefulness and cost effectiveness of IDS have therefore been

the subject of much research [13, 103].

Previous work in AI enabled IDS has generally focused on improving detection rates while

limiting false positives and false negatives. These techniques have been effective at achieving high

detection rate, but have failed to provide explanations for their computed predictions. Without

the ability to understand how a model reached a decision and which features were relevant to

the decision computation, a security analyst will give less credence to these AI enabled IDS.

Opaque Deep Learning methods in particular, can be considered as black boxes providing no

explanations and feature relevance information, severely limiting adoption in real world cyber-

defense scenarios [57].

A potential solution to this problem is to research and develop Explainable Intrusion Detection

Systems (X-IDS) based on current capabilities in Explainable Artificial Intelligence (XAI) [72].

The guidelines proposed by the Defense Advanced Research Projects Agency (DARPA) indicate

that to be explainable, an AI should explain the reasoning for its decisions, characterize its strengths

and weaknesses, and convey a sense of its future behavior [28]. An X-IDS that is transparent in its

behavior and decision making process, will empower a security analyst to make better informed

actions, understand the feature composition of a prediction, help CSoCs defend from known

attacks, and quickly understand zero-day attacks. To address this need, we create an X-IDS using

Self Organizing Maps (SOMs).

Data collected from modern networks contain potentially hundreds of different features about

the traffic flow, operating systems, network protocols, and other metadata. SOMs work by repre-

senting this high dimensional data on a 2-dimensional plane. This also includes maintaining the

31

topographical relationship of the data by grouping similar data [47]. Through this dimensional

reduction and various other SOM visualization techniques, a security analyst can view both global

and local explanations about a potential attack rather than an opaque prediction generated by a

black box model.

As the need for explainable cyber-defense systems increases and to address the lack of XAI

research in the field of IDS, the main objective of this paper is to demonstrate the explainability of

the SOM based X-IDS rather than creating the most accurate system. Higher accuracy systems can

be developed by using complex derivative architectures. However, further research is necessary to

make them explainable. Our goal in this paper is to increase trust in IDS and help CSoCs defend

from attack through the use of explainable insights. As a secondary focus, we also provide the

accuracy scores of our SOM based X-IDS system trained on the NSL-KDD and CIC-IDS-2017

datasets.

Major contributions presented in this chapter are -

• A novel X-IDS architecture featuring a SOM, built using DARPA’s proposed guidelines for
an explainable system. This system is able to produce robust, explanatory visualizations of
the SOM model and create accurate IDS predictions.

• A Local and Global explainability analysis using the SOM explainable architecture. The
explanation module creates a collection of explainable visualizations that can be used by a
security analyst to understand predictions.

• A performative analysis using NSL-KDD and CIC-IDS-2017. The SOM based model is able
to achieve accuracies as high as 91% on NSL-KDD and 80% on CIC-IDS-2017 datasets.

4.2 X-IDS Architecture

An X-IDS’s main goal is to help stakeholders protect their networks and understand various

relevant events. The system should act as both a guard and adviser for network security. When an

32

Figure 4.1: Architecture for an Explainable Intrusion Detection System (X-IDS) utilizing Self
Organizing Maps (SOMs), based on DARPA’s recommended architecture for Explainable Artificial
Intelligence (XAI) systems [28].

IDS discovers an intrusion, the user should be notified to prevent a possible attack. Explanations

generated by the X-IDS should assist CSoC operators in their mission to protect their organization.

To help achieve this goal, we propose the novel, proof of concept SOM based X-IDS architecture

in Figure 4.1. The proposed architecture is based on DARPA’s recommended architecture for XAI

systems [28]. Components of the framework can be changed to suit users’ needs. The architecture

is abstract enough that methods other than SOMs can be interchanged to create different X-IDS. The

architecture consists of three stages: pre-modeling, modeling, and post-modeling explainability.

In the first phase, the model preprocesses raw network data captured into high quality datasets,

and selects parameters for the SOM model. Next, the model is trained during the modeling phase.

Metrics are recorded to determine the newly trained model’s quality. Lastly, in the post-modeling

phase, the SOM is data-mined to generate explanatory visualizations that allow users to understand

how predictions are generated. In the next subsections, we describe each of these phases in detail.

33

4.2.1 Pre-Modeling Phase

In this work, NSL-KDD [98] and CIC-IDS-2017 [80] were used to test the explainability

and effectiveness of our architecture. NSL-KDD was chosen because of its wide use in the

literature. It allows our method to be compared to other existing IDS. CIC-IDS-2017 includes

more modern attacks and is useful for testing an unbalanced dataset. The datasets are passed

through a preprocessing module that normalizes the data. Additionally, the architecture uses

Bayesian Probability of Significance [33] to select features. Any feature significance value over

a designer selected threshold is included in the preprocessed dataset. The resulting high quality

dataset is used during the modelling phase.

4.2.2 Modeling Phase

The modeling phase begins by training the SOM model using the high quality dataset generated

during the pre-modeling phase. For this paper, we use the POPSOM implementation [106].

Training parameters include total training iterations, learning rate, and SOM size. At the end of

the training session, the model will be tested to produce topographical error, quantization error,

F1-score, precision, recall, and a confusion matrix. The confusion matrix can be used to determine

both the false positive and false negative rate for the model. The quality metrics are used to

determine if a model has been sufficiently trained to generate explanations.

4.2.2.1 Quality Metrics

There have been various metrics and measures proposed to evaluate the quality of a trained

SOM. These include quantization error, topographic accuracy, embedding accuracy, and conver-

gence index. Quantization error was used by Kohenen [49], and measures the average distance

34

between nodes and the data points. To measure how much the features of the input space have been

preserved in low dimensional output space, a topographic error is used. The topographic error is

measured by evaluating how often the BMU and second BMU are next to each other [16], [52]. Map

embedding accuracy is similar to quantization error and it measures how similar the distribution of

the input data is with respect to that of the SOM units [32]. In order to measure both topographic

preservation and distribution similarity between the input and SOM units, the convergence index

was proposed to be a measure that linearly combines map embedding accuracy and topographic

accuracy [1]. Prediction accuracy metrics are also important to include in an IDS architecture.

These metrics include F1-score, false positive rate, and false negative rate. These measurements

allow the architecture to be compared to other existing IDS.

35

Figure 4.2: These figures show the local and global feature explanations for both the NSL-KDD
and CIC-IDS datasets. (a)(c) Demonstrates features the SOM has chosen for a malicious sample
from the NSL-KDD and a benign sample from the CIC-IDS-2017 datasets. The more significant
a feature is, the lower its value (i.e. closer to the BMU). (b)(d) Global feature significance is
calculated using Bayesian Probability of Significance [33]. Features that have a higher significance
value are much more likely to cause a prediction to be made for benign or anomalous.

36

4.2.3 Post-Modeling Explainability

Once the modeling phase has been completed and quality metrics have ensured that the model

is a good representation of the data, the model can be used to perform a variety of explainability

and visualization tasks. The model itself is a list of SOM units and the weights associated with

these units. Visualization tasks include creating local and global explanations, a U-Matrix, and

feature heatmaps.

4.2.3.1 Local and Global Explanations

Global and local interpretability can be achieved by examining important features of the

trained SOM, and utilizing this information to generate an explanation for a specific data instance

classification or cluster classification [101]. Global significance for NSL-KDD is shown in Figure

4.2b with higher values denoting that a feature has a higher probability of being important. Higher

variance features increase the probability that a model will capture the dataset’s structure [33].

Through this graph, an analyst can understand which features are important to the overall SOM

structure, allowing them to examine predictions at a local level based on globally important features.

Figure 4.2a shows the local explanations for a prediction, where each feature on the y-axis has

a value representing distance from its respective BMU value. In this example, we can see the

features with the largest impact on a prediction: duration, dst bytes, and src bytes. These features

were the closest to the BMU, and they played a large role in computing the predicted value. Seeing

the specific features that influence predictions provides insight about samples labeled as malicious

or benign and can further help operators determine the reason of incorrect predictions. These

features can also be further investigated with feature value heat maps.

37

4.2.3.2 Unified Distance Matrix (U-Matrix)

The U-Matrix is a visualization of the distances between neighboring SOM units. With

distances shown as a color gradient, units far apart will create dark boundaries while areas with

similar units will be lighter. This can visually represent the natural clusters of input data. To

enhance the standard U-Matrix, the starburst model uses connected component lines of nodes

overlaid on the matrix to better represent clusters [34]. For a labeled data set, the user is able

to visualize each BMU along with the associated label. Figure 4.3a shows clear clusters with

boundaries separating malicious (1) and benign (0) behavior. Using this information a security

analyst can investigate more visualizations and feature importance values to gain an understanding

about why certain malicious network activities are being grouped together.

4.2.3.3 Feature Value Heat Map

Heat maps show general trends that a feature has on the entire SOM model. SOM feature

values are represented from 0 to 1, and the heat maps denote this with darker and lighter values,

respectively. An example feature value heat map can be found in Figure 4.3b. In this example,

the ‘dst bytes’ features has a cluster of higher values in the bottom-left corner, while the rest of

the SOM consists of lower values. Users can use this information to form conclusions about the

model. Feature value maps are more powerful when multiple are viewed at a time. In addition, the

U-Matrix or K-means clustering charts can then be referenced to make general decisions about the

model. The heat maps work well as a fine-grained global explanation that helps users to understand

the overall model.

38

4.3 Experimental Design

The SOM based X-IDS was evaluated on both explanation generation and traditional accuracy

tests. SOM explanation generation is categorized into visual and statistical explanations. The

visual explanations include U-matrices, feature heatmaps, and K-means clustering maps. Statistical

explanations include local and global feature significance charts. These explanations are described

in Section 4.2.3. Traditional accuracy tests include many ubiquitous metrics used in AI. This work

records F1-score, precision, recall, false positive rate, and false negative rate. All of these metrics

are described in Section 4.2.2.

4.3.1 Model Parameters & Dataset Preprocessing

Experiments were run using the NSL-KDD and CIC-IDS-2017 datasets (See Chapter 3), which

was used to train two 18x18 SOMs. The training process was completed in 1000 iterations over

the dataset. After 1000 iterations, there was no significant improvement in evaluation metrics. In

fact, while training on the CIC-IDS-2017 dataset, the SOM model performance began to degrade

as a result of over-fitting. A learning rate of .3 was chosen as it provided the best clustering results.

The NSL-KDD and CIC-IDS-2017 training and testing datasets are combined to form single

datasets. This dataset is then split using Scikit-Learn’s train_test_split() for a 60% training dataset

and a 40% testing dataset. Dataset preprocessing is as follows. First, samples with ‘None’ or ‘NaN’

values are removed. Second, categorical entries are One Hot Encoded. Third, the features are

normalized using Scikit-Learn’s Normalizer on default settings. Lastly, the labels are changed to

‘0’ for benign and ‘1’ for malicious.

39

4.3.2 Explanation Generation

After the models are trained, they can be data-mined to create explanations. Explanation

evaluation does not have objective metrics for visual explanations. Users must look at the U-

matrices that are generated and form their own conclusions. To this end, this experiment is

evaluated using a method that users would use to understand the model. By combining knowledge

from both the U-matrices, feature heatmaps, and statistical explanations, this work creates a

methodology for potentially evaluating explanations. Local and global statistical explanations,

on the other hand, are recorded using defined metrics. Local significance is calculated using the

distance from a sample’s best matching unit. Global significance is a measure of feature variability

in its dataset.

4.3.3 Traditional Accuracy Metrics

Traditional accuracy tests cover all of the previously mentioned metrics. F1-score takes into

account the model’s precision and recall. This help accommodate unbalanced datasets where

models may choose to guess the dominant category to achieve high accuracy.

𝐹1𝑆𝑐𝑜𝑟𝑒 = 2 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(4.1)

Precision and recall are metrics that can be used to understand the model’s ability to predict

true labels. Precision is used to quantify a model’s ability to avoid false positives. Recall quantifies

40

a model’s ability to predict true labels as true. In other words, it shows how well the model avoids

false negatives. Precision and recall are defined in the equations below.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(4.2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4.3)

Lastly, False Positive Rate (FPR) and False Negative Rates (FNR) are used to show how often

malicious data is labeled as benign and vice versa.

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
(4.4)

𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
(4.5)

4.4 Experimental Results and Evaluation

Using the methodology discussed in Section 4.3, this section details the results of the explana-

tion generation and traditional accuracy tests.

41

Figure 4.3: (a)(c)The Starburst U-Matrix shows both the most common label for each node and the
clusters the SOM has learned. Darker areas represent units that are close Euclidean Distance-wise.
Notably, we can see a clear divide between classes on the NSL-KDD dataset as represented in the
figure. (b)(d) The feature value heatmap displays the value of a specific feature on each unit in
the SOM. Lighter values represent units with values closer to 1, while darker values show values
closer to 0. The ‘dst byte’ example shows that the bottom ‘anomalous’ cluster values higher values.

42

Figure 4.4: NSL-KDD K-means Clustering Map. This visualization can be quickly viewed to
summarize where labels cluster on the SOM.

43

4.4.1 Model Explainability

The results for the NSL-KDD dataset can be found in Figures 4.2a and 4.2b. The local

explanation example shows that the most important features for its prediction were ‘Duration’,

‘Destination (dst) bytes’, and ‘Source (src) bytes’. The remaining features, ‘Service (srv) count’,

‘Count’, and ‘Destination (dst) host count’ are considered less significant because of their distance

from the BMU. Two of the important features coincide with the Global Feature Significance graph.

This trend continues when testing on many different test samples. The most important global

features are frequently at the forefront for local significance. Similarly to NSL-KDD, CIC-IDS-

2017 follows this trend. Many of the top, globally selected features also play a more important role

in the local predictions.

The next set of explainability techniques has been data-mined from the trained SOM. Figures

4.3a and 4.3c show the generated Starburst U-Matrix for NSL-KDD and CIC-IDS-2017, respec-

tively. The SOM algorithm was able to separate benign clusters from malicious clusters in the map

created from NSL-KDD dataset. The bottom-left corner is primarily malicious samples, while

the top-right corner contains mostly benign samples. Additionally, the clusters marked by the

starbursts’ origins mostly represent one label. On the other hand, the CIC-IDS-2017 map has not

separated the labels sufficiently. Most of the labels present in the figure are benign (0) with very

few malicious labels (1). CIC-IDS-2017 is an unbalanced dataset, with about 70% of samples

being benign and 30% of samples as malicious. This class imbalance causes the SOM to be trained

on more benign samples than malicious.

For a simplified label separation, users can visualize a K-means clustering interpretation in

Figure 4.4. This figure helps to explain which clusters the benign and malicious traffic are grouped

44

Table 4.1: SOM traditional accuracy results table and comparison to black box models.

Traditional Accuracy Tests

Dataset F1-Score Precision Recall False Positive
Rate

False Negative
Rate

NSL-KDD 91.0% 91.0% 91.4% 9.4% 8.0%
CIC-IDS-2017 80.0% 77.4% 81.8% 22.5% 4.5%

Peformance Comparison

Dataset SOM Random Forest Deep Belief
Network

NSL-KDD 91.0% 99.67% 97.5%
CIC-IDS-2017 80.0% 97.1% 94.0%

in. The NSL-KDD K-means graph is similar to the computed U-matrix. However, the CIC-IDS-

2017 K-means cluster graph was unable to form accurate clusters. As mentioned above, there were

few units that were labeled malicious (1), and the K-means clustering algorithm chosen was unable

to create a meaningful separation.

Lastly, the feature value heatmaps are generated for each feature of the dataset. The examples

chosen were the most significant features for each dataset: ‘destination (dst) bytes’ and ‘flow

bytes/s’. On their own, they can be used to see general training trends for each feature. In Figures

4.3b and 4.3d, we can see that each of these features have higher values in the bottom-left units and

lower values elsewhere. Users will be able to build a mental model of the SOM when visualized in

conjunction with the features maps. For example, ‘destination (dst) byte’, ‘duration’, and ‘source

(src) byte’ all have higher values in the malicious section of the map. One may conclude that when

these values are all close to one, the sample is more than likely malicious.

45

4.4.2 Accuracy

When creating an IDS, accuracy is an important metric to consider. Table 4.1 shows the

accuracy metrics obtained for both the NSL-KDD and CIC-IDS-2017 datasets. The accuracy of

the NSL-KDD evaluation can be attributed to the separation of benign and malicious traffic, as

mentioned above. The accuracy of CIC-IDS-2017, however, is much lower. The U-matrix shows

that not many units are labeled as malicious. Interestingly, only 14% of the units are labeled as

malicious, which means that 77.4% of malicious samples are similar to that small subset of units.

Additionally, Table 4.1 compares the SOM’s accuracy to Random Forest and Deep Belief Networks

(DBN). Here we can see that the SOM performs between 7% to 14% worse than the black box

models.

The results from the explainability and accuracy experiments show that it is possible to create

explainable and relatively accurate SOM based X-IDS. The visualization techniques used can

give users an understanding of the model and can empower security analysts to make their own

predictions, similar to the model. A 91% F1-score can be attributed to the clear separation the

model makes between malicious and benign samples. When compared to more complex algorithms

like Random Forest and DBN, SOM performs worse. However, SOMs are far more explainable

and easier to understand. We believe that the accuracy and explainability can be further improved

with more complex SOM algorithms.

4.5 Conclusion

In this work, we created a novel, proof of concept SOM based X-IDS implementation. The

implementation was able to produce robust, explainable figures describing the SOM model. Ex-

46

plainability was demonstrated using various forms of visualization including feature significance,

U-matrices, and feature heatmaps. Through these, users are able to create their own conclusions

about how the model works and makes predictions. Additionally, accuracy was tested using the

NSL-KDD and CIC-IDS-2017 datasets. The SOM implementation was able to achieve accuracies

of 91% and 80%, respectively.

47

CHAPTER 5

EXPLAINABLE INTRUSION DETECTION SYSTEMS USING COMPETITIVE LEARNING

TECHNIQUES

5.1 Introduction

Shifting away from the current trend of black box Intrusion Detection Systems (IDS) can lead to

more trustable and credible anomaly detection. Existing methods for AI enabled intrusion detection

use Error Based Learning (EBL) algorithms to detect anomalies. EBL refers to models that train

through minimizing a loss function, generally through the gradient descent algorithm. These

models can achieve high detection rates, however they suffer from a few problems. First, these

techniques can impose high performative cost. Neural networks can require both high amounts of

time and memory to train [38, 71]. Second, many of these methods have high false positive rates

which can harm the overall performance of a real-world IDS [17]. Lastly, these models are not easy

to understand and are not innately explainable. Users who use these opaque models do not know

how or why a prediction was computed. This can cause a lack of trust and prevent the adoption of

AI IDS solutions [4, 63].

eXplainable Intrusion Detection Systems (X-IDS) are a potential solution to the above men-

tioned problems [71]. To begin, the Defence Advanced Research Projects Agency (DARPA) defines

an explainable system as an AI that can explain the reasoning for its decisions, characterize its

strengths and weaknesses, and convey a sense of its future behavior [28]. There are many methods

48

that can allow current EBL AI models to achieve these tenets. Solutions such as Local Inter-

pretable Model-agnostic Explanations (LIME) [85], SHapely Additive exPlantions (SHAP) [60],

and Layer-wise Relevance Propagation (LRP) [14] have the ability to convert black box models

into semi-transparent, explainable models. However, the use of these types of solutions comes

with downsides and a performance overhead. A major downside to these techniques is their black

box nature. Similar to the black box EBL models that they are used to explain, the user does

not know how or why these explanation frameworks come to conclusions. If one of the goals of

black box XAI is to generate trust in opaque models, how can we view explanations from opaque

surrogate models as trustworthy? Black Box surrogate explanation can be seen as less trustworthy

than certain alternatives. Additionally, creating surrogate models can be a time consuming and

resource intensive process. Not only does one need to train the EBL model, but one must also

train a secondary surrogate model that generates explanations. White box explanations and white

box Competitive Learning (CL) offer a potential solution to these problems. CL algorithms have

the benefits of a transparent training process alongside generating explanations during training.

Explanations can be data-mined directly from the model and allow for customizable presentation.

In other words, CL algorithms are transparent and innately explainable. The transparency of the

model and explanations work in tandem to make a more trustworthy system. White box CL algo-

rithms are able to meet all of the criteria DARPA has set for explainable systems, and are a good

choice for an X-IDS.

Competitive learning algorithms differ from the more popular EBL algorithms in a number of

ways. Where EBL algorithms, such as deep neural networks and recurrent neural networks, learn

by adjusting weights to minimize loss, CL algorithms learn through a competitive process. These

49

CL based techniques, for instance, pits nodes that mimic samples of data against one another.

When a node wins in this competition, its weights are adjusted to be similar to the training sample.

This enables CL-based techniques to learn by creating abstract representations of data. For IDS

datasets, an X-IDS system built using CL models can learn different kinds of attacks and benign

behaviors. An important benefit to this type of learning is its ability to be data-mined for visual

and statistical explanations. This is a benefit that EBL algorithms lack. See Section 5.2.4 for more

information about CL explanations.

