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Preface

One of the critical challenges in healthcare operations management is to efficiently utilize the expensive resources

needed while maintaining the quality of care provided. Simulation and optimization methods can be effectively used

to provide better healthcare services. This can be achieved by developing models to minimize patient waiting times,

minimize healthcare supply chain and logistics costs, and maximize access. In this proposal, we study some of the

important problems in healthcare operations management. More specifically, we focus on perioperative services and

study scheduling of operating rooms (ORs) and management of necessary resources such as staff, equipment, and

surgical instruments. We develop optimization and simulation methods to coordinate material handling decisions,

inventory management, and OR scheduling.

In Chapter 1 of this dissertation, we investigate material handling services to improve the flow of surgical materials in

hospitals. The ORs require timely supply of surgical materials such as surgical instruments, linen, and other additional

equipment required to perform the surgeries. The availability of surgical instruments at the right location is crucial to

both patient safety and cost reduction in hospitals. Similarly, soiled material must also be disposed of appropriately

and quickly. Hospitals use automated material handling systems to perform these daily tasks, minimize workforce

requirements, reduce risk of contamination, and reduce workplace injuries. Most of the literature related to AGV

systems focuses on improving their performance in manufacturing settings. In the last 20 years, several articles

have addressed issues relevant to healthcare systems. This literature mainly focuses on improving the design and

management of AGV systems to handle the specific challenges faced in hospitals, such as interactions with patients,

staff, and elevators; adhering to safety standards and hygiene, etc. In Chapter 1, we focus on optimizing the delivery

of surgical instrument case carts from material departments to ORs through automated guided vehicles (AGV). We

propose a framework that integrates data analysis with system simulation and optimization. We test the performance of

the proposed framework through a case study developed using data from a partnering hospital, Greenville Memorial

Hospital (GMH) in South Carolina. Through an extensive set of simulation experiments, we investigate whether

performance measures, such as travel time and task completion time, improve after a redesign of AGV pathways.

1



We also study the impact of fleet size on these performance measures and use simulation-optimization to evaluate

the performance of the system for different fleet sizes. A pilot study was conducted at GMH to validate the results

of our analysis. We further evaluated different policies for scheduling the material handling activities to assess their

impact on delays and the level of inventory required. Reducing the inventory level of an instrument may negatively

impact the flexibility in scheduling surgeries, cause delays, and therefore, reduce the service level provided. On the

other hand, increasing inventory levels may not necessarily eliminate the delays since some delays occur because of

inefficiencies in the material handling processes. Hospitals tend to maintain large inventories to ensure that the required

instruments are available for scheduled surgery. Typically, the inventory level of surgical instruments is determined

by the total number of surgeries scheduled in a day, the daily schedule of surgeries that use the same instrument, the

processing capacity of the central sterile storage division (CSSD), and the schedule of material handling activities.

Using simulation-optimization tools, we demonstrate that integrating decisions of material handling activities with

inventory management has the potential to reduce the cost of the system.

In Chapter 2 we focus on coordinating OR scheduling decisions with efficient management of surgical instruments.

Hospitals pay more attention to OR scheduling. This is because a large portion of hospitals’ income is due to sur-

gical procedures. Inventory management of decisions follows the OR schedules. Previous work points to the cost

savings and benefits of optimizing the OR scheduling process. However, based on our review of the literature, only a

few articles discuss the inclusion of instrument inventory-related decisions in OR schedules. Surgical instruments are

classified as (1) owned by the hospital and (2) borrowed from other hospitals or vendors. Borrowed instruments incur

rental costs that can be up to 12-25% of the listed price of the surgical instrument. A daily schedule of ORs determines

how many rental instruments would be required to perform all surgeries in a timely manner. A simple strategy used

in most hospitals is to first schedule the ORs, followed by determining the instrument assignments. However, such a

strategy may result in low utilization of surgical instruments owned by hospitals. Furthermore, creating an OR sched-

ule that efficiently uses available surgical instruments is a challenging problem. The problem becomes even more

challenging in the presence of material handling delays, stochastic demand, and uncertain surgery duration. In this

study, we propose an alternative scheduling strategy in which the OR scheduling and inventory management decisions

are coordinated. More specifically, we propose a mixed-integer programming model that integrates instrument assign-

ment decisions with OR scheduling to minimize costs. This model determines how many ORs to open, determines the

schedule of ORs, and also identifies the instrument assignments for each surgery. If the level of instrument inventory

cannot meet the surgical requirements, our model allows instruments to be rented at a higher cost. We introduce and

evaluate the solution methods for this problem. We propose a Lagrangean decomposition-based heuristic, which is an

iterative procedure. This heuristic separates the scheduling problem from the inventory assignment problem. These

2



subproblems are computationally easier to solve and provide a lower bound on the optimal cost of the integrated OR

scheduling problem. The solution of the scheduling subproblem is used to generate feasible solutions in every itera-

tion. We propose two alternatives to find feasible solutions to our problem. These alternatives provide an upper bound

on the cost of the integrated scheduling problem. We conducted a thorough sensitivity analysis to evaluate the impact

of different parameters, such as the length of the scheduling horizon, the number of ORs that can be used in parallel,

the number of surgeries, and various cost parameters on the running time and quality of the solution. Using a case

study developed at GMH, we demonstrate that integrating OR scheduling decisions with inventory management has

the potential to reduce the cost of the system.

The objective of Chapter 3 is to develop quick and efficient algorithms to solve the integrated OR scheduling and

inventory management problem, and generate optimal/near-optimal solutions that increase the efficiency of GMH op-

erations. In Chapter 2, we introduced the integrated OR scheduling problem which is a combinatorial optimization

problem. As such, the problem is challenging to solve. We faced these challenges when trying to solve the problem

directly using the Gurobi solver. The solutions obtained via construction heuristics were much farther from opti-

mality while the Lagrangean decomposition-based heuristics take several hours to find good solutions for large-sized

problems. In addition, those methods are iterative procedures and computationally expensive. These challenges have

motivated the development of metaheuristics to solve OR scheduling problems, which have been shown to be very

effective in solving other combinatorial problems in general and scheduling problems in particular. In Chapter 3,

we adopt a metaheuristic, Tabu search, which is a versatile heuristic that is used to solve many different types of

scheduling problems. We propose an improved construction heuristic to generate an initial solution. This heuristic

identifies the number if ORs to be used and then the assignment of surgeries to ORs. In the second step, this heuristic

identifies instrument-surgery assignments based on a first-come, first-serve basis. The proposed Tabu search method

improves upon this initial solution. To explore different areas of the feasible region, we propose three neighborhoods

that are searched one after the other. For each neighborhood, we create a preferred attribute candidate list which con-

tains solutions that have attributes of good solutions. The solutions on this list are evaluated first before examining

other solutions in the neighborhood. The solutions obtained with Tabu search are compared with the lower and upper

bounds obtained in Chapter 2. Using a case study developed at GMH, we demonstrate that high-quality solutions can

be obtained by using very little computational time.
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Chapter 1

Simulation Optimization of Material

Handling Activities and Inventory

Management in Hospitals

1.1 Introduction

Achieving better patient care is a key objective of any healthcare system. Although improving supply chain activities

in hospitals is important, little research has been done in this area [41]. Patient needs should not be neglected when

patient care is coordinated with supply chain activities to improve efficiency. Material handling activities such as

delivering food, medication, and clean linen to patients and removing waste in a timely manner require resources and

coordination [106, 34]. Most of these activities are repetitive, occur several times a day, and use a large portion of

the labor hours of a healthcare provider. About 45% of the respondents to a Cardinal Health survey conducted in

2019 indicated that manual supply chain tasks have a negative impact on patient care. Approximately 42% of the

respondents to this survey acknowledged that tasks related to the supply chain take a lot of time away from patient

care [1]. Furthermore, healthcare providers also spent twice the amount of time required on supply chain-related tasks.

Inefficiencies in supply chain operations contribute to higher healthcare care costs in industrialized nations. Supply

chain costs are the second largest expense in hospitals, after personnel costs, and represent about 15 to 30% of total

net patient revenues [159]. The researchers estimate that logistics-related expenses account for up to 40% of operating

budgets in hospitals [40]. According to a Tecsys white paper, inbound logistics account for only 20% of the total
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supply chain activities in hospitals and clinics. The remaining 80% activities focus on internal logistics that support

services such as food trays, IT equipment, laboratory supplies, records, linen and laundry, etc. About 95% of a

healthcare system’s supply chain costs of a healthcare system is due to the management of internal logistics [144].

Automation in healthcare is used to improve the efficiency of material handling systems and reduce these operational

costs. Many hospitals use automated guided vehicles (AGVs) for repetitive tasks, as the use of AGVs leads to reduced

material handling costs and reduced liabilities due to workplace injuries (from lifting and moving heavy weights)

[120]. The use of AGVs also reduces the risk of contamination of sterile instruments, food, etc. The work by [85]

provides detailed guidelines for the design and implementation of automated systems in healthcare and a discussion

of prototypes and/or products.

The first part of this chapter addresses the challenges associated with AGV delivery systems at our partner hospital,

GMH. More specifically, this part focuses on the delivery of surgical case carts to GMH ORs using automated guided

vehicles (AGV). At GMH, an AGV system has already been installed and several rules are outlined for pedestrian

traffic safety. For years, the material handling process at GMH has not changed. However, to maintain the level of

service provided to an increasing number of patients, additional AGVs were added to the system without updating the

physical infrastructure. This resulted in an increase in the congestion of the AGVs. Furthermore, AGVs are not allowed

to pass each other; thus, if for some reason an AGV stops, the other AGVs that follow it also stop at a safe distance,

contributing to traffic. The congestion of AGVs leads to material handling delays in GMH. To reduce these material

handling delays, we propose a framework that integrates data analysis with system simulation and optimization.

Although one of our objectives is to improve material handling at GMH, the broader objective of this research is

to develop solutions that increase the efficiency of operations at GMH by improving decisions regarding inventory,

scheduling, and transportation of instruments. To do this, we conducted an extensive analysis of material handling

processes. Based on our data analysis, it was worth evaluating the impact of changes in current AGV routes and the

location of some GMH departments on congestion. This motivates our first research question (i) Can performance

measures, such as travel time and task completion time for AGVs, be improved after a redesign of AGV pathways at

GMH? To address this research question, we developed two simulation models that capture the movement of AGV

before and after the redesign of the pathways. The two resulting AGV pathway designs were then compared using an

extensive sensitivity analysis.

The problem of sizing the AGV fleet has been addressed in the literature in the installation stage of an AGV system. As

the number of trips (volume of surgical cases) changes over time, there is increased congestion on existing pathways.

Therefore, it is important to re-evaluate the ideal fleet size based on the volume of cases. This motivates our second

research question (ii). Do performance measures, such as travel time and task completion time, improve when the
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number of AGVs used daily is controlled by the volume of surgical cases? If so, how many AGVs should be used

daily? We used a simulation-optimization model to evaluate the performance of the system for different AGV fleet

sizes. Finally, we conducted a pilot study at GMH to validate the results of our analysis. The result of this study

indicates that the proposed solution, which uses a smaller AGV fleet than currently used in GMH, leads to significant

reductions in congestion and travel times and increased AGV utilization.

Perioperative services department (PSD) oversees the timely delivery of surgical instruments to OR, transportation of

soiled instruments back from OR, sterilization activities, and ensures that instruments are available for all surgeries

[109]. Another important task of perioperative services is to efficiently manage the inventory of surgical instruments.

Delays in the availability of instruments is one of the recurring sources of surgical delays [32]. Mitigating these delays

requires close collaboration between the central sterilization and the OR staff [80]. A study by [162] suggests that

45.9% of the delays in an OR occur because an instrument was unavailable. These delays resulted in longer working

hours for physicians and staff and, thus, additional costs for the hospital. The delay in surgery due to the lack of

instruments also negatively affects quality of care and adverse effects can occur [162]. Some delays still occur due to

inefficiencies in the material handling process. For example, congestion, due to the movement of Automated Guided

Vehicles (AGVs) along the narrow corridors of a hospital, can cause delays. To our knowledge, few studies evaluate

the effects of inventory and material handling decisions on the level of service provided by ORs in hospitals. This gap

in the literature is the main motivation for this research.

The second part of this chapter addresses challenges in coordinating material handling with inventory management of

surgical instruments. Material handling and inventory management decisions are critical to hospital and OR service

levels and costs. However, efficiently coordinating these decisions is challenging due to their interdependence and the

uncertainties faced by hospitals.

Surgeries performed in most hospitals are classified as elective or emergency [72]. The exact timing of elective

surgery and its OR assignment is finalized between 24 and 48 hours before the day of surgery. The OR scheduler

makes these assignments after considering the availability and preferences of the surgeon and surgical staff, as well as

the availability of the required equipment and instruments. These assignments affect the availability of the instruments

for the remainder of the day [72]. In GMH, an instrument is not used more than once on the same day. This is

because the delivery of surgical instruments is only performed once a day. Surgical instruments are classified as: (1)

owned by the hospital, (2) borrowed/rented from other hospitals or doctors, or (3) consigned by a vendor who owns the

instrument [27]. Typically, a hospital would not purchase an instrument if it was only used in rare or specialty surgeries

[27]. In such a case, hospitals consign or rent the instrument and pay the owner upon its use. A hospital has several

other reasons to borrow instruments, such as to accommodate physicians’ requests to schedule consecutive surgeries
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during a given day, continue operations on a limited budget, or mitigate a lack of storage space [134]. According to

[134], such practices lead to inefficiencies because borrowed instruments create an additional workload for the sterile

processing department (SPD) due to the requirements to maintain documentation and pack and sterilize instruments.

In addition, some instruments have special cleaning procedures, which may differ from other procedures for hospital-

owned instruments. Following these procedures increases the workload of the employees. Additionally, consigned

instruments stored in the hospital occupy additional storage space. A recent study conducted in a major academic

hospital in the US suggests that half of the instruments are consigned and their cost is on average 12% more than

the instruments owned by the hospital [99]. These challenges motivate our third research question (iii) How does the

inventory level of surgical instruments impact the service level provided by the ORs? We present a numerical study

that evaluates how inventory levels impact instrument utilization and surgery delay.

Inefficiencies in material handling activities lead to delays that affect instrument availability. Furthermore, the duration

of a surgery is uncertain; thus, a surgery may take longer than planned, making instruments unavailable. One of the

reasons hospitals do not plan to reuse instruments is to avoid delays due to the unavailability of surgical instruments.

For example, GMH plans to use an instrument in no more than one surgery a day. Instruments are delivered to a storage

area beside the OR the night before surgery. This practice ensures that the necessary instruments are available during

surgery. As a result, the same instrument cannot be reused in other surgeries scheduled on the same day. Alternatively,

an instrument could be delivered directly from the CSSD a short time before the start of surgery, using the JIT delivery

approach. This practice increases the utilization of instruments used in short-duration surgeries performed earlier in

the day. This approach can also lead to lower inventory levels and lower inventory holding costs. However, such an

approach requires coordination of material handling, instrument decontamination and sterilization, and OR scheduling.

These challenges motivate our fourth research question (iv) How do material handling activities impact the level of

service provided by ORs? A numerical analysis is conducted using the proposed simulation models to answer this

question. We use the previously developed simulation models to develop three additional discrete event simulation

models to address this question. Model 1, Current, assumes that there is no coordination of material handling and

inventory decisions. Model 2, Two Batch, assumes partial coordination and Model 3, Just-In-Time (JIT) assumes full

coordination. Each material handling approach follows a different schedule of case cart delivery to ORs. For each

approach, a numerical study is conducted to assess how the number of AGVs affects travel time, congestion, utilization

of AGVs, delivery time and instrument utilization.

Finally, the decision to reduce the inventory of an instrument limits the time that that instrument is available. This,

in turn, negatively affects flexibility in scheduling a surgery that requires the instrument and therefore the level of

service provided. The problem becomes even more challenging when coupled with an inefficient material handling
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system and uncertain surgery durations. These challenges motivate our fifth research question (v) How do integrating

inventory management and material handling decisions impact the service level provided by ORs?

The following is an outline of this chapter. Section 2.2 reviews the literature relevant to this work and Section 2.3

provides a detailed description of the material handling system. Section 2.4 describes the proposed simulation model

of the material handling system and introduces the case study to evaluate the impact of fleet sizing experiments.

Section 2.5 provides a detailed description of the integrated material handling and inventory management problem.

This section introduces additional simulation models and another case study that evaluates the effect of coordination

of material handling activities with inventory management. Finally, Section 2.6 presents the final remarks.

1.2 Literature Review

The main stream of existing literature relevant to this work is inventory management of reusable surgical instruments.

Since AGVs are used as carriers by this study’s partner hospital, as well as in many others, the literature that discusses

the use of AGV systems for material handling in hospitals is also reviewed. Other streams of research which are related

to this work are optimization through simulation [58, 122, 8, 139] and JIT production systems [67, 89, 76, 123, 124].

Automated material handling systems have been widely studied in manufacturing settings. The existing literature

related to AGV systems focuses mainly on selection of fleet size and design of AGV systems. Work by [104], [46],

[143], [137], [108], [126], [10], [29], [18] use simulation and optimization models to identify the size of the AGV

fleet. Work by [59, 73] focuses on operational issues that arise in repetitive manufacturing systems with unidirectional

material flow. [59] investigates flow-path design, fleet sizing, job and vehicle scheduling, dispatching, and conflict-

free routing. [73] proposes AGV dispatching policies to maximize the throughput rate. [92] provide a review of the

literature related to the design and control of AGV systems. This review identifies the following key factors that impact

the design of these systems: the required number of AGVs, the AGV schedule, the AGV route, the idle position, etc.

The work by [154] provides another review of the literature related to the design and control of AGV systems used in

manufacturing, distribution, and transportation.

Four types of approaches are adapted to determine the size of the AGV fleet for a logistics network: (a) calculus-based

approaches; (b) deterministic optimization approaches; (c) stochastic optimization approaches; and (d) simulation-

based approaches [28]. Early work in calculus-based models focuses on empty and loaded travel times of AGVs

[45, 55]. However, travel time depends on congestion, which is affected by facility layout, vehicle speed, and load

size [153]. The work of [97] uses analytical models to assess the impact that increasing the flexibility of the AGV

routes has on the number of AGVs needed. However, analytical models fail to capture congestion in the system [59].
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The work of [9] develops a regression model to determine the size of the fleet as a function of the number of work

centers, the lengths of the routes, and the number of intersections. In contrast to simulation models, these regression

models provide quick results, but do not capture the complexities of the transportation system, such as the movement

of elevators and the movement of AGVs along shared paths.The use of optimization methods to improve material

handling systems is common in the literature. Deterministic methods, such as integer programming, multi-objective

optimization, and mixed integer programming, are used to model system dynamics [136, 103, 125]. For example, a

minimum cost flow model is developed to determine the minimum number of vehicles required in a container terminal

[155]. Work by [83] develops an analytical model to estimate an upper and a lower bound on the number of vehicles

required in a transportation system. Work by [125] proposes analytical and simulation methods to determine the

number of vehicles required. Their analytical method is based on load handling time, empty travel time, waiting

time, and blocking time. The authors also proposed a mixed-integer program with the objective of minimizing empty

trips subject to a limited number of trips to and from each load transfer station. Simulation methods are used to

validate initial estimates of the size of the fleet. The work of [45] discusses the performance of non-simulation-

based approaches to determine the size of the fleet under different dispatch rules. These approaches are observed to

underestimate the required fleet size compared to simulation-based approaches. Some researchers utilize stochastic

approaches, such as using queueing models to minimize the number of AGVs used. The steady-state behavior of closed

queueing networks can be used to estimate the required fleet size. The results of these methods can be compared with

simulation models for validation purposes [142, 28]. A hierarchical queueing approach has also been used to determine

how many vehicles are required [100].

Simulation-based approaches are considered time-consuming and costly [45, 153]; however, they can handle the com-

plexities and randomness present in real systems. Therefore, simulation optimization models have previously been

used to model complex inventory replenishment problems [82], medical supply chain problems [115], and fleet size

problems to understand the performance of the system. According to [45], the analytical methods he developed under

estimated the requirement (vehicle) in most dispatch strategies. His methods gave close estimates in only one of the

strategies. According to [142], the analytical methods help determine the starting point for the number of vehicles to

be used in a simulation experiment. A review of the literature by [59] indicates that simulation studies are promising

tools to estimate the size of the fleet. Often, simulation models use analytical tools to provide estimates of fleet size,

which serve as a starting point for the simulation. The work of [129] uses simulation to model a complex AGV sys-

tem. This model provides the flexibility needed to analyze the systems due to the complexities present in modeling the

AGV system. Although analytical methods could be used to determine the number of AGVs in some systems, they

are not a good fit due to shared paths and they would not provide performance measures related to congestion that
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can be compared to current practice and the alternative designs considered for the material handling system. Models

based on idle and waiting times for machines, parts, and AGVs are also being developed, as well as number and speed

of vehicles [90, 93]. Other studies use two-stage approaches for system simulation and evaluation, or develop case

studies to determine the size of the fleet and evaluate the impacts on performance indicators, such as queue sizes,

occupation numbers, and service times [60, 165].

The literature focused on the design of AGV systems for healthcare applications has grown over the past 20 years.

[85] discusses several factors that must be considered to design a mobile robotic system for healthcare applications,

and his work provides several guidelines for researchers to improve these designs. Simulation models are developed to

evaluate the performance of AGV-used material handling systems. These models are often used to compare automated

systems with manual delivery systems [130, 129, 25]. For example, a study by [129] compares the performance

of a manual and an automated material handling system that uses AGVs for the delivery of clinical supplies and

pharmaceuticals in a hospital. Costs, turnaround time, variability of turnaround time, cycle time, and utilization are

used as performance measures. The proposed simulation model shows that the use of robotic delivery is economically

viable and improves the performance measures listed above. Another study, [130] uses the analytical hierarchy process

to build a decision problem that evaluates the performance of a robotic healthcare delivery system based on technical,

economic, and several other factors. Their proposed simulation model assesses the technical factors that include the

speed of robots and human couriers based on the arrival rates of visitors who request the elevator, the availability of

the elevator, the arrival rates of the delivery items that request robots, and the availability of robots. The work of [25]

compares three supply chain models that use: a) manual inventory check and delivery, b) RFID inventory check and

manual delivery, and c) manual inventory check with AGV-based material handling. This study shows that the use

of AGVs for material handling is economically viable, maximizes cost savings, and produces ergonomic benefits due

to reduced manpower requirements. Through a simulation-based case study, [120] identify the potential benefits of

using an AGV system in a hospital. The work of [57] proposes a data-driven agent-based simulation model to analyze

the current status of the goods delivery system and identify potential countermeasures to improve internal logistics.

The work of [17] addresses the gap that exists in the literature between the technological aspects of automation,

organizational issues related to automation, and management of hospital logistic staff. Their results highlight the need

for new knowledge and skills to improve the design and management of AGV systems in hospitals.

The cost of ORs is affected by the availability of surgical supplies and implants [23]. Surgical supplies include soft

goods and instruments required for surgery. These supplies can be reused or disposable. Numerous studies show

that the cost of reusable supplies is significantly lower than the cost of disposable supplies [37, 44, 133, 98, 2], and

disposable supplies negatively impact the environment [2]. [23] conduct a study to assess the cost of opened and
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unused soft goods and instruments in a French hospital. They reported that wasted supplies have a median cost of

C4.1 per procedure, which represents approximately 20.1% of the cost of surgical supplies. However, most hospitals

do not have standardized procedures to manage surgical supplies inventory [3]. In their review paper, [3] focuses on

the inventory management of sterile instruments. Notice that, most surgical instruments used in surgery are grouped

into containers called instrument trays. This work identifies three important considerations for inventory management:

assignment of instruments and quantity for each type of tray, assignment of the type of tray to a surgeon or procedure,

and the number of trays carried by the hospital. Decisions related to the first two considerations are affected by the

surgeon’s preferences, indicated in the DPC.

The cost of surgical supplies can be reduced in several ways, including 1) improving the accuracy of DPCs, 2) in-

creasing surgeon awareness, and 3) standardizing surgical techniques. The accuracy of the DPC can be improved

by periodically reviewing it [74, 51] or by recording which instruments are used on a tray and removing the instru-

ments that are not used [113, 43]. For example, [74] show that the participation of physicians in the review of the

corresponding DPC led to the removal of 109 disposable supplies and the elimination of 3 reusable instrument trays.

Consequently, the cost of a case cart was reduced by $16 on average. According to a survey conducted by [81], sur-

geons often underestimate the cost of expensive items and overestimate the cost of less expensive items due to internal

bias and ignorance of costs [81]. Therefore, the cost of a surgical procedure can be reduced by increasing the aware-

ness of surgeons of standardized operating equipment and the cost of instruments [62, 14]. Finally, the work by [138]

shows that standardization of surgical techniques can significantly reduce operating costs without affecting the quality

of a procedure [138]. [140] indicate that the tailored and streamlined tray compositions lead to significant cost savings

[[140]]. Furthermore, surgeons prefer trays with fewer unsolicited instruments [41, 140]. Several optimization models

have been developed to solve the tray optimization problem and address tray composition and inventory management

for reusable surgical instruments. The objective of this problem is to minimize an OR’s cost by optimizing the number

of trays utilized and the amount of inventory supplied. The problem also addresses the preferences of surgeons for

instruments. [41] develop a linear integer programming formulation and propose a heuristic algorithm to obtain a

solution to this problem [41]. [127] propose a resource sharing method for reusable devices. The objective is to mini-

mize the storage, processing, and waste costs of supplies that have not been used. [147] propose a deterministic model

that minimizes the cost of instrument storage and delivery by optimizing the composition of the tray. [5] present a

bi-objective optimization model for the configuration of surgical trays with ergonomic considerations. The first objec-

tive function minimizes the total number of types of assembled tray, and the second objective function minimizes the

total number of instruments that were not requested. They used the ε- constraint method to obtain the Pareto-optimal

front. [42] develop an exact integer linear programming formulation, a row and column generation approach, a greedy
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heuristic, and several meta heuristics to solve tray optimization problem. These approaches are evaluated on the basis

of the average computation time, the average value of the objective function, and the number of solutions for which

optimality is proven.

