2,431 research outputs found

    Submodular Function Maximization for Group Elevator Scheduling

    Full text link
    We propose a novel approach for group elevator scheduling by formulating it as the maximization of submodular function under a matroid constraint. In particular, we propose to model the total waiting time of passengers using a quadratic Boolean function. The unary and pairwise terms in the function denote the waiting time for single and pairwise allocation of passengers to elevators, respectively. We show that this objective function is submodular. The matroid constraints ensure that every passenger is allocated to exactly one elevator. We use a greedy algorithm to maximize the submodular objective function, and derive provable guarantees on the optimality of the solution. We tested our algorithm using Elevate 8, a commercial-grade elevator simulator that allows simulation with a wide range of elevator settings. We achieve significant improvement over the existing algorithms.Comment: 10 pages; 2017 International Conference on Automated Planning and Scheduling (ICAPS

    Dynamic fuzzy logic elevator group control system for energy optimization

    Get PDF
    High-rise buildings with a considerable number of elevators represent a major logistic problem concerning saving space and time due to economic reasons. For this reason, complex Elevator Group Control Systems are developed in order to manage the elevators properly. Furthermore, the subject of energy is acquiring more and more industrial relevance every day as far as sustainable development is concerned. In this paper, the first entirely dynamic Fuzzy Logic Elevator Group Control System to dispatch landing calls so as to minimize energy consumption, especially during interfloor traffic, is proposed. The fuzzy logic design described here constitutes not only an innovative solution that outperforms usual dispatchers but also an easy, cheap, feasible and reliable solution, which is possible to be implemented in real industry controllers