The most ubiquitous CL algorithm one will find is the Self Organizing Map (SOM) [47] and its

variants. These algorithms consist of a grid of orthogonally connected nodes that each contain a

representation of data. As mentioned previously, these nodes compete against one another to mimic

abstract patterns in data. The original SOM algorithm consists of a static map of nodes that confine

the training area. The Growing Self Organizing Map (GSOM) [27] and Growing Hierarchical

Self Organizing Map (GHSOM) [26] improve upon the original SOM design by growing the map

horizontally and vertically. These expansion strategies allow the improved algorithms to learn

various abstract representations of data than the original SOM. These algorithms are detailed

further in Chapter 2.

There are many benefits to using CL algorithms for an X-IDS. As mentioned previously, the CL

algorithm’s transparency and innate explainability make them much more trustworthy than black

box alternatives. Users of an IDS can use CL models to formulate better responses for tasks they

must perform. These tasks can be performed with confidence because of the trust generated from

the CL algorithm and explanations. Security analysts can use the model’s explanations to better

understand attacks in order to better protect their network. Machine learning engineers may also

50

be able to discover deficiencies in the model’s logic. Using this knowledge, they can modify the

architecture or introduce new training samples to increase its overall effectiveness. Explanations

will also lead to increasing the IDS’s trust and credibility. This can make users more confident that

they will be able to complete their tasks.

In this work, we detail our customizable X-IDS architecture that leverages CL algorithms to cre-

ate explanations and accurate predictions. The architecture consists of four phases: Pre-modeling,

Modeling, Post-Modeling Optimizations, and Prediction Explanation. Users are encouraged to

modify the architecture when they receive explanations that are not helpful. We then compare

the accuracy of the CL models used in our X-IDS architecture to other EBL models and discuss

explanations generated by the SOM, GSOM, and GHSOM. We find that our models can have

comparable accuracy to black box EBL models, and also have the major benefit of being innately

explainable.

Major contributions presented in this work are -

• An X-IDS architecture featuring three CL-based algorithms, built using DARPA’s guidelines
for an explainable system. Self-Organizing Map, Growing Self Organizing Map, and Grow-
ing Hierarchical Self Organizing Map models are used to create explanatory visualizations
and accurate predictions. We find that the innately explainable CL models have comparable
accuracy to EBL models and that CL explanations can be more trustworthy than their black
box counterparts.

• An analysis of statistical and visual explanations for an effective X-IDS. Our X-IDS archi-
tecture generates a collection of explainable visualizations ranging from global significance
charts to fine-grained feature explanations. Users can use these explanations to understand
how and why the model makes decisions.

• A pruning process that can significantly reduce the size of the GHSOM model. The GHSOM
algorithm can create more maps than a human can have time to understand. Additionally,
larger maps can impose a higher performative cost. The pruning process is able to remove
less important branches to improve overall prediction speed while losing little accuracy.

• A performative analysis of our architecture using traditional accuracy metrics. We compare
CL models to existing EBL models using the NSL-KDD and CIC-IDS-2017 datasets. CL

51

models are 1% - 3% less accurate than EBL algorithms. Even though they are less accurate,
their innate explainability and trustability make CL algorithms an important tool for X-IDSs.

5.2 Competitive Learning X-IDS Architecture

Explanations generated by the X-IDS should assist Cyber Security Operation Center (CSoC)

operators in their mission to protect their organization. To help achieve this goal, we create the

proof of concept Competitive Learning (CL) based X-IDS architecture in Figure 5.1. The proposed

architecture is based on DARPA’s recommended architecture for XAI systems [28]. Components

of the framework can be changed to suit user’s needs. The architecture is abstract enough, such that

methods other than CL algorithms can be interchanged to create different X-IDS. The architecture

consists of four phases: pre-modeling, modeling, post-modeling optimization, and prediction

explanation. In the pre-modeling phase, raw datasets are preprocessed and parameters are selected

for the model. In the modeling phase, our CL algorithms are trained and quality metrics are

recorded. In our proof of concept system, we are using the SOM family of CL algorithms. In the

post-modeling optimization phase, models can then be optimized through various means described

below. In the prediction explanation phase, data mining techniques are employed on the resulting

models to generate explanatory visualizations that allow users to understand how predictions are

generated.

52

Pre-Modeling

Modeling

Post-Modeling Optimzation

Prediction ExplanationDataset

Preprocessing
CL Model

SOM
GSOM

GHSOM

Quality Metrics

Parameter
Selection

Parameter
Optimization

Model
Pruning

User

Visual
Explanation

Statistical
Explanation

Unsatisfactory
Explanation

Satisfactory
Explanation

Task

Performs

Modifies

Figure 5.1: A competitive learning based X-IDS architecture. The architecture is divided into four
phases: Pre-Modeling, Modeling, Post-Modeling Optimization, and Prediction Explanation. Each
phase contributes to translating raw input data into accurate predictions and useful explanations.
Culminating in a user successfully completing an associated task or being required to make changes
to previous steps in the architecture.

53

Table 5.1: Statistical characteristics for the NSL-KDD and CIC-IDS-2017 datasets.

NSL-KDD CIC-IDS-2017
Samples 148,518 2,830,743

Contamination
Rate 46.5% 19.7%

Features 41 79
Unique Attacks 4 6
Year Created 1999 2017

5.2.1 Pre-Modeling Phase

The pre-modeling phase consists of preprocessing raw datasets and initial parameter selection.

The preprocessing for our models includes feature selection and normalization. The feature

selection algorithm that we have chosen to use is the ‘Bayesian probability of significance’ [33],

which selects the most relevant features from each dataset. Feature selection is not used when

training the GHSOM. The GHSOM is able to use all of the features in a datset more effectively due to

its hierarchical nature. Additionally, the datasets are preprocessed for binary classification. Lastly,

the datasets are normalized to minimize feature bias and improve accuracy. After preprocessing is

finished, the new, high-quality dataset can then be passed to the model. The next section details

information about the our selected datasets and their usefulness in testing IDS.

5.2.1.1 Model Parameters

The SOM parameters consist of 𝑛 x 𝑚 rows and columns, the number of training epochs, and a

learning rate (LR). Picking the size of 𝑛 and 𝑚 is one of the most important decisions. If the values

are too small, clusters will not separate and can begin to merge. If the values are too large, proper

clusters may not form at all and resources can be wasted. Determining what this parameter should

54

be is done through trial and error. Similarly, the number of training epochs can cause significant

performance increases. Both scenarios, the one with too many epochs and the one with too few

epochs, can cause overfitting and underfitting, or simply waste time. Lastly, LR values affect the

learning rate function. A higher value will cause larger changes when adjusting Best Matching

Units (BMUs) towards training samples. If the learning rate is set too high, BMU values will

mimic singular instances of data. This leads to a less abstract understanding of the data that can

cause decreases in accuracy. Too low a value will cause the model to not learn at all. In our testing,

we found that a moderately low LR worked best for our datasets.

GSOM and GHSOM contain different parameters than the SOM. These algorithms no longer

need to have the number of rows and columns defined. They always start with a 2 x 2 set of nodes.

A new, important parameter is the Spread Factor (SF). The SF determines how much Cumulative

Error (CE) (see Chapter 2) is needed to create a new, horizontal or vertical node. Smaller SF values

cause more node generation. LR is used for the same purpose as in the SOM. It determines how

much a BMU will change with regard to the training samples. However, the GHSOM uses LR to

also dictate the vertical growth threshold. The pruned GHSOM includes an additional parameter 𝛿

which determines how aggressively the model is pruned. Table 5.2 contains all of our experimental

settings.

Data preprocessing and parameter selection are difficult processes that require many iterations

to attain the best results. In our work, we have determined that minimal preprocessing is needed

to attain high performative results. Initial parameter selection can be done by hand, while later,

the user relies on search algorithms depending on the architecture. Both GSOM and GHSOM

55

Table 5.2: Model Training Parameters for NSL-KDD and CIC-IDS-2017 Models.

Parameter NSL-KDD CIC-IDS-2017

SOM

n 18 18
m 18 18
LR .3 .3
Epochs 1000 1000

GSOM
LR .006 .006
SF .9 .9
Epochs 100 40

GHSOM

LR .006 .006
SF .3 .3
Epochs 100 40
𝛿 .3 .3

have been optimized using a process outlined in Section 5.2.3. The next phase will take the newly

preprocessed dataset and selected parameters to create well trained models.

5.2.2 Modeling Phase

Using the high quality dataset and the parameters selected in the pre-modeling phase, we can

train the set of CL models. We utilize a subclass of CL models described in Chapter 2 which

includes three variants of the self organizing map algorithm: the Self Organizing Map (SOM),

the Growing Self Organizing Map (GSOM), and the Growing Hierarchical Self Organizing Map

(GHSOM). These algorithms create clusters mimicking input data, and in doing so, they create a

map that can be data-mined for explanatory purposes. The SOM is the most basic of the three

algorithms. It consists of a grid of nodes with no logic to grow and change shape. While, this allows

the algorithm to be more easily understood, it can lead to poorer performative results. The GSOM

and GHSOM algorithms address this issue by allowing the map of nodes to grow horizontally

56

and vertically. These algorithms are able to understand more complex structures in data, and their

growing nature helps to accommodate these new structures. Please see Chapter 2 for a more in

depth description of these algorithms.

5.2.2.1 Model Evaluation Metrics & Techniques

There have been various metrics and measures proposed to evaluate the quality of a trained

SOM. These include quantization error, topographic error, embedding accuracy, and convergence

index. The quantization error was used by Kohenen [49], and measures the average distance

between nodes and the data points. The topographic error measures how well preserved features

are in the low dimensional output space. It is measured by evaluating how often the BMU and

the second BMU are next to each other [16, 52]. The map embedding accuracy is similar to the

quantization error. This metric measures how similar the distribution of the input data is with

respect to that of the SOM units [32]. In order to measure both topographic preservation and

distribution similarity between the input and SOM units, the convergence index was proposed to

be a measure that linearly combines the map embedding accuracy and the topographic error [1].

Performative metrics are also important to include in an IDS architecture. These metrics include

accuracy, F1-score, false positive rate, and false negative rate. We also opt to include training time

and prediction speed since they can play an important role in intrusion detection. The experimental

results using these performative metrics can be view in Section 5.4. These measurements allow

the architecture to be compared to the architecture of other existing IDS.

57

5.2.3 Post-Modeling Optimization Phase

Selecting the best parameters for a ML model is an important challenge. However, doing such

work by hand is a time consuming process. This is especially true when training times begin to

scale higher. Luckily, there are methods that can automate this process. Additionally, some models

may also benefit from post-processing. Many tree based models will use a form of post-processing

known as pruning to reduce the chance of overfitting and speed up decisions. In this work, we have

chosen two techniques for post-modeling optimization. A Bayesian search process is employed to

find the parameters for improved performative results, and a pruning technique is used to optimize

the size of the GHSOM.

5.2.3.1 Parameter Optimization

There are a few notable methods that can be used for parameter optimization. For this work,

we considered Grid search, Random search, and Bayesian search. The differences in these search

algorithms relate to how each selects its next set of test parameters. Grid search acts like a brute

force approach. It tests as many combinations of parameters as possible. This process is time

consuming, but one is more likely to find the best parameters for their model. Random search

differs from this approach by sampling a specified number of time from a range of values. This

approach limits the number of options that are tested but does not check the entire space of

parameter combinations. The last option and the one chosen for our architecture is the Bayesian

search. This method limits the search space by creating a surrogate probability model. It makes

informed decisions about each set of parameters tested. On average, Bayesian search is able to find

58

a better set of parameters faster than the other two algorithms. The trade-off is that it may not find

the best set of parameters as it doesn’t search the entire parameter space.

5.2.3.2 GHSOM Model Pruning

Model pruning can be a valuable resource for certain algorithms. GHSOMs can benefit from

pruning by reducing the number of nodes needed to match against. Another notable reason to prune

a GHSOM is for easier visualization. GHSOMs can grow into hundreds or thousands of branches

making visualization a daunting task. The goal of pruning a tree is to limit its size while also

retaining as much information as possible. As mentioned in Chapter 2, we use a pessimistic pruning

approach. It is a bottom-up approach that determines whether each node should be kept. To prune

a node, an error rate comparison is made. When the error rate for a node is high in comparison to

the average error rate, it is removed from the tree. Since this is a bottom-up approach, a node and

all of its children can be removed. The visualization changes can be seen in Figures 5.3 and 5.4.

59

Figure 5.2: Visualizations created from GHSOM trained on NSL-KDD. The left hand unslanted
visualizations represent the root GSOM. The slanted visualizations represent GSOMs deeper in
the hierarchy of GHSOM. Figure (a) shows the Unified Distance Matrices (U-matrices), which
shows the distance between nodes with darker areas representing nodes closer together and lighter
nodes representing further distances. Figure (b) shows the feature component maps representing
the values of specific features on each node in the GSOM. Figure (c) is the Label maps which show
the class labels of the node. Figures (d), (e), and (f) represent the pruned versions of the GHSOMs
with significantly less network sizes.

60

DBGSOM: 0, Layer: 0 DBGSOM: 2, Layer: 2 DBGSOM: 5, Layer: 2 DBGSOM: 41, Layer: 2

DBGSOM: 37, Layer: 2 DBGSOM: 18, Layer: 2 DBGSOM: 3, Layer: 2

DBGSOM: 1, Layer: 2 DBGSOM: 7, Layer: 2 DBGSOM: 8, Layer: 2 DBGSOM: 19, Layer: 2

DBGSOM: 15, Layer: 2

DBGSOM: 16, Layer: 2

DBGSOM: 21, Layer: 2

DBGSOM: 20, Layer: 2

DBGSOM: 39, Layer: 2

DBGSOM: 11, Layer: 2 DBGSOM: 33, Layer: 2 DBGSOM: 10, Layer: 2 DBGSOM: 14, Layer: 2

DBGSOM: 12, Layer: 2

DBGSOM: 4, Layer: 2

DBGSOM: 28, Layer: 2

DBGSOM: 31, Layer: 2

DBGSOM: 13, Layer: 2 DBGSOM: 40, Layer: 2 DBGSOM: 26, Layer: 2 DBGSOM: 24, Layer: 2

DBGSOM: 29, Layer: 2 DBGSOM: 22, Layer: 2 DBGSOM: 38, Layer: 2 DBGSOM: 34, Layer: 2 DBGSOM: 6, Layer: 2

DBGSOM: 32, Layer: 2

DBGSOM: 17, Layer: 2

DBGSOM: 9, Layer: 2

DBGSOM: 102, Layer: 3

DBGSOM: 23, Layer: 2

DBGSOM: 25, Layer: 2

DBGSOM: 27, Layer: 2

DBGSOM: 36, Layer: 2

DBGSOM: 35, Layer: 2 DBGSOM: 30, Layer: 2 DBGSOM: 57, Layer: 3 DBGSOM: 53, Layer: 3

DBGSOM: 87, Layer: 3

DBGSOM: 72, Layer: 3

DBGSOM: 69, Layer: 3

DBGSOM: 68, Layer: 3

DBGSOM: 107, Layer: 3

DBGSOM: 56, Layer: 3 DBGSOM: 103, Layer: 3 DBGSOM: 67, Layer: 3 DBGSOM: 52, Layer: 3

DBGSOM: 46, Layer: 3 DBGSOM: 51, Layer: 3 DBGSOM: 82, Layer: 3 DBGSOM: 105, Layer: 3 DBGSOM: 79, Layer: 3

DBGSOM: 71, Layer: 3

DBGSOM: 65, Layer: 3

DBGSOM: 48, Layer: 3

DBGSOM: 109, Layer: 4

DBGSOM: 100, Layer: 3

DBGSOM: 113, Layer: 4 DBGSOM: 43, Layer: 3 DBGSOM: 81, Layer: 3 DBGSOM: 108, Layer: 4 DBGSOM: 66, Layer: 3

DBGSOM: 86, Layer: 3

DBGSOM: 106, Layer: 3

DBGSOM: 114, Layer: 4

DBGSOM: 76, Layer: 3

DBGSOM: 70, Layer: 3

DBGSOM: 73, Layer: 3 DBGSOM: 54, Layer: 3 DBGSOM: 55, Layer: 3 DBGSOM: 90, Layer: 3 DBGSOM: 47, Layer: 3 DBGSOM: 94, Layer: 3

DBGSOM: 59, Layer: 3

DBGSOM: 93, Layer: 3

DBGSOM: 85, Layer: 3

DBGSOM: 118, Layer: 4

DBGSOM: 64, Layer: 3

DBGSOM: 83, Layer: 3 DBGSOM: 78, Layer: 3 DBGSOM: 61, Layer: 3 DBGSOM: 74, Layer: 3 DBGSOM: 75, Layer: 3

Node: 114, Size: 76862

Node: 1, Size: 73564, Child GSOM: 2

Node: 7, Size: 71417, Child GSOM: 5

Node: 162, Size: 61219, Child GSOM: 41

Node: 147, Size: 60886

Node: 103, Size: 57975 Node: 137, Size: 57305, Child GSOM: 37 Node: 131, Size: 56005 Node: 93, Size: 49843 Node: 41, Size: 46980

Node: 140, Size: 43141

Node: 27, Size: 41816, Child GSOM: 18

Node: 130, Size: 40756

Node: 62, Size: 36672

Node: 5, Size: 35618, Child GSOM: 3

Node: 0, Size: 34479, Child GSOM: 1

Node: 102, Size: 33690 Node: 10, Size: 31721, Child GSOM: 7 Node: 109, Size: 28678 Node: 12, Size: 25094, Child GSOM: 8 Node: 122, Size: 24664 Node: 31, Size: 24202, Child GSOM: 19

Node: 38, Size: 23792

Node: 108, Size: 22232

Node: 124, Size: 21271

Node: 23, Size: 21184, Child GSOM: 15

Node: 25, Size: 21034, Child GSOM: 16

Node: 96, Size: 20899

Node: 39, Size: 20654, Child GSOM: 21 Node: 35, Size: 20313, Child GSOM: 20 Node: 153, Size: 19818, Child GSOM: 39 Node: 16, Size: 19815, Child GSOM: 11 Node: 110, Size: 19774, Child GSOM: 33 Node: 15, Size: 19496, Child GSOM: 10

Node: 141, Size: 18726

Node: 22, Size: 18669, Child GSOM: 14

Node: 18, Size: 17633, Child GSOM: 12

Node: 60, Size: 16286

Node: 6, Size: 15940, Child GSOM: 4

Node: 61, Size: 15881, Child GSOM: 28

Node: 89, Size: 13147 Node: 106, Size: 12908 Node: 73, Size: 12838, Child GSOM: 31 Node: 76, Size: 12425 Node: 21, Size: 12043, Child GSOM: 13 Node: 156, Size: 11999, Child GSOM: 40

Node: 56, Size: 11867, Child GSOM: 26

Node: 75, Size: 11374

Node: 117, Size: 11161

Node: 49, Size: 10791

Node: 104, Size: 10657

Node: 143, Size: 10348

Node: 50, Size: 10135, Child GSOM: 24 Node: 65, Size: 9987, Child GSOM: 29 Node: 43, Size: 9720, Child GSOM: 22 Node: 142, Size: 9719, Child GSOM: 38 Node: 119, Size: 9318, Child GSOM: 34 Node: 158, Size: 9133

Node: 87, Size: 9099

Node: 8, Size: 8502, Child GSOM: 6

Node: 90, Size: 8378, Child GSOM: 32

Node: 26, Size: 8350, Child GSOM: 17

Node: 125, Size: 8090

Node: 13, Size: 7765, Child GSOM: 9

Node: 154, Size: 7667 Node: 32, Size: 7510 Node: 45, Size: 7301, Child GSOM: 23 Node: 86, Size: 7249 Node: 51, Size: 7067, Child GSOM: 25 Node: 149, Size: 7000

Node: 59, Size: 6977, Child GSOM: 27

Node: 174, Size: 6810

Node: 182, Size: 6355

Node: 136, Size: 6348

Node: 95, Size: 6275

Node: 67, Size: 6161

Node: 127, Size: 6149, Child GSOM: 36 Node: 126, Size: 5806, Child GSOM: 35 Node: 145, Size: 5460 Node: 70, Size: 5388 Node: 111, Size: 5387 Node: 118, Size: 5383

Node: 66, Size: 5318, Child GSOM: 30

Node: 48, Size: 5235

Node: 112, Size: 5033

Node: 74, Size: 4989

Node: 88, Size: 4881

Node: 4, Size: 4828

Node: 120, Size: 4667 Node: 129, Size: 4435 Node: 98, Size: 4342 Node: 105, Size: 4248 Node: 164, Size: 4206

Node: 138, Size: 3973

Node: 151, Size: 3749

Node: 99, Size: 3712

Node: 146, Size: 3656

Node: 69, Size: 3614

Node: 144, Size: 3519 Node: 24, Size: 3242 Node: 91, Size: 3185 Node: 132, Size: 3071 Node: 157, Size: 3014