Our proposed research framework enables hospitals to identify the factors that affect the performance of the material

handling system and develop solutions that improve its efficiency. Previous work points to the cost savings and

benefits of using simulation to model AGV movements. However, based on our review of the literature, only a few

articles discuss the use of AGVs in hospitals [119, 25, 56, 129]. The research papers cited here treat the vehicle

fleet sizing problem as a tactical issue to be addressed at the design stage, but the problem becomes operational

when one selects the required number of vehicles from a pool of vehicles on a day-to-day basis. Our work addresses

operational-level issues associated with fleet size selection that impact AGV movements. In addition, most of the

literature related to AGV systems focuses on improving their performance in manufacturing settings. In the last

20 years, several articles have addressed issues relevant to healthcare systems. This literature mainly focuses on

improving the design and management of AGV systems to handle the specific challenges faced in hospitals, such as

interactions with patients, staff and elevators; adhering to safety standards and hygiene, etc. Our work highlights the

role of coordinating decisions between material handling and inventory management in improving the level of service

provided by ORs. In particular, this work demonstrates that JIT delivery of surgical cases for short-duration surgeries

can potentially improve the level of service provided by ORs, thus reducing the cost of healthcare. We also developed

a real-life case study using data from a US-based hospital. The proposed material handling approaches, which are

intuitive and easy to implement, are verified and validated using historical data. The results of the proposed analysis

have inspired the partner hospital featured in this study to improve material handling and inventory management

practices. Although other healthcare facilities may not choose to implement the models presented here, they can learn

from these practices.

1.3 Description of the System

The research presented in this chapter was conducted in collaboration with GMH, one of the seven campuses of Prisma

Health in South Carolina, USA. GMH provides general inpatient services and specialized treatments for heart disease

and cancer. The hospital also houses the Family Birthplace, the Children’s Hospital, and the Children’s Emergency

Center.

This research focuses on material handling activities that support surgical processes at GMH. The research team

collaborated with the Perioperative Services Department (PSD) which oversees these processes. PSD consists of three
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divisions: Materials Division (MD) and Central Sterile Storage Division (CSSD), both of which are located on the

mezzanine floor (see Figure 1.1), and Operating Room Division (ORD) located on the second floor. The second

floor contains 32 operating rooms (ORs) divided into three separate cores. The cores are grouped according to the

medical specialties they serve, such as orthopedic, cardiovascular, and neurological treatment. The instruments used

in a surgery are stored in the corresponding core.

Clean Cart Elevator

Departments

Path of AGV with 
Clean Cart

Path of AGV with No 
Case Cart
Path of AGV with 
Soiled Cart
Path of AGV with 
Clean and Soiled Cart

Dirty Cart Elevator

Path of AGV with 
Washed Cart

Figure 1.1: Map - Mezzanine Floor.

The type of surgery determines the materials needed, including soft goods and implants, and the surgical instruments

used. The PSD is responsible for loading materials into a clean case cart; delivering the case cart from the MD to

the OR; loading implants and instruments to clean case carts in the cores; delivering clean case carts from the cores

to the OR; returning soiled instruments, which have already been used, from the OR to the CSSD; and cleaning the

soiled instruments in the CSSD. Each case cart is dedicated to a particular surgical case and contains all the material

requested by the surgeon. AGVs manufactured by FMC-Technology are used in GMH to move clean and soiled case

carts. Figure 1.1 shows the AGV routes and the location of the departments.

The PSD-managed material handling process starts with the OR manager providing a detailed schedule of the surgeries

planned for the next day. Based on the OR schedule and the doctors’ preferences, a list of instruments and soft goods

is generated in the MD. From 3 pm, soft goods are manually loaded onto clean case carts. This stage is called picking

process. The carts are then manually moved to the detents. Detents are platforms or areas equipped with the rails

necessary to load and unload an AGV. Next, a request for an AGV is submitted through a centralized AGV control

system and an available AGV, closest to the MD, is assigned to the case cart. The movement of a loaded AGV is
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depicted in Figure 1.1 as “Path of AGV with Clean Cart.? This AGV uses the elevator J to move the cart to the second

floor. The clean case cart is then dropped off at one of the detents in the case cart storage area (CCSA) located next to

elevator J on the second floor.

Once every case cart has been delivered to the CCSA, an inspection is performed to ensure that the required soft goods

are delivered. If clean case carts are not delivered by 7 pm, the hospital incurs overtime. Additionally, GMH uses

AGVs to transport dietary and linen carts, both of which have higher priority than surgical case carts. The movement

of these carts begins at 6:00 pm and their deliveries will be completed on the same night. As a result, AGVs become

increasingly unavailable for the movement of surgical case carts after 6 pm. Therefore, the delivery of surgical case

carts must be completed before other services begin to request AGVs for transport.

The case carts are stored in the CCSA until the next day, the day of surgery. Instruments and implants, which are

stored in one of the cores, are added to the case cart. The case cart is then manually moved to the OR. After surgery,

the cart is considered soiled and must be decontaminated. A soiled cart is manually moved to the detents on the second

floor and an AGV is requested on the centralized AGV control system. The assigned AGV moves the dirty cart to the

CSSD. The movement of this AGV is depicted in Figure 1.1 as “Path of AGV with Soiled Cart” Then, the AGV uses

the elevator G or K to move the cart to the mezzanine floor. The portion of the path that is shared by AGVs with clean

and soiled case carts is shown in Figure 1.1 as “Path of AGV with Clean and Soiled Cart”.

Soiled instruments are washed and sterilized at CSSD to comply with safety guidelines, and sterilized instruments

are loaded into a clean case cart and moved to the corresponding core for storage. The soiled case carts are washed

in the cart washer. Once the cart is clean, an automatic request for an AGV is sent to pick up the washed cart. The

movement of AGVs with cleaned carts is shown in Figure 1.1 as “Path of AGVs with Washed Cart”. The washed carts

are dropped off at the MD for the picking process. This cycle of surgical case carts starts and ends in the MD and is

repeated every business day.

For years, material handling for perioperative service processes at GMH has not changed. However, in recent years,

the number of patients served by GMH has increased rapidly. In an effort to improve the services provided, additional

AGVs and case carts were added to the system without updating the physical infrastructure. As a result, GMH’s staff

noticed that AGVs loaded with case carts often sit on the mezzanine floor waiting for elevator J. AGVs from the CSSD

and elevator J have a higher priority than AGVs that move toward these locations. Therefore, AGVs traveling to these

locations wait for elevator J for a long time. Furthermore, AGVs are not allowed to pass each other; therefore, if

for some reason an AGV stops, the other AGVs that follow will also stop at a safe distance, contributing to traffic.

Congestion leads to a shortage of AGVs in the MD. Sometimes, the soiled case carts are stuck in traffic, creating a

shortage of washed case carts and clean instruments. These shortages lead to further delays in delivering clean carts.
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Occasionally, the cart washer and instrument washer at the CSSD remain idle for longer periods of time, contributing

to under-utilization of the equipment. In 2017, PSD staff reached out and expressed their interest in a study of the

current material handling system. The GMH team wanted to know how a change in current AGV routes and the

location of some GMH departments would impact congestion. Based on the layout of the mezzanine floor, it seems

intuitive that changing the roles of elevators G and K with J would lead to less congestion. We conducted an extensive

data analysis of material handling processes. Based on the results, we decided to also investigate the possible impacts

of reducing the number of AGVs moving surgical case carts. To this end, two simulation models were developed.

Data collection and analysis:

Data were collected and analyzed to understand the system, discover inefficiencies, and support discrete event simu-

lation models. We obtained data from the AGV control system for 50 consecutive days. Data provided information

on the movement of AGVs, such as the date, time, and location of the pickup; date, time, and location of the drop-off;

and type of cart an AGV is carrying. Since the scope of the study is limited to surgical services, only data on surgical

case cart movement are analyzed. In the event of an AGV breakdown, the AGV is moved from its path and moved to

a maintenance area. The data points for those AGVs are removed from the data set as outliers. Additionally, AGVs

stop if there is a person or another obstacle, such as another AGV, in their scanning radius. Micro-stoppages due to

human traffic are not recorded separately in the data and are negligible compared to travel times. For this reason, these

micro-stoppages are not modeled explicitly. The details on how micro-stoppages due to AGVs traffic are modeled are

explained in the next section as part of our modeling approach.

Figure 1.2: Number of Trips by Route

Figure 1.2 shows the number of AGV movements along each route. 93% of the movements are associated with the

routes shown in Figure 1.1, that is, on the mezzanine floor. Further analysis indicates that 71% of these movements use

the “Path of AGV with Clean and Soiled Cart”. Since most of the movements occur on these routes, the data analysis
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focuses on only two routes that contribute the most to traffic congestion, “Path of AGV with Clean Cart” and “Path of

AGV with Soiled Cart”. For each cart, the travel time along both routes is calculated based on the data on drop-off and

pick-up times. These travel times were grouped over 3 to 4 hour intervals, since this is how long the picking process

takes on average. The average and standard deviation of the travel times along each path at different times of the day

are summarized in Table 1.1. These results indicate that travel times are longest along the “Path of AGV with Clean

Cart” during 3 pm to 7 pm, when the picking process takes place.

Table 1.1: AGV Movements by Time of Day

Route Time No. of Travel Time [Min] Coefficient of
Interval Trips Average Std. Dev. Variation
12am-3am 44 7.28 6.16 0.85
3am-6am 53 6.87 6.16 0.9
6am-9am 146 5.55 3.27 0.59

2nd Floor Soiled 9am-12pm 981 4.56 4.04 0.88
Cart Storage - CSSD 12pm-3pm 882 5.17 2.56 0.49

3pm-7pm 753 9.71 8.51 0.88
7pm-9pm 126 6.65 3.04 0.46
9pm-12am 77 5.45 1.01 0.19
12am-3am 131 4.66 10.26 2.2
3am-6am 227 5.96 9.55 1.6
6am-9am 112 5.27 6.17 1.17

Materials Department - 9am-12pm 80 5.8 2.4 0.41
Case Cart Storage 12pm-3pm 101 5.33 3.69 0.69

3pm-7pm 1416 8.94 6.49 0.73
7pm-9pm 254 5.67 4.45 0.78
9pm-12am 196 4.88 5.72 1.17

The results of the data analysis generated the input parameters used in the simulation model. For example, each trip

along “Path of AGV with Clean Cart” represents a surgery scheduled for the next day. The total number of surgical

cases differs by day of the week, that is, Monday to Friday. The number of trips for each day is summarized for each

week during this period. This gives seven data points for each day of the week. Due to the limited number of data

points, the triangular distribution (TRIA) is used to represent the total number of surgeries scheduled per day. To

derive this distribution, the minimum and maximum number of surgeries is determined and the mode for each day of

the week is estimated. The corresponding results are summarized in Table 1.2. Data for AGV trips on the “Path of

AGV with Soiled Cart” is used to estimate the release time of soiled carts from the operating room, as soiled carts are

delivered to the CSSD immediately after surgery. Data on the total number of soiled carts delivered at the end of every

half hour for each day of the week are used to distribute the total number of surgeries over different time intervals

within a day. Other input parameters used include the number of AGVs used for the movements of surgical case carts,

the number of case carts available, and the number of cart washers in the system.
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Table 1.2: Total Number of Surgeries per Day

Day Distribution
Mon. TRIA (60,68,75)
Tue. TRIA (65,72,76)
Wed. TRIA (60,65,72)
Th. TRIA (69,75,80)
Fri. TRIA (55,62,69)

Note that the existing pathways for the movement of AGVs with clean and soiled carts are influenced by safety regu-

lations and the movement of other carts. For example, elevators G and K are used to move soiled surgical instruments,

dirty linen, and trash. These elevators continue to the basement to deliver dirty linen and trash. On the other hand,

elevator J is only used for the movement of clean surgical instruments to eliminate any potential contamination. Thus,

this elevator serves only the mezzanine and the second floor.

1.4 Simulation-optimization of Material Handling Activities at GMH

First, a conceptual model is developed based on the framework proposed by [128]. This conceptual model is then used

in the development of the DES model for the rest of this chapter. The details of these models are presented below.

1.4.1 Conceptual Model

The framework proposed by [128] outlines the steps to develop a conceptual model. We followed these steps and

determined: (i) organizational aims (see Figure 1.3); (ii) modeling objective (see Figure 1.3); (iii) project objectives

(see Figure 1.3); (iv) scope of the model (see Table 3 in the Appendix); (v) level of detail in the model (see Tables 4

and 5 in the Appendix); (vi) model assumptions (see Table 1.4); and (vii) model simplifications (see Table 1.4).

Movement of AGVs and elevators We develop a guided path transporter network to model AGV movement on the

mezzanine floor. This guided path functions as a physical entity in the simulation and is used to model the traffic

flow. The data necessary to model AGV movements, such as velocity, acceleration, deceleration, and turning velocity,

are obtained from the FMC-Technology AGV handbook. The data necessary to model elevators, such as the time it

takes to open and close the door and dimensions, are obtained from the same handbook. The length of links in the

transporter network is calculated using GMH floor maps.

The AGV network consists of intersections and network links. Network links are made up of multiple zones of the

same size. AGVs move from one zone to the next along these links. The movement of AGVs is governed by the end

control rule, which dictates that a transporter releases its current zone at the end of its movement to the next zone. This

rule ensures that multiple AGVs can travel on the same network link but not in the same zone. At GMH, the safety
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Table 1.3: Model Objectives

Component Details
Organizational Aim

Aim 1 Reduce congestion on the mezzanine floor at GMH.
Modeling Objectives

Objective 1 Determine whether swapping paths of clean and soiled case carts reduces congestion in the mezzanine floor,
reduces trip time for clean and soiled case cart deliveries, reduces task completion time and is feasible to implement.

Objective 2 Determine the optimal number of AGVs to use to deliver clean surgical case carts from MD to CCSA by 7 pm daily.
The second objective only needs be considered if the aim cannot be met by swapping of the paths of clean and soiled
case carts.

Constraints
Budget The budget is limited.

AGV Guidepaths The direction of AGV paths cannot be changed. AGV must move on preexisting paths.
AGV Parameters AGV parameters cannot be changed.
Overall Process The current material handling process cannot be altered. This processes ensures safety (decontamination) of materials.

General Project Objectives
Flexibility Limited flexibility since extensive model changes beyond changes to the data are not expected.
Run-Speed A reasonably small running time is important due to the large number of experiments conducted.

Visual Display A simple 2D animation is sufficient. The team members of PSD are familiar with the movement of surgical carts.
Thus, animation is required verify that the model behaves corresponds to the real system.

Ease-of-use The model is for use by the modeler thus interactive features are not required to be included.

distance between the AGVs, which is enforced at all times, is 3 feet. To ensure that AGVs maintain this distance in the

model, we set a zone length of 3 feet on every network link in the model. When an AGV comes to a halt to maintain

sufficient follow-up distance or yield to another AGV, it decelerates, temporarily stops, and accelerates again. We

model all these phases of movement on the basis of the specifications provided in the AGV system handbook. Thus,

micro-stoppages due to AGV traffic are accurately modeled in the simulations.

Destinations such as the CSSD and the MD are modeled using intersections on the network. Each destination is

modeled as the last intersection on a path. The network links that connect to these destinations are modeled as

bidirectional links. These links have a capacity limit of up to 1 AGV, which means that up to 1 AGV can travel to

or from any destination on the corresponding link. At every intersection, the first come, first served rule is followed

to determine the right-of-way for AGVs, unless another priority rule applies. If an AGV already has control of an

intersection, another AGV must wait to use the intersection until the AGV leaves.

Some of the elevators can accommodate only one AGV and others can accommodate up to 2. In the latter case, if there

is already an AGV in the elevator, the elevator waits for the next AGV if it is already at the preceding intersection.

Otherwise, the elevator moves a single AGV. The detents on the second floor have limited capacity; therefore, when

they are full, the AGVs are not allowed to enter the elevator to move to the second floor. AGVs leaving departments or

elevators have a higher priority to seize intersections than AGVs entering departments or elevators. After completing

a task, an AGV is assigned to the next request in the queue. If the queue is empty, the AGVs are moved to a parking

area.

Movement of clean case carts Each surgical case is modeled as an entity. Every day, the first entity, whose type is

clean, is created at 3 pm. Carts and employees loading soft goods into a cart are modeled as resources of the picking
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process. The distribution of the time required for the picking process is determined to be triangular, TRIA(2,3,5)

minutes, based on data collected through a time study. Once the soft goods are loaded into the cart, an AGV is

requested. An available AGV closest to the MD is assigned to the case cart. The AGV travels to the pickup location

following the rules that govern the movement of the AGV. After picking up a case cart, the AGV travels to elevator

J using “Path of AGV with Clean Cart”, as shown in Figure 1.1. A predefined look-ahead stop is modeled before the

intersection, “Intersection J”, in the corridor between CSSD and elevator J. At this stop, the availability of intersection

J and elevator J is checked, as well as the capacity to accommodate a vehicle at the CCSA, the destination. If these

conditions are satisfied, the AGV seizes intersection J and advances to its final destination. Otherwise, the AGV is

put on hold at the predefined stop until these conditions are satisfied. The clean case cart is dropped off at the CCSA.

Details of the elevator logic in our simulation models are described in Figure 1.3. Clean Cart movements are completed

by 7 pm every day and by midnight if there is a need for overtime. Thus, clean cart movements on different days do

not interfere.

Figure 1.3: Flowchart of Elevator Logic

Movement of soiled case carts At 8 am the next day, the carts are released from the CCSA and moved to the ORs

to prepare for surgery. The carts are released from surgeries based on the discrete distribution of release times (see

Table 26 in the Appendix). After being released from the OR, a new entity type, called soiled, is assigned to the case

carts. The soiled carts are moved to a location near the G and K elevators on the second floor, Soiled Cart Storage

Area (SCSA). A request for an AGV is submitted and an available AGV closest to the SCSA is assigned to the case

cart. The soiled carts are then transported to the CSSD along the “Path of AGV with Soiled Cart” shown in Figure 1.1.

Soiled case cart movements start at 8 a.m. and continue throughout the day according to the surgery schedule. These
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movements end at 8 am the next day. Thus, cart movements in a soiled case on different days do not interfere. As a

result, there is no accumulation of workload in the system. Given these characteristics, the only initialization effect in

the model is due to the lack of dirty cart movement on the very first day of each replication. Observations show that

this effect is minimal and does not affect the simulation results.

Movement of washed case carts The cart-washer is modeled as a resource with a fixed cycle time of 15 minutes.

After an AGV drops a cart at the CSSD, the soiled instruments are separated from the cart, and the cart is loaded

into the cart washer. After cleaning the cart, the closest available AGV picks up the cart and transports it to the MD

along “Path of AGV with Washed Cart”. The carts are subject to an additional 30 minutes of drying time before being

released from the associated surgical case.

Simulation flowchart, assumptions, and simplifications Figure 1.4 presents the flow chart of material handling ac-

tivities at GMH. Notice that we only focus on the movement of AGVs carrying surgical carts. Other AGV movements

are absent in the simulations, so the movement of surgical carts is analyzed in isolation. The model we propose pro-

duces accurate results, despite this simplification because (i) the AGVs that carry other types of carts do not use the

same paths; (ii) GMH allocates a fixed number of AGVs to surgical cart movements, and the availability of AGVs

is not affected by the demand generated for AGVs by other material handling activities. Other assumptions made to

meet the general objectives of the model without significantly affecting the results are summarized in Table 1.4. These

assumptions and simplifications were discussed with PSD employees before the simulation model was developed.

Figure 1.4: Flow Chart of Simulation Model
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Table 1.4: Model Simplifications and Assumptions

Component Details

Model Assumptions

Material Carts are always available for picking process.

Ors Ors are always available.

Staff Staff is always available.

Shift No work is carried out during off-shift hours.

AGV Breakdowns AGV breakdowns are rare and have little impact on AGV availability.

Cart washer Breakdowns Cart washer breakdowns are rare and have little impact on cart availability.

Elevator Breakdowns Elevator breakdowns are rare and have little impact on elevator availability.

Model Simplifications

Other services Other services that use AGVs do not impact the delivery of surgical case carts.

AGV Availability At most 11 AGVs are available for the delivery of surgical carts.

1.4.2 Simulation Experiments

The simulation model is developed using ARENA© simulation software by Rockwell Automation. We present three

sets of experiments. The first set of experiments was run to validate our model. The second and third sets of experi-

ments were run to answer the two research questions we introduced. In all experiments, each day begins at 8 am and

ends at 8 am the next day, which corresponds to the actual operating hours of the CSSD, where clean surgical carts

are loaded and soiled case carts are cleaned. As pointed out before, the movements of clean and soiled case carts

are initiated and completed within this 24-hour window, and the system does not reach a steady state as days go on.

Despite this, we vary the replication length depending on the purpose of the experiment. For example, we generate

the scenarios in our simulation-optimization experiments in Section 5.3.2 based on average performance measures.

This necessitates running our experiments over a longer period of time, since our statistical analysis shows that days

of the week differ in terms of case volumes. In other experiments, we used historical case volume data as input, which

dictates the replication length. Additional information on the input data and the replication length for each set of ex-

periments is reported in the corresponding subsections. In all experiments, we conducted 30 replications since further
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increasing the number of replications did not yield statistically different model outputs. Table 1.5 and Tables 4 and 5

in the Appendix provide details about the simulation model.

Table 1.5: Run-setup Parameters

Run-setup parameters Description Run-setup parameters Description
No. of replications 30 Warm-up period 0
Base time units Minutes Statistics collection Continuous

1.4.3 Validation

To ensure that the model presented in the previous section accurately reflects the logic and business rules of the real

system, a statistical comparison of the current system with simulation model M is performed based on the travel times

of clean and soiled case carts. Model M uses 11 AGVs, which is the same number of AGVs as the hospital currently

uses every day for the movement of case carts. The simulation was run with the input data estimated for each day

of the week (see 1.2) and the output of 30 replications for each day was compared to historical data. We conduct

hypothesis tests to compare the average travel times in the data generated by model M and the average travel times

obtained from the data of the AGV system in GMH. The null hypothesis is H0 : µMC −µDC = 0 (H0 : µMS −µDS = 0),

and the Alternative hypothesis H1 : µMC − µDC ̸= 0 (H1 : µMS − µDS ̸= 0), where, µMC(µMS) is the average travel

time of model M for clean (soiled) case carts on each day of the week. The average travel time obtained from the

data for clean (soiled) case carts is represented by µDC(µDS). We used a two-sample t-test at a 95% confidence level

to determine whether the travel times in model M and the data are significantly different from each other for clean

and soiled case carts. Tables 1.6 and 1.7 summarize the results of the t-tests. Based on the confidence intervals, it

is concluded that the difference between average travel times is not statistically significant, and thus the simulation

model presented here is valid. These results were also verified by a PSD team at GMH.

Table 1.6: Model Validation: Travel Times of Clean Case Carts

Current System (Data) Model M
Weekday Mean St. Dev. Confidence Interval Mean St. Dev. Confidence Interval
Monday 9.9533 3.2448 (6.9524,12.954) 9.9386 0.27121 (9.8374,10.040)
Tuesday 9.0296 2.8029 (6.4373,11.622) 10.003 0.2654 (9.9035,10.102)
Wednesday 9.3141 1.3458 (8.0695,10.559) 9.5709 0.29505 (9.4607,9.6811)
Thursday 9.2071 1.6106 (7.8607,10.554) 9.8108 0.29515 (9.7006,9.9210)
Friday 9.8126 2.684 (7.3303,12.295) 9.6367 0.36287 (9.5012,9.7722)

Research Question 1: Can performance measures, such as travel time and task completion time for AGVs, be

improved after a redesign of AGV pathways at GMH?
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Table 1.7: Model Validation: Travel Times of Soiled Case Carts

Current System (Data) Model M
Weekday Mean St. Dev. Confidence Interval Mean St. Dev. Confidence Interval
Monday 6.841 1.5052 (5.4490,8.2330) 6.1604 0.16131 (6.1001,6.2206)
Tuesday 6.5821 1.0582 (5.6035,7.5608) 6.1847 0.18719 (6.1148,6.2546)
Wednesday 6.0904 0.62017 (5.5169,6.6640) 6.2396 0.10024 (6.2022,6.2771)
Thursday 6.3501 0.69885 (5.7659,6.9344) 6.3058 0.18458 (6.2368,6.3747)
Friday 6.1281 0.60938 (5.6187,6.6376) 6.1994 0.11993 (6.1546,6.2441)

Swapping the role of elevator J with elevators G and K would eliminate shared paths. However, there is a trade-off

between congestion and travel distances, since the new design modifies the paths for clean and soiled carts. We have

modeled and simulated this design change to evaluate the resulting trade-off. Figure 1.5 presents alternative AGV

routes for clean and soiled case carts when the elevators are swapped. In this case, AGVs that follow the new clean

case cart route take elevators G or K, and drop the clean case carts in the current system?s SCSA. After surgery, the

soiled case carts are stored at the CCSA. AGVs carrying soiled case carts take elevator J and travel through intersection

J to the sterilization area, CSSD. Model S is built to capture these changes.