    Essays On Perioperative Services Problems In Healthcare

    Get PDF
    One of the critical challenges in healthcare operations management is to efficiently utilize the expensive resources needed while maintaining the quality of care provided. Simulation and optimization methods can be effectively used to provide better healthcare services. This can be achieved by developing models to minimize patient waiting times, minimize healthcare supply chain and logistics costs, and maximize access. In this proposal, we study some of the important problems in healthcare operations management. More specifically, we focus on perioperative services and study scheduling of operating rooms (ORs) and management of necessary resources such as staff, equipment, and surgical instruments. We develop optimization and simulation methods to coordinate material handling decisions, inventory management, and OR scheduling. In Chapter 1 of this dissertation, we investigate material handling services to improve the flow of surgical materials in hospitals. The ORs require timely supply of surgical materials such as surgical instruments, linen, and other additional equipment required to perform the surgeries. The availability of surgical instruments at the right location is crucial to both patient safety and cost reduction in hospitals. Similarly, soiled material must also be disposed of appropriately and quickly. Hospitals use automated material handling systems to perform these daily tasks, minimize workforce requirements, reduce risk of contamination, and reduce workplace injuries. Most of the literature related to AGV systems focuses on improving their performance in manufacturing settings. In the last 20 years, several articles have addressed issues relevant to healthcare systems. This literature mainly focuses on improving the design and management of AGV systems to handle the specific challenges faced in hospitals, such as interactions with patients, staff, and elevators; adhering to safety standards and hygiene, etc. In Chapter 1, we focus on optimizing the delivery of surgical instrument case carts from material departments to ORs through automated guided vehicles (AGV). We propose a framework that integrates data analysis with system simulation and optimization. We test the performance of the proposed framework through a case study developed using data from a partnering hospital, Greenville Memorial Hospital (GMH) in South Carolina. Through an extensive set of simulation experiments, we investigate whether performance measures, such as travel time and task completion time, improve after a redesign of AGV pathways. We also study the impact of fleet size on these performance measures and use simulation-optimization to evaluate the performance of the system for different fleet sizes. A pilot study was conducted at GMH to validate the results of our analysis. We further evaluated different policies for scheduling the material handling activities to assess their impact on delays and the level of inventory required. Reducing the inventory level of an instrument may negatively impact the flexibility in scheduling surgeries, cause delays, and therefore, reduce the service level provided. On the other hand, increasing inventory levels may not necessarily eliminate the delays since some delays occur because of inefficiencies in the material handling processes. Hospitals tend to maintain large inventories to ensure that the required instruments are available for scheduled surgery. Typically, the inventory level of surgical instruments is determined by the total number of surgeries scheduled in a day, the daily schedule of surgeries that use the same instrument, the processing capacity of the central sterile storage division (CSSD), and the schedule of material handling activities. Using simulation-optimization tools, we demonstrate that integrating decisions of material handling activities with inventory management has the potential to reduce the cost of the system. In Chapter 2 we focus on coordinating OR scheduling decisions with efficient management of surgical instruments. Hospitals pay more attention to OR scheduling. This is because a large portion of hospitals\u27 income is due to surgical procedures. Inventory management of decisions follows the OR schedules. Previous work points to the cost savings and benefits of optimizing the OR scheduling process. However, based on our review of the literature, only a few articles discuss the inclusion of instrument inventory-related decisions in OR schedules. Surgical instruments are classified as (1) owned by the hospital and (2) borrowed from other hospitals or vendors. Borrowed instruments incur rental costs that can be up to 12-25\% of the listed price of the surgical instrument. A daily schedule of ORs determines how many rental instruments would be required to perform all surgeries in a timely manner. A simple strategy used in most hospitals is to first schedule the ORs, followed by determining the instrument assignments. However, such a strategy may result in low utilization of surgical instruments owned by hospitals. Furthermore, creating an OR schedule that efficiently uses available surgical instruments is a challenging problem. The problem becomes even more challenging in the presence of material handling delays, stochastic demand, and uncertain surgery duration. In this study, we propose an alternative scheduling strategy in which the OR scheduling and inventory management decisions are coordinated. More specifically, we propose a mixed-integer programming model that integrates instrument assignment decisions with OR scheduling to minimize costs. This model determines how many ORs to open, determines the schedule of ORs, and also identifies the instrument assignments for each surgery. If the level of instrument inventory cannot meet the surgical requirements, our model allows instruments to be rented at a higher cost. We introduce and evaluate the solution methods for this problem. We propose a Lagrangean decomposition-based heuristic, which is an iterative procedure. This heuristic separates the scheduling problem from the inventory assignment problem. These subproblems are computationally easier to solve and provide a lower bound on the optimal cost of the integrated OR scheduling problem. The solution of the scheduling subproblem is used to generate feasible solutions in every iteration. We propose two alternatives to find feasible solutions to our problem. These alternatives provide an upper bound on the cost of the integrated scheduling problem. We conducted a thorough sensitivity analysis to evaluate the impact of different parameters, such as the length of the scheduling horizon, the number of ORs that can be used in parallel, the number of surgeries, and various cost parameters on the running time and quality of the solution. Using a case study developed at GMH, we demonstrate that integrating OR scheduling decisions with inventory management has the potential to reduce the cost of the system. The objective of Chapter 3 is to develop quick and efficient algorithms to solve the integrated OR scheduling and inventory management problem, and generate optimal/near-optimal solutions that increase the efficiency of GMH operations. In Chapter 2, we introduced the integrated OR scheduling problem which is a combinatorial optimization problem. As such, the problem is challenging to solve. We faced these challenges when trying to solve the problem directly using the Gurobi solver. The solutions obtained via construction heuristics were much farther from optimality while the Lagrangean decomposition-based heuristics take several hours to find good solutions for large-sized problems. In addition, those methods are iterative procedures and computationally expensive. These challenges have motivated the development of metaheuristics to solve OR scheduling problems, which have been shown to be very effective in solving other combinatorial problems in general and scheduling problems in particular. In Chapter 3, we adopt a metaheuristic, Tabu search, which is a versatile heuristic that is used to solve many different types of scheduling problems. We propose an improved construction heuristic to generate an initial solution. This heuristic identifies the number if ORs to be used and then the assignment of surgeries to ORs. In the second step, this heuristic identifies instrument-surgery assignments based on a first-come, first-serve basis. The proposed Tabu search method improves upon this initial solution. To explore different areas of the feasible region, we propose three neighborhoods that are searched one after the other. For each neighborhood, we create a preferred attribute candidate list which contains solutions that have attributes of good solutions. The solutions on this list are evaluated first before examining other solutions in the neighborhood. The solutions obtained with Tabu search are compared with the lower and upper bounds obtained in Chapter \ref{Ch2}. Using a case study developed at GMH, we demonstrate that high-quality solutions can be obtained by using very little computational time

    09261 Abstracts Collection -- Models and Algorithms for Optimization in Logistics

    Get PDF
    From June 21 to June 26, 2009 the Dagstuhl Seminar Perspectives Workshop 09261 ``Models and Algorithms for Optimization in Logistics \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Fuel-efficient trajectories traffic synchronization