Node: 123, Size: 2959

Node: 115, Size: 2764

Node: 100, Size: 2760

Node: 63, Size: 2748

Node: 80, Size: 2684

Node: 78, Size: 2653 Node: 150, Size: 2545 Node: 116, Size: 2494 Node: 163, Size: 2488 Node: 101, Size: 2439

Node: 155, Size: 2368

Node: 52, Size: 2349

Node: 84, Size: 2288

Node: 81, Size: 2099

Node: 190, Size: 1971 Node: 9, Size: 1891 Node: 179, Size: 1842 Node: 57, Size: 1722

Node: 148, Size: 1707

Node: 46, Size: 1634

Node: 181, Size: 1535

Node: 55, Size: 1436

Node: 19, Size: 1396 Node: 53, Size: 1323 Node: 135, Size: 1311 Node: 186, Size: 1264

Node: 85, Size: 1220

Node: 29, Size: 1215

Node: 68, Size: 1136

Node: 36, Size: 1134

Node: 37, Size: 1068 Node: 64, Size: 1052 Node: 94, Size: 1020 Node: 3, Size: 991

Node: 72, Size: 954

Node: 47, Size: 951

Node: 33, Size: 902

Node: 113, Size: 839 Node: 77, Size: 836 Node: 152, Size: 754

Node: 17, Size: 726

Node: 161, Size: 673

Node: 189, Size: 623

Node: 58, Size: 586 Node: 44, Size: 519

Node: 97, Size: 401

Node: 121, Size: 355

Node: 34, Size: 340

Node: 42, Size: 307 Node: 14, Size: 302

Node: 160, Size: 113

Node: 60, Size: 10305 Node: 40, Size: 8189 Node: 45, Size: 5718

Node: 4, Size: 5434

Node: 39, Size: 3059

Node: 54, Size: 2979

Node: 31, Size: 2343

Node: 21, Size: 2330

Node: 75, Size: 1720

Node: 49, Size: 1687

Node: 15, Size: 1348 Node: 52, Size: 1286 Node: 62, Size: 1259 Node: 41, Size: 1206

Node: 46, Size: 1041

Node: 5, Size: 1033

Node: 53, Size: 1001

Node: 57, Size: 954

Node: 68, Size: 821

Node: 38, Size: 786 Node: 71, Size: 774 Node: 3, Size: 741 Node: 55, Size: 667 Node: 7, Size: 622

Node: 26, Size: 621 Node: 32, Size: 619 Node: 64, Size: 604 Node: 16, Size: 565 Node: 6, Size: 541

Node: 8, Size: 526

Node: 59, Size: 522

Node: 50, Size: 475

Node: 14, Size: 460

Node: 37, Size: 459

Node: 25, Size: 454 Node: 29, Size: 450 Node: 2, Size: 420 Node: 48, Size: 416 Node: 44, Size: 390

Node: 74, Size: 350

Node: 84, Size: 345

Node: 23, Size: 301

Node: 51, Size: 296

Node: 30, Size: 295

Node: 65, Size: 276

Node: 5, Size: 12661 Node: 11, Size: 12576

Node: 1, Size: 8345

Node: 8, Size: 6937

Node: 4, Size: 6036 Node: 0, Size: 4923

Node: 7, Size: 4337

Node: 13, Size: 3733

Node: 16, Size: 2992 Node: 14, Size: 2243

Node: 9, Size: 2196 Node: 2, Size: 2086 Node: 12, Size: 1166

Node: 10, Size: 397

Node: 9, Size: 8429 Node: 0, Size: 6841 Node: 13, Size: 6113

Node: 3, Size: 4318

Node: 19, Size: 4234

Node: 14, Size: 3729

Node: 17, Size: 3397 Node: 15, Size: 2784 Node: 18, Size: 2742

Node: 4, Size: 2637

Node: 20, Size: 2579

Node: 6, Size: 1845 Node: 5, Size: 1792 Node: 10, Size: 1780

Node: 16, Size: 1636

Node: 8, Size: 1629

Node: 1, Size: 1167 Node: 21, Size: 1140

Node: 12, Size: 654

Node: 22, Size: 596

Node: 2, Size: 508

Node: 23, Size: 76

Node: 2, Size: 9902

Node: 7, Size: 7879

Node: 10, Size: 7478

Node: 3, Size: 6071

Node: 9, Size: 5684 Node: 12, Size: 5285

Node: 1, Size: 4033

Node: 0, Size: 3626

Node: 11, Size: 3209

Node: 4, Size: 1833 Node: 5, Size: 1758

Node: 6, Size: 526

Node: 20, Size: 4430

Node: 27, Size: 2728

Node: 5, Size: 2348

Node: 11, Size: 2247

Node: 8, Size: 2088

Node: 13, Size: 1927

Node: 30, Size: 1799

Node: 1, Size: 1720 Node: 9, Size: 1715 Node: 28, Size: 1456

Node: 15, Size: 1442 Node: 12, Size: 1360 Node: 3, Size: 1320 Node: 22, Size: 1310

Node: 26, Size: 1307

Node: 4, Size: 1248

Node: 29, Size: 1073

Node: 10, Size: 1025 Node: 2, Size: 1017 Node: 21, Size: 1005

Node: 0, Size: 923

Node: 7, Size: 898

Node: 6, Size: 850

Node: 14, Size: 801

Node: 23, Size: 729

Node: 16, Size: 727 Node: 17, Size: 648

Node: 31, Size: 442

Node: 24, Size: 430

Node: 18, Size: 400

Node: 25, Size: 395

Node: 32, Size: 1934

Node: 58, Size: 1820

Node: 64, Size: 1428

Node: 20, Size: 1116

Node: 60, Size: 1080

Node: 46, Size: 1064 Node: 51, Size: 1044 Node: 37, Size: 1040 Node: 55, Size: 1003 Node: 9, Size: 988

Node: 11, Size: 983

Node: 42, Size: 967

Node: 70, Size: 922

Node: 27, Size: 914

Node: 45, Size: 876

Node: 25, Size: 834 Node: 13, Size: 825 Node: 35, Size: 806 Node: 16, Size: 743

Node: 36, Size: 735

Node: 6, Size: 730

Node: 21, Size: 689

Node: 43, Size: 640

Node: 53, Size: 552

Node: 56, Size: 547 Node: 10, Size: 511 Node: 59, Size: 481 Node: 31, Size: 479

Node: 28, Size: 468 Node: 3, Size: 465 Node: 68, Size: 464 Node: 1, Size: 441

Node: 66, Size: 406

Node: 39, Size: 394

Node: 49, Size: 373

Node: 57, Size: 366

Node: 19, Size: 361 Node: 22, Size: 356 Node: 47, Size: 336

Node: 69, Size: 307

Node: 52, Size: 299

Node: 26, Size: 295

Node: 18, Size: 287

Node: 0, Size: 11369 Node: 4, Size: 2047 Node: 32, Size: 1830 Node: 1, Size: 1439 Node: 39, Size: 1330

Node: 8, Size: 1108

Node: 9, Size: 1054

Node: 20, Size: 976

Node: 23, Size: 849

Node: 12, Size: 783

Node: 30, Size: 649

Node: 33, Size: 603

Node: 5, Size: 600 Node: 37, Size: 580 Node: 14, Size: 571 Node: 24, Size: 520

Node: 28, Size: 488

Node: 38, Size: 480

Node: 34, Size: 441

Node: 42, Size: 436

Node: 41, Size: 423

Node: 16, Size: 329 Node: 29, Size: 319

Node: 11, Size: 2170

Node: 5, Size: 2155

Node: 23, Size: 2117

Node: 14, Size: 2042

Node: 20, Size: 1910

Node: 19, Size: 1888

Node: 7, Size: 1842

Node: 15, Size: 1742 Node: 9, Size: 1649 Node: 18, Size: 1436

Node: 13, Size: 1265

Node: 24, Size: 1162, Child GSOM: 43

Node: 17, Size: 1150

Node: 6, Size: 1122 Node: 1, Size: 1037 Node: 3, Size: 1023

Node: 2, Size: 967

Node: 22, Size: 745

Node: 8, Size: 628

Node: 10, Size: 537

Node: 4, Size: 527

Node: 16, Size: 430

Node: 1, Size: 23904
Node: 17, Size: 3074, Child GSOM: 72

Node: 13, Size: 3040, Child GSOM: 69

Node: 8, Size: 2894, Child GSOM: 68

Node: 7, Size: 2551, Child GSOM: 67 Node: 11, Size: 1830

Node: 16, Size: 1796, Child GSOM: 71 Node: 6, Size: 1256 Node: 15, Size: 1241

Node: 1, Size: 1076, Child GSOM: 66

Node: 14, Size: 877, Child GSOM: 70
Node: 2, Size: 646

Node: 5, Size: 623 Node: 4, Size: 615

Node: 10, Size: 606

Node: 12, Size: 525

Node: 8, Size: 9122 Node: 1, Size: 4339

Node: 3, Size: 2022

Node: 2, Size: 1734

Node: 7, Size: 1714

Node: 5, Size: 794 Node: 6, Size: 550

Node: 9, Size: 516

Node: 8, Size: 1951

Node: 18, Size: 1462

Node: 35, Size: 1242

Node: 0, Size: 1055 Node: 29, Size: 890 Node: 3, Size: 810 Node: 10, Size: 740

Node: 2, Size: 737

Node: 5, Size: 657

Node: 27, Size: 613

Node: 4, Size: 590

Node: 1, Size: 576 Node: 25, Size: 573 Node: 37, Size: 544 Node: 30, Size: 543

Node: 11, Size: 533

Node: 6, Size: 512

Node: 32, Size: 482

Node: 21, Size: 434

Node: 9, Size: 320

Node: 19, Size: 1253

Node: 22, Size: 1178

Node: 6, Size: 1017

Node: 0, Size: 906

Node: 43, Size: 899 Node: 44, Size: 861 Node: 20, Size: 771 Node: 10, Size: 762

Node: 47, Size: 761

Node: 31, Size: 751

Node: 32, Size: 684

Node: 4, Size: 665

Node: 12, Size: 627 Node: 38, Size: 585 Node: 17, Size: 550 Node: 51, Size: 509

Node: 7, Size: 507

Node: 34, Size: 460

Node: 30, Size: 417

Node: 39, Size: 397

Node: 5, Size: 377

Node: 13, Size: 316

Node: 15, Size: 2341

Node: 11, Size: 2145

Node: 9, Size: 2095

Node: 5, Size: 2070 Node: 2, Size: 1867

Node: 3, Size: 1812

Node: 6, Size: 1732

Node: 13, Size: 1580 Node: 12, Size: 1316

Node: 17, Size: 1067

Node: 16, Size: 594

Node: 0, Size: 7759, Child GSOM: 102 Node: 6, Size: 2885, Child GSOM: 107 Node: 1, Size: 2719, Child GSOM: 103

Node: 3, Size: 2503 Node: 4, Size: 1906, Child GSOM: 105

Node: 7, Size: 661

Node: 2, Size: 465, Child GSOM: 104

Node: 3, Size: 2196

Node: 9, Size: 2114

Node: 6, Size: 2044

Node: 2, Size: 1959 Node: 17, Size: 1769

Node: 5, Size: 1752

Node: 11, Size: 1556

Node: 4, Size: 1497 Node: 16, Size: 1496

Node: 7, Size: 951

Node: 19, Size: 601

Node: 15, Size: 558

Node: 10, Size: 136

Node: 21, Size: 94

Node: 18, Size: 91

Node: 7, Size: 4592

Node: 3, Size: 3922

Node: 1, Size: 2879 Node: 0, Size: 2427

Node: 4, Size: 1667

Node: 9, Size: 879

Node: 11, Size: 655 Node: 10, Size: 544

Node: 2, Size: 233

Node: 6, Size: 224

Node: 9, Size: 4618, Child GSOM: 57

Node: 3, Size: 3458, Child GSOM: 53

Node: 6, Size: 2800, Child GSOM: 56 Node: 2, Size: 2387, Child GSOM: 52

Node: 1, Size: 2163, Child GSOM: 51

Node: 10, Size: 1000

Node: 0, Size: 388

Node: 8, Size: 373

Node: 7, Size: 327

Node: 31, Size: 1188

Node: 32, Size: 836

Node: 30, Size: 760

Node: 14, Size: 714

Node: 13, Size: 711

Node: 28, Size: 709 Node: 15, Size: 671 Node: 12, Size: 658 Node: 26, Size: 655

Node: 27, Size: 604

Node: 19, Size: 591

Node: 6, Size: 575

Node: 24, Size: 574

Node: 25, Size: 568 Node: 10, Size: 565 Node: 2, Size: 565 Node: 5, Size: 563

Node: 4, Size: 533

Node: 33, Size: 530

Node: 3, Size: 527

Node: 7, Size: 501 Node: 23, Size: 490 Node: 21, Size: 487

Node: 36, Size: 481

Node: 29, Size: 453

Node: 11, Size: 449

Node: 18, Size: 447 Node: 1, Size: 444

Node: 9, Size: 433

Node: 8, Size: 401

Node: 6, Size: 1790 Node: 21, Size: 1736, Child GSOM: 65 Node: 8, Size: 1675

Node: 4, Size: 1591

Node: 0, Size: 1590

Node: 5, Size: 1581

Node: 2, Size: 1475

Node: 13, Size: 566

Node: 19, Size: 1347 Node: 29, Size: 1161 Node: 35, Size: 752 Node: 46, Size: 699

Node: 10, Size: 670

Node: 26, Size: 624

Node: 12, Size: 508

Node: 42, Size: 503

Node: 1, Size: 484 Node: 38, Size: 471 Node: 8, Size: 465 Node: 32, Size: 430

Node: 6, Size: 430

Node: 0, Size: 382

Node: 3, Size: 379

Node: 7, Size: 314

Node: 8, Size: 2936 Node: 0, Size: 2548

Node: 4, Size: 2079

Node: 9, Size: 1481

Node: 3, Size: 1321 Node: 12, Size: 1013

Node: 11, Size: 867

Node: 14, Size: 621

Node: 13, Size: 525 Node: 6, Size: 450

Node: 16, Size: 1963

Node: 21, Size: 1451, Child GSOM: 100

Node: 5, Size: 958

Node: 12, Size: 664 Node: 24, Size: 595

Node: 25, Size: 563

Node: 11, Size: 462

Node: 0, Size: 409

Node: 14, Size: 408

Node: 0, Size: 1864

Node: 23, Size: 944

Node: 26, Size: 819

Node: 2, Size: 670 Node: 10, Size: 568 Node: 19, Size: 536

Node: 4, Size: 506

Node: 20, Size: 480

Node: 6, Size: 473

Node: 12, Size: 467

Node: 15, Size: 466

Node: 9, Size: 463

Node: 7, Size: 461 Node: 5, Size: 431

Node: 24, Size: 374

Node: 13, Size: 351

Node: 1, Size: 328

Node: 24, Size: 1245

Node: 2, Size: 1172

Node: 5, Size: 970

Node: 34, Size: 585

Node: 30, Size: 511

Node: 22, Size: 451

Node: 28, Size: 451

Node: 21, Size: 384

Node: 23, Size: 376

Node: 29, Size: 372

Node: 20, Size: 368

Node: 2, Size: 4360 Node: 1, Size: 2902 Node: 6, Size: 1850

Node: 3, Size: 1025 Node: 5, Size: 684 Node: 7, Size: 513

Node: 4, Size: 511

Node: 5, Size: 1556

Node: 4, Size: 1535

Node: 10, Size: 1517 Node: 11, Size: 1432

Node: 0, Size: 1306

Node: 6, Size: 1010

Node: 9, Size: 565

Node: 1, Size: 315

Node: 7, Size: 3290, Child GSOM: 87

Node: 1, Size: 2056, Child GSOM: 82

Node: 11, Size: 732

Node: 13, Size: 710

Node: 18, Size: 563

Node: 5, Size: 543

Node: 7, Size: 520

Node: 22, Size: 427

Node: 9, Size: 418

Node: 20, Size: 407

Node: 24, Size: 385

Node: 23, Size: 133

Node: 4, Size: 2512

Node: 1, Size: 2382

Node: 3, Size: 1898

Node: 0, Size: 1341

Node: 5, Size: 1272

Node: 0, Size: 610

Node: 8, Size: 584

Node: 2, Size: 518

Node: 6, Size: 516

Node: 4, Size: 512 Node: 1, Size: 485 Node: 19, Size: 478 Node: 30, Size: 475 Node: 18, Size: 402

Node: 21, Size: 689

Node: 3, Size: 675

Node: 5, Size: 602

Node: 13, Size: 578

Node: 6, Size: 459

Node: 0, Size: 447

Node: 20, Size: 436

Node: 11, Size: 177

Node: 1, Size: 176

Node: 7, Size: 1374

Node: 5, Size: 1348

Node: 3, Size: 1070 Node: 0, Size: 1011

Node: 6, Size: 796

Node: 2, Size: 771

Node: 8, Size: 650

Node: 3, Size: 2176, Child GSOM: 46

Node: 7, Size: 1735, Child GSOM: 48

Node: 5, Size: 679

Node: 4, Size: 640

Node: 9, Size: 145

Node: 2, Size: 117

Node: 1, Size: 3937 Node: 0, Size: 2460

Node: 3, Size: 1317

Node: 5, Size: 882, Child GSOM: 76

Node: 4, Size: 516

Node: 15, Size: 137

Node: 9, Size: 948

Node: 11, Size: 551

Node: 3, Size: 470

Node: 10, Size: 432

Node: 0, Size: 137

Node: 1, Size: 734

Node: 0, Size: 482

Node: 15, Size: 445

Node: 24, Size: 412

Node: 12, Size: 631

Node: 1, Size: 541

Node: 10, Size: 526

Node: 4, Size: 425

Node: 0, Size: 4386
Node: 1, Size: 736

Node: 2, Size: 343

Node: 12, Size: 506 Node: 3, Size: 1719 Node: 1, Size: 1482

Node: 2, Size: 1075

Node: 3, Size: 1618

Node: 2, Size: 939 Node: 1, Size: 808

Node: 1, Size: 883, Child GSOM: 114

Node: 1, Size: 1017

Node: 2, Size: 1008

Node: 2, Size: 1873

Node: 3, Size: 1599, Child GSOM: 109 Node: 3, Size: 1539 Node: 1, Size: 1545

Node: 0, Size: 1653

Node: 0, Size: 887

Node: 2, Size: 660 Node: 1, Size: 521

Node: 2, Size: 805 Node: 0, Size: 612 Node: 3, Size: 728

Node: 2, Size: 761

0

0.5

1

1.5

2
Label

Figure 5.3: This figure contains the results from the trained GHSOM on the CIC-IDS-2017 dataset.
Since a GHSOM consists of many GSOMs, The tree map diagram displays GSOMs and their nodes.
In this tree map, the left half of the map is the root GSOM. Within the root GSOM we can see a
mixture of blue, red and yellow nodes. Blue nodes indicate a benign label, red nodes indicate a
malicious label and yellow indicate a branch. The size of each node indicates the number of times
it was chosen as the BMU.