Clean Cart Elevator

Departments

Path of AGV 
with Clean Carts

Path of AGV with 
No Case Carts

Path of AGV 
with Dirty Carts

Dirty Cart Elevator

Figure 1.5: AGV System with Swapped Elevators (S)

All parameters and components of the model other than the AGV pathways are the same in models M and S. A set

of simulation experiments was run by varying the number of AGVs in each model from 3 to 11, increasing with

increments of 1. We used 36 weeks of historical data on case volumes as input and used common random numbers in

the sampling of all other input data in Models M and S. The models are compared based on the average travel time and

the task completion time (Tc) which is defined as the difference between the time the first clean case cart was picked
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up and the time when the last clean case cart of the day was dropped. A sensitivity analysis is performed to understand

the impacts of the proposed changes on these measures. The results of this analysis are summarized in the next three

subsections.

Results of the Sensitivity Analysis: Travel Times of Clean Cart Movement

Figure 1.6 summarizes the results of the sensitivity analysis for clean case carts. Figures 1.6a and 1.6b show the box

plots of the total daily travel times for models M and S, respectively. We observe that, in model M, the total travel time

increases with the number of AGVs. Since every AGV travels exactly the same distance, the increase in travel time is

due to waiting in traffic. Traffic congestion increases with the number of AGVs in the system. Similarly, travel time is

sensitive to the number of AGVs used in model S (see Figure 1.6b).

Figure 1.6: Sensitivity Analysis of Clean Case Carts: Model M vs Model S
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(a) Total Travel Time Model M
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(b) Total Travel Time Model S

We conduct an hypothesis test to compare the average travel times of model M and model S for clean case carts. Table

1.8 shows the descriptive statistics for each model. The null hypothesis is H0 : µdC = 0, and the alternative hypothesis

is H1 : µdC < 0, where, µdC represents the difference in the average travel times of models M and S for clean case

carts. We used a paired t-test at a 95% confidence level to determine whether the average travel time in model M is

significantly smaller than the average travel time in model S. Table 1.9 shows the results of the t-test when the number

of AGVs in both systems is 11. The difference in average travel times is statistically significant, and the average travel

time for clean case carts is longer due to longer travel distances on the second floor if the elevators are swapped.
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Table 1.8: Clean Case Cart Movement: Model M vs Model S

Travel Time

Systems N Average St.Dev SE Average

Model M 30 8.216 0.029 0.005

Model S 30 11.159 0.029 0.005

Table 1.9: Estimation for Paired Difference

Average StDev SE Average 95% Upper Bound for µd

-2.942 0.026 0.004 -2.935

Results of the Sensitivity Analysis: Travel times of the soiled cart movement

Figure 1.7 summarizes the results of the sensitivity analysis for soiled case carts. Figures 1.7a and 1.7b present box

plots of the total daily travel times for models M and S respectively. In model M, an increase in the number of AGVs

leads to longer travel times for soiled case carts due to congestion. This is mainly because AGVs with clean and soiled

carts share paths. The travel times of the soiled carts in model S are not affected by changes to the number of AGVs.

Figure 1.7: Sensitivity Analysis Soiled of Case Carts: Model M vs Model S
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(a) Total Travel Time Model M
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(b) Total Travel Time Model S

We conduct an hypothesis test to compare the average travel times of model M and model S for soiled case carts. Table

1.10 shows the descriptive statistics for each model. The null hypothesis is H0 : µdS = 0, and the alternative hypothesis

is H1 : µdS < 0, where, µdS represents the difference in the average travel times of the models M and S for the soiled

carts. We used a paired t-test at a 95% confidence level to determine whether the average travel time in model M is

significantly shorter than the average travel time in model S. Table 1.11 shows the results of the t-test when the number
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of AGVs in both systems is 11. The difference in average is statistically significant and the travel time for the soiled

case carts is shorter if the elevators are swapped.

Table 1.10: Soiled Case Cart Movement: Model M vs Model S

Travel Time

Systems N Average St.Dev SE Average

Model M 30 6.217 0.008 0.001

Model S 30 4.266 0.003 0.001

Table 1.11: Estimation for Paired Difference

Average StDev SE Average 95% Upper Bound for µd

1.951 0.009 0.002 1.954

Results of the Sensitivity Analysis: Task Completion Times

It is important to know the impact on task completion time if the hospital decides to use the same number of AGVs at

all times. Figures 1.8a and 1.8b present the task completion time for models M and S. Task completion time decreases

as the number of AGVs increases. A significant reduction in task completion times can be observed in both systems if

6 or 7 AGVs are used as opposed to using fewer AGVs. However, increasing the number of AGVs beyond 6 or 7 does

not have a significant impact on task completion time.

Figure 1.8: Sensitivity Analysis Task Completion Times: Model M vs Model S
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(a) Task Completion Time Model M
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(b) Task Completion Time Model S

We conduct an hypothesis test to compare the task completion times of model M and model S. Table 1.12 shows the

descriptive statistics for each model. The null hypothesis is H0 : µd = 0, and the alternative hypothesis is H1 : µd < 0,
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where, µd represents the difference of average task completion times of models M and S. We used a paired t-test at a

95% confidence level to determine whether the average task completion time in model M is significantly shorter than

the average task completion time in model S. Table 1.13 shows the results of the t-test when the number of AGVs in

both systems is 11. The difference in average is statistically significant and the task completion time is shorter if the

elevators are swapped.

Table 1.12: Clean Case Cart Movement: Model M vs Model S

Task Completion Time

Systems N Average St.Dev SE Average

Model M 30 242.832 1.612 0.294

Model S 30 145.141 1.891 0.345

Table 1.13: Estimation for Paired Difference

Average StDev SE Average 95% Upper Bound for µd

97.691 1.701 0.311 98.219

Average travel time is expected to increase with the number of AGVs in the system due to congestion. This is a

well-known result and has been briefly discussed in [153] and [84]. However, it is not easy for the decision maker

to estimate: (i) What is the marginal decrease/increase in travel time when the fleet size is reduced by 1 unit? (ii)

What is the marginal decrease/increase in task completion time when the fleet size is reduced by 1 unit? (iii) What is

the minimum number of AGVs needed to complete all tasks in the required time? This additional information helps

decision makers to make better informed decisions.

Research Question 2: Do performance measures, such as travel time and task completion time, improve when

the number of AGVs used daily is controlled by the volume of surgical cases?

Data analysis shows that the volume of surgical cases follows a distribution whose mean value changes depending on

the day of the week. Therefore, the hospital would expect to use a different number of AGVs to deliver surgical case

carts on each day, instead of using a fixed number of AGVs every day. This approach could lead to improved AGV

utilization, reduced congestion, and shorter travel times. Moreover, such control of the number of AGVs that are in

use is practical, since it can be implemented with minor changes in the control system or simply limiting the number

of AGVs requested. For example, a new AGV may not be requested until one of the active AGVs has completed its

task. Thus, the case carts could be held at detents until one of the AGVs that are in use is available again.
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We propose that only k ≤ 11 AGVs should be used on a particular day, where k is adjusted according to the day of

the week. Note that the hospital currently uses 1 AGV every day. To find the number of AGVs k ≤ 11 must be used,

we create a separate simulation model for each weekday. The number of surgical cases, that is, clean case carts to

be carried for each day, was generated based on the distribution given in Table 1.2. This number also determines the

number of soiled case carts to be delivered the next day. Using these distributions, we simulate each weekday for 30

replications. For each model, the number of AGV is fixed for the entire simulation run. We repeat the experiments

by varying the number of AGVs from 3 to 11 AGVs for each weekday. Based on the results, the AGV fleet sizes that

yield the lowest average travel time and the lowest task completion time can be selected on each day.

Results of the Operational Fleet Sizing Experiments

The results of our experiments are shown in Figure 1.9. The results indicate that varying the number of AGVs used on

each day of the week is beneficial for the hospital. For example, 6 AGVs can be used on Mondays to achieve a shorter

task completion time. To achieve similar task completion times on Tuesdays, the hospital must choose more than 10

AGVs. However, increasing the number of AGVs increases task completion time and, thereby, congestion. Thus, the

number of AGVs to be chosen for each day is different depending on the management objective.
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Figure 1.9: Results of Operational Fleet Sizing Experiments

Operational Fleet Sizing Experiments via Simulation-Optimization
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In the previous section, we presented a method to choose the number of AGVs for each day. The number of AGVs to

be used for each day depends on the objective of management. However, it is also important for the decision maker

to see the overall impact of choosing a fleet of AGVs that meets the required service level. Therefore, to generate

alternative scenarios that balance congestion levels and task completion times, we propose two experiments using

ARENA OptQuest. Both experiments focus on optimizing AGV movements on “Path of AGVs with Clean Cart”

since analysis shows the movement of clean carts causes congestion on the mezzanine floor. For both experiments, the

decision variable is the number of AGVs to be used on a particular day of the week. To obtain average performance

measures over time, we simulate each scenario for 30 days and use 30 replications at each point. For the number of

AGVs used on day d, kd , the search interval for controls is specified as 3 ≤ kd ≤ 11.

In experiment 1, the objective is to minimize the total travel time each day. It is also important that the movements

of all clean case carts are completed by 7 pm. To ensure that, in experiment 1, a task completion time constraint

Tc ≤ 200 minutes is added. In experiment 2, the objective is to minimize the sum of task completion times over a

replication. Tables 1.14 and 1.15 summarize the results of the OptQuest experiments. These tables present solutions

that satisfy the following three conditions: (i) the total number of AGVs used in a day is less than or equal to 11; (ii)

the average travel time per AGV is less than or equal to the average travel time observed from the data; and (iii) the

total completion time is not later than 5:05 pm. These criteria identify solutions that could potentially be adopted by

GMH. Each solution presents the minimum, maximum, and average travel time for each AGV; the task completion

time; and the number of AGVs used each day.

The results in Table 1.14 suggest the use of fewer AGVs than the current practice in GMH because the objective of

experiment 1 is to minimize the total travel time. Utilizing fewer AGVs leads to reduced congestion, as evidenced

by the average travel time and the corresponding range of travel time, which is narrower. On the contrary, when the

objective is to minimize the task completion time, the simulation experiments suggest using relatively more AGVs, as

can be seen in the results in Table 1.15. This increase in the number of AGVs leads to congestion, evidenced by the

average travel time and the corresponding range of travel time, which is wider compared to the results in Table 1.14.

However, the completion time is affected by both the travel time and the waiting time. As a result, the task completion

time is shorter for solutions with a higher number of AGVs available because the case carts spend less time waiting

for AGVs. The solutions of OptQuest use a different number of AGVs each day of the week, which is different from

the current practice in GMH. Once again, the experimental results suggest that on days with a lower volume of cases,

fewer AGVs should be used than on days with a higher volume of cases.
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Table 1.14: Results of Experiment 1: Minimize Total Travel Time Per Day

Travel Times [Min] Task Completion Time Number of AGVs

Solution Min Max Average Average M T W Th F

1 2.64 6.47 3.43 5:03:01 PM 3 3 3 4 4

2 2.64 6.78 3.58 4:55:51 PM 3 4 4 3 5

3 2.64 9.72 5.37 4:41:20 PM 3 4 8 7 8

4 2.64 12.1 5.35 4:37:50 PM 4 4 5 10 7

5 2.64 6.78 3.84 4:43:25 PM 5 4 4 4 5

6 2.64 7.93 4.33 4:34:51 PM 5 4 6 5 6

Table 1.15: Results of Experiment 2: Minimize the Task Completion

Travel Times [Min] Task Completion Time Number of AGVs

Solution Min Max Average Average M T W Th F

1 2.64 12.1 7.27 4:28:46 PM 8 7 8 10 8

2 2.64 12.1 7.96 4:28:30 PM 10 7 10 10 8

3 2.64 13.64 8.68 4:28:01 PM 11 6 11 11 11

4 2.64 13.64 8.57 4:28:04 PM 11 7 10 10 11

5 2.64 13.64 8.9 4:27:49 PM 11 7 11 11 11

1.4.4 Implementation

To further evaluate the impact of the proposed changes on AGV utilization, travel time, task completion time, and

congestion, the solutions obtained from the simulation experiments were implemented using the following approaches:

First, a simulation study was conducted using real-life data from GMH regarding the total number of surgical cases

performed each day of the week, from January 1, 2018, through September 11, 2018. This 36-weeks worth of data

allowed for a thorough statistical analysis of the results. A fleet of AGVs was selected to deliver surgical carts each

week of this period. In these experiments, the less conservative solutions presented in Table 1.15 were used instead

of the solutions presented in Table 1.14 because the GMH staff expressed concerns about the potential delays that can

result from significantly reducing the number of AGVs used each day (from 11 to 3, 4, or 5). On the basis of the

results, a further analysis is presented for the solution that was selected for a pilot study. Section 1.4.4 summarizes the

results of this analysis. A short pilot study was then conducted at GMH. This study was only one week long due to

the additional resources needed for implementation. Section 1.4.4 summarizes the results of this study. Section 1.4.5

presents the managerial insights revealed by the simulation experiments and the pilot study.

Implementation via Simulation
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To further evaluate the scenarios generated in Section 1.4.3, we ran an additonal set of simulation experiments. The

actual volume of cases, which was collected by GMH for 36 weeks between January 1, 2018, and September 11,

2018 was used as input. Figure 1.10 summarizes this data. Table 1.16 and Figure 1.11 summarize the results of the

simulation runs for the solutions obtained from experiment 2 (see Table 1.15).

Figure 1.10: Case Study Data: Volume of Surgical Cases per Month

Figure 1.11: Evaluation of Policies from Experiment 2: Minimize Task Completion Time
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(b) Task Completion Time

The simulation results confirm our earlier observations with respect to the simulation-optimization results. The simu-

lation results show that the solutions considered here yield comparable task completion times, which are, on average,

around 4:30 pm, well before the target completion time determined by the hospital. On the other hand, the average

travel time attained varies among the solutions considered. The robustness of the task completion times can be ex-
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Table 1.16: Evaluation of Policies from Experiment 2: Minimize Task Completion Time

Solution Travel Time [min] Task Completion Time
Average Confidence Interval Std Dev Average Confidence Interval Std Dev [min]

1 7.24 (7.23,7.25) 1.71 16:29:07 (16:28:47,16:29:27) 6.55
2 7.96 (7.93,7.95) 2.03 16:28:49 (16:28:49,16:29:09) 6.64
3 8.77 (8.75,8.79) 2.77 16:28:24 (16:28:01,16:28:46) 7.38
4 8.63 (8.61,8.64) 2.33 16:28:19 (16:27:57,16:28:40) 7.07
5 8.98 (8.97,9.00) 2.53 16:27:59 (16:27:59,16:28:21) 7.06

plained by the trade-off between travel times and the number of simultaneous trips possible (that is, the number of

AGVs), which is again consistent with earlier results. Based on these results, we choose solution 1 from Table 1.15

for implementation, as this solution performs better than other solutions presented and uses fewer than 11 AGVs on

all days. To evaluate the impact of this selected solution, we compare it with the current system in GMH. Tables 1.17

and 1.18 present the results of these simulation runs. Once again, we perform 30 replications in these experiments.

Table 1.17: Implementation via Simulation: Average Travel Times (in min)

Simulation of Implemented Solution Simulation of Current Practice

Day Avg. Avg.

Travel Time St.Dev Confidence Int. Travel Time St. Dev Confidence Int.

Monday 6.82 0.036 (6.810, 6.838) 9.61 0.057 (9.593, 9.636)

Tuesday 5.84 0.036 (5.827, 5.853) 9.61 0.072 (9.585, 9.639)

Wednesday 6.45 0.036 (6.434, 6.460) 8.96 0.048 (8.943, 8.979)

Thursday 7.96 0.057 (7.936, 7.978) 8.77 0.073 (8.738, 8.792)

Friday 6.55 0.041 (6.533, 6.563) 9.22 0.059 (9.198, 9.242)

Table 1.18: Implementation via Simulation: Average Completion Times (in min)

Simulation of Implemented Solution Simulation of Current Practice

Day Avg. Avg.

Comp. Time St.Dev Confidence Int. Comp. Time St. Dev Confidence Int.

Monday 119.37 2.436 (118.5, 120.3) 117.91 2.483 (116.98, 118.84)

Tuesday 107.54 1.829 (106.9, 108.2) 104.96 1.725 (104.32, 105.61)

Wednesday 176.31 7.175 (173.6, 179.0) 175.18 7.302 (172.45, 177.91)

Thursday 177.73 6.021 (175.5, 180.0) 177.41 6.019 (175.17, 179.66)

Friday 119.94 2.259 (119.1, 120.8) 118.52 2.281 (117.67, 119.37)

The simulation results summarized in Table 1.17 show that the average travel time in the proposed system significantly

reduces the average travel times on all days of the week. Therefore, it is beneficial to (i) to vary the number of AGVs

according to the day of the week (that is, based on the volume of the case) and (ii) to use fewer AGVs in general.
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The proposed solution results in longer average completion times for each day of the week than current practice, but

the differences in average completion times are relatively small and only significant on Monday, Tuesday, and Friday.

Furthermore, the average completion time under the proposed solution is within the 200-minute period preferred by

GMH on all days of the week.

It is important to understand the implications of our selected solution on the service level. Here, the level of service

is measured by the fraction of days in which the task completion time exceeds 200 minutes. It was observed that out

of 5,400 days, the simulated task completion time of the implemented solution exceeds the 200 minutes on 615 days,

compared to 612 days in the simulated task completion times of current practice. From Table 1.19, we can see that on

days when the completion time was exceeded, on average only 5% to 9% of the case carts were delivered after 200

minutes. For days when surgical cases were delivered after 200 minutes, Table 1.20 characterizes the average delay.

It can be seen that on average, surgical cases were delivered late by 20 to 80 minutes. This confirms that the proposed

solution achieves the same level of performance as is achieved by using 11 AGVs.

Table 1.19: Comparison of Two System: Fraction of Deliveries Delayed

Simulation of Current Practice Simulation of Implemented Solution

WeekDay Average Std. Dev. Min Max Average Std. Dev. Min Max

Monday 0.05 0.032 0.021 0.168 0.048 0.031 0.021 0.168

Tuesday 0.041 0.017 0.021 0.074 0.042 0.018 0.021 0.074

Wednesday 0.061 0.038 0.019 0.178 0.062 0.038 0.019 0.178

Thursday 0.088 0.045 0.02 0.196 0.088 0.045 0.02 0.196

Friday 0.049 0.027 0.019 0.13 0.049 0.027 0.019 0.13
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Table 1.21: Results of Pilot Study at GMH: Average Travel Times

Week Before (t −1) Treatment Week (t) Week After (t +1)
Day Avg. Avg. Avg.

Case Vol. Travel Time Case Vol. Travel Time Case Vol. Travel Time
Monday 28 9.07 26 5.50 30 11.37
Tuesday 23 17.13 34 9.53 21 16.71
Wednesday 30 8.57 30 7.73 14 5.35
Thursday 24 16.79 26 8.54 25 9.35
Friday 30 10.37 32 8.00 22 9.26

Table 1.20: Comparison of Two System: Delays in Completion Time

Simulation of Current Practice Simulation of Implemented Solution

WeekDay Average Std. Dev. Min Max Average Std. Dev. Min Max

Monday 24.187 20.8 1.65 98.238 22.963 21.095 1.979 100.792

Tuesday 21.564 14.418 2.253 47.583 21.359 14.327 1.978 48.727

Wednesday 67.293 98.706 1.65 541.485 67.689 98.225 1.65 540.08

Thursday 87.108 92.287 1.65 531.083 87.094 92.168 1.65 531.482

Friday 49.672 51.565 1.65 271.258 49.678 51.845 1.65 271.258

A Pilot Study at GMH

Our proposed system was piloted at GMH for one week. Thus, the analysis presented in this section is based on actual

travel-time data obtained from physical implementation at GMH. During the pilot study, we visited GMH every day

and collected data on AGV movement from 3:45 pm to 5 pm. Other data used in this section were obtained from the

AGV control system. This implementation allowed us to evaluate how reducing the number of AGVs would impact

congestion and travel time in the real system.

Table 1.21 presents the actual travel times of the AGVs during 3:45 pm to 5 pm each day of the treatment week (t),

the week before (t − 1), and the week after (t + 1). We conducted a hypothesis test to compare the average travel

times during weeks t and weeks t − 1 and t + 1 for clean case carts. The null hypothesis is H0 : µt − µt−1 = 0

(H0 : µt − µt+1 = 0), and the alternative hypothesis is H1 : µt − µt−1 < 0 (H1 : µt − µt+1 < 0), where, µt ,µt−1,µt+1

are the average travel times of weeks t, t −1, t +1 respectively. We used a two-sample t-test at a 95% confidence level

to determine whether the average travel time is significantly shorter in week t than the travel times during week t −1

and t +1 for clean case carts. Table 1.22 provides the p-values of the tests performed.
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Table 1.22: Results of Pilot Study at GMH: P-Values (Avg. Travel Times)

Treatment Period p-Values (Avg. Travel Times)

Day Week Before Week After

Monday 0.008 0.001

Tuesday 0.001 0.001

Wednesday 0.262 0.999

Thursday 0.001 0.299

Friday 0.012 0.220

The average travel time during the week t was lower than the average travel time during the week t−1 on all five days.

This difference was statistically significant on Monday, Tuesday, Thursday, and Friday. On the other hand, the average

travel time during the week t was lower than the average travel time during week t +1 on four days. This difference

was statistically significant on Monday and Tuesday. The results show that the average travel time during week t was

longer than during the week t +1 only on Wednesday, and the difference was statistically significant. This difference

can be attributed to the fact that the number of cases on Wednesday in week t + 1 was less than half the number of

cases in the treatment week on the corresponding day. For very low case volumes, the material handling system is not

significantly affected by congestion, and the use of more AGVs does not have serious adverse effects.

Table 1.23: Results of the Pilot Study at GMH: Standard Deviation of Travel Times

Treatment Period Std. Deviation

Day Week Before Treatment Week Week After

Monday 6.97 1.72 3.82

Tuesday 9.67 3.34 9.02

Wednesday 6.06 3.46 1.34

Thursday 7.53 2.58 7.12

Friday 4.83 2.68 7.19

Table 1.23 presents the standard deviation of actual travel times during the weeks t −1, t, and t +1. We conducted a

hypothesis test to compare these standard deviations for clean case carts. We tested the null hypothesis H0 : σt −σt−1 =

0 (H0 : σt −σt+1 = 0), and the alternative hypothesis H1 : σt −σt−1 < 0 (H1 : σt −σt+1 < 0), where, σt ,σt−1,σt+1

are the standard deviations of the travel times during weeks t, t −1, t +1 respectively. We consider a significance level

of 95%. Table 1.24 provides the p-values of the tests performed. The standard deviation of the travel times during
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the week t is less than the standard deviation of travel times during the week t − 1. This difference is statistically

significant for all five days. On Monday, Tuesday, Thursday, and Friday, the standard deviation of travel time is lower

during week t than during week t + 1. This difference is statistically significant on Monday and Tuesday. Similarly

to observations related to average travel time, the standard deviation of travel time on Wednesday of week t + 1 is

significantly lower than for week t.

Table 1.24: Results of the Pilot Study at GMH: P-Values (Std. Deviation of Travel Times)

Treatment Period P-Values (Std. Deviation of Travel Times)

Day Week Before Week After

Monday 0.001 0.001

Tuesday 0.001 0.001

Wednesday 0.018 1.000

Thursday 0.001 0.071

Friday 0.001 0.088

It is already established that longer travel times indicate longer wait times due to congestion. Similarly, the standard

deviation of travel time is a measure of congestion in the system, i.e. a higher standard deviation, while the traveled

distance is the same, indicates longer wait times due to congestion. The analysis of the results of the pilot study clearly

shows that congestion was reduced by limiting the number of AGVs in the system, which led to reduced wait times

and, consequently, to reduced travel times.

Limitations of pilot study: The data collected through the pilot study are not extensive due to the short implementa-

tion period. In addition to that, during the treatment week, the movement of the surgical carts began about 3:30 to 3:45

on 2 days, so only about 60% of the carts were delivered by 5 pm. At 5 pm, the AGVs were assigned to other tasks

(e.g., delivery of dinner), so the rest of the carts were delivered later in the evening at about 9 pm, when the AGVs

were available. Due to this lack of data, completion time is not reported.

1.4.5 Managerial Insights

Implications of Our Findings: This research was motivated by inefficiencies in the material handling system at

GMH. During the afternoon hours of 3 to 5, AGVs with clean and dirty case carts used the same corridor, leading to

increased congestion and longer travel times. GMH staff was interested in developing analytical solutions that would

lead to reduced congestion in the main corridor of the mezzanine floor.
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Research Question (i): GMH staff suspected that a change of roles from elevator J to elevators G and K would reduce

the congestion on the mezzanine floor. The research team conducted an extensive data analysis of the trips made by

the AGVs to develop a simulation model in which the role of elevator J was swapped with elevators G and K. The

results of the simulation model indicated a lower congestion on the mezzanine floor, supporting the intuition of the

GMH staff. However, the simulation model also indicated longer overall travel times. In the current system, elevators

G and K carry AGVs with soiled case carts, as well as trash and soiled linen carts, to the ground floor. If elevators

are swapped, according to safety guidelines, soiled linen and trash carts must be delivered using different elevators.