    Get PDF
    Continuous descent operations (CDOs) with required times of arrival (RTA) have been identified as a potential solution for reducing the environmental footprint of aviation in the terminal maneuvering area without compromising capacity. This paper assesses the feasibility of replacing current air traffic control sequencing and merging techniques, mainly based on path stretching and air holding, by a control based on RTA over metering fixes on known and fixed arrival routes. Because the remaining distance to the runway threshold is always known by the aircraft crew, this would allow engine-idle CDOs that do not require speed-brake usage and where only elevator control is used to meet the RTA. The assessment has been performed for Barcelona-El Prat Airport (Spain) using historical traffic demand data. The earliest and latest trajectories at a metering fix for each inbound aircraft were computed assuming engine-idle CDOs. Given the attainable RTA window for each aircraft, the aircraft sequencing problem was solved. The results show that assigning RTA allows optimizing the landing sequence when air traffic is low. For scenarios with high-traffic loads and late RTA assignments, path stretching still was found to be necessary. The minimum distance from the runway where inbound aircraft should receive the RTA to fully remove any radar vectoring was also analyzed. It was demonstrated that the assignment of RTA well before starting the descent would favor to enable full CDOs.Peer ReviewedPostprint (published version

    Modeling the impact of changing patient transportation systems on peri-operative process performance in a large hospital: insights from a computer simulation study

    Get PDF
    Transportation of patients is a key hospital operational activity. During a large construction project, our patient admission and prep area will relocate from immediately adjacent to the operating room suite to another floor of a different building. Transportation will require extra distance and elevator trips to deliver patients and recycle transporters (specifically: personnel who transport patients). Management intuition suggested that starting all 52 first cases simultaneously would require many of the 18 available elevators. To test this, we developed a data-driven simulation tool to allow decision makers to simultaneously address planning and evaluation questions about patient transportation. We coded a stochastic simulation tool for a generalized model treating all factors contributing to the process as JAVA objects. The model includes elevator steps, explicitly accounting for transporter speed and distance to be covered. We used the model for sensitivity analyses of the number of dedicated elevators, dedicated transporters, transporter speed and the planned process start time on lateness of OR starts and the number of cases with serious delays (i.e., more than 15 min). Allocating two of the 18 elevators and 7 transporters reduced lateness and the number of cases with serious delays. Additional elevators and/or transporters yielded little additional benefit. If the admission process produced ready-for-transport patients 20 min earlier, almost all delays would be eliminated. Modeling results contradicted clinical managers’ intuition that starting all first cases on time requires many dedicated elevators. This is explained by the principle of decreasing marginal returns for increasing capacity when there are other limiting constraints in the system.National Science Foundation (U.S.) (DMS-0732175)National Science Foundation (U.S.) (CMMI-0846554)United States. Air Force Office of Scientific Research (FA9550-08-1-0369)Singapore-MIT AllianceMassachusetts Institute of Technology. Buschbaum Research Fund

    Vertical transportation in buildings

    Get PDF
    Nowadays, the building industry and its associated technologies are experiencing a period of rapid growth, which requires an equivalent growth regarding technologies in the field of vertical transportation. Therefore, the installation of synchronised elevator groups in modern buildings is a common practice in order to govern the dispatching, allocation and movement of the cars shaping the group. So, elevator control and management has become a major field of application for Artificial Intelligence approaches. Methodologies such as fuzzy logic, artificial neural networks, genetic algorithms, ant colonies, or multiagent systems are being successfully proposed in the scientific literature, and are being adopted by the leading elevator companies as elements that differentiate them from their competitors. In this sense, the most relevant companies are adopting strategies based on the protection of their discoveries and inventions as registered patents in different countries throughout the world. This paper presents a comprehensive state of the art of the most relevant recent patents on computer science applied to vertical transportationConsejería de Innovación, Ciencia y Empresa, Junta de Andalucía P07-TEP-02832, Spain

    An Energy-Efficient Elevator Operating System that Considers Sensor Information and Electricity Price Changes in Smart Green Buildings

    Get PDF
    In modern smart buildings, the energy consumption of a building is monitored every time. Smart buildings are also equipped with sensors that can collect various physical data such as temperature, motion, and light. In this paper, we use smart sensor technologies in the design of an efficient elevator operating system (EOS). Specifically, multiple sensor devices are used together to detect elevator passengers’ behavior before they arrive at the elevator door and press the elevator call button. The detected information is then delivered to EOS through building networks and the scheduling system utilizes this information for the efficient control of the elevator cars. Specifically, when the number of passengers becomes large, EOS increases the number of working elevator cars to reduce the waiting time of passengers. In contrast, when the elevator traffic lessens, EOS reduces the number of working elevator cars in order to save the energy consumption. Experimental results with a wide range of configurations show that our EOS outperforms the conventional elevator scheduling system that does not consider sensor information or electricity price changes
    • …
    corecore