61

DBGSOM: 0, Layer: 0 DBGSOM: 2, Layer: 2 DBGSOM: 5, Layer: 2 DBGSOM: 41, Layer: 2

DBGSOM: 37, Layer: 2 DBGSOM: 18, Layer: 2 DBGSOM: 3, Layer: 2

DBGSOM: 1, Layer: 2 DBGSOM: 7, Layer: 2 DBGSOM: 8, Layer: 2 DBGSOM: 19, Layer: 2

DBGSOM: 15, Layer: 2

DBGSOM: 16, Layer: 2

DBGSOM: 21, Layer: 2

DBGSOM: 20, Layer: 2

DBGSOM: 39, Layer: 2

DBGSOM: 11, Layer: 2 DBGSOM: 33, Layer: 2 DBGSOM: 10, Layer: 2 DBGSOM: 14, Layer: 2

DBGSOM: 12, Layer: 2

DBGSOM: 4, Layer: 2

DBGSOM: 28, Layer: 2

DBGSOM: 31, Layer: 2

DBGSOM: 13, Layer: 2 DBGSOM: 40, Layer: 2 DBGSOM: 26, Layer: 2 DBGSOM: 24, Layer: 2

DBGSOM: 29, Layer: 2 DBGSOM: 22, Layer: 2 DBGSOM: 38, Layer: 2 DBGSOM: 34, Layer: 2 DBGSOM: 6, Layer: 2

DBGSOM: 32, Layer: 2

DBGSOM: 17, Layer: 2

DBGSOM: 9, Layer: 2

DBGSOM: 102, Layer: 3

DBGSOM: 23, Layer: 2

DBGSOM: 25, Layer: 2

DBGSOM: 27, Layer: 2

DBGSOM: 36, Layer: 2

DBGSOM: 35, Layer: 2 DBGSOM: 30, Layer: 2 DBGSOM: 57, Layer: 3 DBGSOM: 53, Layer: 3

DBGSOM: 87, Layer: 3

DBGSOM: 72, Layer: 3

DBGSOM: 69, Layer: 3

DBGSOM: 68, Layer: 3

DBGSOM: 107, Layer: 3

DBGSOM: 56, Layer: 3 DBGSOM: 103, Layer: 3 DBGSOM: 67, Layer: 3 DBGSOM: 52, Layer: 3

DBGSOM: 46, Layer: 3 DBGSOM: 51, Layer: 3 DBGSOM: 82, Layer: 3 DBGSOM: 105, Layer: 3 DBGSOM: 79, Layer: 3

DBGSOM: 71, Layer: 3

DBGSOM: 65, Layer: 3

DBGSOM: 48, Layer: 3

DBGSOM: 109, Layer: 4

DBGSOM: 100, Layer: 3

DBGSOM: 113, Layer: 4 DBGSOM: 43, Layer: 3 DBGSOM: 81, Layer: 3 DBGSOM: 108, Layer: 4 DBGSOM: 66, Layer: 3

DBGSOM: 86, Layer: 3

DBGSOM: 106, Layer: 3

DBGSOM: 114, Layer: 4

DBGSOM: 76, Layer: 3

DBGSOM: 70, Layer: 3

DBGSOM: 73, Layer: 3 DBGSOM: 54, Layer: 3 DBGSOM: 55, Layer: 3 DBGSOM: 90, Layer: 3 DBGSOM: 47, Layer: 3 DBGSOM: 94, Layer: 3

DBGSOM: 59, Layer: 3

DBGSOM: 93, Layer: 3

DBGSOM: 85, Layer: 3

DBGSOM: 118, Layer: 4

DBGSOM: 64, Layer: 3

DBGSOM: 83, Layer: 3 DBGSOM: 78, Layer: 3 DBGSOM: 61, Layer: 3 DBGSOM: 74, Layer: 3 DBGSOM: 75, Layer: 3

Node: 114, Size: 76862

Node: 1, Size: 73564, Child GSOM: 2

Node: 7, Size: 71417, Child GSOM: 5

Node: 162, Size: 61219, Child GSOM: 41

Node: 147, Size: 60886

Node: 103, Size: 57975 Node: 137, Size: 57305, Child GSOM: 37 Node: 131, Size: 56005 Node: 93, Size: 49843 Node: 41, Size: 46980

Node: 140, Size: 43141

Node: 27, Size: 41816, Child GSOM: 18

Node: 130, Size: 40756

Node: 62, Size: 36672

Node: 5, Size: 35618, Child GSOM: 3

Node: 0, Size: 34479, Child GSOM: 1

Node: 102, Size: 33690 Node: 10, Size: 31721, Child GSOM: 7 Node: 109, Size: 28678 Node: 12, Size: 25094, Child GSOM: 8 Node: 122, Size: 24664 Node: 31, Size: 24202, Child GSOM: 19

Node: 38, Size: 23792

Node: 108, Size: 22232

Node: 124, Size: 21271

Node: 23, Size: 21184, Child GSOM: 15

Node: 25, Size: 21034, Child GSOM: 16

Node: 96, Size: 20899

Node: 39, Size: 20654, Child GSOM: 21 Node: 35, Size: 20313, Child GSOM: 20 Node: 153, Size: 19818, Child GSOM: 39 Node: 16, Size: 19815, Child GSOM: 11 Node: 110, Size: 19774, Child GSOM: 33 Node: 15, Size: 19496, Child GSOM: 10

Node: 141, Size: 18726

Node: 22, Size: 18669, Child GSOM: 14

Node: 18, Size: 17633, Child GSOM: 12

Node: 60, Size: 16286

Node: 6, Size: 15940, Child GSOM: 4

Node: 61, Size: 15881, Child GSOM: 28

Node: 89, Size: 13147 Node: 106, Size: 12908 Node: 73, Size: 12838, Child GSOM: 31 Node: 76, Size: 12425 Node: 21, Size: 12043, Child GSOM: 13 Node: 156, Size: 11999, Child GSOM: 40

Node: 56, Size: 11867, Child GSOM: 26

Node: 75, Size: 11374

Node: 117, Size: 11161

Node: 49, Size: 10791

Node: 104, Size: 10657

Node: 143, Size: 10348

Node: 50, Size: 10135, Child GSOM: 24 Node: 65, Size: 9987, Child GSOM: 29 Node: 43, Size: 9720, Child GSOM: 22 Node: 142, Size: 9719, Child GSOM: 38 Node: 119, Size: 9318, Child GSOM: 34 Node: 158, Size: 9133

Node: 87, Size: 9099

Node: 8, Size: 8502, Child GSOM: 6

Node: 90, Size: 8378, Child GSOM: 32

Node: 26, Size: 8350, Child GSOM: 17

Node: 125, Size: 8090

Node: 13, Size: 7765, Child GSOM: 9

Node: 154, Size: 7667 Node: 32, Size: 7510 Node: 45, Size: 7301, Child GSOM: 23 Node: 86, Size: 7249 Node: 51, Size: 7067, Child GSOM: 25 Node: 149, Size: 7000

Node: 59, Size: 6977, Child GSOM: 27

Node: 174, Size: 6810

Node: 182, Size: 6355

Node: 136, Size: 6348

Node: 95, Size: 6275

Node: 67, Size: 6161

Node: 127, Size: 6149, Child GSOM: 36 Node: 126, Size: 5806, Child GSOM: 35 Node: 145, Size: 5460 Node: 70, Size: 5388 Node: 111, Size: 5387 Node: 118, Size: 5383

Node: 66, Size: 5318, Child GSOM: 30

Node: 48, Size: 5235

Node: 112, Size: 5033

Node: 74, Size: 4989

Node: 88, Size: 4881

Node: 4, Size: 4828

Node: 120, Size: 4667 Node: 129, Size: 4435 Node: 98, Size: 4342 Node: 105, Size: 4248 Node: 164, Size: 4206

Node: 138, Size: 3973

Node: 151, Size: 3749

Node: 99, Size: 3712

Node: 146, Size: 3656

Node: 69, Size: 3614

Node: 144, Size: 3519 Node: 24, Size: 3242 Node: 91, Size: 3185 Node: 132, Size: 3071 Node: 157, Size: 3014

Node: 123, Size: 2959

Node: 115, Size: 2764

Node: 100, Size: 2760

Node: 63, Size: 2748

Node: 80, Size: 2684

Node: 78, Size: 2653 Node: 150, Size: 2545 Node: 116, Size: 2494 Node: 163, Size: 2488 Node: 101, Size: 2439

Node: 155, Size: 2368

Node: 52, Size: 2349

Node: 84, Size: 2288

Node: 81, Size: 2099

Node: 190, Size: 1971 Node: 9, Size: 1891 Node: 179, Size: 1842 Node: 57, Size: 1722

Node: 148, Size: 1707

Node: 46, Size: 1634

Node: 181, Size: 1535

Node: 55, Size: 1436

Node: 19, Size: 1396 Node: 53, Size: 1323 Node: 135, Size: 1311 Node: 186, Size: 1264

Node: 85, Size: 1220

Node: 29, Size: 1215

Node: 68, Size: 1136

Node: 36, Size: 1134

Node: 37, Size: 1068 Node: 64, Size: 1052 Node: 94, Size: 1020 Node: 3, Size: 991

Node: 72, Size: 954

Node: 47, Size: 951

Node: 33, Size: 902

Node: 113, Size: 839 Node: 77, Size: 836 Node: 152, Size: 754

Node: 17, Size: 726

Node: 161, Size: 673

Node: 189, Size: 623

Node: 58, Size: 586 Node: 44, Size: 519

Node: 97, Size: 401

Node: 121, Size: 355

Node: 34, Size: 340

Node: 42, Size: 307 Node: 14, Size: 302

Node: 160, Size: 113

Node: 60, Size: 10305 Node: 40, Size: 8189 Node: 45, Size: 5718

Node: 4, Size: 5434

Node: 39, Size: 3059

Node: 54, Size: 2979

Node: 31, Size: 2343

Node: 21, Size: 2330

Node: 75, Size: 1720

Node: 49, Size: 1687

Node: 15, Size: 1348 Node: 52, Size: 1286 Node: 62, Size: 1259 Node: 41, Size: 1206

Node: 46, Size: 1041

Node: 5, Size: 1033

Node: 53, Size: 1001

Node: 57, Size: 954

Node: 68, Size: 821

Node: 38, Size: 786 Node: 71, Size: 774 Node: 3, Size: 741 Node: 55, Size: 667 Node: 7, Size: 622

Node: 26, Size: 621 Node: 32, Size: 619 Node: 64, Size: 604 Node: 16, Size: 565 Node: 6, Size: 541

Node: 8, Size: 526

Node: 59, Size: 522

Node: 50, Size: 475

Node: 14, Size: 460

Node: 37, Size: 459

Node: 25, Size: 454 Node: 29, Size: 450 Node: 2, Size: 420 Node: 48, Size: 416 Node: 44, Size: 390

Node: 74, Size: 350

Node: 84, Size: 345

Node: 23, Size: 301

Node: 51, Size: 296

Node: 30, Size: 295

Node: 65, Size: 276

Node: 5, Size: 12661 Node: 11, Size: 12576

Node: 1, Size: 8345

Node: 8, Size: 6937

Node: 4, Size: 6036 Node: 0, Size: 4923

Node: 7, Size: 4337

Node: 13, Size: 3733

Node: 16, Size: 2992 Node: 14, Size: 2243

Node: 9, Size: 2196 Node: 2, Size: 2086 Node: 12, Size: 1166

Node: 10, Size: 397

Node: 9, Size: 8429 Node: 0, Size: 6841 Node: 13, Size: 6113

Node: 3, Size: 4318

Node: 19, Size: 4234

Node: 14, Size: 3729

Node: 17, Size: 3397 Node: 15, Size: 2784 Node: 18, Size: 2742

Node: 4, Size: 2637

Node: 20, Size: 2579

Node: 6, Size: 1845 Node: 5, Size: 1792 Node: 10, Size: 1780

Node: 16, Size: 1636

Node: 8, Size: 1629

Node: 1, Size: 1167 Node: 21, Size: 1140

Node: 12, Size: 654

Node: 22, Size: 596

Node: 2, Size: 508

Node: 23, Size: 76

Node: 2, Size: 9902

Node: 7, Size: 7879

Node: 10, Size: 7478

Node: 3, Size: 6071

Node: 9, Size: 5684 Node: 12, Size: 5285

Node: 1, Size: 4033

Node: 0, Size: 3626

Node: 11, Size: 3209

Node: 4, Size: 1833 Node: 5, Size: 1758

Node: 6, Size: 526

Node: 20, Size: 4430

Node: 27, Size: 2728

Node: 5, Size: 2348

Node: 11, Size: 2247

Node: 8, Size: 2088

Node: 13, Size: 1927

Node: 30, Size: 1799

Node: 1, Size: 1720 Node: 9, Size: 1715 Node: 28, Size: 1456

Node: 15, Size: 1442 Node: 12, Size: 1360 Node: 3, Size: 1320 Node: 22, Size: 1310

Node: 26, Size: 1307

Node: 4, Size: 1248

Node: 29, Size: 1073

Node: 10, Size: 1025 Node: 2, Size: 1017 Node: 21, Size: 1005

Node: 0, Size: 923

Node: 7, Size: 898

Node: 6, Size: 850

Node: 14, Size: 801

Node: 23, Size: 729

Node: 16, Size: 727 Node: 17, Size: 648

Node: 31, Size: 442

Node: 24, Size: 430

Node: 18, Size: 400

Node: 25, Size: 395

Node: 32, Size: 1934

Node: 58, Size: 1820

Node: 64, Size: 1428

Node: 20, Size: 1116

Node: 60, Size: 1080

Node: 46, Size: 1064 Node: 51, Size: 1044 Node: 37, Size: 1040 Node: 55, Size: 1003 Node: 9, Size: 988

Node: 11, Size: 983

Node: 42, Size: 967

Node: 70, Size: 922

Node: 27, Size: 914

Node: 45, Size: 876

Node: 25, Size: 834 Node: 13, Size: 825 Node: 35, Size: 806 Node: 16, Size: 743

Node: 36, Size: 735

Node: 6, Size: 730

Node: 21, Size: 689

Node: 43, Size: 640

Node: 53, Size: 552

Node: 56, Size: 547 Node: 10, Size: 511 Node: 59, Size: 481 Node: 31, Size: 479

Node: 28, Size: 468 Node: 3, Size: 465 Node: 68, Size: 464 Node: 1, Size: 441

Node: 66, Size: 406

Node: 39, Size: 394

Node: 49, Size: 373

Node: 57, Size: 366

Node: 19, Size: 361 Node: 22, Size: 356 Node: 47, Size: 336

Node: 69, Size: 307

Node: 52, Size: 299

Node: 26, Size: 295

Node: 18, Size: 287

Node: 0, Size: 11369 Node: 4, Size: 2047 Node: 32, Size: 1830 Node: 1, Size: 1439 Node: 39, Size: 1330

Node: 8, Size: 1108

Node: 9, Size: 1054

Node: 20, Size: 976

Node: 23, Size: 849

Node: 12, Size: 783

Node: 30, Size: 649

Node: 33, Size: 603

Node: 5, Size: 600 Node: 37, Size: 580 Node: 14, Size: 571 Node: 24, Size: 520

Node: 28, Size: 488

Node: 38, Size: 480

Node: 34, Size: 441

Node: 42, Size: 436

Node: 41, Size: 423

Node: 16, Size: 329 Node: 29, Size: 319

Node: 11, Size: 2170

Node: 5, Size: 2155

Node: 23, Size: 2117

Node: 14, Size: 2042

Node: 20, Size: 1910

Node: 19, Size: 1888

Node: 7, Size: 1842

Node: 15, Size: 1742 Node: 9, Size: 1649 Node: 18, Size: 1436

Node: 13, Size: 1265

Node: 24, Size: 1162, Child GSOM: 43

Node: 17, Size: 1150

Node: 6, Size: 1122 Node: 1, Size: 1037 Node: 3, Size: 1023

Node: 2, Size: 967

Node: 22, Size: 745

Node: 8, Size: 628

Node: 10, Size: 537

Node: 4, Size: 527

Node: 16, Size: 430

Node: 1, Size: 23904
Node: 17, Size: 3074, Child GSOM: 72

Node: 13, Size: 3040, Child GSOM: 69

Node: 8, Size: 2894, Child GSOM: 68

Node: 7, Size: 2551, Child GSOM: 67 Node: 11, Size: 1830

Node: 16, Size: 1796, Child GSOM: 71 Node: 6, Size: 1256 Node: 15, Size: 1241

Node: 1, Size: 1076, Child GSOM: 66

Node: 14, Size: 877, Child GSOM: 70
Node: 2, Size: 646

Node: 5, Size: 623 Node: 4, Size: 615

Node: 10, Size: 606

Node: 12, Size: 525

Node: 8, Size: 9122 Node: 1, Size: 4339

Node: 3, Size: 2022

Node: 2, Size: 1734

Node: 7, Size: 1714

Node: 5, Size: 794 Node: 6, Size: 550

Node: 9, Size: 516

Node: 8, Size: 1951

Node: 18, Size: 1462

Node: 35, Size: 1242

Node: 0, Size: 1055 Node: 29, Size: 890 Node: 3, Size: 810 Node: 10, Size: 740

Node: 2, Size: 737

Node: 5, Size: 657

Node: 27, Size: 613

Node: 4, Size: 590

Node: 1, Size: 576 Node: 25, Size: 573 Node: 37, Size: 544 Node: 30, Size: 543

Node: 11, Size: 533

Node: 6, Size: 512

Node: 32, Size: 482

Node: 21, Size: 434

Node: 9, Size: 320

Node: 19, Size: 1253

Node: 22, Size: 1178

Node: 6, Size: 1017

Node: 0, Size: 906

Node: 43, Size: 899 Node: 44, Size: 861 Node: 20, Size: 771 Node: 10, Size: 762

Node: 47, Size: 761

Node: 31, Size: 751

Node: 32, Size: 684

Node: 4, Size: 665

Node: 12, Size: 627 Node: 38, Size: 585 Node: 17, Size: 550 Node: 51, Size: 509

Node: 7, Size: 507

Node: 34, Size: 460

Node: 30, Size: 417

Node: 39, Size: 397

Node: 5, Size: 377

Node: 13, Size: 316

Node: 15, Size: 2341

Node: 11, Size: 2145

Node: 9, Size: 2095

Node: 5, Size: 2070 Node: 2, Size: 1867

Node: 3, Size: 1812

Node: 6, Size: 1732

Node: 13, Size: 1580 Node: 12, Size: 1316

Node: 17, Size: 1067

Node: 16, Size: 594

Node: 0, Size: 7759, Child GSOM: 102 Node: 6, Size: 2885, Child GSOM: 107 Node: 1, Size: 2719, Child GSOM: 103

Node: 3, Size: 2503 Node: 4, Size: 1906, Child GSOM: 105

Node: 7, Size: 661

Node: 2, Size: 465, Child GSOM: 104

Node: 3, Size: 2196

Node: 9, Size: 2114

Node: 6, Size: 2044

Node: 2, Size: 1959 Node: 17, Size: 1769

Node: 5, Size: 1752

Node: 11, Size: 1556

Node: 4, Size: 1497 Node: 16, Size: 1496

Node: 7, Size: 951

Node: 19, Size: 601

Node: 15, Size: 558

Node: 10, Size: 136

Node: 21, Size: 94

Node: 18, Size: 91

Node: 7, Size: 4592

Node: 3, Size: 3922

Node: 1, Size: 2879 Node: 0, Size: 2427

Node: 4, Size: 1667

Node: 9, Size: 879

Node: 11, Size: 655 Node: 10, Size: 544

Node: 2, Size: 233

Node: 6, Size: 224

Node: 9, Size: 4618, Child GSOM: 57

Node: 3, Size: 3458, Child GSOM: 53

Node: 6, Size: 2800, Child GSOM: 56 Node: 2, Size: 2387, Child GSOM: 52

Node: 1, Size: 2163, Child GSOM: 51

Node: 10, Size: 1000

Node: 0, Size: 388

Node: 8, Size: 373

Node: 7, Size: 327

Node: 31, Size: 1188

Node: 32, Size: 836

Node: 30, Size: 760

Node: 14, Size: 714

Node: 13, Size: 711

Node: 28, Size: 709 Node: 15, Size: 671 Node: 12, Size: 658 Node: 26, Size: 655

Node: 27, Size: 604

Node: 19, Size: 591

Node: 6, Size: 575

Node: 24, Size: 574

Node: 25, Size: 568 Node: 10, Size: 565 Node: 2, Size: 565 Node: 5, Size: 563

Node: 4, Size: 533

Node: 33, Size: 530

Node: 3, Size: 527

Node: 7, Size: 501 Node: 23, Size: 490 Node: 21, Size: 487

Node: 36, Size: 481

Node: 29, Size: 453

Node: 11, Size: 449

Node: 18, Size: 447 Node: 1, Size: 444

Node: 9, Size: 433

Node: 8, Size: 401

Node: 6, Size: 1790 Node: 21, Size: 1736, Child GSOM: 65 Node: 8, Size: 1675

Node: 4, Size: 1591

Node: 0, Size: 1590

Node: 5, Size: 1581

Node: 2, Size: 1475

Node: 13, Size: 566

Node: 19, Size: 1347 Node: 29, Size: 1161 Node: 35, Size: 752 Node: 46, Size: 699

Node: 10, Size: 670

Node: 26, Size: 624

Node: 12, Size: 508

Node: 42, Size: 503

Node: 1, Size: 484 Node: 38, Size: 471 Node: 8, Size: 465 Node: 32, Size: 430

Node: 6, Size: 430

Node: 0, Size: 382

Node: 3, Size: 379

Node: 7, Size: 314

Node: 8, Size: 2936 Node: 0, Size: 2548

Node: 4, Size: 2079

Node: 9, Size: 1481

Node: 3, Size: 1321 Node: 12, Size: 1013

Node: 11, Size: 867

Node: 14, Size: 621

Node: 13, Size: 525 Node: 6, Size: 450

Node: 16, Size: 1963

Node: 21, Size: 1451, Child GSOM: 100

Node: 5, Size: 958

Node: 12, Size: 664 Node: 24, Size: 595

Node: 25, Size: 563

Node: 11, Size: 462

Node: 0, Size: 409

Node: 14, Size: 408

Node: 0, Size: 1864

Node: 23, Size: 944

Node: 26, Size: 819

Node: 2, Size: 670 Node: 10, Size: 568 Node: 19, Size: 536

Node: 4, Size: 506

Node: 20, Size: 480

Node: 6, Size: 473

Node: 12, Size: 467

Node: 15, Size: 466

Node: 9, Size: 463

Node: 7, Size: 461 Node: 5, Size: 431

Node: 24, Size: 374

Node: 13, Size: 351

Node: 1, Size: 328

Node: 24, Size: 1245

Node: 2, Size: 1172

Node: 5, Size: 970

Node: 34, Size: 585

Node: 30, Size: 511

Node: 22, Size: 451

Node: 28, Size: 451

Node: 21, Size: 384

Node: 23, Size: 376

Node: 29, Size: 372

Node: 20, Size: 368

Node: 2, Size: 4360 Node: 1, Size: 2902 Node: 6, Size: 1850

Node: 3, Size: 1025 Node: 5, Size: 684 Node: 7, Size: 513

Node: 4, Size: 511

Node: 5, Size: 1556

Node: 4, Size: 1535

Node: 10, Size: 1517 Node: 11, Size: 1432

Node: 0, Size: 1306

Node: 6, Size: 1010

Node: 9, Size: 565

Node: 1, Size: 315

Node: 7, Size: 3290, Child GSOM: 87

Node: 1, Size: 2056, Child GSOM: 82

Node: 11, Size: 732

Node: 13, Size: 710

Node: 18, Size: 563

Node: 5, Size: 543

Node: 7, Size: 520

Node: 22, Size: 427

Node: 9, Size: 418

Node: 20, Size: 407

Node: 24, Size: 385

Node: 23, Size: 133

Node: 4, Size: 2512

Node: 1, Size: 2382

Node: 3, Size: 1898

Node: 0, Size: 1341

Node: 5, Size: 1272

Node: 0, Size: 610

Node: 8, Size: 584

Node: 2, Size: 518

Node: 6, Size: 516

Node: 4, Size: 512 Node: 1, Size: 485 Node: 19, Size: 478 Node: 30, Size: 475 Node: 18, Size: 402