Several elevators were considered for these movements. However, the use of these alternative elevators increases the

distance that AGVs travel to reach an appropriate detent area. It also increases the distance an employee travels to

move soiled linen and trash carts to the new detent area. In addition, for the trash and soiled linen carts to use elevator

J, a new AGV guide-path must be installed in front of the elevator on the ground floor. The installation of guide paths

is expensive. Despite the benefit of reducing congestion on the mezzanine floor, the swapping of elevators was found

to be costly and difficult to implement. Although the solution was not implemented, GMH staff found the results of

our model beneficial, since they revealed tradeoffs and challenges that GMH staff had not foreseen.

Research Question (ii): The results of the simulation-optimization model indicate that reducing the number of AGVs

used each day and changing the number of AGVs based on the volume of cases would lead to reduced congestion,

shorter travel times and shorter task completion time. The idea of reducing the number of AGVs used daily was

received with doubt by the cart loaders because they were concerned that it would lead to delays in delivery time and

consequently overtime work. Management supported the idea, but the implementation of the new system requires

updates of the software that governs the movement of AGVs. These updates are completed by FMC-Technology at a

fixed cost.

We note that, while the development of the proposed models was motivated by material handling activities at GMH,

the approach we take for modeling the problem, analyzing the data, conducting sensitivity analysis and deriving

managerial insights is generalizable and can help other hospitals identify opportunities to improve internal logistics.

Finally, the managerial insights we provide attest to the value of using simulation-optimization. Intuition and expert

opinions, while valuable, may not always yield the best available solutions to operational problems in a healthcare

setting.

Limitations of Our Findings: A limitation of this study is that the model developed here focuses only on the move-

ment of AGVs that deliver surgical case carts. This model can be extended to consider the movement of other AGVs.

Increasing the scope of the model would result in a more accurate modeling of AGV availability, AGV traffic, and

interactions between different services that use AGVs.
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The volume of cases varies by day of the week. It also varies by week/month of the year. In Table 6 in the appendix,

we report the fraction of case carts that were delivered after 200 minutes by month of the year. The average value of

the fraction of case carts delivered late is between 4% - 8%. Table 7 in the Appendix compares the travel times of the

simulation experiments of the implemented solution with the simulation of the current system. The average value of

travel time is around 7 minutes for the solution we implemented for each month, while it is around 9 minutes if 11

AGVs are to be used. These values do not follow the small increases or decreases in the number of cases we see in

Figure 1.10. Therefore, the results we present and the solutions we propose in this article are not affected by seasonal

demand. However, this could be the case in other hospitals. Such seasonality effects require additional experiments to

identify the correct system configuration during each demand season.

1.5 Integrated Material Handling and Inventory Management Processes:

Figure 1.12 describes a typical material handling process for the delivery of surgical case carts in a hospital. The

process begins by creating a detailed schedule of surgeries. This schedule is prepared by the OR manager. On the

basis of the schedule and preferences of the physicians, a list of instruments and soft goods is prepared and submitted

to the Materials Department (MD). For each surgery, a clean case cart is loaded with the instruments, soft goods,

and implants requested. These case carts are moved to pick-up/drop-off stations for AGVs to pick-up. The clean

case carts are then moved from the MD to the storage area of the case cart (CCSA). At the CCSA, each case cart is

inspected to ensure that it contains the required materials. The case carts are held at the CCSA until they are moved

to the corresponding OR at the time of surgery. Case carts are delivered to ORs prior to surgeries. ORs are divided

into separate cores on the basis of the specialties they serve. Specialty instruments and implants required for surgical

cases, which are stored in the OR cores, are added to the case carts prior to surgery. After the surgery, instruments

in the opened trays, instruments that were removed from peel packs, and case carts are considered soiled and should

be decontaminated. The soiled carts and instruments are transported to the CSSD by the AGV. Clean instruments

are returned to MD. Instruments and case carts are washed and sterilized at CSSD. Specialty surgical instruments

are returned to the corresponding OR cores. This process ensures the availability of instruments prior to scheduled

surgery. We use previously developed models. Thus, Figure 1.13 is presented again, indicating the locations of the

departments and the paths traversed by the AGVs in GMH.

To reduce inventory cost, hospitals must coordinate inventory management and material handling decisions. This

coordination becomes ever more important in the face of uncertainty. For example, if the duration of surgery and the

travel time of the AGV are fixed, hospitals can calculate the necessary inventory levels with certainty and decide how
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Figure 1.12: Material Handling Process

many instruments to loan or consign. However, to ensure a high level of service under uncertainty, many hospitals

keep large inventories, loan instruments, and prepare/deliver case carts one day before surgery. In our partner hospital

we observed that if the delivery of instruments from CSSD to OR was completed in a short time before the start of

surgery, the instruments could be reused within the same day. This approach has the potential to lead to a reduction

in the cost of using loaned or consigned instruments. This observation led to the development of the next proposed

material handling process.

Experimental Setup: The movement of clean instruments to ORs and the movement of soiled instruments to the

CSSD affect inventory availability and the start times of surgeries. This is the reason why some hospitals, such as

GMH, prepare and deliver surgical case carts to the CCSA one day in advance. Such a practice ensures the availability

of surgical instruments, but there are a number of inefficiencies regarding material handling and inventory manage-

ment. For example, Table 1.25 summarizes the data for a period of 50 days obtained on the travel times of AGVs in

the partner hospital. The data show that the average travel time and the corresponding standard deviation are highest

during 3 pm to 6 pm. This is because clean surgical carts are being delivered to the CSSA for elective surgeries. The

consequent increase in the number of AGV movements leads to congestion and, thus, longer travel times for every
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AGV that uses the same path. These delays lead to an increased inventory of instruments since an instrument cannot

be reused in different surgeries scheduled on the same day. Table 1.26 lists the types of the total number of instruments

currently used by the partner hospital and the percentage of each type. Note that about 24% of the instruments used

are loaned or consigned.

Table 1.26: A List of Instruments Used

Type Total Number Total in %

Loaner 266 5%

Consigned 1,095 19%

Owned 3,507 61%

Other Services 927 16%

Total 5,795 100%

This study evaluates three approaches to the delivery of surgical supplies to ORs and compares their performance.

These approaches were designed through discussions with the GMH staff. Three groups of performance measures are

used to compare these approaches: (i) the average delay in the start time of surgery and the corresponding frequency,

which measure the level of service provided by the OR, (ii) the number of instruments inventoried, which measures the

efficiency of the inventory system, (iii) the total daily travel time, the average travel time per trip and the corresponding

standard deviation, which measures the efficiency of material handling systems.
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Table 1.25: AGV Movements by the Time of the Day

Route Time Average No. Travel Time [Min] Coefficient of
Interval of Daily Trips Average Std. Dev. Variation
12 am-3 am 2.6 4.66 10.26 2.2
3 am-6 am 4.5 5.96 9.55 1.6
6 am-9 am 2.2 5.27 6.17 1.17

Materials Department - 9 am-12 pm 1.6 5.8 2.4 0.41
Case Cart Storage Area 12 pm-3 pm 2.0 5.33 3.69 0.69

3 pm-7 pm 28.3 8.94 6.49 0.73
7 pm-9 pm 5.1 5.67 4.45 0.78
9 pm-12 am 3.9 4.88 5.72 1.17
12 am-3 am 0.9 7.28 6.16 0.85
3 am-6 am 1.1 6.87 6.16 0.9
6 am-9 am 2.9 5.55 3.27 0.59

2nd Floor Soiled 9 am-12 pm 19.6 4.56 4.04 0.88
Cart Storage - CSSD 12 pm-3 pm 17.6 5.17 2.56 0.49

3 pm-7 pm 15.1 9.71 8.51 0.88
7 pm-9 pm 2.5 6.65 3.04 0.46
9 pm-12 am 1.5 5.45 1.01 0.19

The first approach, Model 1, is called the Current approach and assumes that the materials required by the surgeries are

delivered to the CCSA the night before surgery. The Current approach is the ongoing practice of the partner hospital

in the data presented here.

Next, the Two Batch approach, Model 2, assumes that the materials required for the surgeries scheduled in the morning

are delivered to the CCSA the previous evening, and the materials required for the surgeries scheduled in the afternoon

are delivered in the morning on the day of surgery. This approach provides the opportunity to reuse instruments from

the surgeries scheduled later in the day. Since the CSSD works 24 hours each day, the instruments can be washed

overnight and delivered in the morning. Since instruments are delivered a few hours in advance of surgery, staff

have a long window of time to intervene if an instrument becomes unavailable. Therefore, the risk of not getting the

instruments on time is only minimal and does not affect the quality of care in the hospital.

Finally, the Just-in-Time approach, Model 3, assumes that the materials required are delivered shortly before the start

of the surgery. The time between the delivery of surgical supplies and the surgery, referred to as the delivery interval,

must be determined and affects inventory levels. The required inventory level increases with the delivery interval.

For example, consider two surgeries that require the same instrument and are scheduled on the same day. In the

current system, a hospital must have two sets of identical instruments, since they are delivered to the CCSA the day

before surgery. If the delivery interval is 1 hour, the instrument can be sterilized and delivered before the subsequent

surgery, provided that the two surgeries are scheduled several hours apart. In this case, the hospital needs only one

instrument. However, if the delivery interval is chosen to be less than 3 hours, then, to avoid any delays in the second
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surgery, two instruments are needed. Note that the implementation of JIT and other lean methods in healthcare, unlike

manufacturing, should be considered with caution because such practices could delay surgeries and jeopardize the

well-being of patients.

The delays of a surgery start time are separated into two categories: delays due to AGVs, e.g., long travel time

due to congestion or unavailability of AGVs, and delays due to unavailable instruments. Delays due to AGVs can

create challenges for the JIT approach, but these delays can be reduced by optimizing the fleet size. Delays due to

unavailable instruments are caused by delays in the delivery of the soiled case carts or by an increase in the number

of emergency surgeries. A delay in the delivery of the soiled case carts subsequently delays the cleaning process of

the instruments and carts, which delays the start of the next surgery that uses the same instrument. Delays due to

unavailable instruments can be reduced by optimizing the inventory level. In this research, simulation experiments are

conducted to determine the optimal fleet size and inventory level under each proposed material handling approach. On

the basis of the results of these experiments, the delivery interval that optimizes the identified performance measures

is also determined. In order to reduce the computational time of simulation-optimization experiments, a lower bound,

based on the data collected at GMH, is developed on the number of instruments inventoried. Let n be the maximum

number of surgeries scheduled in a day for each type of service. The lower bound equals ⌈n/2⌉. A lower bound is

added for each type of surgery through these constraints: (i) the number of instruments used ≤ number of instruments

in the inventory and (ii) the number of instruments used ≥ lower bound. We note that the composition of surgical trays

affects the level of inventory of surgical instruments. However, this research does not focus on tray composition.

Each of the proposed material handling approaches requires a different number of AGVs to deliver materials on time.

This number is affected by the surgical schedule and the material handling process. For example, the number of AGVs

needed for the JIT delivery approach is lowest, since the delivery of the case carts is spread throughout the day. The

number of AGVs needed by the Current delivery approach is larger because the delivery of case carts is completed

in a short period of time. The number of AGVs needed also depends on the total number of cases scheduled and the

spread of the schedule. A tight schedule would require more AGVs to complete material handling on time.

Limitations of this research:

Model: The research proposed here is conducted in collaboration with GMH, a US-based hospital located in Greenville,

South Carolina. The models presented here are motivated by the material handling and inventory management prac-

tices of GMH. The research team worked closely with the perioperative services department, which consists of the

MD, the CSSD, and the OR Department. GMH uses AGVs to transport surgical case carts to and from ORs. The prob-

lem setting proposed here and the assumptions made are influenced by the practices at GMH. The models presented
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here are a valuable contribution to the literature because, based on a careful review of the literature, other hospitals

follow similar practices for material handling and inventory management of surgical instruments.

Data: Nine months of real-life data are used to develop the case study. These data include information about the

number of surgical cases each day and span a time period long enough to observe how seasonality impacts the number

of surgical cases. Ideally, larger amounts of data would be available, but that does not apply here.

1.5.1 Simulation Model

DES models are developed to evaluate and compare the three approaches proposed for the delivery of surgical supplies.

These models are created in ARENA simulation software by Rockwell Automation. An entity type represents a

surgical type, and each entity represents a surgical case of a particular type. An entity has three attributes: duration,

starting time, and type. Duration is randomly generated using distributions derived from the data collected at GMH.

The starting time and type are fed to the model from the actual data. Other entities are used to control the movement of

AGVs and elevators, as well as to handle other specific requirements, such as calculating the value of certain variables

(e.g., the number of AGVs to activate each day). ORs, case carts, cart washers, and elevators were modeled as

resources. Variables are used to track the number of resources used. We used the same guided path transporter network

developed with intersections and links to replicate the movement of AGVs along the hospital corridors. This network

was constructed using actual distances obtained from a GMH floor map. The links in the network are unidirectional,

bidirectional, or spurs (dead ends). The intersections represent the areas where two or more links intersect. The

intersections allow the AGVs to turn and move from one link to the next, following their routes. Intersections are

also used to represent pick-up/drop-off stations. A spur link marks the end of a route. Departments can only handle a

certain number of AGVs, and their processing capacity is limited by variables.

The first DES model, Model 1, shows the material handling approach Current used in GMH. Figure 1.14 describes

this model. In this model, the release of entities begins at 3 pm. The start time of these entities takes place after 6

am the next day. Next, the availability of instruments is checked using the decide module. If an instrument is not

available, the case cart is held in the MD until the instrument becomes available. An available instrument seizes a case

cart and is delivered to the CCSA. There, the entity is held until the scheduled start time of the surgery. At this point

in time, the entity seizes an available OR for the duration of the surgery. At the end of a surgery, the OR is released

and the corresponding case cart and instrument are moved to the CSSD to wash and sterilize. Resources in CSSD

are seized for the duration of service. The variables that record the number of busy units are updated when resources

are released. The second DES model, Model 2, depicts the Two-Batch material handling approach. In this model, the

entities are released twice a day, at 6 am and 3 pm. Entities released at 6 am have a start time between after 12 pm
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the same day. Next, these entities follow a similar procedure as described above in Model 1. Entities released at 3 pm

have a start time between 6 am and noon the next day. These entities are held until the next morning using the hold

module, and then they follow the procedure described above. The third DES model, Model 3, shows the JIT approach.

In this model, entities are released one hour before their start time. This delivery interval was chosen on the basis of

the results of our numerical analysis. Next, these entities follow the same procedure as described above. In all models,

the delivery of soiled carts begins as soon as surgery is completed.
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Figure 1.14: Flowchart of the Simulation Model

1.5.2 A Case Study

In this subsection, we describe a case study based on the data obtained from GMH. This study evaluates the impact

of the three proposed approaches on material handling system, surgical delays, surgical instrument utilization, and

surgical delays. Based on the results of our data analysis, we generate the parameters required for the-implementation

of our case study via simulation. This data allowed for a thorough statistical analysis of the results. In our first set

of experiments, the inventory level was varied to three levels, that is, low, medium, and high. The three models are

compared to each other in terms of surgical delays due to material handling. Next, by fixing a realistic surgical delay

amount, which is seen in the current system, experiments were carried out to determine the level of inventory required

for other approaches. These approaches are also tested for material handling system performance indicators such as

travel times, surgical delays due to the material handling system, and frequency of delays.
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Input Data Analysis: The main objective of data collection and analysis is to support simulation models. These

models then evaluate the impacts that the Current material handling approach has on the surgical instrument inventory.

Information collected, such as the OR schedule, instrument inventory levels, and instrument requirements, is used

directly as input to the simulation model. Our partner hospital provided two sets of data. The first data set provides

detailed information on the surgeries scheduled from January 1, to September 11, 2018. These data include the

surgical identification number (ID), OR ID, the date of surgery, the scheduled start and end times of a surgery, the

type of surgery (i.e., vascular, orthopedic, neurological, etc.), information about the surgeon, the primary procedure,

and the instruments requested. The second data set provides information about the surgical instruments used. These

data present the instrument ID, the type of surgery the instrument is used for, the level of inventory, and information

about its ownership. Tables 1.27 to 1.30 summarize these data. The hospital offers 46 different surgical services.

Our experimental study focuses on the following seven types of surgery: ENT, pediatric, ortho trauma, neurology,

gynecology, urology, and vascular. We focus on these surgical services because they are scheduled multiple times a

day, and therefore there is an opportunity to reduce the size and cost of inventory by reusing some of the instruments.

Surgeries are grouped based on service type, duration, and scheduled start times. The duration of a surgery is calculated

using the actual start and finish times. For each service type, an hypothesis test is conducted to assess whether the

duration of surgeries within each type of service differs based on the start time of the given surgery. When differences

were observed, the distribution of the duration of surgery was estimated separately. Otherwise, the data was used to

derive a single distribution for surgeries of the same type that were started at different times of the day. The results of

the hypothesis test generated the input parameters used in the simulation model. For example, the duration of surgery

differs based on the time of day the surgery is scheduled, by day of the week, and also by type of service. A continuous

distribution was fitted using the Input Analyzer of Rockwell Automation to represent the duration of surgery. Table

1.27 shows the service types, distribution of the length of surgeries, and the squared error. The real-life scheduled start

times of the surgeries are used in the simulation model obtained from the data set and presented here.

Table 1.28 summarizes the total number of surgical cases scheduled between January 1 and September 11, 2018. Here,

only the surgery types that were scheduled more frequently are listed. Each of these types of surgery is scheduled

more than once a day and requires multiple instruments of the same kind. For each type of surgery, only one set of

instruments is considered, common to all surgical cases of that type. Table 1.29 lists the instruments selected for this

study and their corresponding inventory levels. Other data used to develop the simulation model are summarized in

Table 1.30.

GMH carries multiple instruments for each type of surgery for three main reasons: First, the same surgery could be

scheduled more than once on the same day if the hospital follows a block-schedule approach. This approach assigns
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Table 1.27: Input Parameters: Surgery Duration

Service From To Distribution Expression (Length of Surgery) Squared Error
ENT Surgery 00:00 08:00 Lognormal LOGN(2.02, 2.12) 0.008

08:00 14:00 Lognormal LOGN(1.62, 1.2) 0.007
14:00 00:00 Lognormal LOGN(1.23, 0.672) 0.003

Gynecology Service 07:00 08:00 Beta 0.01 + 4.81 * BETA(2.85, 4.03) 0.009
15:00 16:00 Lognormal 0.27 + LOGN(0.965, 0.511) 0.005
16:00 07:00 Lognormal LOGN(1.65, 0.859) 0.011

Neurological Surgery 00:00 09:00 Gamma GAMM(0.494, 5.44) 0.007
09:00 13:00 Erlang ERLA(0.454, 5) 0.005
13:00 00:00 Beta 12 * BETA(4.95, 25.8) 0.028

Ortho Trauma Surgery 0:00 8:00 Erlang ERLA(0.587, 5) 0.002
08:00 14:00 Lognormal LOGN(2.57, 1.29) 0.004
14:00 00:00 Lognormal LOGN(2.09, 0.983) 0.004

Pediatric Surgery 00:00 00:00 Lognormal LOGN(1.35, 0.693) 0.011
Urology Surgery 00:00 07:00 Lognormal LOGN(1.63, 0.975) 0.001

07:00 08:00 Lognormal LOGN(1.2, 0.821) 0.007
08:00 00:00 Erlang ERLA(0.244, 4) 0.011

Vascular Surgery 00:00 07:00 Beta 0.03 + 8.97 * BETA(0.97, 1.78) 0.004
07:00 09:00 Gamma GAMM(0.608, 3.58) 0.017
09:00 14:00 Gamma GAMM(0.42, 4.39) 0.025
14:00 00:00 Triangular TRIA(0.13, 0.83, 3.54) 0.011

Table 1.28: Input Parameters: Number of Surgeries

Service Sunday Monday Tuesday Wednesday Thursday Friday Saturday Total
ENT Surgery 25 295 148 264 231 302 20 1,285
Gynecology Service 17 227 133 181 176 198 13 945
Neurological Surgery 22 174 168 293 163 225 17 1,062
Ortho Trauma Surgery 2 205 171 174 206 207 56 1,021
Pediatric Surgery 62 145 248 153 276 158 79 1,121
Urology Surgery 39 293 333 298 382 466 72 1,883
Vascular Surgery 61 141 242 224 241 235 81 1,225
Total 228 1,480 1,443 1,587 1,675 1,791 338 8,542

the same block of time every week to a surgeon or a group of surgeons who perform the same type of surgery. These

surgeons use instruments of same service type. The current material handling system requires that all instruments be

available one day before surgery. Second, surgeons of different specialties may request the same instrument for the

same procedure. Third, the hospital carries safety stock to respond to instrument-related incidents, such as dropping

or breaking an instrument during surgical procedures.
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Table 1.29: Number of Instruments in the Inventory

Service Type Instrument Inventory
ENT Surgery Set T & A GMMC 1047 10
Gynecology Service Set D & C mini GMMC 15896 10
Neurological Surgery Set Back Neuro GMMC 1341 12
Ortho Trauma Surgery Set Minor Ortho GMMC 100031 17
Pediatric Surgery Set Pediatric Minor GMMC 1247 8
Urology Surgery Ureteroscope 7.5 Comp GMMC 12656 18
Vascular Surgery Probe Doppler Pencil 8.1 GMMC 1824 25

Table 1.30: Summary of Input Parameters

Parameter Source Description

Entity Creation Time Surgery schedule data Read from the data

Attribute Duration Surgery schedule data Random variable from

the corresponding distribution

Network link distances GMH floor maps Read from the data

No. of Case carts AGV system data 110

No. of ORs GMH Survey 32

No. of loading personnel GMH Survey 4

No. of AGVs AGV system data [6,8,10]

Capacity of elevators GMH Survey [2,2]

Capacity of cart washers GMH Survey 3

Cart loading delay GMH Survey Triangular(2,3,5) minutes

Cart washing delay GMH Survey 20 Minutes

Elevator movement delay to carry AGV GMH Survey 40 seconds

Cart loading unloading delay GMH Survey 15 seconds

Instrument washing delay GMH Survey 3 hours

Verification and Validation: Verification and validation procedures are used to compare the conceptual model with

the proposed DES models. The development of the DES models is guided by the process flow chart and uses input

data provided by GMH staff, who examined and approved these models. Because we validated the simulation of the
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AGV material handling system previously, it is not required to be revalidated. Furthermore, the approach proposed by

[132] is adopted to verify and validate the DES models. The input data analysis section describes our data collection

and analysis. This analysis indicates that our data are correct and used adequately. The conceptual model proposed is

validated via face validation by GMH staff and via traces following specific entities through the model. Flowcharts of

the conceptual model are verified by GMH staff. The DES models are verified through the techniques listed in [132].

These techniques include animation, comparison with other models, and running several replications of the model.

In the sensitivity analysis, the number of resources used (i.e., the number of AGVs, the number of instruments, etc.)

changed, so the impact of these changes on the behavior of the model outputs was monitored. The model outputs

considered are the average travel time of an AGV and the corresponding standard deviation. Next, hypothesis tests

were conducted to evaluate whether the difference between the output of the DES models and the real-world data

is statistically different. Using a significance level of 0.05, the test indicates that the difference is not statistically

significant.

1.5.3 Discussion of Results

In this subsection, we present the results obtained from the experiments carried out as part of the case study. The

objective of this case study is to evaluate the impact of the three proposed approaches on the material handling system,

surgical delays, the utilization of surgical instruments, and surgical delays. We discuss how these experiments address

the research questions outlined previously.

Research Question 3: How does the inventory level of surgical instruments, including owned, borrowed, and

cosigned, impact the service level provided by the ORs? A simulation-optimization experiment is conducted using

ARENA Opt-Quest to answer this question. The objective of simulation-optimization is to minimize the total delays at

the start of a surgery by changing the inventory level. The delay of a surgery is calculated as the difference between the

Actual Start Time and the Scheduled Start Time. The decision variables of type integer are the number of instruments

in the inventory for each of the seven types of service (see Table 1.29). Experiments are conducted for three different

scenarios. Scenario 1 assumes that the available inventory of instruments is equal to the current inventory level of

GMH. Consider this inventory level to be an upper bound. Scenario 2 assumes that the available inventory of instru-

ments is equal to the lower bound. Scenario 3 assumes that the available inventory of instruments equals the average

value of the upper and lower bounds. To ensure that the inventory level is an integer, we round the average value down

to the nearest integer. Table 1.31 summarizes the results of these experiments, and the following observations result:

Observation 1: The Current material handling approach, Model 1, is the most sensitive to changes in

inventory level, compared to Two Batch, Model 2, and JIT, Model 3. A decrease of inventory level, from
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Scenario 1 to Scenario 2, leads to an increase in the average delay from 0.42 to 31 minutes per surgery in

the Current approach. In the Two Batch approach, the corresponding average delay increases from 0.01

to 5.12 minutes, and in the JIT approach from 0.00 to 1.47 minutes per surgery (see Table 1.31).

Observation 2: The Current material handling approach requires additional levels of inventory to maintain

the same level of service, measured by the average delay per surgery, compared to the proposed Two Batch

and JIT approaches (see Table 1.32).

Observation 3: The JIT approach leads to reduced inventory levels of instruments used in short-duration

surgeries without reducing the service level.