Node: 21, Size: 689

Node: 3, Size: 675

Node: 5, Size: 602

Node: 13, Size: 578

Node: 6, Size: 459

Node: 0, Size: 447

Node: 20, Size: 436

Node: 11, Size: 177

Node: 1, Size: 176

Node: 7, Size: 1374

Node: 5, Size: 1348

Node: 3, Size: 1070 Node: 0, Size: 1011

Node: 6, Size: 796

Node: 2, Size: 771

Node: 8, Size: 650

Node: 3, Size: 2176, Child GSOM: 46

Node: 7, Size: 1735, Child GSOM: 48

Node: 5, Size: 679

Node: 4, Size: 640

Node: 9, Size: 145

Node: 2, Size: 117

Node: 1, Size: 3937 Node: 0, Size: 2460

Node: 3, Size: 1317

Node: 5, Size: 882, Child GSOM: 76

Node: 4, Size: 516

Node: 15, Size: 137

Node: 9, Size: 948

Node: 11, Size: 551

Node: 3, Size: 470

Node: 10, Size: 432

Node: 0, Size: 137

Node: 1, Size: 734

Node: 0, Size: 482

Node: 15, Size: 445

Node: 24, Size: 412

Node: 12, Size: 631

Node: 1, Size: 541

Node: 10, Size: 526

Node: 4, Size: 425

Node: 0, Size: 4386
Node: 1, Size: 736

Node: 2, Size: 343

Node: 12, Size: 506 Node: 3, Size: 1719 Node: 1, Size: 1482

Node: 2, Size: 1075

Node: 3, Size: 1618

Node: 2, Size: 939 Node: 1, Size: 808

Node: 1, Size: 883, Child GSOM: 114

Node: 1, Size: 1017

Node: 2, Size: 1008

Node: 2, Size: 1873

Node: 3, Size: 1599, Child GSOM: 109 Node: 3, Size: 1539 Node: 1, Size: 1545

Node: 0, Size: 1653

Node: 0, Size: 887

Node: 2, Size: 660 Node: 1, Size: 521

Node: 2, Size: 805 Node: 0, Size: 612 Node: 3, Size: 728

Node: 2, Size: 761

0

0.5

1

1.5

2
Label

Figure 5.4: The tree map generated after pruning the GHSOM from Figure 5.3. In the previous tree
map, nodes would eventually become too small to see. The pruning process outlined in Section
5.2.3 allows the user to see the majority of the nodes.

62

Optimized models are important for both detection rates and performance. The benefits from

this phase can be seen in Table 5.3. Using parameter optimization, we are able to increase the

accuracy of our models, while the pruning process allows for faster predictions. These are both

important factors when a system is being used for network security.

5.2.4 Prediction Explanation Phase

Once the modeling and optimization phases have been completed, and the quality metrics have

ensured that the model is a good representation of the data, the model can be used to perform a

variety of explainability and visualizations. The models themselves are lists of SOM nodes and the

weights associated with these nodes. Visualizations include creating local and global explanations,

U-Matrices, and feature heatmaps. Users can use explanations to perform tasks to better defend

the network. When a user receives a subpar explanation, the user can modify the architecture

where needed to help bolster the X-IDS. By using the explanations generated from the white box

CL models, the user to build trust and confidence that the model is working as intended.

5.2.4.1 Local and Global Explanations

Global and local explainability can be achieved by examining important features of the trained

SOM, and utilizing this information to generate an explanation for a specific data instance classi-

fication or cluster classification [101]. Global significance for NSL-KDD is shown in Figure 5.5b

with higher values denoting that a feature has a higher probability of being important. The algo-

rithm chosen to determine this variance was ‘Bayesian probability of significance’ [33]. Higher

variance features increase the probability that a model will capture the dataset’s structure. Through

63

this graph, an analyst can understand which features are important to the overall SOM structure,

allowing them to examine predictions at a local level based on globally important features.

Figure 5.5a shows the GSOM local explanations for a prediction on the NSL-KDD dataset.

Each feature has a value representing the significance. Significance (S) is a calculation involving

the min-maxed distances from a BMU inverted so that higher values are more important. The

formula can be seen in Formula 5.1. In this example, we can see the features with the largest

impact on a prediction: destination (dst) host count, duration, and destination (dst) bytes. These

features were the closest to the BMU, therefore, they played a large role in computing the predicted

value. Seeing the specific features that influence predictions provides insight into samples labeled

as malicious or benign and can further help users determine the reason for incorrect predictions.

These features can also be further investigated with feature value heat maps.

𝑆 = 1 − (𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

) (5.1)

5.2.4.2 Unified Distance Matrix (U-Matrix)

The U-Matrix visualizes the distances between neighboring SOM nodes. With distances shown

as a color gradient, nodes far apart will create light boundaries while areas with similar nodes will

be darker. This can visually represent the natural clusters of input data. To enhance the standard

U-Matrix, the starburst model uses connected component lines of nodes overlaid on the matrix to

better represent clusters [34]. For a labeled data set, the user is able to visualize each BMU along

with the associated label. Figure 5.6a shows clear clusters with boundaries separating malicious

(1) and benign (0) behavior. Using this information a users can investigate more visualizations and

64

feature importance values to gain an understanding of why certain malicious network activities are

being grouped together.

5.2.4.3 Feature Value Heat Map

A heat map applied to a feature shows general trends that a feature has on a model, in this case

the entire SOM model. SOM feature values are represented from 0 to 1, and the heat maps denote

this with darker and lighter values, respectively. An example feature value heat map can be found

in Figure 5.6b. In this example, the ‘dst bytes’ feature has a cluster of higher values in the top-right

corner, while the rest of the SOM consists of lower values. Users can use this information to form

conclusions about the model. Feature value maps are more powerful when multiple are viewed at a

time. The U-Matrix chart can then be referenced to make general decisions about the model. The

heat maps work well as a fine-grained global explanation that helps users to understand the overall

model.

5.2.4.4 Users Performing Tasks

An important component of our architecture is its user-in-the-loop system. A ‘user’ is a

network’s stakeholder. There can be many kinds of stakeholders for an IDS. AI engineers who

implement and maintain the X-IDS architecture, security analysts who protect the network, and

investors manage security expenses. Tasks are performed with the goal of protecting the network

and are enhanced by the X-IDS’s generated predictions.

When a satisfactory prediction has been created, a user can perform their task. Satisfactory

explanations will cause the user to be able to perform their tasks more effectively. However, not

all explanations will be useful. When an unsatisfactory explanation is created, a user can use

65

that explanation to make changes to the parts of the architecture. This could be accomplished by

changing how datasets are preprocessed, choosing a new ML model, modifying optimizations, or

creating a new style of explanation.

Prediction explanation plays a pivotal role in an X-IDS architecture. Visualizations and statis-

tics are critical for creating actionable explanations for a network. Local explanations can help

programmers and security analysts to fine-tune the model, while global explanations can be used

by investors to understand the model at a high level. Users can use predictions to either defend

the network, or fortify the intrusion detection system. In the next section, we demonstrate the

performative results of our models using the above described architecture.

5.3 Experimental Design

The SOM based X-IDS was evaluated on both explanation generation and traditional accuracy

tests. SOM explanation generation is categorized into visual and statistical explanations. The

visual explanations include U-matrices, feature heatmaps, and K-means clustering maps. Statistical

explanations include local and global feature significance charts. These explanations are described

in Section 4.2.3. Traditional accuracy tests include many ubiquitous metrics used in AI. This work

records F1-score, precision, recall, false positive rate, and false negative rate. All of these metrics

are described in Section 4.2.2.

5.3.1 Model Parameters & Dataset Preprocessing

The parameters selected for our models can be found in Table 5.2. In this work, the SOM was

setup to run over 1000 epochs using an 18 𝑥 18 map. We found that increasing the number of epochs

served to overfit the models and decrease the overall efficacy of the model. Both the size of the map

66

and the number of training epochs were chosen through trial and error. The GSOM parameters

were set to 100 and 40 training epochs for NSL-KDD and CIC-IDS-2017 respectively. We found

that this in addition to an aggressive Spread Factor (SF) of .9 created the best performative results.

The GHSOM parameters were set to 100 epochs per GSOM created using a SF of .3 and a Learning

Rate (LR) of .006. These settings were discovered using the parameter selection process outlined

in Section 5.2.4. Using these parameters, we were able to create well trained, highly accurate

models.

The NSL-KDD and CIC-IDS-2017 training and testing datasets are combined to form single

datasets. This dataset is then split using Scikit-Learn’s train_test_split() for a 60% training dataset

and a 40% testing dataset. Dataset preprocessing is as follows. First, samples with ‘None’ or ‘NaN’

values are removed. Second, categorical entries are One Hot Encoded. Third, the features are

normalized using Scikit-Learn’s Normalizer on default settings. Lastly, the labels are changed to

‘0’ for benign and ‘1’ for malicious.

5.3.2 Explanation Generation

After the models are trained, they can be data-mined to create explanations. Explanation

evaluation does not have objective metrics for visual explanations. Users must look at the U-

matrices that are generated and form their own conclusions. To this end, this experiment is

evaluated using a method that users would use to understand the model. By combining knowledge

from both the U-matrices, feature heatmaps, and statistical explanations, this work creates a

methodology for potentially evaluating explanations. Local and global statistical explanations,

on the other hand, are recorded using defined metrics. Local significance is calculated using the

67

distance from a sample’s best matching unit. Global significance is a measure of feature variability

in its dataset.

5.3.3 Traditional Performative Tests

The experimental results consist of accuracy, precision, recall, f1, false positive rate, false

negative rate, and network size measures. Accuracy refers to the percentage of correct predictions

compared to the total test size. Precision measures the ratio of true positive predictions to the

total number of positive predictions. Recall is the measure of true positive predictions to the total

number of positive samples in the test set. The f1 score is a measure that gives equal weight

of precision and recall. False positive rate is the rate of false positive predictions compared to

the amount of ground truth negatives. False negative rate is the rate of false negative predictions

compared to the amount of ground truth positives. Network size is simply the amount of GSOMs

within the hierarchical GHSOM structure. For SOMs and GSOMs, the network size is 1. The

training time of each algorithm and the average time for a single prediction is also measured. All

results can be found in Table 5.3.

68

Figure 5.5: These figures show the local and global feature explanations for both the NSL-KDD and
CIC-IDS datasets. (a)(c) Demonstrates features the GSOM has chosen for a malicious sample from
the NSL-KDD and CIC-IDS-2017 datasets. The more significant a feature is, the higher its value.
(b)(d) Global feature significance is calculated using Bayesian Probability of Significance [33].
Features that have a higher significance value are much more likely to cause a prediction to be
made for benign or anomalous.

69

Table 5.3: Competitive Learning X-IDS results compared to state-of-the-art black box models.

NSL-KDD

SOM GSOM GHSOM P-GHSOM NDNN
Jia et al. [41]

CNN
Mohammadpour

et al. [66]

BGRU+MLP
Xu et al. [104]

BAT-MC
Su et al. [93]

Accuracy 90.9% 96.7% 98.2% 98.0% 95.0% 99.8% 99.3% 99.2%
Precision 97.2% 96.6% 98.0% 98.0% - - - -
Recall 83.3% 96.5% 98.3% 97.8% 97.4% - 99.3% -
F1 89.7% 96.6% 98.1% 97.9% 91.4% - - -
FPR 2.2% 3.1% 1.9% 1.8% - - 0.8% -
FNR 16.6% 3.5% 1.6 2.2% - - - -
Network Size 1 1 7288 574 - - - -
Training Time (s) 8 60 692 816 - - - -
Prediction Time (ms) .03 .03 .06 .04 - - - -

CIC-IDS-2017

SOM GSOM GHSOM P-GHSOM SDCNN
Khan et al. [44]

DNN+RE
Almutlaq
et al. [7]

SS-Deep-ID
Abdel-Basset

et al. [3]

CNN-IDS*
Halbouni
et al. [31]

Accuracy 79.4% 94.6% 96.7% 95.7% 99.3% 97.4% 99.6% 99.6%
Precision 83.2% 83.7% 89.1% 86.5% 99.1% 98.3% 99.5% 99.7%
Recall 42.0% 90.0% 94.5% 92.7% 99.7% 99.2% 99.2% 99.4%
F1 55.8% 86.7% 91.7% 89.5% 99.4% 98.3% 99.4% 99.7%
FPR 19.0% 4.3% 2.8% 3.5% 1.0% - 0.7% 0.5%
FNR 23.0% 10.0% 5.5% 7.3% 1.0% - 0.5% -
Network Size 1 1 16894 119 - - - -
Training Time (s) 260 1820 4299 11205 - - - -
Prediction Time (ms) .03 .06 1.5 .03 - - - -

70

5.4 Experimental Results & Evaluation

Our CL based architecture and its SOM variants were evaluated on both traditional performative

tests and explanation generation. The datasets used to test our architecture were NSL-KDD and

CIC-IDS-2017 (see Chapter 3). In this section, we examine the performative results from all our

CL models, and the explanation results from the Growing Self Organizing Map (GSOM) model.

The GSOM explanations were chosen because of the high accuracy of the GSOM model and its

similarity to both the SOM and GHSOM.

5.4.1 Performative Results

The first part of our experiments looked at how accurate our architecture could be. The SOM

performed the worst out of our set of CL algorithms. This is expected as it is the least complex of the

three algorithms. It achieved an accuracy of 90.9% on NSL-KDD and 79.4% on CIC-IDS-2017.

The majority of its accuracy loss comes from its high false negative rate for NSL-KDD and both

error rates for CIC-IDS-2017. Out of all of the models, the SOM is the fastest to train and predict

with. This may not be a good trade-off, however, with how low its accuracy is. On the other hand,

the GSOM, using a more complex algorithm, is able to achieve a much higher accuracy of 96.7%

on the NSL-KDD dataset. Additionally, it also greatly improved in accuracy of the CIC-IDS-2017

dataset. The GSOM’s growing nature allows it to adapt to new benign and malicious behavior,

reducing the number of false negatives. The gain in accuracy comes with the cost of additional

training time. Finally, we tested the GHSOM with and without feature selection. The feature

selected GHSOM produces an accuracy of 96.2% and 96.1% for the normal and pruned variants

on the NSL-KDD dataset. The CIC-IDS-2017 feature selected models both achieved accuracies

71

of 96.0%. When run without feature selection, the model increases its accuracy to 98.2% and

98.0% for normal and pruned NSL-KDD variants and 96.7% and 95.7% for CIC-IDS-2017. The

GHSOM is able to perform better when it has more features. Because of its ability to grow both

vertically and horizontally, it is able to make connections in data that its predecessors can not.

We also tested the GSOM model using all features. Unlike the GHSOM, it does not benefit from

having more information. Overall, the GHSOM with no feature selection performs the best out of

all of our CL models.

72

Figure 5.6: (a)(d)The Starburst U-Matrix shows both the most common label for each node and the
clusters the SOM has learned. Darker areas represent units that are close Euclidean Distance-wise.
Notably, we can see a clear divide between classes on the NSL-KDD dataset as represented in the
figure. (b)(e) K-means clustering can be used as a simplified view of where labels appear on the
SOM. In this model’s iteration, anomalous traffic is mostly grouped on the bottom of the SOM.(c)
The feature value heatmap displays the value of a specific feature on each unit in the SOM. Lighter
values represent units with values closer to 1, while darker values show values closer to 0. The
‘dst byte’ example shows that the bottom ‘anomalous’ cluster values higher values.

73

The models from our architecture can also be compared to other algorithms in the literature.

Some of the best performing algorithms are variations of Deep Neural Networks (DNN) and other

black box Neural Networks (NN). These black box models are able to capture complexities in data

that no human or white box model could comprehend. However, a major problem these black

box models have is that they are not easily explainable. Unlike the CL algorithms detailed above,

information is given to these NNs and no explanation is given as to why a prediction is made. It

is possible to make these models explainable by using out-of-the-box explainer modules such as

SHAP or LIME. However, a major problem with using these explanation frameworks is their black

box nature. Table 5.3 compares our results to some works in the literature. Note that these models

either have no feature selection or a different feature selection than our own models, and the authors

did not list all possible metrics. The NSL-KDD and CIC-IDS-2017 dataset models are all similar

in accuracy. Our GHSOM architecture has between 1% - 3% lower accuracy compared to others,

however, the GHSOM is by far more explainable. Even with the small loss in accuracy, we believe

that an explainable IDS can be more beneficial for users. Using the explanations given to us by

our models, it may be possible to modify parts of the architecture to match the black box models’

accuracy. Additionally, the explanations are created using a white box algorithm. The user can be

confident in how the explanations were generated. Therefore, they may have more confidence that

the model and explanations are trustworthy.

5.4.2 Explanation Generation

Explanation generation can be divided into two subcategories: Statistical and Visual. Sta-

tistical explanations for our architecture consist of Global and local feature significance charts.

74

These explanations can help build a general understanding of the model but lack topographical

information. Visual explanations are datamined from the CL models and allow the user to combine

the statistical explanations with topographical information. These include the U-matrix, feature

heatmap, and label map. In this section, we will discuss the GSOM’s explanations. The GSOM

performed just as well as the GHSOM with regard to accuracy and uses the same explanations as

the GHSOM. However, the GHSOM may require the user to look at its many different hierarchical

GSOMs to be useful. Therefore, any method used to understand the GSOM model can also be

expanded to the GHSOM.

5.4.2.1 Global Explanations

Global significance explanations allow the user to form a general understanding of models

and datasets. ‘Bayesian probability of significance’ is the method we chose to create global

explanations [33]. This algorithm calculates feature variance where, in theory, features with higher

variance are more likely to cause clustering in data. Using explanations created with this method,

users can begin to create a strategy for examining explanations. This can help a user when faced

with a dataset with many features. However, a global explanation is not guaranteed to be useful for

all predictions. This type of global explanation is probabilistic in nature. Some local predictions

may use the least probable features when choosing a label. Global feature significance explanations

should be used as a guide to help examine the datasets and explanatory outputs.

The global explanations for our two datasets can be found in Figures 5.5b and 5.5d. More

important features are denoted with higher significance. For the NSL-KDD dataset, we can see

the top three most significant features are ‘Destination (dst) bytes’, ‘dst host count’, and ‘Source

75

(src) bytes’. Additionally, we can see that even though these three are the most important, the

other features have high enough significance that they could play a role in predictions. The CIC-

IDS-2017 global explanation tells a different story. ‘Flow bytes/s’ has the highest variance among

all of the features. We can classify this as the most significant feature while viewing the next 11

features (‘flow duration’ to ‘Forward (fwd) packets/s’) as being somewhat significant. The final

five features are less likely to impact the model.

Using the global explanations in Figures 5.5b and 5.5d, we can form some initial conclusions

about the models and datasets. For NSL-KDD, benign and malicious packets differ in size, length,

and number. This is demonstrated by ‘dst host count’, ‘duration’, and ‘dst bytes’. At this stage,

forming any other conclusions may not be beneficial. One of these features may be a good starting

point to look at for later explanation types. Malicious and benign traffic in the CIC-IDS-2017

dataset appears to vary in how much data is sent over the network. Similar to the NSL-KDD

dataset, it may not be a good idea to form a more concrete opinion about the models just yet.

However, we do know that malicious and benign data differ in the ways mentioned above, and these

ideas may be good concepts to investigate.

5.4.2.2 Local Explanation

The local prediction explanations for GSOM anomalies can be found in Figures 5.5a and 5.5c.

Using local explanations, users can take their coarse understanding of the dataset and begin fine

tuning it. Here, we will look at an anomalous local explanation from each dataset, however, it may

be beneficial for a user to view many at one time. Local explanations are created by examining a

76

feature’s proximity to its BMU counterpart (see Section 5.2.4). The most important features have

higher values.

The anomalous prediction for NSL-KDD in Figure 5.5a can be used to demonstrate how

to understand local prediction explanations. For this anomaly, ‘Destination (dst) host count’,

‘duration’, and ’dst bytes’ were the most important features. CIC-IDS-2017’s local anomalous

explanation has some interesting features. Eight features have a proximity of one or very near to

one. Five of its features are of some significance to the prediction, while the first four are less or

not significant.

To be able to better understand how the model labels predictions, multiple local explanations

should be used. Ideally, the user would need to look at many anomalous and benign explanations.

Doing so would allow the user to solidify their idea of how the model makes a malicious or benign

prediction. Looking at our NSL-KDD anomaly explanation, it is similar to the global explanation.

‘Destination (dst) host count’, ‘dst bytes’, and ‘src bytes’ are all of higher importance. However,

‘duration’ has also made a large impact even though it was considered less significant globally. If

we look at other malicious prediction explanations, we see a similar trend. The NSL-KDD model

uses these features to make many anomalous predictions. The CIC-IDS-2017 explanation states

that ‘flow bytes/s’ and seven other features are what cause this anomaly. Similar to NSL-KDD,

this trend tends to hold true over many other anomalous predictions. One or more of the features

may change places of importance, but a pattern can be seen in the explanations.

The user, now having examined both global and local explanations, has hopefully begun to form

a mental model of how the GSOM makes predictions. The process used in this section can be used

to form a general understanding of the SOM and GHSOM models. Using clues discovered in their

77

investigation, a user may want to view visual explanations for specific features. The topological

information gleaned from these explanations may prove fruitful in understanding the model even

better.

5.4.2.3 Visual Explanations

Unlike the statistical explanations, the three visual explanations need to be viewed together.

Examples of these explanations can be seen in Figure 5.7. The U-matrix is a hexagonal grid

composed of dark and light nodes. Darker cells represent nodes in the GSOM that are closer to one

another. Lighter cells denote a separation of nodes and clusters. The label map contains the label

used by each node for prediction. Light yellow nodes assign a prediction label of malicious while

dark red nodes assign a prediction label of benign. A shade in between yellow and red indicate

when a node has a probability of choosing either benign or malicious. Finally, the feature heatmap

contains visualized information of a single feature in the GSOM. Since each node represents a

sample from the dataset, we are able to visually map feature values. Lighter colored nodes contain

a feature value closer to one, while the darker values are closer to zero.

Firstly, we can look at the U-matrix to see how many clusters there are and where they formed.

The NSL-KDD model created about five clusters seen in Figure 5.7a. Four clusters appear on

the edge of the map with a smaller one in the middle. In Figure 5.7d, the CIC-IDS-2017 model

created between four to six clusters. Similar to the NSL-KDD U-matrix, the user may see that

there is a cluster at the top, left, bottom, right, and middle of the map. Now that we have defined

the clusters, we can look at each cluster’s associated label. The NSL-KDD model appears to label

the bottom-left and middle clusters as anomalous. The other clusters seem to be mostly benign.

78

For CIC-IDS-2017, we can see that nearly the entire map is benign. There are a few clusters of

malicious labels, but they are intermixed with benign data. Lastly, we can look at the meaning

of the feature heat map. The NSL-KDD feature heat map represents the ‘desetination (dst) bytes’

feature. Here, we can see that the top-left of the map contains higher values of ‘dst bytes’ while the

rest of the map contains much lower values. Similarly, the CIC-IDS-2017 dataset’s ‘flow bytes/s’

is much higher in the bottom-left than anywhere else on the map.

79

Figure 5.7: Visualizations generated from a GSOM for models trained on NSL-KDD and CIC-
IDS-2107. (a)(d) The U-matrix maintains the same properties as the SOM starburst visualization
with darker areas representing neurons closer together. (b)(e) The Feature Component Map also
shares the same properties as the SOM feature map in Figure 5.6. (c)(f) The Neuron Label map
shows the class label represented by a red or yellow color.

80

With our new understanding of visual explanations, we can combine them to form more complex

ideas about the model. A user can view both the feature heat map and the U-matrix and see that

there is a cluster of nodes associated with high ‘dst bytes’ values. They can then look to the neuron

label map and see that this cluster is associated with benign data. This thought process can be

used with the other features from the dataset. The user can then decide that they want to view

the dataset’s next most significant feature. In NSL-KDD’s case, the next best feature would be

‘dst host count’. Alternatively, the user could decide to use a local explanation to make decisions

about which features to view. The process outlined above can be used for larger datasets such as

CIC-IDS-2017 to guide the user into forming conclusions about the model.

5.4.2.4 User Conclusions

Having looked at all of the explanations, a user may now make a few decisions. The first is

that the explanations were sufficient such that they can complete their task. The second is that

they believe that the model could perform better or output better explanations that could benefit

their task. The NSL-KDD explanations may be sufficient for a user, however, the CIC-IDS-2017

model has some flaws that could affect its accuracy. The user could see that the CIC-IDS-2017

explanations heavily favor benign data. Using the architecture diagram defined in Figure 5.1,

the user may modify different aspects of the architecture. In this case, the user may decide to

preprocess the CIC-IDS-2017 dataset differently. It is possible that stratifying the training portion

of the dataset would create a more balanced set of clusters.

81

5.4.2.5 SOM and GHSOM Explanations

The process outlined above can also be used to understand both SOM and GHSOM explanations.

In fact, the global and local explanations for these two algorithms look the same. However, the

SOM algorithm that we chose uses a visual explanation that combines the U-matrix and label

map. It also includes a starburst-like pattern that helps dictate where the centers of the clusters

are and how far they stretch. We leave the SOM explanations in Figure 5.6 as an exercise for the

reader to form their own conclusions using the above process. Lastly, the GHSOM uses the same

visual explanations as the GSOM, but it would require many different images of each to explain.

Instead, we have created a visualization representing the hierarchical structure of the GHSOM that

includes how each GSOM within labels data. This visualization for the pruned GHSOM can be

seen in Figures 5.4. In the figure, red represents a node that labels data as malicious, blue nodes

are benign, and yellow indicates a branching node.

5.5 Conclusion

In this work, we created an Explainable Intrusion Detection (X-IDS) architecture featuring

three Competitive Learning (CL) based algorithms. It was built using DARPA’s recommended

guidelines for an explainable system. The architecture consists of four phases: Pre-Modeling,

Modeling, Post-Modeling Optimization, and Prediction Explanation. In the Pre-Modeling phase,

we preprocess datasets and select our initial model parameters. In the Modeling phase, we train the

Self Organizing Map (SOM), Growing Self Organizing Map (GSOM) and Growing Hierarchical

Self Organizing Map (GHSOM) and record quality metrics. In the Post-Modeling Optimization

phase, we find better model parameters to achieve higher accuracy results, and we implement a

82

pruning process for the GHSOM model. Lastly, we generate explanations and allow the user to

make modifications to the architecture in the Prediction Explanation phase. When compared with

existing Error Based Learning (EBL) algorithms, CL algorithms are less accurate. However, CL

algorithms are far more explainable, leading to a more trustworthy IDS.

The main objective of this work was to demonstrate the explanatory properties of CL algorithms.

In our explanation discussion, we showed that CL algorithms are highly explainable because of

their ability to mimic patterns in data. This is a feature that EBL techniques lack. We demonstrated

a strategy that a user could use to be able to understand explanations to better trust or improve the

model. This strategy involved using course grain explanations such as the global and local feature

significance charts to form a general understanding of the models. With this general understanding,

users can then use the feature heatmaps, U-matrices, and label maps to form a more comprehensive

knowledge of the model.

Additionally, a pruning process was applied on the GHSOM in an effort to lower the number

of branches it generated. We were able to decrease the size of the GHSOM by 92% - 99% while

only losing 0.2% - 1.0% accuracy. This lowers the performative overhead and allows the pruned

GHSOM to make predictions faster than the unpruned GHSOM. Additionally, reducing the size of

the GHSOM can help with visualizing explanations.

Lastly, a performance analysis was performed on our CL-based X-IDS architecture. Tests were

run using the NSL-KDD and CIC-IDS-2017 datasets. Our experimental results showed that the

CL models can achieve accuracies as high as 98.2% on the NSL-KDD dataset and 96.7% on the

CIC-IDS-2017 dataset. We compare these results with existing EBL algorithms. We find that EBL

83

algorithms are 1% to 3% more accurate than the CL algorithms, however, EBL models are far less

explainable.

The future for intrusion detection is explainability. Using architectures and methods, such as

the ones used in this paper, will lead to more powerful and trustworthy IDS. White box methods

can be improved and adapted to create more accurate AI models. Competitive Learning algorithms

embody this philosophy. Their explainability, ease of use, and low performative cost allow for

them to be the front runners for future X-IDS.

84

CHAPTER 6

WHITE BOX ECLECTIC RULE EXTRACTION FOR EXPLAINABLE DEEP NEURAL

NETWORK IDS

6.1 Introduction

The ubiquity of black box algorithms and black box surrogate explainers create trust issues

for Explainable Intrusion Detection Systems (X-IDS) [20]. Explainable Artificial Intelligence

(XAI) was created as a means to increase the transparency of these black box approaches [95].

Historically, white box techniques were used to create explanations for black box models. More

recently, the use of surrogate explainers, such as Local Interpretable Model-Agnostic Explanations

(LIME) [85] or SHapley Additive exPlanations (SHAP) [60], have become more common. These

techniques are used to create local and global explanations for neural networks but are themselves

black boxes. By using these techniques, we take a step back in explainability. If one cannot trust a

black box model because it is opaque, how can one trust a black box surrogate explainer?

One solution to this problem is the use of pedagogical, white box explanations for neural

networks. Pedagogical algorithms take a similar approach to black box surrogate explainers. They

use the neural network inputs and outputs to create an approximate model [9, 10]. A popular

technique is to train Decision Trees (DT) as a surrogate model. Pedagogical approaches have the

benefit of being fast and scalable. This method, however, is also lacking with regard to trust.

Since pedagogical methods do not use the black box neural network weights, they cannot create a

85

trustworthy surrogate model. Decompositional Rule Extraction (RE) can alleviate this issue. By

training DTs using the weights from each layer [9, 10], we can create trustworthy rules for black

box neural networks. What decompositional RE gains in trustability, it loses in scalability. A major

issue with this type of algorithm is its exponential scaling due to its need to stitch each layer’s rules

together from input to output.

Another option is to use eclectic rule extraction. Eclectic RE uses techniques from both

pedagogical and decompositional algorithms [10]. Eclectic algorithms offer a middle ground

between the scalability of pedagogical techniques and the trustworthiness of decompositional

techniques. It trains one or more DTs for each hidden layer which are used to extract rules for

a ruleset. Due to this, eclectic rule extraction scales polynomially with respect to the number of

layers. This scaling issue can be mitigated using the eclectic algorithm’s customizability. For

larger Deep Neural Networks (DNN), one can extract rules from a subset of layers rather than all

layers. Additionally, the eclectic rule extractor gains the benefit of trust from generating rulesets

using weights from the black box neural network. This makes it more trustworthy than black box

surrogates and pedagogical approaches.

X-IDS heavily benefits from explainability and trust [71]. Explainability allows security experts

to understand how and why their IDS is making predictions. Experts can use eclectic RE as a means

to understand their IDS by generating global, explainable rulesets. Using this information, security

experts are able to make modifications to their IDS in order to increase its accuracy. Additionally,

experts have other tasks that they need to perform to protect their systems. Having more trust in

the IDS can help experts perform tasks in a more timely and confident manner. This leads to more

reliable network defense.

86

In this work, we present a hybrid X-IDS architecture that uses white box eclectic RE to generate

explanations. The proposed solution is a white box surrogate explainer that utilizes the DNN’s

hidden layers to generate an explainable ruleset. DNN models are trained using the UNSW-NB15

and CIC-IDS-2017 datasets, and explainable rulesets are created using the eclectic RE algorithm.

We find that the RE algorithm is able to generate rulesets that mimic the models’ outputs at an

accuracy of 99.9%. Additionally, the rulesets have similar accuracy to the DNN models when

compared to the datasets’ ground truth labels.

Major contributions presented in this work are -

• A hybrid X-IDS architecture using a black box DNN predictor and a white box surrogate
explainer. Eclectic RE is used to generate human-readable rules from the hidden neurons of
a DNN. RE creates a global, explainable ruleset that can be used to help users understand
how and why their model makes predictions.

• An eclectic rule extraction algorithm that can be run on intrusion detection datasets. This
algorithm can be run for both binary and categorical predictions. An eclectic RE algorithm
gives the user flexibility when determining how much of the model they would like to explain.
This can increase ruleset extraction speed. Rulesets generated using this algorithm are highly
similar to the DNNs’ predictions.

• A performative and explanatory analysis of our architecture using modern datasets. Our
model is tested against the CIC-IDS-2017 and UNSW-NB15 datasets. Using these datasets,
we train and test our DNN and create accurate rulesets. Rulesets are able to mimic the DNNs’
outputs with an accuracy of 99.9%. We discuss the trade-off of speed and performance and
detail the rulesets’ explainability.

6.2 X-IDS Architecture

One important goal that X-IDSs have is to aid users in understanding predictions that can aid

them in certain tasks. CSoC security analysts, for example, are tasked with protecting a given

network from attack. To help users such as this protect their networks, we propose a hybrid X-IDS

architecture that uses a DNN to create predictions and eclectic RE to create explanations. The

87

Pre-Modeling Modeling Rule Extraction Post-Extraction Statistics

Dataset

Model Tuning and
Feature Engineering

Feature
Selection

Parameter
Selection

Neural
Network
Model

Quality Metrics

Accuracy
F1-Score

Performative Metrics
Feature
Scaling

Training Time
Testing Time

Precision
Recall

FPR/FNR

Prediction
Speed

Neural
Network
Model

Dataset

Eclectic Rule
Extraction
Algorithm

Statistics

Ruleset
Accuracy

Individual
Rule Acc

Rule Usage
CountRuleset

Ruleset

Figure 6.1: Architecture for a surrogate explainer X-IDS. It features four total phases. In the
Pre-Modeling phase, the datasets are feature engineered to be compatible with the neural network
and RE algorithm. Model parameters are also selected here. The model is trained and tested in the
Modeling phase. Here, we record important quality and performative metrics. The trained model
and dataset can then be used to extract a ruleset. Lastly, we generate statistics for the ruleset and
rules to aid the user in their understanding.

architecture is divided into four phases. First, the datasets are preprocessed and model parameters

are tuned in the Pre-Modeling phase. Second, the DNN are trained and various quality metrics

can be recorded. Third, rules are extracted from the model to form rulesets. Fourth, the rulesets

are tested for various statistical measures. The architecture diagram for our X-IDS can be found in

Figure 6.1.

6.2.1 Pre Modeling

The first phase in the architecture is Pre Modeling. Here, we construct high-quality datasets and

determine model hyper-parameters. This work uses the CIC-IDS-2017 [80] and UNSW-NB15 [69]

datasets. There are a number of reasons why we chose these two datasets. First, these datasets use

more modern attacks when compared to older datasets. CIC-IDS-2017 and UNSW-NB15 were

developed in 2017 and 2015 respectively. Both of these datasets were created to offer ‘up-to-date’

attacks. Although these datasets are six years old, they can be used to give a good impression
88

of how our model will work with real-world data. Second, CIC-IDS-2017 contains 2.8 million

samples, while UNSW-NB15 contains just over 250,000 samples. This allows us to stress-test

our model by recording training testing and rule generation times for datasets that are an order

of magnitude different in size. Understanding the scalability of our model and explanations is a

crucial factor for intrusion detection. Additionally, we are able to create large validation and testing

datasets that contain data that may not appear in the training dataset. A description of how we

preprocessed the datasets can be found in Section 6.3.

6.2.2 Modeling

The next phase is Modeling. In this phase, we train the black box neural network and record

quality and performative metrics. To construct the NN, we use Tensorflow [2]. It consists of an

input layer, two hidden layers, and an output layer. The two hidden layers each contain 64 neurons

and use the ReLU activation function. The output layer uses the Sigmoid activation function for

binary classification. To optimize the model, we selected the Adam optimizer. After the model

has been trained, it can be tested for quality and performative metrics. Table 6.1 shows the DNN

parameters we used during training.

Quality & Performative Metrics: For our experiments, we record many traditional quality

metrics. These include accuracy, F1-score, precision, recall, False Positive Rate (FPR), and False

Negative Rate (FNR). Accuracy compares the number of true positives and negatives to the number

of false positives and negatives. This gives a general idea of how well the model performs as a

whole, however, its use may be misleading with imbalanced datasets. F1-score, on the other hand,

accounts for this by using precision and recall to define its score. This helps to minimize the

89

Table 6.1: DNN Training Parameters

Parameter Name Parameter Value
Hidden Layers 2
Hidden Layer
Neuron Count 64

Output Layer
Neuron Count 2

Hidden Layer
Activation Function

Rectified Linear
Unit (ReLU)

Output Layer
Activation Function Softmax

Bactch Size 64
Training Iterations 100

Early Stopping
(Validation Loss) 5

effects of an imbalanced dataset. The last two metrics are FPR and FNR. These detail how often

the model mislabels anomalous data as normal and vice-versa. These are important metrics for an

IDS as they denote how often an attack goes unnoticed or a benign user is prevented from using

a service. There are also performance-based metrics that are important to note for an IDS. These

include training, testing, and prediction times. The speed at which an IDS can be trained and tested

can be vital for a network.

6.2.3 Rule Extraction

In this stage, we use the trained model and the training dataset to extract rules from the model’s

hidden layers. We outline the eclectic rule extraction algorithm in Section 2.5. Rules generated

from the hidden layer can be concatenated together to form an explainable ruleset. This ruleset can

90

be used by the user to understand the potential decisions the model is making when determining if

a sample is benign or malicious.

The rule extraction algorithm depends on the use of a Decision Tree (DT). We chose to use the

Scikit-learn Decision Tree Classifier. However, there are other DT classifiers that are available,

such as C5.0, that offer varying functionality and scalability. Scikit-learn’s DT offers the benefit

of speed and ease of use which is the reason why we chose their implementation. Additionally, the

DTs come with varying hyper-parameters that can be used to alter the training process. Notably,

the ‘max depth’ and ‘max leaves’ hyper-parameters can be used to limit the size and number of

rules generated. We can modify these parameters to find the optimal trade-off between speed and

ruleset accuracy. Next, it is possible to modify the DT training process by changing the amount of

data they train on. One of the main scalability factors this eclectic RE algorithm has is dataset size.

One could decide to only use a subset of the original training dataset in order to speed up the rule

extraction process. This comes with its own downsides, however. By limiting the amount of data

the DTs are trained on, one may be leaving out vital information for an accurate ruleset. Lastly,

one can decide to extract rules from specific DNN hidden layers. Since the RE algorithm repeats

for every hidden layer, this parameter has the highest impact on RE speed.

91

Table 6.2: Results from the unbounded, leaves, and layers tests for the Eclectic RE algorithm

UNSW-NB15

Experiment Num.
Rules

Ground Truth
Accuracy

Model Prediction
Accuracy

Average
Terms

Longest
Rule

Extraction
Time (s)

Testing
Time (s)

Testing
Std (s)

Unbounded 2380 93.6% 99.1% 15.8 30 1610 723 79
2000 Leaves 2421 93.6% 99.0% 15.7 30 1600 805 140
1000 Leaves 1684 93.7% 99.1% 14.7 25 1603 549 95
500 Leaves 946 93.6% 99.0% 13.1 25 993 278 65
100 Leaves 184 93.5% 98.5% 4.2 14 212 51 7
10 Leaves 19 90.9% 94.7% 4.2 5 60 6.6 .5
20 Layers 2278 93.6% 99.0% 20 20 1532 606 98
10 Layers 502 93.4% 98.4% 10 10 430 89 10
5 Layers 38 91.0% 95.1% 5 5 77 11 2

CIC-IDS-2017

Experiment Num.
Rules

Ground Truth
Accuracy

Model Prediction
Accuracy

Average
Terms

Longest
Rule

Extraction
Time (s)

Testing
Time (s)

Testing
Std (s)

Unbounded 1686 93.1% 99.9% 14.2 27 9504 6882 1321
2000 Leaves 1815 93.1% 99.9% 14.1 27 9782 6211 566
1000 Leaves 1701 93.1% 99.9% 14.3 27 8969 4950 879
500 Leaves 1000 93.1% 99.9% 12.2 25 7276 3305 719
100 Leaves 188 93.0% 99.8% 8.6 18 1792 554 129
10 Leaves 20 91.5% 97.6% 4.7 6 664 67 11
20 Layers 1675 93.1% 99.9% 13.2 20 4401 4659 1409
10 Layers 601 93.0% 99.6% 9.1 10 2060 1242 301
5 Layers 57 91.0% 97.0% 4.9 5 760 113 30

92

There are some additional notes that can be made about our specific implementation. First,

the algorithm is designed to work with multiclass datasets. This means that NNs need to have at

least two output neurons. Multiclass classification can abstractly predict binary classes by using

two output neurons and the softmax activation function. The user will need to One Hot Encode

their binary class dataset. Secondly, we did not implement multiprocessing. The bottleneck for

our implementation is Python’s default single thread. Implementing the ability to use more than

one CPU core can increase the speed of the algorithm.