Table 1.28 presents the total number of neurological surgeries performed in GMH during the 9-month period reviewed

here. This number averages about 4.2 surgeries per day. Table 1.28 also presents the number of pediatric surgeries

during the same time period, which corresponds to approximately 4.4 surgeries per day. The duration of neurological

surgeries is about 1 hour longer than for pediatric surgeries. A hypothesis testing (significance level = 0.05) was

conducted to evaluate the difference between the duration of neurological and pediatric surgeries. This test indicates

that the difference is statistically significant (see Table 1.33). The results of Table 1.32 show that the number of

instruments required by neurological surgeries is higher than pediatric surgeries in Models 2 and 3 versus Model 1.

This is because instruments used in pediatric surgeries can be reused on the same day due to the shorter duration of

these surgeries.

Table 1.31: The Average Delay per Surgery

Number of Instruments per Service Type Average Delay/Surgery (Minutes)

Scenario ENT Gynecology Neurological Ortho Trauma Pediatric Urology Vascular Model 1 Model 2 Model 3

1 10 10 13 17 8 18 16 0.42 0.01 0

2 6 6 5 9 4 10 6 31.27 5.12 1.47

3 8 8 9 13 6 14 10 3.58 0.25 0.01

Table 1.32: Inventory Level of Instruments

Number of Instruments per Service Type

Model Average Delay/ Surgery (Minutes) ENT Gynecology Neurological Ortho Trauma Pediatric Urology Vascular

1 0.42 10 10 13 17 8 18 16

2 0.41 6 10 13 13 6 18 12

3 0.41 6 6 9 9 4 16 12
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Table 1.33: Comparison of Two Service Types

Statistics Neurology Surgery Pediatric Surgery

Sample Size 1062 1121

Average Length 2.31 1.36

95% CI (2.24,2.38) (1.31,1.40)

Standard Deviation 1.16 0.77

Research Question 4: How do material handling activities impact the service level provided by the ORs? Two

sets of experiments are carried out. The first set focuses on the impact that changing the number of AGVs has on the

performance of the material handling system measured via the average travel time per trip, the total travel time and the

corresponding standard deviations. The delivery time of clean and soiled case carts is analyzed as the number of AGVs

increases from 6 to 8 to 10. Experiments with fewer than six AGVs caused extensive delays in delivering all case carts

in the Current system, which requires employees to work overtime, so these experiments are not considered in this

analysis. The second set of experiments focuses on the impact that changing the delivery time has on the performance

of the material handling system. For this purpose, the performances of Models 1, 2, and 3 are compared. The results

of these experiments are summarized in Tables 1.34 and 1.35 and Figures 1.15 and 1.16. The following observations

result:

Observation 1: The average daily travel time of clean case carts is longest in the Current material handling

approach and shortest in the JIT approach (see Figures 1.15a, 1.15b, and 1.15c). The Current approach

has the longest travel time due to congestion, as the delivery of clean case carts for elective surgeries takes

place between 3-6 p.m.

Observation 2: The average daily travel time of clean case carts increases with the number of AGVs (see

Figures 1.15a, 1.15b, and 1.15c). This increase is highest in the Current material handling approach.

Observation 3: The average daily travel time of clean case carts in the JIT approach is not affected by

the increase in the number of AGVs since the delivery of case carts is spread throughout the day. These

deliveries do not cause congestion (see Figure 1.15c).

Observation 4: The average daily travel time of soiled case carts for every material handling approach is

slightly affected by the increase in the number of AGVs (see Figures 1.16a, 1.16b, and 1.16c). Note that

the difference in average travel time per trip is small but still statistically significant. The change in travel

time due to the increase in the number of AGVs for every Model is small because soiled case carts are
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delivered to CSSD right after the surgery; thus, they are delivered throughout the day, and these deliveries

have a minimal impact on congestion.

Table 1.34: Sensitivity Analysis of Clean Case Carts Delivery

Travel Time (Minutes)
No. of AGVs Model Average StDev CI for Average CI for StDev

6 1 4.83 0.31 (4.83, 4.84) (0.30, 0.31)
2 4.96 0.17 (4.95, 4.96) (0.17, 0.18)
3 3.31 0.27 (3.31, 3.32) (0.26, 0.27)

8 1 6.53 0.60 (6.51, 6.54) (0.59, 0.61)
2 6.47 0.64 (6.46, 6.48) (0.62, 0.65)
3 3.43 0.36 (3.42, 3.44) (0.35, 0.36)

10 1 8.02 1.16 (7.99, 8.05) (1.14, 1.17)
2 7.66 1.17 (7.63, 7.69) (1.14, 1.19)
3 3.46 0.39 (3.46, 3.47) (0.38, 0.39)
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Figure 1.15: Sensitivity Analysis of Clean Case Carts Delivery

Table 1.35: Sensitivity Analysis of Soiled Case Carts Delivery

Travel Time (Minutes)
No. of AGVs Model Average StDev CI for Average CI for StDev

6 1 5.46 0.10 (5.46, 5.46) (0.094, 0.097)
2 5.44 0.09 (5.44, 5.44) (0.087, 0.089)
3 5.39 0.07 (5.39, 5.39) (0.069, 0.071)

8 1 5.60 0.18 (5.59, 5.60) (0.179, 0.186)
2 5.53 0.15 (5.53, 5.54) (0.149, 0.154)
3 5.40 0.07 (5.39, 5.40) (0.072, 0.074)

10 1 5.75 0.29 (5.75, 5.76) (0.290, 0.299)
2 5.64 0.23 (5.63, 5.64) (0.232, 0.238)
3 5.40 0.07 (5.39, 5.40) (0.072, 0.074)

Research Question 5: How does the integration of decisions about inventory and material handling impact the

service level provided by the ORs?
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Figure 1.16: Sensitivity Analysis of Soiled Case Carts Delivery

To address this research question, we compared the three models with each other in terms of surgical delays and the

level of inventory required to meet the requirements. We show how the amount of surgical delays and their frequency

depend on the number of AGVs and the delivery approach chosen. The following observation results:

Observation: The average delay per surgery and the total number of delays are lowest in the JIT material

handling approach. These statistics are highest in the Current approach. A successful implementation of

JIT requires coordination of material handling and inventory decisions, and numerical results show that

this coordination leads to improved service level provided by ORs.

This observation is true at different inventory levels, represented by Scenarios 1, 2, and 3 in Table 1.31; for different

material handling approaches, represented by Models 1, 2, and 3 in Tables 1.36 and 1.37; and for different material

handling capacities, represented by the number of AGVs in Tables 1.36 and 1.37.

Observation 2: The average inventory level is lowest in the JIT material handling approach. This obser-

vation is supported by the results of Tables 1.31 and 1.32.
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Table 1.36: Average Delay by Service Type (Hours)

Model 1 Model 2 Model 3

Service Type 6 AGV 8 AGV 10 AGV 6 AGV 8 AGV 10 AGV 6 AGV 8 AGV 10 AGV

ENT 0.060 0.006 0.001 0.009 0.000 0.000 0.001 0.000 0.000

Gynecology 0.132 0.011 0.001 0.014 0.000 0.000 0.000 0.000 0.000

Neurological 1.672 0.124 0.005 0.330 0.011 0.000 0.085 0.000 0.000

Ortho trauma 0.018 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000

Pediatric 1.186 0.244 0.042 0.266 0.020 0.002 0.030 0.001 0.000

Urology 0.245 0.024 0.001 0.014 0.000 0.000 0.000 0.000 0.000

Vascular 0.324 0.003 0.000 0.028 0.000 0.000 0.003 0.000 0.000

*The total number of replications is 30.

Table 1.37: Frequency of Delayed Surgeries

Model 1 Model 2 Model 3

Service Type 6 AGV 8 AGV 10 AGV 6 AGV 8 AGV 10 AGV 6 AGV 8 AGV 10 AGV

ENT 378 41 5 175 14 2 17 0 0

Gynecology 580 60 5 138 10 0 10 0 0

Neurological 6,254 595 22 3,352 314 0 1,820 0 0

Ortho Trauma 120 0 0 63 0 0 0 0 0

Pediatric 4,859 1,293 255 2,532 377 52 743 20 0

Urology 2,261 268 8 652 39 0 8 0 0

Vascular 1,722 24 0 615 5 0 85 0 0

*The total number of replications is 30.

Recommendations: The following recommendations are made based on the observations presented above:

Coordinating material handling and inventory management decisions has the potential to improve the level of service

provided by ORs. To facilitate this coordination, the requirements for each surgery, the number of available instru-

ments, and the location of the instruments must be known at all times. Transparent information technology systems

will facilitate the coordination of decisions. Hospitals should consider implementing a JIT material handling approach

for instruments used in short-duration surgeries because such an approach leads to lower inventory levels without jeop-
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ardizing the level of service provided. Finally, hospitals should frequently reevaluate their material handling system

to identify improvements. For example, GMH currently uses 10 AGVs. Using only 6 or 8 AGVs leads to reduced

congestion along hospital corridors and leads to shorter delivery times. The remaining AGVs can be used to transport

trash, linen, and pharmaceuticals, among other items.

1.6 Conclusions

The inefficiencies observed in the GMH material handling system motivated this research. GMH staff reported long

lines of AGVs waiting for the elevator on the mezzanine floor after material handling activities started in the afternoon.

Congestion caused by AGVs contributes to delays in delivering the required surgical material, including surgical in-

struments to ORs. Congestion also affects the delivery of soiled surgical instruments, which further delays sterilization

activities. Delays due to material handling activities impact the utilization of AGVs, surgical instruments, sterilization

equipment, and personnel time. These delays also force GMH to use the rental and consigned instruments.

Our careful review of the literature indicates that several other hospitals also follow similar practices for material

handling and inventory management of surgical instruments. New data-based approaches to material handling and

inventory management, such as the delivery of surgical cases JIT, have the potential to reduce surgical delays due

to instrument unavailability in the ORs. Furthermore, the utilization of surgical instruments can be improved for

short-duration surgeries in hospital ORs. Hospitals should identify opportunities to coordinate material handling and

inventory management decisions, as it leads to reduced delays due to the material handling system, improved utilization

of inventoried surgical instruments, and reduced usage of rental and consigned instruments.

Congestion due to material handling activities can be addressed by improving the material handling infrastructure or

improving the schedule of material handling activities. Data analysis indicates that the number of trips, the average

travel time per trip, and the corresponding standard deviation of travel times are higher in the part of the day when

clean surgical carts are delivered. Furthermore, congestion was observed on the AGV paths shared for different tasks.

A simulation-optimization model with alternative paths for AGVs was developed. The use of alternative routes led

to reduced congestion. However, the overall travel time increased due to longer travel times. Finally, additional

investments to install AGV guide-paths on the new routes would be required to implement this redesign. A sensitivity

analysis was performed to evaluate the impact of reducing the number of AGVs on the average travel time and the

task completion time. This analysis indicates that the use of fewer AGVs is sufficient to complete the daily delivery of

surgical carts. For example, using more than 6 AGVs does not significantly improve task completion time. However,

the travel time per trip increases with the number of AGVs due to increased congestion. Furthermore, the number of
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surgical cases affects the optimal number of AGVs that should be used on one day and the next. This suggests that

using 6 AGVs for each day of the week may not be optimal. To account for these daily differences, we conducted

two simulation-optimization experiments and identified the number of AGVs to be used. The results suggest the use

of a different number of AGVs on different days of the week. To evaluate the results of the simulation-optimization

model, a solution was selected that used fewer AGVs every day and yields a task completion time that met the delivery

target. This selected solution was simulated for a longer period of time using historical data as input. The number of

AGVs used per day was fixed on the basis of the results of the proposed framework. Statistical analysis of the results

indicated that the proposed model led to reduced congestion and shorter travel times.

In addition to numerical experimentation using our simulation models, we conducted a one-week pilot study at our

partner hospital. During this study, the number of AGVs used in GMH was the same as that in the selected solution.

The travel times for the treatment week were compared with those for the previous week and the week after, during

which the number of AGVs in the system was not controlled. This comparison indicates that travel times were shorter

during the week-long pilot study. The extensive data analysis and results of the simulations presented here reinforce

what GMH staff already suspected: increasing the number of AGVs can exacerbate material handling issues rather

than alleviating them. These results indicate that the number of AGVs should change daily according to the volume of

surgical cases.

At our partner hospital, the material handling system currently delivers case carts loaded with instruments the evening

before the surgery. This restrictive delivery schedule is one of the reasons the hospital cannot reuse surgical instruments

on the same day. This delivery schedule leads to (i) increased inventory requirements for instruments; (ii) increased

traffic and congestion from AGVs, which delay case cart deliveries and other materials that use AGVs; and (iii) delayed

surgery start times. To address these operational problems, we proposed two new material handling approaches and

compared them with current practice. The Two Batch approach delivers surgical carts to ORs twice a day, requiring

partial coordination of material handling and inventory management. The JIT approach takes a surgical cart to an OR

before surgery that requires complete coordination of material handling and inventory management. The simulation

models were verified and validated using real-life data collected from the partner hospital. A thorough sensitivity

analysis leads to a number of observations and recommendations. The Current material handling approach is more

sensitive to changes in inventory level, requires the highest levels of inventory to reduce instrument-related surgical

delays, and leads to congestion and delays in the delivery of surgical case carts. Both the Two Batch and JIT approaches

outperform the current material handling approach. Implementing the JIT approach leads to the greatest improvements

in terms of surgical delays, AGV utilization, and surgical instrument utilization.
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The staff at our partner hospital have considered the models and experimental results as valuable inputs, and have

implemented our recommendations in some capacity. These recommendations also played an important role in helping

hospital management assess possible changes to be made in the design of the facility.
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Chapter 2

Models and Solution Methods for

Integrated OR Scheduling and Inventory

Management Problem

2.1 Introduction

In 2013, healthcare expenditures exceeded $2.9 trillion, which accounted for 17.4% of the gross domestic product

(GDP) of the USA that year. In 2017, these expenditures increased to $3.5 trillion and made up 17.9% of the USA’s

GDP [114]. Studies project that national healthcare expenditures will increase by 60% during the period 2005-2025

[112] and might climb at an average annual rate of 5.4% during 2019-2028, whereas prices for medical services and

goods are expected to increase at an average annual rate of 2.4% in the same period [86]. The trend of increasing

healthcare expenditures negatively impacts the US economy and Americans’ well-being [12].

US National Health Expenditure Accounts show that in 2017, 62% of expenditures were due to hospital care, physi-

cians, clinical services, and prescription drugs [114]. In 2018, total spending for hospital care increased 4.5 %, which

amounted to $1.3 trillion [86]. Moreover, it is expected that during 2024–28, the total hospital spending will continue

to rise by 6% per year. Surgical operations account for a significant proportion of the costs and revenues of a hospital.

In 2011, 29% of the total 38.6 million hospital stays involved surgical procedures, and these stays accounted for nearly

50% of the total $387 billion spent on hospital costs in the USA [158]. Surgical expenditures are expected to increase

from $572 billion in 2005 (4.6% of USA GDP) to $912 billion in 2025 (7.3% of US GDP) [112]. Moreover, a 2014
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study conducted in acute care hospitals in California suggests that the average total cost of using an operating room

(OR) varies between $36 and $37 per minute [26], indicating that operating room costs are a considerable part of

overall surgical expenditures.

There is a vast amount of research that focuses on reducing the cost of healthcare by improving the efficiency of

operations in hospitals. Some of this research focuses on improving the efficiency of OR, staff scheduling, inventory

management, material handling, etc. Our research contributes to this literature by developing models that coordinate

decisions about OR scheduling and inventory management. We demonstrate that our proposed model has the potential

to reduce the cost of ORs, and consequently reduce the cost of healthcare.

Background: The fixed cost of operating an OR is significant because of the cost of OR staff and the supporting

upstream personnel. Typically, ORs have planned session lengths of eight to ten hours per day. Using an OR beyond

the session length results in overtime costs, while not using an OR results in idle-time costs. Overtime and idle-time

also result in staff dissatisfaction. Between two surgeries, cleaning and setup activities are performed to prepare for the

next surgery. The time spent on these activities is called OR turnover time [16]. Each surgeon requires a set of surgical

instruments to perform surgeries. The instrument requirement is specified by a doctor’s preference card (DPC). After

each surgery, instruments are sterilized. The time spent on these activities is referred to as instrument turnover time.

There is a cost associated with the transportation and sterilization of surgical instruments. We refer to this cost as usage

cost. The OR-related costs are significantly higher than instrument-related costs. Therefore, hospitals have prioritized

improving the utilization of ORs. For example, previous studies find that personnel cost is $12-$14 per minute [26].

In comparison, usage cost is found to be less than $3.5 per instrument [43, 148]. The difference in costs explains why

there have not been many studies that evaluate the impacts of OR scheduling on the cost of instrument inventory.

Improper instrument inventory management decisions have their own repercussions. For example, if the required sur-

gical instruments are not available before the surgery begins, the hospital is forced to postpone the surgery. These

delays can be minimized by purchasing additional instruments or using rental instruments. While carrying excess in-

ventory seems to be a good option to maintain high service levels, the costs associated with a large surgical instrument

inventory are hefty. The inventory holding cost of surgical instruments can account for 4% to 8% of the hospital’s op-

erating budgets [41, 156]. To avoid holding excess inventory, hospitals often depend on vendors to supply specialized

instruments as rental instruments. Rental instruments remain the property of the vendor until the instrument is sold.

The hospital pays vendors a premium for using and maintaining rental instruments [99]. The vendors prefer renting

instruments as they get to use the hospital’s shelf space to store their instruments while generating revenue upon use.

Hospitals must pay close attention to how the OR scheduling decisions influence the inventory-related decisions. For

example, a study by [99] finds that orthopedic and cardiovascular supply vendors had overfilled storage shelves in a
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major US hospital with items that were rarely being used. Furthermore, the rental instruments were overstocked by

more than 50% as compared to owned instruments, which increased the total cost by 12-25%. A similar situation

was observed at our industry partner, Greenville Memorial Hospital (GMH), located in South Carolina. The data on

the instrument usage at GMH between January-September, 2018 was collected and analyzed. Figure 2.1 shows the

total number of instruments rented at GMH. Figure 2.2 presents the number of surgical instruments rented per week

by different services. These figures reveal that GMH has used a large number of rental instruments for Neurological

and Orthopedic surgeries every week. The instruments used for these services are the most expensive [22]. GMH has

used at least 50 rental instruments per week for both services. Our research work is motivated by this overuse of rental

instruments at GMH.

Figure 2.1: Number of Instruments Rented
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Figure 2.2: Number of Instruments Rented per Week

Research Questions: Currently, the hospital generates an initial surgery schedule in advance, and next, the hospital

determines what instruments are available and what should be rented. We call this the advanced scheduling approach.

There are a number of caveats that concern the cost-effectiveness of these advanced OR schedules. An important

consideration in designing the OR schedule is inventory level and availability of instruments. In a multi-OR environ-

ment, surgeries are performed in parallel, therefore, the surgical instruments are used concurrently. If the available

instrument inventory level cannot meet the requirements, rental instruments are used and the hospital incurs high costs.

The availability of instruments is also impacted because of the sterilization process. Instruments must be sterilized in

the sterilization department (SD) after every use. This means that instruments are unavailable for a few hours after

each use before they can be used again. Accidental dropping of instruments in ORs, failures of sterilization processes,

missing instruments, and delivering incorrect instruments into ORs are some of the other reasons that can adversely

affect the advance OR schedules. In such situations, hospitals resort to postponing surgeries or using rental instruments

incurring a higher cost. These challenges motivate our first research question: (i) How does integrating decisions about

OR scheduling and inventory management impact the total costs of the system? We propose a mathematical model to

integrate the decisions of OR scheduling with the assignment of instruments to surgeries. With effective planning, this

coordination can increase the utilization of the ORs and the surgical instruments leading to cost savings for hospitals.

In the long run, the inventory level is impacted by the total number of surgeries scheduled in a day, the daily schedule of

surgeries that use the same instrument, the processing capacity of the sterilization department (SD), and the schedule

of material handling activities. Changing demand patterns, surgeons’ requests for additional/newer equipment, or
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damage to existing instruments influence inventory levels. To minimize the use of rental instruments, the OR manager

must consider the inventory levels in determining the sequence of surgeries scheduled in an OR, and the number of

surgeries scheduled in parallel. Since the surgical instruments are cleaned overnight, it seems intuitive that scheduling

surgeries over multiple days provides hospitals more flexibility in using the inventory. However, this may not be

entirely possible due to some practical constraints. In some cases, OR managers must respect the patient-surgeon

assignments, patient preferences, and surgeons’ preferences for scheduling the surgery. These problems motivate our

second research question (ii) How does the inventory level of surgical instruments, the length of planning horizon,

and number of ORs scheduled in parallel impact the system utilization and the cost of an integrated OR schedule?

We conduct a sensitivity analysis to evaluate how the parameters mentioned above impact the utilization of ORs, and

instruments, and impact the cost of the system.

Illustrative Examples: To illustrate how our proposed integrated OR scheduling works, we provide two examples.

Consider that a hospital plans to schedule four surgeries. The duration and instrument requirements for each surgery

are provided in Table 2.1. Figure 2.3 summarizes the potential schedules of each example. In this Figure, each block

represents a surgery, and the size of a block depicts the duration of the surgery. The subscript denotes the copy of

the instrument to be used. The first schedule proposed for Example 1 (see Figure 2.3(a)) is an advanced schedule of

ORs. In this schedule, surgeries 1, 2, and 3 are assigned to OR 1, while surgery 4 is assigned to OR 2. Schedule 1 in

Figure 2.3(a) presents a feasible instrument assignment for the advanced schedule, where instruments B1 and A1 are

assigned to surgeries 2 and 4 respectively. This assignment forces the hospital to use rental instruments of type A for

surgeries 1 and 3. This is because surgeries 1 and 4 are scheduled at the same time. Since it takes 3 hours to sterilize an

instrument, instrument A1 cannot be reused during surgery 3. In contrast, Schedule 2 uses instrument A1 for surgeries

1 and 3. Thus, to implement this schedule, the hospital must rent 1 instrument. Example 1 illustrates that even if OR

schedules are generated in advance, hospitals can save on the rental costs by strategically allocating the instruments.

ID Duration Instrument Type Needed

1 2 A

2 2 A

3 4 B

4 4 B

Table 2.1: Data for Illustrative Examples

Example 2, depicted in Figure 2.3(b), uses the same data provided in Table 2.1. In this example, we assume that

additional copies of surgical instruments are available. Schedule 3 uses instruments A2 and B2 for surgeries 2 and 4.
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This is because instruments A1 and B1 can not be reused since there is not enough time to sterilize them. In Schedule

4, instrument A1 is used for surgery 1, it is sterilized while surgery 3 is in progress, and it is reused in surgery 2. These

schedules demonstrate that by sequencing the surgeries differently, hospitals can increase the utilization of surgical

instruments, and lower inventory levels. Schedules 4 and 5 can be implemented using only one copy of instruments A

and B. This is because, when used in different days (i.e., instruments used for surgeries 1 - A1 and 3 - B1), instruments

are sterilized overnight. These schedules illustrates that by scheduling surgeries on separate days, the hospital has more

flexibility in using the instruments. The second copies of instruments can now be used to schedule add-on surgeries.

These examples show that coordinating OR scheduling with instrument assignments can help hospitals efficiently use

their surgical instruments and meet their instrument requirements with fewer rented instruments.

Surgery 1 2 3 OR 1

Surgery 4 OR 2

Hour 1 2 3 4 5 6 7 8

Advanced Schedule

Surgery 1 - R 2 - B1 3 - R OR 1

Surgery 4 - A1 OR 2

Hour 1 2 3 4 5 6 7 8

Schedule 1

Surgery 1 - A1 2 - B1 3 - A1 OR 1

Surgery 4 - R OR 2

Hour 1 2 3 4 5 6 7 8

Schedule 2

(a) Example 1

Surgery 1 - A1 2 - A2 Day1

Surgery 3 - B1 4 - B2 Day2

Hour 1 2 3 4 5 6 7 8

Schedule 3

Surgery 1 - A1 3 - B1 2 - A1 Day1

Surgery 4 - B1 Day2

Hour 1 2 3 4 5 6 7 8

Schedule 4

Surgery 1 - A1 3 - B1 Day1

Surgery 2 - A1 4 - B1 Day2

Hour 1 2 3 4 5 6 7 8

Schedule 5

(b) Example 2

Figure 2.3: Illustrative Examples

Contributions: The proposed research offers several important contributions: (i) This study showcases the role of

coordinating OR scheduling and inventory management decisions in improving OR efficiency and reducing costs. In

particular, this work demonstrates that integrating these decisions can increase the utilization of ORs and surgical

instruments while reducing the cost of the system. Prior works point to the cost savings and benefits of optimizing
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OR scheduling process. However, based on our review of the literature, only a few papers discuss the inclusion

of instrument inventory-related decisions in OR schedules. (ii) This work develops solution approaches to solve

this problem efficiently. We propose easy-to-implement solution methods including a construction heuristic and a

Lagrangean decomposition-based heuristic and evaluate them. These solution approaches outperform the commercial

solver, Gurobi, in terms of running time and solution quality. (iii) This work develops a real-life case study using data

from a US-based hospital. The proposed models and methods, which are intuitive and easy to implement, are used

to derive managerial insights that can lower the cost of health care. While the models presented here are particularly

suitable for the hospitals that use an open scheduling strategy, other healthcare facilities can also learn from these

practices.

The rest of this chapter is organized as follows: Section 2.2 reviews the literature that is relevant to this work. Section

2.3 provides a detailed description of the problem and its formulation. Section 2.4 describes the proposed solution

methods. Section 2.5 introduces a case study and discusses the results of the computational experiments. Finally,

section 2.6 summarizes the key takeaways and presents concluding remarks.

2.2 Literature Review

The focus of this research is to generate elective surgery schedules and inventory assignments in a multi-day multi-

OR setting. The main streams of literature relevant to this research are inventory management of reusable surgical

instruments and OR scheduling. In this section, we provide a brief review of the literature, identify the important

knowledge gaps, and contrast related studies with our work.

2.2.1 Inventory Management of Reusable Surgical Instruments

The literature related to inventory management of surgical instruments focuses on minimizing the costs associated with

their purchase, use, and inventory. Most of the inventory management strategies proposed by practitioners are practical

and easy to implement. These strategies include improving the accuracy of doctor preference cards (DPC), minimizing

the number of unused instruments in surgical trays, and getting surgeons involved in the cost reduction process. For

example, [74] engaged physicians in the review of DPCs, which led to the removal of 109 disposable supplies and

3 reusable instrument trays. Consequently, the cost of a case cart was reduced by $16 on average. These findings

align with the research by [81], which stipulates that surgeons often underestimate the costs of expensive items and

overestimate the costs of less expensive items. Research by [62, 14] shows that increasing surgeon awareness about

the costs of surgical instruments and equipment can lower the cost of surgical procedures. Work by [138] shows that
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standardizing surgical processes can also significantly reduce operating costs. These easy-to-implement approaches

that focus on involving surgeons in the cost reduction process, reduced the cost of surgical procedures. We note that

these studies assume that OR schedule is known. However, the daily instrument requirements are affected by these

schedules. Our research extends the scope of these models by developing models that coordinate surgery scheduling

decisions with inventory management. For a further systematical review of the literature in the area of inventory

management of surgical instruments, the readers are referred to [4].

Several researchers have studied the optimal composition of surgical trays to reduce the cost of inventory. This problem

is referred to as the tray optimization problem (TOP). The TOP consists of three important decisions: (i) the assignment

of instruments to trays, (ii) the assignment of trays for surgeries, and (iii) the number of trays to keep in inventory [42].

Surgeon preferences for instruments are also taken into account. Works by [41, 127, 5, 147, 42] have presented

exact solution approaches to solve TOP, and works by [41, 42] have used heuristic/metaheuristic methods. Although

minimizing the cost of inventory is the main focus of TOP, researchers have extended the classical TOP model to

consider objectives such as minimizing delivery costs, storage costs [147, 127], processing costs [127], wastage [127,

5], and the number of trays [5]. Our work does not focus on the configuration of surgical trays. We note that our

approach extends the scope of instrument/tray assignments to surgeries by coordinating these decisions with OR

scheduling.

2.2.2 OR Scheduling

The OR scheduling and planning approaches are classified into two categories in the literature, namely advance

scheduling and allocation scheduling [166]. Advance scheduling determines well in advance the exact date when

a surgery is scheduled, and/or the OR where the surgery takes place. For example, [71] propose an advance OR

scheduling model that determines the assignment of surgeries to ORs over a one to two weeks planning horizon. They

solve the resulting problem using a primal-dual-based heuristic. [39] study the deterministic and stochastic versions

of the multi-OR scheduling problem to minimize the cost of ORs. Their formulation does not determine in what

sequence the surgeries are scheduled in each OR. They propose easy-to-implement heuristics to solve this problem.

Allocation scheduling is mainly used to determine the starting time of each surgery and to allocate the OR resources.

For example, [101] analyze the impact of OR sequencing rules on the utilization of the recovery unit. The sequencing

rules are applied independently to each surgeon’s list of cases. They show via a discrete event simulation model that,

sequencing rules of OR have a great impact on the quality of care that patients receive in the recovery room. [94]

present a scheduling strategy to determine starting times of surgeries in multiple ORs. They use a genetic algorithm

to determine the allocation of surgeries to ORs and the starting time of each surgery. A few research articles propose
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models that integrate advance scheduling and allocation scheduling decisions. For example, [102] propose a model

that schedules each surgery into a day of the week, into an OR, and into a time slot in order to maximize OR efficiency.

Works by [146] and [54] present a multi-phase approach to solve the OR planning and scheduling problem. The initial

phases focus on the advanced scheduling problem, and then the sequence of surgeries is determined. [16] consider

decisions such as the number of ORs to open, surgery assignment to ORS, and the starting time of each surgery in

their daily OR scheduling problem. Their model highlights the importance of OR pooling and parallel processing of

surgeries. [15] propose a deterministic mathematical model that yields daily OR schedules to minimize the OR-related

costs as well as costs of recovery resources. A decomposition-based heuristic and an easy-to-implement two-phase

heuristic are proposed to solve this problem. Similar to their work, we formulate an integrated advance and alloca-

tion scheduling problem. However, our proposed model, in addition to integrating advance scheduling and allocation

scheduling decisions, considers several decisions related to the inventory of surgical instruments.

There are three different strategies used to schedule ORs, i.e., the block strategy, the open strategy, and the modified

block strategy [166]. The block scheduling strategy divides OR time in blocks and allocates each block to a surgeon

or to a surgical group in advance. This strategy reduces the complexity of scheduling by reducing the problem size

because each surgery can only be scheduled within the corresponding block of time. The block scheduling strategy

is used by many hospitals in Europe [121] and in the US [149, 152, 107, 68, 53]. However, a key issue with block

scheduling is the low utilization of certain blocks since a surgeon cannot schedule surgeries in blocks that are pre-

allocated to other surgeons even if they are empty [166]. In the modified block strategy, a block can be modified if

under-utilized. Research by [38, 54] presents models that can be used to determine OR schedules using a modified

block strategy. The open scheduling strategy provides surgeons the flexibility to schedule a surgical case on any

day in any available OR. This strategy also allows surgeries of different specialties to be scheduled in the same OR.

However, a poorly designed open scheduling strategy could cause issues and inconveniences for the hospital during an

emergency. Such a strategy could also inconvenience surgeons when their surgeries are scheduled at different times of

the day [166]. [13] use an open scheduling strategy where patients are scheduled without specialty constraints. They

propose a Lagrangean relaxation-based method to solve this problem. Similarly, [52, 54, 75] have adopted an open

scheduling strategy in their work. Our proposed scheduling model follows an open scheduling strategy due to the

flexibility it provides in scheduling surgeries so that the inventory costs are minimized.

Some authors include general instrument-related constraints in their formulation of the OR scheduling problem. For

example, [19, 21, 152] have included constraints either ensure availability of surgical instruments or instrument

turnover (sterilization) time constraints. [19] extend the OR scheduling problem to consider surgical teams, in-

struments, and recovery resources. They solve this problem in two stages (i) OR assignment, (ii) allocation of the
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resources. Their results indicate increased OR occupancy, increased number of surgeries performed daily, and im-

proved utilization of ORs and recovery resources. They consider a similar problem setting to ours and assume that

instruments are sterilized immediately after surgery. However, unlike our model, their formulation does not capitalize

on the benefits of scheduling over multiple days. Work by [21] studies a multi-objective combinatorial optimization

problem to determine the sequence of patients within the OR. Their constraints ensure that number of instruments in

use does not exceed the inventory levels. They also include instrument turnover time in their model. Work by [91]

formulates the OR scheduling problem to include the recovery resources, and equipment/instruments for both elective

and emergency surgeries. They formulate an integer linear programming (ILP) model to solve small instances of their

problem, and then use constraint programming and metaheuristics to solve larger instances. They limit the number of

surgeries scheduled in parallel that require the same instruments. Their model does not consider instrument turnover

time, unlike our formulation. [152] address multi-period, multi-resource, priority-based OR scheduling. They propose

a mixed-integer programming (MIP) model and present a heuristic based on the first fit decreasing algorithm. The

objective of their model is to maximize the number of patients scheduled. Inventory level and availability constraints

are included in the model. They report that this proposed approach led to substantial savings and increased utilization

at a publicly funded hospital. Work by [107] proposes a constraint programming model that includes several real-life

constraints, such as availability of instruments/equipment, staff preferences, and affinities among staff members. The

objectives are to minimize the make-span and overtime hours, and to maximize affinities among the team members.

They ensure the availability of surgical instruments in the schedule they develop. We note that the general instrument

related constraints considered in the articles we cite here are also critical for our model, and included in our formula-

tion. However, the aforementioned articles do not focus on the opportunity to reduce the cost of healthcare operations

by coordinating surgical instrument assignments and OR scheduling. We address this gap in the literature with the

purpose of reducing the cost of surgical instrument inventory.

There are only a handful of other researchers who have placed an importance on the integration of OR scheduling

and instrument assignment decisions to reduce costs. Most of the literature focuses in reducing the cost of ORs

because these costs are higher than the cost of surgical instruments. However, careful OR scheduling can minimize the

costs associated with surgical instruments [6, 30]. The authors in [6] solve a monthly integrated multi-OR scheduling

problem. They propose an MIP model and a robust formulation with the objective of minimizing overtime, the number

of ORs opened, and the number of instruments sterilized in an emergency. There are some key differences between

their and our work. Firstly, they assign the surgeons to ORs. Each surgeon is assigned to a fixed list of surgeries

to perform in the same OR. Therefore, their model uses a block schedule. Secondly, the sterilization schedules and

related constraints are tailored to the business practices of their partner hospital. Finally, the problem is solved in
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a lexicographic fashion. Their results show that integrated OR scheduling significantly reduces OR costs and also

minimizes emergencies at their partner hospital. Work by [30] integrates decisions about scheduling of multi-ORs

with the decisions about sterilization of surgical instruments. They propose an MIP model to minimize the costs

of sterilization, postponement of surgeries, and the makespan. They show that developing OR schedules first is not

beneficial when the schedule is affected by inventory decisions. They also report that a large percentage of problem

instances result in infeasibility when sterilization decisions were included after the OR schedule was generated. The

authors propose a batch-based heuristic that decomposes the problem into two stages. The first stage assigns surgeries

to ORs and batches, and then the second stage sequences the surgery via an iterative procedure. It is reported that

the integrated OR scheduling reduced the total OR costs. However, the authors do not capitalize on the benefits of

scheduling surgeries over multiple days. Different from [30], our proposed model allows us to exploit the trade-offs

between using OR overtime, purchasing and using inventoried instruments, and using rental instruments.

2.3 Problem Description and Formulation

Consider a hospital that seeks to determine the weekly schedule of ORs. Assume that the surgeries have deterministic

durations and known instrument requirements. We also assume that the hospital carries several instruments of each

type in the inventory. The requirement for surgical instruments can either be met via inventoried instruments or via

rental instruments borrowed on a per surgery basis. We develop an MIP model to identify a schedule of ORs by

assigning each patient to an OR at a specific time and day within the given time horizon. In addition to determining

the OR schedule, our model decides whether to rent an instrument or not, the number of instruments to rent, and

an assignment of rental/inventoried instruments to each surgery. The OR schedule and the instrument assignments

identified by the proposed model minimize the total cost of the system. The cost parameters we include in our model

are designed to match the reality for most ORs in hospitals in the USA. These parameters include the cost of opening

an OR, the cost associated with OR overtime and idle-time, the cost of using an instrument from the inventory, and

instrument rental costs. Overtime represents the number of time slots an OR was occupied beyond the determined

session length. Similarly, idle-time occurs when an OR is opened, but not occupied.

Hospitals strategically invest in standardized, flexible OR suites to promote operational efficiency. Therefore, our

model allows ORs to be used for more than one specialty. After a surgery, a turnover is required to clean and set

up the OR for the next scheduled surgery. We include the OR turnover time in surgery duration. The sterilization

time for surgical instruments is accounted for separately in our model. We assume that surgical instruments are made

available right before the surgery and material handling delays are ignored. Finally, we assume that cancellations are
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not allowed. We choose a time index-based formulation i.e. we break up time into discrete time slots T= 1 . . .T . The

parameters such as duration of surgeries, sterilization time for instruments, etc. are given in terms of the number of

time slots. Time index-based formulation is helpful in tracking the whereabouts of instruments and patients as part of

the solution methods we propose.
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Notations:

Sets and Indices

k ∈K Set of ORs

i ∈ N Set of surgeries

t ∈ T Set of time slots

d ∈ D Set of days

m ∈M Set of instruments

r ∈ R Set of types of instruments

Parameters

li Duration of surgery i in time slots

s Session length of OR (s < T )

cu Cost of idle-time $/time slot

co Cost of overtime $/time slot

ck Cost of opening an OR $/use

cF
r Cost of using an instrument of type r $/use

cR
r Cost of borrowing an instrument of type r $/use

γ Number of time slots required for instrument turnover

dir Number of instrument of type r required by surgery i

pmr


1, if instrument m is of type r

0, otherwise

Ir Inventory level of instruments of type r
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Decision Variables

Xidtk


1, if surgery i is assigned to OR k on day d and starts in time slot t

0, otherwise

Zidtk


1, if time slot t on day d in OR k is occupied by surgery i

0, otherwise

Qdk


1, if OR k is opened on day d

0, otherwise

Vim


1, if surgery i uses instrument m

0, otherwise

Wimtd


1, if instrument m is unavailable due to being used by surgery i in time slot t on day d

0, otherwise

αimtd


1, if surgery i starts in time slot t on day d and uses instrument m

0, otherwise

Odk the amount of overtime on day d in OR k

Udk the amount of idle-time on day d in OR k

Rir the number of instruments of type r rented for use in surgery i

The following is an MIP formulation of the integrated OR scheduling problem (P):

(P):
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minZp =
δ

∑
d=1

K

∑
k=1

[
coOdk + cuUdk + ckQdk

]
+

N

∑
i=1

R

∑
r=1

[
cR

r Rir +
M

∑
m=1

cF
r pmrvi,m

]
(2.1a)

Subject to :

N

∑
i=1

Xidtk ≤ Qdk, ∀d, t,k, (2.1b)

Qdk ≥ Qdk′ , ∀k,k′ ∈K,k′ > k,d, (2.1c)

δ

∑
d=1

N

∑
i=1

K

∑
k=1

Zidtk =
δ

∑
d=1

K

∑
k=1

Qdk, ∀t, (2.1d)

δ

∑
d=1

T

∑
t=1

K

∑
k=1

Xidtk = 1 ∀i, (2.1e)

δ

∑
d=1

T

∑
t=T−li+1

K

∑
k=1

Xidtk = 0 ∀i, (2.1f)

t ∗Zidtk ≤ s+Odk ∀d,k, t, (2.1g)

s∗Qdk −
N

∑
i=1

T

∑
t=1

li ∗Xidtk ≤Udk ∀d,k, (2.1h)

t+li−1

∑
t ′=t

Zidt ′k ≥ li ∗Xidtk ∀i,d,k,1 ≤ t ≤ T − li +1, (2.1i)

δ

∑
d=1

T

∑
t=1

K

∑
k=1

Zidtk = li ∀i, (2.1j)

N

∑
i=1

Zidtk ≤ 1 ∀t,d,k, (2.1k)

Rir +
M

∑
m=1

pmrVim = dir ∀i,r, (2.1l)

N

∑
i=1

Wimtd ≤ 1 ∀t ∈ 1 . . .T + γ,m,d, (2.1m)

N

∑
i=1

M

∑
m=1

pmrWimtd ≤ Ir ∀t,d,r, (2.1n)
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T

∑
t=1

Wimtd = (li + γ)∗
T

∑
t=1

K

∑
k=1

Xidtk ∗Vim ∀i,m,d

(2.1o)

t+li+γ−1

∑
t ′=t

Wimt ′d ≥ (li + γ)∗Xidtk ∗Vim ∀i,k,d,1 ≤ t ≤ T − li − γ +1, (2.1p)

Xidtk ∈ {0,1}, Zidtk ∈ {0,1}, Qdk ∈ {0,1}, Odk ≥ 0, Udk ≥ 0, (2.1q)

Wimtd ∈ {0,1}, Rir ∈ Z+, Vim ∈ {0,1}. (2.1r)

The objective function (2.1a) minimizes the total cost of scheduling the ORs, which consists of, the cost of overtime,

idle-time, opening an OR, using instruments, and renting instruments. Constraints (2.1b) ensure that a surgery is

assigned to an OR only if the OR is open. Constraints (2.1d) ensure that the total number of surgeries does not

exceed the number of ORs open at any time. Since all ORs have the same planned session length, there is complete

symmetry with respect to ORs. Thus, for any solution, an equivalent solution can be obtained by swapping the sets of

surgeries assigned to any pair of ORs on the same day. Constraints (2.1c) eliminate the symmetry and force ORs to

be opened in order. These constraints reduce solution space, thus, making the problem easier to solve [15, 135, 39].

Constraints (2.1e) and (2.1f) make sure that each surgery is scheduled, and is completed before the end of the day.

Constraints (2.1g) calculate OR overtime, which occurs when the OR is occupied beyond the planned session of length

S. Constraints (2.1h) calculate the unused OR time. Constraints (2.1i) ensure that an OR is considered busy during

the surgery. That is, if surgery i begins at period t of day d in OR k, then, no other surgery will be scheduled in OR k

during periods t to t + li of day d since it is in use by surgery i. Constraints (2.1j) ensure that the number of periods

a surgery is scheduled for equals the duration of the surgery. Constraints (2.1k) ensure that at most one surgery can

be scheduled during a particular time slot in a given OR. Constraints (2.1l) ensure that the requirement for a resource

type is met either via rental or inventoried instruments. Constraints (2.1m) ensure that an instrument is used in only

one surgery at any time slot. Constraints (2.1n) ensure that in any time slot, the number of inventoried instruments

being used does not exceed the inventory levels. Constraints (2.1o) and (2.1p) ensure that if an instrument is used for

surgery, then it is busy (i.e., unavailable to be used for another surgery) during the surgery and the instrument turnover

time.

The formulation given above is a nonlinear MIP due to the bilinear term Xidtk ∗Vim in constraints (2.1o) and (2.1p). We

linearize these bilinear terms using the McCormick relaxation method [105]. This results in an exact reformulation

since both Xidtk, and Vim are binary variables. We introduce the binary decision variable αimtd which takes value 1 if

surgery i begins in time slot t of the day d and uses instrument m, and takes value 0 otherwise. To ensure that αimtd

takes value 1 when both Xidtk = 1 and Vim = 1, we add the following set of constraints to the model.
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αimtd ≥ 0 ∀i, t,m,d, (2.2a)

αimtd ≥
K

∑
k=1

Xidtk +Vim −1 ∀i,d, t,m, (2.2b)

t+li+γ−1

∑
t ′=t

Wimt ′d ≥ (li + γ)∗αimtd ∀i,d,m,1 ≤ t ≤ T − li − γ +1, (2.2c)

T

∑
t=1

Wimtd = (li + γ)∗
T

∑
t=1

αimtd ∀i,m,d. (2.2d)

This provides the final formulation of problem (P).

2.4 Solution Methods

Problem (P) is a challenging MIP model to solve directly. In this section, we develop alternative solution methods

including a construction heuristic (H1) and a Lagrangean decomposition-based heuristic (LDH).

2.4.1 Construction Heuristic (H1)

Heuristic H1 solves the problem in two phases. In phase 1, we use an MIP formulation for the OR scheduling problem.

We refer to this formulation as model (S). The solution to model (S) determines the assignment of surgeries to days and

ORs. The start times of surgeries are also determined by ensuring that surgeries adhere to the scheduling constraints.

In phase 2, we fix this OR schedule in model (P). The resulting model with a fixed schedule is an MIP formulation for

the instrument assignment problem. We refer to this formulation as model (F).

The model (S) for the OR scheduling problem is given below. This model uses the same notations as model (P).

(S):

ZS = min
δ

∑
d=1

K

∑
k=1

coOdk +
δ

∑
d=1

K

∑
k=1

cuUdk +
δ

∑
d=1

K

∑
k=1

ckQdk (2.3)

Subject to : (2.1b)− (2.1k), (2.1q)

The objective function (2.3) minimizes the fixed cost of opening the ORs and the variable costs of OR overtime and

idle time.

Solving model (S) in the first phase of heuristic H1 generates an OR schedule. To enforce this schedule in model (F),

the values of OR scheduling variables X ,Z,Q,O, and U from model (S) are fixed as X̂ , Ẑ, Q̂, Ô, and Û respectively in
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model (P). As a result, OR scheduling constraints (2.1b) - (2.1k) are not a part of model (F). We include the remaining

constraints of model (P) in model (F).

The model (F) for the instrument assignment problem is given below. This model uses the same notations as model

(P).

(F):

ZF = min
δ

∑
d=1

K

∑
k=1

[
coÔdk + cuÛdk + ckQ̂dk

]
+

N

∑
i=1

R

∑
r=1

[
cR

r Rir +
M

∑
m=1

T

∑
t=1

δ

∑
d=1

cF
r pmrαimtd

]
(2.4)

Subject to : (2.1l)− (2.1n), (2.2a), (2.2c), (2.2d), (2.1r)

A solution to model (F) i.e. (α,W,V,R) provides an optimal surgical instrument assignment for the OR schedule

obtained from model (S). The proposition we present next shows that this is a feasible assignment for model (P).

Proposition 1. If the tuple (X ,Z,Q,O,U) is a feasible solution to model (S), and (al pha,W,V,R) is a feasible solution

to model (F), then (X ,Z,Q,O,U,α,W,V,R) is a feasible solution to model (P).

Proof. Given a feasible solution to (S), we can always construct a solution to (F). This is because there is no upper limit

on the number of rental instruments that can be used. Therefore, an instrument assignment from owned inventory can

always be augmented with rental instruments to meet the instrument requirements. Since (F) uses a feasible schedule

and generates a feasible instrument assignment, it provides a feasible solution to (P).

H1 uses models (S) and (F) to generate a feasible solution to model (P). The main drawback of this method is that the

quality of the solution is highly dependent on the quality of the OR schedule obtained from model (S).

2.4.2 Lagrangean Decomposition-Based Heuristic

The Lagrangean decomposition (LD) approach developed by [70] has been used to solve optimization models for

supply chain planning and scheduling problems [48, 145, 163, 111, 20], production scheduling problems [161, 69, 33],

transportation planning [48, 49] etc. Since this method is effective for solving large-scale MIP problems, we propose

an LD-based heuristic (LDH) to generate high-quality solutions for (P).

LDH works as follows. First, we reformulate (P) to facilitate the use the LD approach. For this reformulation, we

introduce new variables, which are simply copies of certain variables in (P). We also include copy constraints to

enforce the equality of these copy variables to the original ones. We refer to the extended model that results from

the reformulation of (P) as model (Q). The inclusion of copy constraints and copy variable makes model (Q) larger,

however, the optimal solution of model (Q) is the same as that of model (P). Next, we dualize the copy constraints that
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will lead to decomposition into subproblems (SP1) and (SP2). Each subproblem is solved separately. Since we have

a minimization problem, the sum of the objective function values of the subproblems will be lower than the optimal

objective function value of (P), and can therefore be used as a lower bound (LB) for (P). As the next step, we apply

a heuristic that uses the solutions from (SP1) to generate feasible solutions to (P) that can be used as an upper bound

(UB) for the optimal solution of (P). Once we obtain an upper bound, the subgradient method is used to update the

values of the Lagrangean multipliers. The subproblems are again solved using the new multiplier values to obtain

new LB and UB. This process is repeated until certain stopping criteria are met. The main idea of this decomposition

method is to separate the integrated OR scheduling problem into two subproblems that are computationally easier to

solve.

2.4.2.1 Problem Reformulation

In this subsection, the reformulation of (P) is described. We present new variables and constraints required for the

reformulation. First, we introduce new binary variables Yidtk, that are copies of the scheduling variables Xidtk in

(P). Constraints (2.5c) enforce the equality of these two sets of variables. Using these variables, we rewrite a set

of constraints in (P) by replacing Xidtk by Yidtk as shown in (2.5b). This leads to the following equivalent extended

formulation of (P) i.e. model (Q).

(Q):

min
δ

∑
d=1

K

∑
k=1

coOdk +
δ

∑
d=1

K

∑
k=1

cuUdk +
δ

∑
d=1

K

∑
k=1

ckQdk +
N

∑
i=1

R

∑
r=1

cR
r Rir

+
R

∑
r=1

δ

∑
d=1

N

∑
i=1

T

∑
t=1

M

∑
m=1

cF
r pmrαimtd (2.5a)

Subject to: equations (2.1b) - (2.1n), (2.2a), (2.2d), (2.1q), and (2.1r),

αimtd ≥
K

∑
k=1

Yidtk +Vim −1 ∀i ∈ N, t ∈ T,m ∈M,d ∈ D, (2.5b)

Xidtk = Yidtk ∀i ∈ N,d ∈ D, t ∈ T,k ∈K, (2.5c)

2.4.2.2 Lagrangean Decomposition

As the first step of our decomposition scheme, we dualize the copy constraints (2.5c) and take these constraints to the

objective function. The following is the Lagrangean decomposition (LD) formulation of model (P):
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min
δ

∑
d=1

K

∑
k=1

coOdk +
δ

∑
d=1

K

∑
k=1

cuUdk +
δ

∑
d=1

K

∑
k=1

ckQdk +
N

∑
i=1

R

∑
r=1

cR
r Rir

+
R

∑
r=1

δ

∑
d=1

N

∑
i=1

T

∑
t=1

M

∑
m=1

cF
r pmrαimtd −

N

∑
i=1

δ

∑
d=1

T

∑
t=1

K

∑
k=1

λidtk(Yidtk −Xidtk) (2.6)

Subject to: equations (2.1b) - (2.1n), (2.2a), (2.2c), (2.2d) and (2.5b).