6.2.4 Post-Extraction Statistics

Finally, we can compare the dataset and model predictions to the ruleset to obtain useful

statistical data. Useful information includes ruleset accuracy, individual rule accuracy, and rule

usage. Using these statistics, we can aid the user in understanding the ruleset and model. The first

step in this process is ruleset evaluation.

There are some major design decisions that can be made when evaluating a ruleset. First, one

can opt to take a comprehensive or greedy approach to evaluating the ruleset. We opted to use

a greedy rule comparison approach. The difference between these approaches is their stopping

criteria for each testing sample. In the comprehensive approach, each sample is compared to all

rules. Since there is a potential for collision, an additional step would need to be made to determine

which rule is more accurate. The second method is a greedy approach. Rather than compare

a sample to all possible rules, we stop as soon as we find a matching rule. The benefit of this

approach is that it speeds up the evaluation on average by a factor of 2. This is due to the fact that

93

on average a sample should only need to be tested against half the rules. This, however, does not

change the potential maximum runtime.

A potential problem with RE is the number of rules it extracts. Some extraction algorithms

can extract 10,000 rules. Our algorithm has extracted close to 2400 rules. These numbers are

not feasible an amount for a human to comb through. To mitigate this, we can assign a usage

counter and accuracy to each rule. During ruleset evaluation, these statistics can be saved in order

to assist the user in understanding the ruleset. Higher used and higher accuracy rules can be used

to understand the general composition of benign or malicious samples.

6.3 Experimental Design

The X-IDS architecture is evaluated for accuracy and speed. There are two types of accuracy

evaluations used to determine the RE’s effectiveness. Ground truth accuracy is the ruleset’s

accuracy when compared to the testing dataset’s true labels. This accuracy should be compared to

the DNN’s testing accuracy. Model prediction accuracy is the ruleset’s accuracy when compared

to the DNN’s outputs. We define high accuracy for ground truth accuracy as within 1% of the

model’s accuracy. Model prediction accuracy should be greater than 99% to be considered highly

accurate.

6.3.1 Model Parameters & Dataset Preprocessing

The DNN’s were trained up to 100 epochs with a batch size of 64 and early stopping criteria.

Training ends early when the validation loss does not improve over 5 epochs. Increasing the

patience value past 5 did not yield better results only slower training times. In general, the models

trained between 25 to 30 epochs before stopping early. The DNN models used a total of 2 hidden

94

layers with 64 neurons each. The output layer consisted of 2 neurons. The hidden layers used the

ReLU activation function while the outputs layer used the softmax function.

The datasets used for these experiments were CIC-IDS-2017 and UNSW-NB15. Both of the

datasets are preprocessed as follows. First, samples with ‘NaN’ values are removed. Second,

categorical features are One Hot Encoded. Third, the dataset is normalized. Fourth, the binary

labels are One Hot Encoded. This is necessary so that the RE algorithm is able to label rules.

The dataset is then split into 60% training, 20% validation, and 20% testing datasets using Scikit-

Learn’s train_test_split() function twice. Once to split the training from the validation and testing,

and once to split the validation from testing.

6.3.2 Rule Extraction Parameter Experiments

Experiments are run by modifying individual parameters in the RE algorithm. These parameters

determine the number of layers or leaves the DTs are allowed to generate. They can also modify

how much of the dataset is used to train the DTs or how many of the hidden layers rules are extracted

from. The limited leaves experiments are divided into 2000, 1000, 500, 100, and 10 total leaves.

Typically, this limits the total rules generated. The limited layers experiments are divided into 20,

10, and 5 layers. This parameter limits both how many rules are generated and how large they can

be. The next two experiments use subsets of the dataset and hidden layers. The DTs are trained

using 80%, 60%, 40%, and 20% of the training dataset. The hidden layer experiments extract

rules from the first and second hidden layers and then tests them independently. All experiments

are compared to rules extracted using default DT parameters. DTs trained this way are allowed to

generate as many leaves and layers as they need.

95

Table 6.3: Results from the unbounded, dataset subset, and limited hidden layer tests for the
Eclectic RE algorithm

UNSW-NB15

Experiment Num.
Rules

Ground Truth
Accuracy

Model Prediction
Accuracy

Average
Terms

Longest
Rule

Extraction
Time (s)

Testing
Time (s)

Testing
Std (s)

Unbounded 2380 93.6% 99.1% 15.8 30 1610 723 79
80% Dataset 2029 93.6% 98.9% 15.6 28 1106 535 44
60% Dataset 1735 93.6% 98.8% 14.9 28 695 589 89
40% Dataset 1377 93.4% 98.6% 14.4 27 358 324 23
20% Dataset 841 93.3% 98.3% 13.2 23 110 281 76
First Hidden 1391 93.6% 99.0% 15.5 29 768 561 93
Second Hidden 1396 93.6% 99.0% 15.5 30 828 471 63

CIC-IDS-2017

Experiment Num.
Rules

Ground Truth
Accuracy

Model Prediction
Accuracy

Average
Terms

Longest
Rule

Extraction
Time (s)

Testing
Time (s)

Testing
Std (s)

Unbounded 1686 93.1% 99.9% 14.2 27 9504 6882 1321
80% Dataset 1474 93.1% 99.9% 14.2 25 6964 4388 1599
60% Dataset 1389 93.1% 99.9% 13.5 25 4244 4630 1573
40% Dataset 990 93.1% 99.9% 13.1 24 2416 3208 1348
20% Dataset 826 93.1% 99.9% 12.1 23 877 2295 753
First Hidden 905 93.1% 99.9% 14.1 27 4625 4184 1138
Second Hidden 909 93.1% 99.9% 14.1 27 4837 3509 636

6.3.3 Explainability Discussion

Explainability is difficult to measure. Rather, we discuss the feasibility that one could use a

ruleset to understand the DNN. This is done using the total number of rules generated, their average

and max length, and the model prediction accuracy. Additionally, we discuss if using a subset of

the hidden layers to extract rules reduces explainability and trust.

6.4 Experiment Results & Evaluation

This section is divided into the different experiments outlined in the previous section. The

UNSW-NB15 DNN model had an accuracy of 93.7% and the CIC-IDS-2017 DNN model had

an accuracy of 93.1%. These results can be compared to the rulesets’ ground truth prediction

accuracies. All results for the above-outlined experiments can be found in Tables 6.2 and 6.3.

96

Figure 6.2: These charts compare the speed up versus accuracy loss for the UNSW-NB15 and
CIC-IDS-2017 rulesets. True label accuracy is the rulesets label versus the testing datasets labels.
Model prediction accuracy is the rulesets labels versus the models’ predicted outputs.

97

6.4.1 Unbounded Eclectic Rule Extraction

The first experiment used default DT parameters and the full training dataset. This allows

the DTs to theoretically use an infinite number of leaves and layers. Rulesets generated this way

were nearly as accurate as their DNN and had high model prediction accuracy. However, a major

downside to creating rulesets this way is the amount of time needed and the size of the rules. The

UNSW-NB15 model took 1610 seconds to extract and, on average, 723 seconds to test. Testing

had a standard deviation of 78.6 seconds. UNSW had a model prediction accuracy of 99.04% and

a ground truth accuracy of 93.6%. CIC-IDS-2017 was extracted in 9504 seconds (2.6 hours) and

tested in 6962 seconds (1.9 hours). This model’s testing speed had a standard deviation of 1511

seconds (.4 hours). It had a model prediction accuracy of 99.96% and a ground truth accuracy

of 93.1%. Both datasets’ prediction accuracy and true label accuracy are within one percentage

point, which is considered highly accurate for this study. As one can see, there is a large deviation

in testing times. There are several potential reasons behind this. First, the ruleset can accurately

separate data so that few samples have overlapping rules. This can mean samples need to be tested

against many rules before they find a match. Additionally, some rules tend to be champions for

each label. The order in which these rules are placed in the dataset can drastically change the speed

the algorithm runs. Lastly, longer rules that are checked before finding the matching rule will also

increase runtime.

6.4.2 Limited Leaves

The next set of experiments limits the number of leaves that DTs are allowed to generate. This

limits the rulesets in a few ways. First, there is a maximum amount of rules that are allowed to

98

be generated. This number is ≤ 𝑛 ∗ 2, where 𝑛 is the limit of leaves. This phenomenon can be

seen in Figure 6.3. For both datasets, the 500 leaves and below are only able to generate less than

or equal to the maximum allowed rules. Some of these experiments do not reach their maximum

due to the second hidden layer creating duplicate rules. Second, although there is no explicit limit

on the number of layers, limiting the leaves can limit the number of layers. This effect can be

seen in the 100 and 10 leaves limited experiments. We see that accuracy is associated with the

number of rules, however, there is an upper limit on the number of rules needed for high accuracy.

Users are able to limit the RE algorithm greatly before accuracy begins to degrade below our 1%

criteria. UNSW-NB15 can be limited to 500 leaves and still maintain high accuracy. Its speed can

be increased further if only 100 leaves are used, but its ability to mimic model output degrades by

0.5%. CIC-IDS-2017 is able to maintain high accuracy when limited to 100 leaves. Likely, this is

due to the large training dataset size.

Figure 6.2 demonstrates the trade-off of accuracy to speed. We define speedup as the combi-

nation of unbounded training and average testing time divided by the limited experiment’s training

and average testing time. Depending on the dataset, one can see 5 to 10 times speedup before

losing 1% accuracy. Extraction times are visualized in Figure 6.3a and 6.3b. Here we can see that

the algorithm scales almost logarithmically with respect to the number of leaves. Figures 6.4a and

6.4b illustrate how the number of rules grows with the limited leaves tests. These graphs have a

similar trend to the extraction speed graphs. We see an almost logarithmic increase in rules or a

linear increase with a plateau.

99

Figure 6.3: These charts show the extraction speed comparison between the various tests. Most of
the results demonstrate a logarithmic scale. The outlier in Figure 6.3d is likely due to the greedy
labeling process used to train the second decision tree during the extraction algorithm.

100

6.4.3 Limited Layers

Table 6.2 also shows the results from the limited layers test, and Figures 6.3c,d and 6.4c,d

visualize the results. Limiting the lasyers strictly affect the number of layers and implicitly restricts

the number of rules. These experiments demonstrate the ability to speed up the algorithms by

limiting ruleset creation. The total number of rules for the unbounded and 20 layer experiments

are similar. However, the extraction time is reduced by a factor of 2. This is likely due to the

average length and longest rules being smaller. UNSW-NB15 is able to maintain high accuracy

using the 20 layer limitation. It loses 0.6% model prediction accuracy when limited to 10 layers.

CIC-IDS-2017 follows a similar trend the the previous experiment. It is able to have high accuracy

even with the more limited parameters. Even with only 5 layers, it is able to mimic the model’s

predictions with an accuracy of 97%. Again, its ability to maintain high accuracy when compared

to UNSW-NB15 is likely due to the larger amount of training samples.

101

Figure 6.4: These charts demonstrate how the number of rules generated scales with the total
number of leaves and layers. Limiting the decision trees to a certain number of leaves shows a
logarithmic increase in rule generation. When limiting the total number of layers, we see a linear
increase until a plateau.

102

6.4.4 Training Data Subsets

The training data subset experiments seek to improve speed by limiting the amount of training

data used to create rulesets. The results for this experiment can be found in Table 6.3. Generally,

we see linear increases in extraction and testing time with respect to dataset size (see Figures

6.5). Here we see that training dataset size is an important factor for model prediction accuracy.

Although minor, we see an immediate degradation of model prediction accuracy for UNSW-NB15.

Ground truth accuracy is able to maintain high accuracy, but we begin to lose model explainability.

On the other hand, CIC-IDS-2017 is able to maintain high accuracy throughout all the subset

experiments. 20% of the CIC-IDS-2017 dataset is still larger than the UNSW-NB15 dataset.

103

Figure 6.5: These charts illustrate the results from the training data subset experiments. The results
include the total time the extraction algorithm took to extract rules and the total number of rules
generated.

104

6.4.5 Limited DNN Hidden Layers

The last set of experiments tests how rulesets generated from each layer perform. These results

can be seen in Table 6.3. Using this parameter cuts the number of rules in half and greatly increases

the algorithm’s speed. However, using this, debatably, limits the ruleset’s explainability. Rather

than explaining the full model, one is only explaining part of the model. In our case, we are only

explaining half of the model. UNSW-NB15 is able to maintain 99% model prediction accuracy and

have similar ground truth accuracy to the DNN. Notably, we see that model prediction accuracy is

reduced by .1% when compared to the unbounded ruleset. This could mean that the second DNN

layer is likely to produce rules that overlap with the first hidden layer. With the CIC-IDS-2017

rulesets, we see that they maintain 99.9% model prediction accuracy for both hidden layers, and

they keep the same ground truth accuracy as the unbounded tests. Adding more weight to the idea

that the layers produce similar rulesets. This could be an argument against the idea that using fewer

layers means less explainability.

6.4.6 Explainability Discussion

Due to the size of some of the rulesets, it is important to discuss the usability of eclectic rule

extraction. Additionally, it is important to discuss the explainability and trustworthiness of certain

limited rulesets. Our RE algorithm created as many as 2400 rules when unbounded. Additionally,

the unbounded rulesets generated rules with an average of 15.8 terms and a max of 30 terms. These

two facts combine to make it a difficult task for humans to parse rulesets. By limiting the algorithm

in the various ways above, we are able to decrease the size of the rules and rulesets. This makes the

rulesets easier for users to parse but potentially lowers the ruleset’s accuracy. With this in mind,

105

we should ask a few questions. First, “does limiting the DTs decrease the ruleset’s explainability

and trustworthiness?" Second, “is model prediction accuracy directly related to explainability and

trustworthiness?" Third, "what methods can users use to understand rulesets?"

The first and second questions are interlinked. The answers to these questions are likely

subjective and open to debate. One user may value model prediction accuracy and ground truth

accuracy similarity over all other metrics. This is because they are the only concrete statistics

that one can use to compare DNN model and ruleset. Limiting ruleset creation would only

decrease explainability when accuracy begins to degrade. The question then becomes “How much

can accuracy degrade before a user begins to lose trust in the ruleset?" Another user may value

information as a means of determining trustworthiness. Longer rules and rulesets may seem more

explainable, especially because these typically correlate with higher accuracy.

The third question can have a more concrete answer. Rulesets are able to record how many

and how accurate they are with the testing dataset. Rules can then be sorted by the most used or

the most correct. This is applicable for both ground truth and model prediction accuracy. Users

can view the most used rules and their labels. These rules can be used to form a general, global

understanding of the DNN model. Users may be able to determine which features allow for higher

accuracy. Using this information, the user may be able to determine which features should be

removed from the dataset to make more accurate predictions. Additionally, one can use the how

DT algorithms train to their advantage. Scikit-learn’s DT mainly focuses on information gain. This

means that higher-level terms will typically have more variance. These terms will appear in more

rules meaning they are more significant than other terms and features. Lastly, it may be possible

106

to use an algorithm to summarize the rulesets. This could be useful on larger rulesets, but it may

run into the issue of explaining a white box with a black box.

6.5 Conclusion

In this paper, we created an X-IDS architecture that uses eclectic rule extraction to generate

explanations for a DNN. Our X-IDS created rulesets that were 99.9% accurate when compared to

our models’ outputs. Our rulesets also had a similar accuracy to the DNN models when compared

to the testing datasets true labels. The experiments run show the scalability and customizability

that eclectic rule extraction algorithms have. By limiting our rule extraction algorithm, we can

greatly increase its speed. However, its accuracy can begin to suffer when it is limited too much.

This gives the user the choice between accuracy, explainability, and speed. Potential future works

include extending the eclectic rule extraction algorithm to recurrent neural networks or other highly

accurate models. For X-IDS architecture to be trusted, both the model and the explainer need to

be accurate. Another potential future work could involve translating extracted rules into directly

useful firewall rules. Rather than giving the user a set of rules, the rulesets themselves could be

explained by creating firewall rules.

107

CHAPTER 7

CONCLUSION AND FUTURE WORK

In this dissertation, three X-IDS were created using white box techniques. These X-IDS were

created to show that (i) certain white box algorithms are powerful enough to compete against

black box algorithms, (ii) white box algorithms are far more explainable and trustworthy than

black box algorithms, (iii) explainer modules need to be trustworthy in order to create useful

explanations. First, an X-IDS based on Self Organizing Maps was created as a proof-of-concept.

This X-IDS was able to produce visual and statistical explanations that were used to explain the

model. Local, global, visual, and statistical explanations could be used together to form a more

concrete understanding of the SOM’s thought process. Second, an extended X-IDS was created

that featured the SOM family of Competitive Learning algorithms. In that work, the Growing

Self Organizing Map and Growing Hierarchical Self Organizing Map were used to create more

accurate predictions and detailed explanations. The GSOM and GHSOM have accuracies that are

comparable to other Error Based Learning models due to their increased complexity. Third, a

hybrid X-IDS using a black box model and white box explainer was created. The model was a

black box Deep Neural Network that was explained by an eclectic rule extraction algorithm. The

eclectic RE algorithm was able to produce highly accurate rulesets with respect to the DNNs’

outputs. This leads to a more trustworthy explainer and X-IDS.

108

7.1 Improving the Explainability of the GHSOM

There are many avenues for future work from this dissertation’s contributions. Firstly, the size

of the GHSOM makes them difficult them difficult to understand. Although explainable, a user

would not be able to browse the 17000 GSOMs that our CIC-IDS-2017 GHSOM model produced.

We were able to reduce the size of this model by 99.2% using a pruning algorithm. However,

120 GSOMs may still be too many for some users. A potential future work would be to create an

algorithm that can summarize GSOMs textually, statistically, or visually. Similar to the RE ruleset

rule usage, GHSOMs could have their individual GSOMs record individual accuracies and usage.

This algorithm would ideally be a trustable white box implementation.

7.2 Connecting Rules to the Real World

The RE algorithm extracts textual rules that can be used to understand the model’s reasoning

for making predictions. However, thousands of rules of varying lengths are produced, which can

be difficult for users to parse. In the RE contribution, we use ruleset accuracy and usage as a means

to sort the rules. Sorting the rules allows the user to only browse the most used and most accurate

rules. However, these rules have little connection to the real world. Users may want to be able

to implement firewall rules using these rulesets or have a proper textual explanation. There are

two potential future works for RE. First, design an algorithm that can create firewall rules that can

accurately protect a network. Since an X-IDS’s goal is to aid experts in completing tasks, creating

recommendations for firewall rules could greatly increase the speed at which these experts operate.

Secondly, design an algorithm that can take rules generated by RE and create descriptions that are

easy for humans to understand. A likely candidate for this type of problem is Large Language

109

Models (LLMs). Although these models are black box, their ability to create human-like sentences

can make them a vital tool for X-IDS.

110

REFERENCES

[1] “Self-Organizing Map Convergence,” Int. J. Serv. Sci. Manag. Eng. Technol., vol. 9, 4 2018,
pp. 61–84.

[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,
V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng, “TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems,”,
2015, Software available from tensorflow.org.

[3] M. Abdel-Basset, H. Hawash, R. K. Chakrabortty, and M. J. Ryan, “Semi-supervised
spatiotemporal deep learning for intrusions detection in IoT networks,” IEEE Internet of
Things Journal, vol. 8, no. 15, 2021, pp. 12251–12265.

[4] J. Ables, T. Kirby, W. Anderson, S. Mittal, S. Rahimi, I. Banicescu, and M. Seale, “Creating
an Explainable Intrusion Detection System Using Self Organizing Maps,” IEEE Symposium
on Computational Intelligence in Cyber Security, 2022.

[5] D. Alahakoon, S. Halgamuge, and B. Srinivasan, “A self-growing cluster development
approach to data mining,” SMC’98 Conference Proceedings. 1998 IEEE International
Conference on Systems, Man, and Cybernetics (Cat. No.98CH36218), 1998, vol. 3, pp.
2901–2906 vol.3.

[6] S. Albayrak, C. Scheel, D. Milosevic, and A. Muller, “Combining self-organizing map algo-
rithms for robust and scalable intrusion detection,” International Conference on Computa-
tional Intelligence for Modelling, Control and Automation and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06). IEEE,
2005, vol. 2, pp. 123–130.

[7] S. Almutlaq, A. Derhab, M. M. Hassan, and K. Kaur, “Two-stage intrusion detection
system in intelligent transportation systems using rule extraction methods from deep neural
networks,” IEEE Transactions on Intelligent Transportation Systems, 2022.

[8] K. Amarasinghe, K. Kenney, and M. Manic, “Toward explainable deep neural network based
anomaly detection,” 2018 11th International Conference on Human System Interaction
(HSI). IEEE, 2018, pp. 311–317.