The values of the multipliers λidtk can be positive, negative, or zero, due to equality constraints. The formulation (LD)

can now be separated into the following two subproblems:

(SP1):

ZLD1(λ ) = min
δ

∑
d=1

K

∑
k=1

coOdk +
δ

∑
d=1

K

∑
k=1

cuUdk +
δ

∑
d=1

K

∑
k=1

ckQdk +
N

∑
i=1

δ

∑
d=1

T

∑
t=1

K

∑
k=1

λidtkXidtk (2.7)

Subject to: equations (2.1b) - (2.1k), and (2.1q).

(SP2):

ZLD2(λ ) = min
N

∑
i=1

R

∑
r=1

cR
r Rir +

R

∑
r=1

δ

∑
d=1

N

∑
i=1

T

∑
t=1

M

∑
m=1

cF
r pmrαimtd −

N

∑
i=1

δ

∑
d=1

T

∑
t=1

K

∑
k=1

λidtkYidtk (2.8a)

δ

∑
d=1

T

∑
t=1

K

∑
k=1

Yidtk = 1 ∀i, (2.8b)

δ

∑
d=1

T

∑
t=T−li+1

K

∑
k=1

Yidtk = 0 ∀i, (2.8c)

Subject to: equations (2.1l) - (2.1n), (2.2a), (2.2c), (2.2d), (2.5b), and (2.1r).

The Lagrangean dual problem is:

ZLD = max
λ

(ZLD1(λ )+ZLD2(λ )) (2.9)

Lagrangean decomposition method is based on a special case of Lagrangean relaxation where each set of constraints

appears in one of the two subproblems. To improve the speed of convergence, some constraint sets can be added to

both subproblems [70, 48]. In our case, we add duplicates of constraints (2.1e) and (2.1f) as constraints (2.8b) and

(2.8c) to (SP2).

2.4.2.3 Algorithm for LDH

We develop a heuristic that uses the LD formulation developed in the previous section in order to solve (P). The

algorithm begins initializing Lagrangean multipliers λidtk, the step size σidtk, ε and the scalar νn ∈ (0,2]. The LB and
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UB on the optimal objective value of (P) are also initialized to −∞ and +∞. The maximum number of iterations to

be performed is determined by the parameter nmax. In step 2, we obtain the lower bound for iteration n, i.e. LBn, by

solving SP1 and SP2 and then calculating the sum of the objective values of these subproblems. In step 3, we find a

feasible solution for (P) using the strategy explained in the next section. The total cost of the feasible solution provides

an UB on the optimal solution in iteration n i.e. UBn. Next, we update the LBmax if LBn > LBmax. We keep track of the

incumbent solution by updating the UBmin value if UBn <UBmin. Here, LBmax(UBmin) is the best lower bound (upper

bound) found up to iteration n. The Lagrangean multipliers are updated iteratively via subgradient optimization at the

end of each iteration. The scalar νn is reduced by a certain amount if the lower bound fails to improve after a fixed

number of iterations. The algorithm terminates when one of the following conditions is satisfied: (i) the best lower

bound is equal to the upper bound found so far as this indicates that an optimal solution is found; (ii) the number of

iterations reaches the prespecified bound; (iii) the scalar νn is less than or equal to ε (a predefined number close to

zero). The pseudo-code of LDH is presented by Algorithm1.
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Algorithm 1 Pseudocode of LDH Algorithm

1: procedure ▷

2: Step 1:

3: Initialize λidtk, UBmin, LBmax, σn
idtk, νn, nmax, ε

4: Step 2:

5: Solve (SP1) and (SP2)

6: Calculate LBn = ZLD1(λ
n)+ZLD2(λ

n)

7: If LBn ≥ LBmax

8: LBmax = LBn

9: End If

10: Step 3:

11: Find UBn

12: If UBn ≤UBmin

13: UBmin =UBn

14: End If

15: Step 4:

16: Update λidtk using the equations (2.10) and (2.11)

17: Step 5:

18: Update ν if required

19: Step 6:

20: If n > nmax or νn < ε or UBmin −LBmax ≤ ε

21: Stop

22: End If

23: Otherwise Go To step 2

The Lagrangian multipliers used in formulation (LD) are updated in Algorithm 1 using a subgradient optimization

method. Subgradient optimization is popular among researchers due to its efficiency in solving MIP problems with

LD [160, 31]. Readers are referred to [78] for the detailed discussion about computational performance and theoretical

convergence properties of the subgradient method. We use this method to update the dual multipliers for iteration n+1

if the algorithm does not terminate in iteration n. The Lagrangean multipliers λ
n+1
idtk for iteration n+ 1 are calculated

using the following equation:
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λ
n+1
idtk = λ

n
idtk +σ

n
idtk ∗ (Xidtk −Yidtk) (2.10)

where stepsize σ is calculated using

σ
n
idtk =

νn ∗ (UBmin −LBmax)

∑
N
i=1 ∑

δ
d=1 ∑

T
t=1 ∑

K
k=1(Xidtk −Yidtk)2

. (2.11)

2.4.3 Finding the Upper Bound

In this section, we discuss two methods for generating upper bounds for (P). These methods use solutions to (SP1) to

generate feasible solutions for (P). Since formulation (LD) is a relaxation of (P), any feasible solution to (P) is also

feasible solution to (LD). Since we have a minimization problem, this solution provides a pessimistic estimate or a

valid upper bound for (LD). Proposition 2.4.1 shows that any feasible OR schedule can be used to generate a feasible

solution to (P). Our next proposition shows that a solution to (SP1) yields a feasible OR schedule and therefore can be

used to generate a feasible solution for (P).

Proposition 2. If the tuple (X ,Z,Q,O,U) is a feasible solution to problem (SP1), then, it is a feasible solution to

problem (S) and yields a feasible OR schedule.

Proof. Model (SP1) contains all the OR scheduling constraints of model (S). Therefore, (SP1) is solved using the

same feasible region as (S) with a different objective function. As a result, a solution to an instance of (SP1) is always

a feasible solution to (S).

We use Propositions 2.4.1 and 2 together to generate the upper bounds.

2.4.3.1 Method 1: Simple Upper-Bounding Heuristic (LD-SH)

LD-SH heuristic generates feasible solutions for (P) using feasible solutions to the Lagrangian subproblem (SP1). This

heuristic is very similar to heuristic H1 as it is based on fixing all variables of (SP1) in (P). In every iteration of LDH,

SP1 generates a feasible OR schedule captured by tuple (X ,Z,Q,O,U). We enforce this assignment by fixing the OR

schedule as X = X̂ ,Q = Q̂,O = Ô,U = Û , and Z = Ẑ in (P) to initialize (F). Next, we solve (F) to assign instruments

to surgeries to minimize the total cost of instruments. LD-SH is used to obtain one feasible solution to (P) in every

iteration of LDH. The pseudocode of the heuristic is given below.
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Algorithm 2 Pseudocode of Heuristic LD-SH

1: procedure ▷
2: Step 1: Obtain parameters X̂ , Ẑ, Q̂, Ô,Û from (SP1) solution
3: Step 2: Initialize (F) by enforcing the OR schedule
4: Step 3: Solve (F)
5: Step 4: Return ZF to LDH as UBn

2.4.3.2 Method 2: Bender’s Decomposition-Based Upper Bounding Heuristic (LD-BD)

There is a special structure within the MIP formulation of SP1 that allows us to decompose it into smaller and more

manageable optimization problems. In particular, we decompose the weekly multi-OR scheduling problem into single

day, single OR scheduling problems. Note that the ORs scheduled for a given day do not share any resources with

other ORs in SP1. Given a tentative patient to (day, OR) assignment, this renders the scheduling of surgeries for the

tuple (day, OR) of one day independent of other (day, OR) tuples of the same day, and a OR scheduling model can

be solved for each (day, OR) tuple independently. These independent problems must adhere to the OR scheduling

constraints. A weekly schedule is then constructed by combining the schedules of each individual (day, OR) tuple.

Once we have a feasible OR schedule, we follow the process outlined in the algorithm 2 to obtain a feasible solution

to (P). We apply Bender’s decomposition method to generate new surgery to (day, OR) assignments. The procedure

is repeated until certain termination criteria are met. We keep track of the best feasible solution, i.e. the incumbent

solution for (P). This incumbent solution for the integrated problem is used as UBmin in LDH.

As mentioned above, we use Bender’s decomposition (BD) to obtain surgery to (day, OR) assignments. In particular,

our decomposition method is based on the Logic-Based Bender’s Decomposition [79]. We choose this method because

surgery assignment to (day, OR) tuples results in MIP subproblems, one for each (day, OR) tuple. In this subsection,

we present a BD-based algorithm that decomposes the original MIP model (SP1) into (i) a MIP master problem (MP)

that assigns surgeries to (day, OR) tuples to minimize the total cost associated with opening the ORs on each day

and (ii) MIP scheduling sub-problems (SP), one for each (day, OR) tuple, that minimizes the cost of overtime, idle-

time and the cost of surgery assignments due to λ multipliers. The objective function value of the relaxed problem,

which is an approximation of the original problem, is improved at each iteration by adding valid inequalities for each

scenario. These are known as optimality cuts. In general, the algorithm uses Bender’s feasibility and optimality cuts

to communicate the infeasible status or suboptimal solutions of its SPs to the MP. Since it is easier to obtain a feasible

assignment of surgeries to a (day, OR) tuple, no feasibility cuts are needed. Thus, all discussions in the sections

thereafter will be limited to optimality cuts only. The algorithm is terminated after reaching the iteration limit or when

the MP generates an assignment that is optimal to SP1.

81



Master Problem

The master problem (MP) determines the assignment of surgeries to (day, OR) tuples, and therefore which ORs to

open. Thus, we introduce variables Xidk ∈ {0,1} that decide the assignment of surgeries to each (day, OR) pair. We

define an auxiliary variable θdk that represents the cost of scheduling decisions made in the subproblems. The (MP) is

given below. (MP) uses the same indices and sets as (P) unless stated otherwise.

(MP):

ZMP = min
δ

∑
d=1

K

∑
k=1

[ckQdk +θdk] (2.12a)

Xidk ≤ Qdk, ∀i,d,k, (2.12b)

Qdk ≥ Qdk′ , ∀k,k′ ∈K,k′ > k,d, (2.12c)

δ

∑
d=1

K

∑
k=1

Xidk = 1 ∀i, (2.12d)

N

∑
i=1

Xidk ∗ li ≤ T, ∀d ∈ D,k ∈K, (2.12e)

Combinatorial Bender’s cuts (2.12f)

Xidk ∈ {0,1}, Qdk ∈ {0,1}

Constraints (2.12b) ensure that if a surgery is scheduled in an OR, then that OR is opened. Constraints (2.12d) ensure

that all surgeries are assigned to only one (day, OR) pair. Similar to (P), symmetry-breaking constraints (2.12c) are

added to (MP). Constraints (2.12e) ensure the feasibility of the resulting subproblems. Constraints (2.12f) are the set

of optimality cuts added to (MP).

Sub-problem for each (day, OR)

Each iteration of the master problem determines the values of the assignment variables Xidk. This results in a known

set of allocated patients for each (day, OR). Let the set Ndk represent this allocation and let Ndk denote the number of

surgeries scheduled in (day d, OR k). Since the assignment of surgeries to a (day, OR) pair is fixed, in the subproblems,

the cost of the sequencing decisions is calculated. Model (SP) is used to solve smaller independent subproblems, one

for each (day, OR) tuple. Furthermore, the subproblem (SP) for a tuple (d,k) is solved only when the value of Qdk = 1

i.e. the OR k is opened on day d.

Model (SPdk) defined for each (d,k) determines the start time for each surgery in the set Ndk. Thus, we introduce

variables X̄it ∈ {0,1} that denote whether surgery i begins in time slot t or not for all i and t. Variables Z̄it ∈ {0,1}
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show whether the OR is occupied at time t by surgery i. Variables Ō and Ū determine the overtime and idle-time

respectively. Model (SPdk) is given below. This model uses the same indices and sets as (P) unless stated otherwise.

(SPdk):

ZSP
dk = min cuŪ + coŌ+

Ndk

∑
i=1

T

∑
t=1

λit X̄it (2.13a)

t ∗ Z̄it ≤ s+ Ō ∀t, i ∈ Ndk (2.13b)

s−
Ndk

∑
i=1

T

∑
t=1

Z̄it ≤ Ū (2.13c)

t+li−1

∑
t ′=t

Z̄it ′ ≥ li ∗ X̄it ∀i ∈ Ndk,1 ≤ t ≤ T − li +1, (2.13d)

T

∑
t=1

Z̄it = li ∀i ∈ Ndk, (2.13e)

Ndk

∑
i=1

Z̄it ≤ 1 ∀t, (2.13f)

T

∑
t=1

X̄it = 1 ∀i ∈ Ndk, (2.13g)

T

∑
t=T−li+1

X̄it = 0 ∀i ∈ Ndk, (2.13h)

Z̄it ∈ {0,1}, Ō ≥ 0, Ū ≥ 0, X̄it ∈ {0,1} (2.13i)

The objective function (2.13a) minimizes the cost of overtime, idle-time, and the cost of surgery assignment. Con-

straints (2.13b) and (2.13c) calculate the OR overtime and idle-time respectively. Constraints (2.13d) ensure that an

OR remains busy during surgery. That is, if surgery i begins in time slot t, then, no other surgery will be scheduled

during time slots t to t + li. Constraints (2.13e) ensure that the number of times lots assigned to a surgery is equal to

the duration of the surgery. Constraints (2.13f) ensure that at most one surgery can be scheduled during a particular

time slot in a given OR. Constraints (2.13g) and (2.13h) ensure that each surgery is scheduled and completed before

the end of the day.

Optimality Cuts

In each iteration of BD, a solution to (MP) is the optimal solution since ZSP
dk = θdk ∀SPdk, or provides an upper bound

for the model since ZSP
dk >= θdk for any SPdk. If a solution to (MP) is not optimal, then the following “combinatorial

Bender’s optimality cut” is a valid inequality:
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θdk ≥ ZSP
dk − (ZSP

dk −L)( ∑
i/∈Ndk

Xidk + ∑
i∈Ndk

(1−Xidk)) ∀{(d,k) : Q̄dk = 1} (2.14a)

Where X∗
idk represents the assignment of the surgeries in (MP), ZSP

dk is the optimal solution to SPdk, and L is a valid LB

to θdk. We refer the reader to [150] for more information on these cuts.

The optimality cut (2.14a) presented above is a valid cut for the feasible region in every iteration. However, the use

of these cuts can lead to a very weak formulation, since inequality (2.14a) adds one optimality cut in every iteration

for each (day, OR) pair and removes only one solution from future iterations. It is desirable if the cut (2.14a) can be

further strengthened. We propose two additional inequalities that can be added to the master problem based on the

information obtained from each subproblem.

If adding any surgery to the OR (d,k) increases the current cost, (2.14a) can be further strengthened. In other words,

if every superset of the support of X∗ yields θdk ≥ ZSP
dk the cut can be strengthened as follows:

θdk ≥ ZSP
dk − (ZSP

dk −L)( ∑
i∈Ndk

(1−Xidk)). (2.15a)

On the other hand, if every subset of the support of X∗ yields θdk ≥ ZSP
dk the cut can be strengthened as follows:

θdk ≥ ZSP
dk − (ZSP

dk −L)( ∑
i:X∗

idk=0
Xidk). (2.16a)

The proof of validity of these cuts is provided in the Appendix. To identify if there exists a subset or superset of

surgeries for each pair of (d,k) that satisfy the conditions given above, we propose two models (M1) and (M2). The

details of models M1 and M2 are provided in the appendix. Model (M1) determines whether there exists a superset

of Ndk with a cost less than ZSP
dk . For this purpose, (M1) is solved to schedule all other surgeries in N in addition to

the surgeries in Ndk. This is done by replacing the set Ndk with the set N in the objective function and in constraints.

However, to enforce the current assignment, we leave constraints (2.13g) as is. If no surgeries in addition to surgeries

from set Ndk are scheduled, it implies that there does not exist a superset of surgeries that reduces the cost of scheduling

the surgeries in that (d,k). As a result, the cut (2.15a) is added to (MP). Model (M1) is given below. This model uses

the same notations as (SP).
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(M1)

ZS = min cuŪ + coŌ+
N

∑
i=1

T

∑
t=1

λit X̄it (2.17a)

T

∑
t=1

X̄it = 1 ∀i ∈ Ndk, (2.17b)

Z̄it ∈ {0,1}, Ō ≥ 0, Ū ≥ 0, X̄it ∈ {0,1}

Subject to: equations (2.13b) - (2.13f), (2.13h), (2.13i)

The model (M2) determines whether there exists a subset of Ndk with a cost less than ZSP
dk . For this purpose, we replace

the constraints (2.13g) from (SP) with (2.18b). This allows (M2) to schedule a subset of surgeries from the set Ndk. If

all surgeries from the set Ndk are scheduled, it implies that there does not exist a subset of surgeries that reduces the

cost of OR. As a result, the cut (2.16a) is added to (MP). The model (M2) is given below. This model uses the same

notation as (SP).

(M2)

ZS = min cuŪ + coŌ+
Ndk

∑
i=1

T

∑
t=1

λit X̄it (2.18a)

T

∑
t=1

X̄it ≤ 1 ∀i ∈ Ndk, (2.18b)

Subject to: equations (2.13b) - (2.13f), (2.13h), (2.13i)

Proposition 3. Each iteration of Bender’s Decomposition generates a feasible solution to (SP1).

Proof. The model (MP) determines the surgeries scheduled in each (day, OR) tuple. These schedules are feasible

for each (day, OR) tuple. Model (SP) uses these assignments to generate a feasible schedule. Therefore, a feasible

solution for problem (SP1) can be constructed by combining the schedules of all sub-problems.

LD-BD heuristic is very similar to the heuristic H1, as it is based on fixing all variables of (SP1) in (P). Each iteration

of BD generates a feasible schedule captured by the tuple (X, Z, Q, O,U). We enforce this assignment by fixing the

OR schedule as X = X̂ ,Q = Q̂,O = Ô,U = Û , and Z = Ẑ in (P) to initialize (F). Next, we solve (F) to generate an

instrument assignment that minimizes the total instrument usage and instrument rental costs. LD-BD obtains one

feasible solution to (P) in every iteration of BD. The best feasible solution obtained is used as UBmin in LDH. The

advantage of using LD-BD is that it can generate several feasible solutions within one iteration of LDH. This method

uses a partially guided search by using the λ multiplier values obtained in each iteration of LDH. However, it solves

several optimization problems in order to generate the necessary cuts.
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Algorithm 3 Pseudocode of Bender’s decomposition-based upper bounding heuristic (LD-BD)

1: procedure ▷
2: Step 1: Initialize parameters n, nmax,ε , LB, UB
3: Step 2: Initialize (MP)
4: Step 3:
5: while n < nmax do
6: Solve (MP) to obtain X∗

7: for d ∈ δ , k ∈ K do
8: Initialize (SP)
9: Solve (SP) to compute ZSP

dk
10: end for
11: Update LB = ZMP
12: if ZMP −∑dk θdk +∑dk ZSP

dk ≥UB
13: Update UB
14: Solve (F) to compute ZF
15: if (UB−LB)/UB < ε

16: return UB,X
17: if (ZF −LBmax)/ZF < ε

18: return ZF ,X
19: elif θdk < ZSP

dk − ε

20: develop and add necessary Bender’s cuts
21: end if
22: end while

The pseudocode of the LD-BD algorithm is presented by Algorithm 3. The algorithm begins by initializing the

parameters such as iteration counter n to zero, the maximum number of iterations to nmax, LB and UB on the optimal

solution of the SP1 to −∞ and +∞. In step 2, we initialize MP. In step 3, MP is solved to optimality to obtain surgery

assignment X∗ and objective function value ZMP. ZMP provides a LB for (SP1). Next, we fix the surgery assignments

X∗ and solve SPdk. The solution of each SPdk is used to construct a feasible solution for SP1. This solution is used to

update UB if ZMP −∑dk θdk +∑dk ZSP
dk ≥ UB. For each schedule obtained, we solve (F) to obtain ZF . We terminate

the algorithm LD-BD and LDH if ZF = LBmax, where LBmax is the best lower bound found for the LDH so far, since

ZF = LBmax indicates that an optimal solution to (P) was found. Depending on the feedback, combinatorial bender’s

cuts are added to the (MP). Step 3 is repeated until the algorithm is terminated. The algorithm terminates when the

error gap is less than ε as this indicates that an optimal solution for SP1 is found or when the maximum number of

iterations, nmax,is reached.

2.5 Computational Results

In this section, we first discuss the data we use to generate realistic problem instances for our computational experi-

ments. Next, we compare the performance of the proposed algorithms. Finally, we estimate the value of integrated OR
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scheduling and assess the impact of critical factors via sensitivity analysis to address the research questions outlined

in Section 2.1.

2.5.1 Parameter Estimation

The research presented in this chapter was conducted in collaboration with GMH, one of the seven campuses of Prisma

Health in South Carolina, USA. GMH provides general inpatient services and specialized treatments for heart disease

and cancer. The hospital also houses the Family Birthplace, the Children’s Hospital, and the Children’s Emergency

Center. The research team collaborated with the Perioperative Services Department (PSD), which oversees the OR

scheduling, sterilization, and inventory management processes. The PSD is also responsible for transporting materials

to and from the ORs. For this case study, we assume that the material handling delay is constant and included in

the data. We obtained a data set from GMH that includes information on the type of surgery, the scheduled time,

the scheduled duration, and the actual duration of a surgery. GMH offers 46 different types of surgical services.

Our experimental analysis focuses on 3 types of surgeries; ENT, Orthopedic, and Neurology. We focus on these

surgical services because the data set shows that they are scheduled multiple times per day. Furthermore, Orthopedic

and Neurology surgeries generally require more expensive instruments, and currently use rental instruments to meet

demand. Therefore, there is an opportunity to reduce the cost of instruments through reuse. The surgical cases to be

scheduled in the ORs were randomly sampled from the data. The number of scheduling slots required for each surgery

in our computational experiments was also calculated based on the actual duration of the surgeries obtained from the

data. To convert the duration of surgeries to time slots l, we round the actual duration to the nearest half-hour. We

solve the problem to generate a weekly OR schedule, and hence the number of days, δ is chosen to be 5 days. Our

data analysis indicates that different services do not share more than 3 ORs. Therefore, the number of ORs, K, is set to

3 ORs. The number of surgeries to be scheduled is set to N = 30. This number is also inspired by the data that indicate

that up to 2-3 surgeries are scheduled in an OR in a typical day. We consider instruments of six different types, i.e.

R = 6, and the inventory level, Ir, is set to 2 instruments per type. The requirement matrix for surgical instruments

was generated randomly for each type of surgery. We assume that surgeries may not require more than 1 instrument of

each type. This is a reasonable assumption, since we focus primarily on surgical instruments that are very expensive

to purchase. From the data collected from GMH, we observed that instances of multiple expensive instruments of

the same type being used for one surgery are rare. One can consider expensive instrument sets instead of individual

instruments, as it is also common practice to rent an entire set for a surgery.

Based on an assessment of various cost criteria, we set the following parameters: fixed cost of opening the OR, ck =

$360, session length s = 16, total number of time slots T = 20, overtime cost, co =$100, and the idle time cost, cu =
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$22.5. We assume that using 2 hours of overtime is equivalent to opening a new OR. We set the usage cost as cF = $18

and the instrument rental cost as cR = $36. The OR opening cost, overtime cost, and idle time costs are kept the same

for all experiments. The sterilization time, γ , is set to 6 time intervals, that is, 3 hours, based on an expert opinion in

GMH. We assume that the instruments are sterilized immediately after surgery. As the sterilization department works

for 24 hours in shifts, surgical instruments can be sterilized overnight and it is assumed that they are available to use

at the start of the next day.

2.5.2 Computational Performance of the Proposed Methods

We analyze the performance of the proposed algorithms. The proposed algorithms are coded using the Python pro-

gramming language and are executed on a high-performance HP computer with an Intel Xeon processor with 16 cores

and 62GB of memory. We distinguish between small, N = 10, medium, N = 20, and large, N = 30 problem instances.

Each set of problems consists of 10 different instances and is solved via the Gurobi optimization solver using model

(P). We solve these problem sets again by using the proposed approaches, i.e. LD-SH, and LD-BD algorithms. In

our implementation of the LDH, we obtained ideal parameter values via extensive experiments. These values are then

used for all the problems in this section. We begin with λ = 1 and ν = 1.8. The value of ν is reduced by 20% if

there was no improvement in the last 5 iterations of LDH. LDH is terminated after reaching nmax = 50 iterations or

if the time limit of 5 hours is reached. The algorithm is also terminated if the error gap is less than 1%. We use the

same parameters for both LDH-based algorithms. All three algorithms were stopped after 5 hours. When problem (P)

is solved using Gurobi, both upper and lower bounds are provided by the Gurobi solver. When problems are solved

by our proposed solution approach, the lower bound is obtained from the LD. The error gap for these experiments is

calculated as follows.

Error Gap(%) =
UB−LB

UB
∗100 (2.19)

The results for these experiments are summarized in Tables 2.2, 2.3, and 2.4 for small, medium, and large problem

instances, respectively. We make the following observations.