111

[9] R. Andrews, J. Diederich, and A. B. Tickle, “Survey and critique of techniques for extracting
rules from trained artificial neural networks,” Knowledge-based systems, vol. 8, no. 6, 1995,
pp. 373–389.

[10] M. G. Augasta and T. Kathirvalavakumar, “Rule extraction from neural networks—A
comparative study,” International Conference on Pattern Recognition, Informatics and
Medical Engineering (PRIME-2012). IEEE, 2012, pp. 404–408.

[11] R. G. Bace, P. Mell, et al., “Intrusion detection systems,”, 2001.

[12] M. Bahrololum and M. Khaleghi, “Anomaly intrusion detection system using Gaussian mix-
ture model,” 2008 Third International Conference on Convergence and Hybrid Information
Technology. IEEE, 2008, vol. 1, pp. 1162–1167.

[13] M. Belouch, S. El Hadaj, and M. Idhammad, “Performance evaluation of intrusion detection
based on machine learning using Apache Spark,” Procedia Computer Science, vol. 127,
2018, pp. 1–6.

[14] A. Binder, G. Montavon, S. Lapuschkin, K.-R. Müller, and W. Samek, “Layer-wise relevance
propagation for neural networks with local renormalization layers,” International Conference
on Artificial Neural Networks. Springer, 2016, pp. 63–71.

[15] M. Bitaab and S. Hashemi, “Hybrid intrusion detection: Combining decision tree and
gaussian mixture model,” 2017 14th International ISC (Iranian Society of Cryptology)
Conference on Information Security and Cryptology (ISCISC). IEEE, 2017, pp. 8–12.

[16] G. Breard, “Evaluating Self-Organizing Map Quality Measures as Convergence Criteria,”
2017.

[17] A. L. Buczak and E. Guven, “A survey of data mining and machine learning methods for
cyber security intrusion detection,” IEEE Communications surveys & tutorials, vol. 18, no.
2, 2015, pp. 1153–1176.

[18] M. Carvalho, J. DeMott, R. Ford, and D. A. Wheeler, “Heartbleed 101,” IEEE security &
privacy, vol. 12, no. 4, 2014, pp. 63–67.

[19] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM Comput.
Surv., vol. 41, 2009, pp. 15:1–15:58.

[20] K. K. Chennam, S. Mudrakola, V. U. Maheswari, R. Aluvalu, and K. G. Rao, “Black Box
Models for eXplainable Artificial Intelligence,” Explainable AI: Foundations, Methodolo-
gies and Applications, vol. 232, 2022, p. 1.

[21] Y. E. Chun, S. B. Kim, J. Y. Lee, and J. H. Woo, “Study on credit rating model using
explainable AI,” The Korean Data & Information Science Society, vol. 32, no. 2, 2021, pp.
283–295.

112

[22] DARPA, “Broad agency announcement explainable artificial intelligence (XAI),” DARPA-
BAA-16-53, 2016, pp. 7–8.

[23] E. De la Hoz, A. Ortiz García, J. Ortega Lopera, E. M. De La Hoz Correa, and F. E. Men-
doza Palechor, “Implementation of an intrusion detection system based on self organizing
map,” 2015.

[24] D. E. Denning, “An intrusion-detection model,” IEEE Transactions on software engineering,
, no. 2, 1987, pp. 222–232.

[25] T. Dias, N. Oliveira, N. Sousa, I. Praça, and O. Sousa, “A Hybrid Approach for an Inter-
pretable and Explainable Intrusion Detection System,” arXiv preprint arXiv:2111.10280,
2021.

[26] M. Dittenbach, D. Merkl, and A. Rauber, “The growing hierarchical self-organizing map,”
Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks.
IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium.
IEEE, 2000, vol. 6, pp. 15–19.

[27] B. Fritzke, “Growing grid—a self-organizing network with constant neighborhood range
and adaptation strength,” Neural processing letters, vol. 2, no. 5, 1995, pp. 9–13.

[28] D. Gunning and D. Aha, “DARPA’s explainable artificial intelligence (XAI) program,” AI
Magazine, vol. 40, no. 2, 2019, pp. 44–58.

[29] S. M. Guthikonda, “Kohonen self-organizing maps,” Wittenberg University, vol. 98, 2005.

[30] T. Hailesilassie, “Rule extraction algorithm for deep neural networks: A review,” arXiv
preprint arXiv:1610.05267, 2016.

[31] A. H. Halbouni, T. S. Gunawan, M. Halbouni, F. A. A. Assaig, M. R. Effendi, and N. Ismail,
“CNN-IDS: Convolutional Neural Network for Network Intrusion Detection System,” 2022
8th International Conference on Wireless and Telematics (ICWT). IEEE, 2022, pp. 1–4.

[32] L. Hamel, “SOM quality measures: An efficient statistical approach,” 2016, vol. 428, pp.
49–59, Springer Verlag.

[33] L. Hamel and C. Brown, “Bayesian Probability Approach to Feature Significance for Infrared
Spectra of Bacteria,” Applied Spectroscopy, vol. 66, 1 2012, pp. 48–59.

[34] L. Hamel and C. Brown, “Improved Interpretability of the Unified Distance Matrix with
Connected Components,” 7th International Conference on Data Mining (DMIN’11), 4 2012.

[35] M. Hammad, N. Hewahi, and W. Elmedany, “MMM-RF: A Novel High Accuracy Multi-
nomial Mixture Model for Network Intrusion Detection Systems,” Computers & Security,
2022, p. 102777.

113

[36] M. Han and J. Kim, “Joint banknote recognition and counterfeit detection using explainable
artificial intelligence,” Sensors, vol. 19, no. 16, 2019, p. 3607.

[37] A. Holzinger, C. Biemann, C. S. Pattichis, and D. B. Kell, “What do we need to build
explainable AI systems for the medical domain?,” arXiv preprint arXiv:1712.09923, 2017.

[38] S. Iannucci, J. Ables, W. Anderson, B. Abburi, V. Cardellini, and I. Banicescu, “A
Performance-Oriented Comparison of Neural Network Approaches for Anomaly-based In-
trusion Detection,” 2021 IEEE Symposium Series on Computational Intelligence (SSCI).
IEEE, 2021, pp. 1–7.

[39] D. Ippoliti and X. Zhou, “A-GHSOM: An adaptive growing hierarchical self organizing
map for network anomaly detection,” Journal of Parallel and Distributed Computing, vol.
72, no. 12, 2012, pp. 1576–1590.

[40] S. R. Islam, W. Eberle, S. K. Ghafoor, A. Siraj, and M. Rogers, “Domain knowledge
aided explainable artificial intelligence for intrusion detection and response,” arXiv preprint
arXiv:1911.09853, 2019.

[41] Y. Jia, M. Wang, and Y. Wang, “Network intrusion detection algorithm based on deep neural
network,” IET Information Security, vol. 13, no. 1, 2019, pp. 48–53.

[42] A. Jobin, M. Ienca, and E. Vayena, “The global landscape of AI ethics guidelines,” Nature
machine intelligence, vol. 1, no. 9, 2019, pp. 389–399.

[43] E. Jussupow, K. Spohrer, A. Heinzl, and J. Gawlitza, “Augmenting medical diagnosis
decisions? An investigation into physicians’ decision-making process with artificial intelli-
gence,” Information Systems Research, vol. 32, no. 3, 2021, pp. 713–735.

[44] A. S. Khan, Z. Ahmad, J. Abdullah, and F. Ahmad, “A spectrogram image-based network
anomaly detection system using deep convolutional neural network,” IEEE Access, vol. 9,
2021, pp. 87079–87093.

[45] I. A. Khan, N. Moustafa, D. Pi, K. M. Sallam, A. Y. Zomaya, and B. Li, “A New Explainable
Deep Learning Framework for Cyber Threat Discovery in Industrial IoT Networks,” IEEE
Internet of Things Journal, 2021.

[46] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, “Survey of intrusion detection
systems: techniques, datasets and challenges,” Cybersecurity, vol. 2, no. 1, 2019, pp. 1–22.

[47] T. Kohonen, “Self-organized formation of topologically correct feature maps,” Biological
cybernetics, vol. 43, no. 1, 1982, pp. 59–69.

[48] T. Kohonen, “Emergence of invariant-feature detectors in the adaptive-subspace self-
organizing map,” Biological cybernetics, vol. 75, no. 4, 1996, pp. 281–291.

[49] T. Kohonen, “The self-organizing map,” Neurocomputing, vol. 21, 1998, pp. 1–6.

114

[50] T. Kohonen and T. Honkela, “Kohonen network,” Scholarpedia, vol. 2, no. 1, 2007, p. 1568.

[51] A. P. Kuruvila, X. Meng, S. Kundu, G. Pandey, and K. Basu, “Explainable Machine
Learning for Intrusion Detection via Hardware Performance Counters,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2022.

[52] J. Lampinen and E. Oja, “Clustering properties of hierarchical self-organizing maps,”
Journal of Mathematical Imaging and Vision, vol. 2, 1992, pp. 261–272.

[53] C. Langin, M. Wainer, and S. Rahimi, “ANNaBell Island: a 3D color hexagonal SOM
for visual intrusion detection,” Internation Journal of Computer Science and Information
Security, vol. 9, no. 1, 2011, pp. 1–7.

[54] Z. Li, Y. Li, and L. Xu, “Anomaly intrusion detection method based on k-means clustering
algorithm with particle swarm optimization,” 2011 international conference of information
technology, computer engineering and management sciences. IEEE, 2011, vol. 2, pp. 157–
161.

[55] P. Lichodzijewski, A. N. Zincir-Heywood, and M. I. Heywood, “Host-based intrusion detec-
tion using self-organizing maps,” Proceedings of the 2002 International Joint Conference
on Neural Networks. IJCNN’02 (Cat. No. 02CH37290). IEEE, 2002, vol. 2, pp. 1714–1719.

[56] L. Lindsay, S. Coleman, D. Kerr, B. Taylor, and A. Moorhead, “Explainable Artificial
Intelligence for Falls Prediction,” International Conference on Advances in Computing and
Data Sciences. Springer, 2020, pp. 76–84.

[57] Z. C. Lipton, “The Mythos of Model Interpretability: In machine learning, the concept of
interpretability is both important and slippery.,” Queue, vol. 16, no. 3, 2018, pp. 31–57.

[58] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation Forest,” 2008 Eighth IEEE International
Conference on Data Mining, 2008, pp. 413–422.

[59] Y. Liu, J. Sun, Q. Yao, S. Wang, K. Zheng, and Y. Liu, “A scalable heterogeneous parallel
SOM based on MPI/CUDA,” Asian Conference on Machine Learning. PMLR, 2018, pp.
264–279.

[60] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,”
Advances in neural information processing systems, vol. 30, 2017.

[61] Y. Ma, Z. Wang, H. Yang, and L. Yang, “Artificial intelligence applications in the develop-
ment of autonomous vehicles: A survey,” IEEE/CAA Journal of Automatica Sinica, vol. 7,
no. 2, 2020, pp. 315–329.

[62] B. Mahbooba, M. Timilsina, R. Sahal, and M. Serrano, “Explainable artificial intelligence
(xai) to enhance trust management in intrusion detection systems using decision tree model,”
Complexity, vol. 2021, 2021.

115

[63] A. Marshan, “Artificial intelligence: Explainability, ethical issues and bias,” Annals of
Robotics and Automation, 08 2021, pp. 034–037.

[64] A. McDole, M. Abdelsalam, M. Gupta, and S. Mittal, “Analyzing CNN based behavioural
malware detection techniques on cloud IaaS,” International Conference on Cloud Comput-
ing. Springer, 2020, pp. 64–79.

[65] A. McDole, M. Gupta, M. Abdelsalam, S. Mittal, and M. Alazab, “Deep Learning Tech-
niques for Behavioural Malware Analysis in Cloud IaaS,” Malware Analysis using Artificial
Intelligence and Deep Learning, Springer, 2021.

[66] L. Mohammadpour, T. C. Ling, C. S. Liew, and C. Y. Chong, “A convolutional neural
network for network intrusion detection system,” Proceedings of the Asia-Pacific Advanced
Network, vol. 46, no. 0, 2018, pp. 50–55.

[67] J. D. Moore and W. R. Swartout, Explanation in expert systemss: A survey, Tech. Rep.,
UNIVERSITY OF SOUTHERN CALIFORNIA MARINA DEL REY INFORMATION
SCIENCES INST, 1988.

[68] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for network intrusion
detection systems (UNSW-NB15 network data set),” 2015 Military Communications and
Information Systems Conference (MilCIS), 2015, pp. 1–6.

[69] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for network intrusion
detection systems (UNSW-NB15 network data set),” 2015 military communications and
information systems conference (MilCIS). IEEE, 2015, pp. 1–6.

[70] Z. Muda, W. Yassin, M. Sulaiman, and N. Udzir, “Intrusion detection based on K-Means
clustering and Naïve Bayes classification,” 2011 7th international conference on information
technology in Asia. IEEE, 2011, pp. 1–6.

[71] S. Neupane, J. Ables, W. Anderson, S. Mittal, S. Rahimi, I. Banicescu, and M. Seale, “Ex-
plainable Intrusion Detection Systems (X-IDS): A Survey of Current Methods, Challenges,
and Opportunities,” arXiv preprint arXiv:2207.06236, 2022.

[72] S. Neupane, J. Ables, W. Anderson, S. Mittal, S. Rahimi, I. Banicescu, and M. Seale, “Ex-
plainable Intrusion Detection Systems (X-IDS): A Survey of Current Methods, Challenges,
and Opportunities,”, 2022.

[73] S. Neupane, I. A. Fernandez, W. Patterson, S. Mittal, and S. Rahimi, “A Temporal Anomaly
Detection System for Vehicles utilizing Functional Working Groups and Sensor Channels,”
IEEE International Conference on Collaboration and Internet Computing (IEEE CIC 2022),
2022.

[74] E. Oja and S. Kaski, Kohonen maps, Elsevier, 1999.

116

[75] J. Ong and S. M. R. Abidi, “Data Mining Using Self-Organizing Kohonen Maps: A
Technique for Effective Data Clustering & Visualization,” IC-AI, 1999.

[76] V. Pachghare, P. Kulkarni, and D. M. Nikam, “Intrusion detection system using self orga-
nizing maps,” 2009 International Conference on Intelligent Agent & Multi-Agent Systems.
IEEE, 2009, pp. 1–5.

[77] E. J. Palomo, E. Domínguez, R. M. Luque, and J. Muñoz, “A new GHSOM model applied to
network security,” International Conference on Artificial Neural Networks. Springer, 2008,
pp. 680–689.

[78] E. J. Palomo, E. Domínguez, R. M. Luque, and J. Munoz, “A self-organized multiagent
system for intrusion detection,” International Workshop on Agents and Data Mining Inter-
action. Springer, 2009, pp. 84–94.

[79] G. Pang, C. Ding, C. Shen, and A. v. d. Hengel, “Explainable Deep Few-shot Anomaly
Detection with Deviation Networks,” arXiv preprint arXiv:2108.00462, 2021.

[80] R. Panigrahi and S. Borah, “A detailed analysis of CICIDS2017 dataset for designing
Intrusion Detection Systems,” International Journal of Engineering & Technology, vol. 7,
3 2018, pp. 479–482.

[81] X. Qu, L. Yang, K. Guo, L. Ma, T. Feng, S. Ren, and M. Sun, “Statistics-enhanced direct
batch growth self-organizing mapping for efficient DoS attack detection,” IEEE Access, vol.
7, 2019, pp. 78434–78441.

[82] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al., “Language models
are unsupervised multitask learners,” OpenAI blog, vol. 1, no. 8, 2019, p. 9.

[83] Raytheon, “Cyber Security Operations Center (CSOC),”, 2017.

[84] B. C. Rhodes, J. A. Mahaffey, and J. D. Cannady, “Multiple self-organizing maps for intru-
sion detection,” Proceedings of the 23rd national information systems security conference.
MD Press Baltimore, 2000, pp. 16–19.

[85] M. T. Ribeiro, S. Singh, and C. Guestrin, “" Why should i trust you?" Explaining the pre-
dictions of any classifier,” Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, 2016, pp. 1135–1144.

[86] D. E. Rumelhart and D. Zipser, “Feature discovery by competitive learning,” Cognitive
science, vol. 9, no. 1, 1985, pp. 75–112.

[87] M. Salem and U. Buehler, “An enhanced GHSOM for IDS,” 2013 IEEE International
Conference on Systems, Man, and Cybernetics. IEEE, 2013, pp. 1138–1143.

[88] C. Sammut and G. I. Webb, Encyclopedia of machine learning, Springer Science & Business
Media, 2011.

117

[89] B. Schölkopf, R. C. Williamson, A. Smola, J. Shawe-Taylor, and J. C. Platt, “Support Vector
Method for Novelty Detection,” NIPS, 1999.

[90] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a new intrusion
detection dataset and intrusion traffic characterization.,” ICISSp, vol. 1, 2018, pp. 108–116.

[91] A. Sharma and S. K. Sahay, “Evolution and detection of polymorphic and metamorphic
malwares: A survey,” arXiv preprint arXiv:1406.7061, 2014.

[92] E. H. Shortliffe, MYCIN: a rule-based computer program for advising physicians regarding
antimicrobial therapy selection., Tech. Rep., Stanford Univ Calif Dept of Computer Science,
1974.

[93] T. Su, H. Sun, J. Zhu, S. Wang, and Y. Li, “BAT: Deep learning methods on network
intrusion detection using NSL-KDD dataset,” IEEE Access, vol. 8, 2020, pp. 29575–29585.

[94] B. Subba, S. Biswas, and S. Karmakar, “Intrusion detection systems using linear discriminant
analysis and logistic regression,” 2015 Annual IEEE India Conference (INDICON). IEEE,
2015, pp. 1–6.

[95] M. Szczepański, M. Choraś, M. Pawlicki, and R. Kozik, “Achieving explainability of
intrusion detection system by hybrid oracle-explainer approach,” 2020 International Joint
Conference on Neural Networks (IJCNN). IEEE, 2020, pp. 1–8.

[96] H. M. Tahir, A. M. Said, N. H. Osman, N. H. Zakaria, P. N. M. Sabri, and N. Katuk, “Oving
K-means clustering using discretization technique in network intrusion detection system,”
2016 3rd International Conference on Computer and Information Sciences (ICCOINS).
IEEE, 2016, pp. 248–252.

[97] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the KDD CUP
99 data set,” 2009 IEEE symposium on computational intelligence for security and defense
applications. Ieee, 2009, pp. 1–6.

[98] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the KDD CUP
99 data set,” 2009, pp. 1–6.

[99] M. Vasighi and H. Amini, “A directed batch growing approach to enhance the topology
preservation of self-organizing map,” Applied Soft Computing, vol. 55, 2017, pp. 424–435.

[100] M. Wang, K. Zheng, Y. Yang, and X. Wang, “An explainable machine learning framework
for intrusion detection systems,” IEEE Access, vol. 8, 2020, pp. 73127–73141.

[101] C. S. Wickramasinghe, K. Amarasinghe, D. L. Marino, C. Rieger, and M. Manic, “Explain-
able unsupervised machine learning for cyber-physical systems,” IEEE Access, vol. 9, 2021,
pp. 131824–131843.

118

[102] C. Wu, A. Qian, X. Dong, and Y. Zhang, “Feature-oriented Design of Visual Analytics
System for Interpretable Deep Learning based Intrusion Detection,” 2020 International
Symposium on Theoretical Aspects of Software Engineering (TASE). IEEE, 2020, pp. 73–
80.

[103] S. X. Wu and W. Banzhaf, “The use of computational intelligence in intrusion detection
systems: A review,” Applied soft computing, vol. 10, no. 1, 2010, pp. 1–35.

[104] C. Xu, J. Shen, X. Du, and F. Zhang, “An intrusion detection system using a deep neural
network with gated recurrent units,” IEEE Access, vol. 6, 2018, pp. 48697–48707.

[105] Y. Yang, D. Jiang, and M. Xia, “Using improved GHSOM for intrusion detection,” Journal
of Information Assurance and Security, vol. 5, 2010, pp. 232–239.

[106] L. Yuan, Implementation of self-organizing maps with Python, University of Rhode Island,
2018.

[107] M. E. Zarlenga, Z. Shams, and M. Jamnik, “Efficient decompositional rule extraction for
deep neural networks,” arXiv preprint arXiv:2111.12628, 2021.

[108] G. Zhang, “Neural networks for classification: a survey,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), vol. 30, no. 4, 2000, pp. 451–462.

[109] J. R. Zilke, E. Loza Mencía, and F. Janssen, “Deepred–rule extraction from deep neural
networks,” Discovery Science: 19th International Conference, DS 2016, Bari, Italy, October
19–21, 2016, Proceedings 19. Springer, 2016, pp. 457–473.

119

	Explainable Intrusion Detection Systems using white box techniques
	Recommended Citation

	tmp.1701116368.pdf.bBft8