Observation 1: For small instances, the bounds provided by LD-SH and LD-BD are identical and, in some

cases, better than those provided by Gurobi. It can be observed that the LD-SH and LD-BD methods find

solutions within a 1% error gap very quickly. This is because the number of variables and constraints in

our problem depends on the number of surgeries. See Table 2.2.
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Observation 2: For medium size problems, bounds provided by LD-SH and LD-BD are identical and

significantly better than Gurobi. Both LDH-based methods obtain solutions within a 2% gap on average.

See Table 2.3.

Observation 3: For large-size problems, bounds provided by LD-SH and LD-BD are close and signifi-

cantly better than Gurobi. Both LDH-based methods obtain solutions within a 7% gap on average. Gurobi

does not find solutions within a 1% optimality gap in 5 hours for any of the large or medium problems.

See Table 2.4.

Problem (P) Gurobi LD-SH LD-BD

Error Gap Run Time (Hours) Error Gap Run Time (Hours) Error Gap Run Time (Hours)

Avg 0.39% 1.76 0.00% 0.01 0.08% 0.08

Min 0.00% 0.30 0.00% 0.01 0.00% 0.01

Max 3.91% 0.00 0.08% 0.02 0.81% 0.30

Table 2.2: Experiments for Computational Performance (Small)

Problem (P) Gurobi LD-SH LD-BD

Error Gap Run Time (Hours) Error Gap Run Time (Hours) Error Gap Run Time (Hours)

Avg 7.31% 5.00 1.60% 1.10 1.80% 2.20

Min 1.59% 5.00 0.00% 0.10 0.00% 0.10

Max 14.30% 5.00 8.07% 5.00 9.39% 5.00

Table 2.3: Experiments for Computational Performance (Medium)

Problem (P) Gurobi LD-SH LD-BD

Error Gap Run Time (Hours) Error Gap Run Time (Hours) Error Gap Run Time (Hours)

Avg 11.88% 5.00 5.61% 3.90 6.21% 4.22

Min 6.89% 5.00 0.34% 0.37 0.41% 0.66

Max 15.40% 5.00 10.22% 5.00 10.22% 5.00

Table 2.4: Experiments for Computational Performance (Large)

89



These results show that our decomposition approach is effective, since the resulting algorithms provide better bounds

in reasonable time in most cases when compared with solving (P) directly with Gurobi. The performance of LD-

BD can be improved by developing stronger optimality cuts or by running the sub-problems of BD in parallel. The

advantage of LD-BD is that it generates several feasible OR schedules, one in each iteration.

Several researchers have highlighted the effect of the ratios of fixed cost f to variable cost v on the difficulty of solving

the problem and therefore the quality of the solution for fixed-charge cost functions [118, 87]. To further analyze

the performance of the proposed algorithms, we conduct sensitivity analyses with respect to f/v ratios. For these

experiments, we vary the rental instrument cost cR from 18, 36, 90, 180, 360, 450 to generate ratio values (r1 - r6) as

0.05, 0.1, 0.25, 0.5, 1, 1.25 respectively. Figure 2.4 summarizes the results of these experiments.

Figure 2.4: Sensitivity Analysis Day vs OR Instrument costs

The results indicate that for small values of cost ratios,i.e., r1 − r4 the performance of both algorithms is comparable.

For higher values of cost ratios,i.e., r5 and r6 the performance of LD-BD is inferior to LD-SH. For higher values of

cost ratio values, the problem is easier to solve with LD-SH. As LD-BD algorithm spends more time solving a series
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of MIP problems as part of the BD approach, fewer iterations of the Langrangian decomposition are performed in the

same time. Therefore, the results of LD-BD algorithm are inferior for higher cost ratio values.

2.5.3 Discussion of Results

Research question 1: How do integrating decisions about OR scheduling and inventory management impact the

OR costs?

To address this research question, we implement the construction heuristic H1, which initially solves model (S) and

then uses the corresponding OR schedule to assign instruments to surgeries, that is, model (F). Note that this follows

the current practice at GMH, where the OR schedule is generated first, and then instruments are assigned to ORs based

on the schedule. Next, we solve the integrated OR scheduling problem (P). The objective function value of H1, ZH1,

is compared with the objective function value of problem (P), ZP. We define improvement potential as the percentage

improvement in total costs if a hospital uses integrated OR scheduling instead of the current practice of OR scheduling

and inventory assignment. The improvement potential for these experiments is calculated as follows.

Improvement Potential(%) =
ZP −ZH1

ZP
∗100 (2.20)

We conducted additional experiments to address research question 1. We distinguish between short, l < 4(hours),

and long l > 4(hours) surgeries. These experiments allow us to examine under what conditions the integrated OR

schedule performs well when compared to the current schedule. The attributes of problem sets are summarized in

Table 2.5. Each problem set consists of 10 different problem instances. Tables 2.6, 2.7, 2.8 summarize the results of

these experiments.

Characteristics of Problems

Surgery Duration Size

Small Medium Large

Short Problem 1 Problem 2 Problem 3

Mix of short and long Problem 4 Problem 5 Problem 6

Long Problem 7 Problem 8 Problem 9

Table 2.5: Problem Setup
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We present the minimum, maximum, and average improvement potentials for each problem. We also calculate the

difference between the number of instruments rented in H1 compared to problem (P). We make the following obser-

vations.

Improvement Potential Rental Instrument Reduction

Problems Minimum Average Maximum Minimum Average Maximum

Problem 1 0% 3% 5% 0.0 2.0 4.0

Problem 2 0% 3% 7% 0.0 4.3 9.0

Problem 3 1% 2% 7% 1.0 4.0 13.0

Table 2.6: Result of Model Validation for Short Surgeries

Improvement Potential Rental Instrument Reduction

Problems Minimum Average Maximum Minimum Average Maximum

Problem 7 0% 1% 2% 0.0 0.6 3.0

Problem 8 0% 2% 8% 0.0 1.4 4.0

Problem 9 0% 3% 6% 1.0 2.4 5.0

Table 2.7: Result of Model Validation for Long Surgeries

Improvement Potential Rental Instrument Reduction

Problems Minimum Average Maximum Minimum Average Maximum

Problem 4 0% 1% 5% 0.0 0.8 4.0

Problem 5 0% 1% 2% 0.0 1.9 3.0

Problem 6 0% 1% 2% 0.0 2.5 5.0

Table 2.8: Result of Model Validation for Mixed Duration Surgeries

Observation: For short-duration surgeries, we observe that fewer instruments are rented. In short-duration

surgeries, 2 to 4.3 fewer instruments were rented on the average, as compared to current practice. This is

because many short-duration surgeries are scheduled in a day. Thus, instruments are reused frequently.

See Table 2.6. For long-duration surgeries, the number of rented instruments reduced slightly. We observe

that the average number of rented instruments is 0.6 to 2.4 units lower than the current practice. This is

mainly because only a few long-duration surgeries are scheduled in a day, thus, instruments are reused spo-
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radically. Therefore, integrated OR scheduling demonstrates lower improvement potential when schedul-

ing long-duration surgeries. See Table 2.7. The observed reduction in the number of rented instruments,

when scheduling a mix of surgeries with short and long duration, is consistent with previous observations.

We observe that the average number of rented instruments 0.8 to 2.5 units lower than the current practice.

The daily requirements for rental instruments are lower than those of short-duration surgeries and more

than those of long-duration surgeries. See Table 2.8.

The result indicates that there is considerable value in coordinating instrument inventory decisions with OR schedules.

This is true, especially for hospitals that reserve ORs to schedule shorter surgeries such as dental or ENT surgeries.

These services schedule more surgeries and have higher instrument requirement per day. Therefore more instruments

can be reused in a day. Therefore, the highest improvement can be achieved when surgeries have short duration (l <

4hours). The benefits of using the proposed integrated OR scheduling and inventory model increase with the number of

surgeries scheduled, which could be due to integrating the scheduling of many ORs, or due to increasing the planning

period. Note that, Heuristic H1 is designed to minimize the cost of OR using optimization solvers. In addition, for

any given schedule, Heuristic H1 also assigns the surgical instruments optimally. At GMH and other hospitals, this

is usually not the case. Therefore, the value of integrated OR scheduling could be higher than that observed in our

experiments. Moreover, this integration can lead to reduction in instrument-related costs and improved utilization of

surgical instrument inventory. It also improves healthcare access for patients because hospitals can schedule more

add-on surgeries using the same number of rental instruments/ inventoried instruments.

Research question 2: How does the inventory level of surgical instruments, the length of planning horizon, and

number of ORs scheduled in parallel impact the system utilization and the cost of an integrated OR schedule?

To address this research question, we analyze how sensitive the integrated scheduling problem is to changes in problem

parameters by changing one parameter at a time. In particular, we vary the length of the planning horizon (in days),

number of ORs working in parallel, and the inventory level of surgical instruments to investigate how the availability

of these resources impacts the cost of ORs and the schedule itself. We consider problem instances with a large size,

i.e. N = 30, and surgeries with mixed-duration. In our experimental design, we first change the level of inventory from

1 instrument to 3 instruments by increasing it by 1 unit each time. For each inventory level, we choose the unique

combination of number of days from δ = {3,5} and number of ORs from K = {3,5}. The experiment setup is outlined

in Table 2.9. Each problem consists of 10 instances. The instances are solved using the LD-SH algorithm described in

section 2.4.
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Characteristics of Problems

Number of Days Number of ORs

3 5

3 Problem 1 Problem 2

5 Problem 3 Problem 4

Table 2.9

Figures 2.5 and 2.6 summarize the results of our experiments. The boxplots in Figure 2.5, depict the number of

overtime slots used and the number of idle-time slots in each configuration. The boxplots in Figure 2.6, depict the

number of instruments used, rented, and reused in each configuration. The first 6 box-plots denote the combinations

with 5 ORs, while the last 6 box-plots denote the combinations with 3 ORs. We make the following observations.

Observation 1: The OR-related costs depend on the total available OR time, i.e. the number of days, δ and

the number of ORs, K. Increasing OR time provides more flexibility in scheduling surgeries. Therefore,

the scheduler can leverage the trade-off between using idletime, overtime or using rental instruments. The

results indicate that the OR costs depend only on the total available OR time. When δ and K are set to

the lowest value, on average 13 units of overtime were used. Since the available OR time is sufficient

for all other combinations, there is little to no overtime used. In those cases, a higher idle-time cost was

observed.

Observation 2: The number of instruments used, reused and rented depends on the total available OR

time. As the number of days are increased while keeping the same number of ORs, number of instruments

used from inventory increases. This increase is more when compared to increasing the number of ORs

while keeping the same planning horizon. This is because when planning horizon is longer, the scheduler

has more flexibility to utilize more instruments by scheduling surgeries over multiple days. The rate of

increase in instrument usage reduces as the level of inventory is increased. In smaller planning horizon,

the number of instruments reused is higher when compared to larger planning horizon. This is because all

the surgeries must be scheduled by opening more ORs. Therefore, the model schedules the surgeries to

minimize the use of rental instruments. Finally, as the number of days increased, fewer rental instruments

are used.

Observation 3: As the level of inventory increases, it is not necessary to reuse the instruments. Therefore,

with increasing inventory levels, a reduction in reused instruments was observed. Similarly, increasing

the level of inventory increases the number of instruments used from the inventory. This increase in the
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used instrument diminishes more when the level of inventory is increased from 1 unit to 2 units. As a

consequence of the increased utilization of inventoried instruments, fewer instruments are rented.

Figure 2.5: OR costs

Figure 2.6: Sensitivity Analysis Day vs OR Instrument costs
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2.6 Conclusion

The management of rented surgical instruments has recently garnered the attention of researchers. Hospitals avoid pur-

chasing a large number of surgical instruments due to their high costs. In addition, surgeons may request newer and

technologically more advanced instruments, making on hand inventory quickly obsolete. Hospitals frequently supple-

ment their inventory via rental instruments. However, these decisions are often not re-evaluated. As a result, hospitals

end up with a large number of rental instruments on their shelves. Renting an instrument requires (i) processing of

related paperwork, (ii) following sterilization procedures for rental, which are often different that owned instruments,

and (iii) paying vendors upon use of the rental instruments that are stored in hospitals’ own storage space. The data

obtained from GMH indicates that GMH uses rental instruments frequently. The models presented in this chapter are

motivated by the opportunities for improvement observed in GMHs inventory management and OR scheduling, which

led to the following research questions: How do integrating decisions about OR scheduling and inventory management

impact the OR costs? and How does the inventory level of surgical instruments, the length of planning horizon, and

number of ORs scheduled in parallel impact the system utilization and the cost of an integrated OR schedule?

In order to address these research questions, we propose a new approach to OR scheduling that coordinates schedul-

ing decisions with decisions about the management of surgical instrument inventory. We propose an integrated OR

scheduling model that jointly determines OR schedules and the assignment of surgical instruments to scheduled surg-

eries. This model identifies an OR schedule with the objective of minimizing the cost of opening the ORs, overtime,

and idle-time along with the costs of using and renting instruments. The results of our model were compared with the

approach currently used in OR scheduling where the instrument assignments are determined after the OR schedule is

set. Our computational experiments indicate that significant cost improvement and reduction in the number of rental

instruments required can be achieved with coordinated decision-making. This is especially true for scheduling of

shorter surgeries. When surgery duration is short, our experiments showed a high improvement potential as well as a

higher reduction in the number of instruments rented. To solve the integrated OR scheduling model efficiently, we pro-

pose an easy-to-implement construction heuristic and a Lagrangean decomposition-based heuristic. We propose two

approaches to generate valid upper bound for the optimal solution; a simple heuristic and a Benders decomposition-

based heuristic. Both approaches do determine the OR schedule before making the instrument assignment decisions.

A subgradient method is then used to iteratively find better upper and lower bounds on the optimal solution. The

Lagrangean decomposition-based heuristic is terminated when optimal solutions are found or pre-specified time limit

has reached. We compare all solution methods in terms of objective function value and running time. In addition, we

also conduct a sensitivity analysis based on the size of the problem, the duration of surgeries, the level of inventory, the

number of ORs, the length of the planning horizon, and the cost ratios. Our results indicate that the proposed solution
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approaches outperform Gurobi, a commercial solver, in terms of running time and solution quality. The results also

indicate that both decomposition-based approaches provide high quality bounds.

Based on our experience, hospitals pay more attention to OR scheduling than instrument assignment decisions. This

is because major portion of hospitals income is driven by surgical procedures. As a result, inventory management

decisions follow the advance OR schedules in conventional approaches. However, our experiments show the cost of

ORs can be greatly reduced by integrating these decisions. Hospitals should identify opportunities to coordinate OR

scheduling and instrument assignment decisions.
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Chapter 3

Metaheuristics

3.1 Introduction

During the past few decades, advances in computer science, artificial intelligence, and operations research have re-

sulted in exact optimization and heuristic methods that have applications for complex decision-making problems. One

such method, Tabu Search (TS), forms the basis of this chapter. The Tabu search is a versatile heuristic that is used

to solve several combinatorial optimization problems. The objective of Chapter 3 is to develop quick and efficient

algorithms to solve the integrated OR scheduling and inventory management problem, and to generate optimal/near-

optimal solutions that increase the efficiency of GMH operations. In Chapter 2, we introduced the integrated OR

scheduling problem (P), which is a combinatorial optimization problem. As such, the problem is challenging to solve

using commercial solvers. To solve this problem efficiently, we proposed a construction heuristic (H1) and a La-

grangean decomposition-based heuristic (LDH) that determine lower bounds (LB) for the optimal objective function

value. In addition, we propose two heuristics to determine upper bounds (UB). These methods generate feasible so-

lutions that show promising results for smaller problems. However, they do not work well to solve larger problems

because they are iterative procedures and computationally expensive. These challenges have motivated the develop-

ment of metaheuristics to solve OR scheduling problems, which have been shown to be very effective in solving other

combinatorial problems in general [63], and scheduling problems in particular [65, 164].

An interesting characteristic of combinatorial problems is the presence of locally and globally optimal solutions. There

can be many solutions that can be optimal locally. Searching for improving solutions in a neighborhood can be very

useful for combinatorial optimization problems. A neighboring solution of a solution X , is composed of solutions that

can be reached from the current solution X with a certain perturbation. For example, if a solution for our problem is
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a sequence of surgeries X = {1,2,3,4}, then a solution X̄ = {2,1,3,4} can be reached by swapping 2 surgeries 1 and 2

in the sequence. Therefore, the solution X̄ is in the neighborhood of the solution X . Metaheuristics use a local search

approach to intensify the search procedure. Local search heuristics begin with an initial solution and then proceed

from the local optimum within one neighborhood to the next neighborhood. At the end of the algorithm, the best local

optimum solution is considered the final solution. However, a major disadvantage of a local search procedure is that

they are prone to get stuck in a local optimum. If no improving solutions are found in the next neighborhood, the local

search heuristic reverts back to the last local optimum found and searches the same neighborhood again and again. The

algorithm terminates with a local optimum [116]. These locally optimal solutions can be very far from the globally

optimal solutions. The efficiency of the local search is affected by the size of the neighborhood and the mechanism

used to determine the neighboring solution to move to. Therefore, techniques to overcome local optimality have been

investigated by several authors [157]. Local optima can be escaped by including certain rules in the search procedure

to temporarily select a solution even if it is a non-improving one, to have the ability to find improving solutions in the

long-run.

TS is an intensive local search method that was first introduced by [63] in 1986. TS uses memory and search history to

keep track of recently visited solutions and avoids revisiting the same local solutions repeatedly [164]. The algorithm

begins with an initial feasible solution that is iteratively improved. At every iteration, the TS moves to another solution

in a defined neighborhood of the current solution. Generally, the best solution in the neighborhood is selected for the

move; however, this solution does not have to be an improving one. To avoid being trapped in a local optimum, a Tabu

list is used. This list uses short-term memory to store recent moves in the search process. This information is used

to guide the next phase of the search process. For example, it is forbidden to repeat a move for a specified number

of iterations of the search process. This number is known as the Tabu tenure, and forbidden moves are called Tabu.

When the tenure of each Tabu move is over, the move is removed from the Tabu list. The aim is to prevent repeated

visits to the same solution, which would limit the search to a certain area of the solution space. A Tabu move can only

be made when it is an improvement on the best solution found so far; this condition is called the aspiration criterion

[117].

We have two main motivations for developing new algorithms. First, we have developed the H1 construction heuristic

and the LD-SH heuristic to solve the integrated OR scheduling problem, problem (P). For large-sized problems, the

solutions obtained by LD-SH indicate an error gap of about 6% on average. The solutions obtained by the H1 heuristic

are within < 10% of those of Lagrangian UBs as shown in Tables 2.6, 2.8, and 2.7. This indicates that there is

an opportunity to improve the H1 heuristic and the LD-SH in terms of solution quality. Furthermore, LD-SH takes

several hours on average to find high-quality solutions. Each iteration of the LD-SH sometimes takes several minutes.
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Furthermore, the heuristic H1 requires one to solve two difficult mixed-integer programming models (Models S and

F) one after the other. As a result, there is also an opportunity to improve both the H1 heuristic and LD-SH in terms

of running time. In light of these observations, we develop a new construction heuristic H2 to find an initial solution.

The H2 heuristic obtains OR schedule and instrument assignments in less than 1 second on average for large-sized

problems. Second, we expect that using a local search will help us improve this solution quickly; therefore, we develop

a TS algorithm that includes a local search. Although TS does not guarantee optimality, they have proven to be fast and

efficient in generating near-optimal solutions for difficult scheduling problems [65] and, more recently, this method

has been used several times successfully to solve OR scheduling problems [110, 7, 131, 88].

The rest of this chapter is organized as follows: Section 3.2 reviews the literature that is relevant to this work. Section

3.3 provides a detailed description of the algorithm. Section 3.4 introduces a case study and discusses the results of

computational experiments. Finally, Section 3.5 summarizes the key takeaways and presents concluding remarks.

3.2 Literature Review

The literature classifies metaheuristics into two categories, (i) single-solution metaheuristics, where a single solution

(and search trajectory) is considered at a time, and (ii) population metaheuristics, where multiple solutions can be de-

veloped concurrently [61]. Commonly used single-solution metaheuristic methods are Greedy Randomized Adaptive

Search Procedure (GRASP), Simulated Annealing (SA), Variable Neighborhood Search (VNS), and TS. Commonly

used population metaheuristics are Ant Colony Optimization (ACO), Evolutionary Algorithms (EAs), and Scatter

Search (SS). These methods can be distinguished on the basis of how the solution is constructed, i.e. from scratch or

via improving the current solution. In the review by [157], metaheuristic methods such as TS and GA are discussed to

solve optimization problems. Their discussion highlights the importance of a greedy initial solution in the development

of TS.

TS has been shown to produce optimal and near-optimal solutions to a wide variety of scheduling problems, such as

personnel scheduling, production scheduling, and scheduling in healthcare while efficiently utilizing computational

resources and time.. For example, the work by [65] investigates the employee scheduling problem with the TS algo-

rithm. The integer programming formulation of this problem had one to four million variables. TS algorithm obtained

solutions with less than 2% optimality gaps in 20 minutes. TS has numerous applications in the manufacturing set-

ting, for example, in job-shop scheduling [36, 141]. For example, [36] consider a job-shop scheduling problem with

two neighborhood structures that swap jobs on critical paths. They find optimal solutions for many instances of the

benchmark problem they consider. [47] also used a TS algorithm to solve a flow-shop scheduling problem. Their
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implementation of TS used three different neighborhood structures (2-swap, 3-swap, and insertion) to diversify the

search process. They observed that this TS algorithm obtained solutions as good as the neuro-TS and ACO algo-

rithms when compared. The running time of their TS and ACO algorithms was identical, but TS provided solutions

closer to optimal solutions. TS has several applications in parallel machine scheduling problems [24, 96, 77, 117].

For example, [77] solves the problem of unrelated parallel machine scheduling with sequence and machine-dependent

setup times to minimize the makepan. Their proposed Tabu Search algorithm uses two perturbation schemes: intra-

machine perturbation, which optimizes the sequence of jobs on the machines, and inter-machine perturbation, which

balances the assignment of the jobs to the machines. [96] solve similar problem with the insert move in addition to

the ones used by [77]. An insert move is a move that inserts a job into any machine. A variant close to our problem

is studied by [117]. This problem is a parallel machine scheduling problem with instrument availability constraints.

Their implementation of TS shows that the algorithm obtains near-optimal results. They found that the quality of the

solution was not affected due to the problem size; however, the large instances of problems required a longer time

to find good solutions. The largest problem they solve has 15 jobs, 2 machines, and 8 different types of instrument.

The objective of their work is to minimize the makespan. Even though our problem has somewhat similar structures,

our work differs because we include several additional decisions to minimize instrument-related costs and OR-related

costs. In addition, we also solve a larger-sized problem. Similarly to their implementation, to diversify search process,

we restart with a new initial solution in the diversification phase.

Work by [110] reviews the literature related to the metaheuristic for the OR scheduling problem. Similarly to our

research, most articles reviewed by [110] develop metaheuristics to solve the open OR scheduling problem. They find

that TS, GA and ACO are the most commonly used metaheuristics for these problems. TS is the most commonly

used single-solution metaheuristic to solve OR scheduling problems. More recently, TS algorithm has been used more

successfully to solve OR scheduling problems [11, 95, 7, 151, 88]. For example, [50] propose a TS algorithm and

fastest ascent local search method (FALS) for the OR scheduling problem. They use a pairwise exchange mechanism

to generate neighborhood solutions. They found that TS algorithm provides high-quality solutions in reasonably short

computation times compared to the FALS method. [151] presents TS based metaheuristic to solve OR scheduling

problem with the objective of minimizing the make-span. They compare this method with SA and find that TS-based

methods provide better quality solutions faster. [131] propose a TS with a discrete event simulation model to minimize

patient waiting time, completion time, and number of cancellations. They also propose a Tabu search algorithm that

uses integer and binary linear programming to generate initial solutions. To efficiently search the solution space, they

use a concept called candidate list that evaluates promising solutions first before evaluating other solutions. They find

that mathematical programming-enhanced TS algorithm show better results compared to the traditional TS algorithm.
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The main difference between our TS algorithm and other tabu search algorithms developed for the OR scheduling

problem is that other algorithms use a single neighborhood structure. Our TS algorithm diversifies the search for a

better solution using three different neighborhood structures. In addition, for each neighborhood, we build a candidate

list separately that consists of promising neighbors so that the neighborhoods are searched efficiently.

There are numerous applications of TS used to make OR scheduling decisions coupled with constraints on other

factors such as surgeon availability, patient preferences, limited surgical and recovery resources, etc. For example,

[35] solve the OR scheduling problem to minimize the makespan. They also take into account patient sequence-related

constraints and other resource-related constraints. [7] propose a Tabu search heuristic to maximize OR utilization and

minimize idle time in the neurosurgery department. They solve a problem as large as 5 days, 3 ORs, 10 surgeons, and

around 130 cases per month. The solutions obtained using the TS algorithm were within 8% of the solutions obtained

by MIP formulation. Work by [95] to solve the OR scheduling problem with the objective of balancing the occupancy

in the recovery room after surgery. Their implementation of the TS algorithm provides better results than other local

search algorithms. [88] integrate OR scheduling with surgeon schedules. The objective of their work is to minimize

overtime costs in hospitals by developing realistic OR schedules. The features of their problems include a significantly

large number of surgeries, several types of services that must be scheduled in the ORs, and limited staffing resources.

We note that our work extends the applications of TS for OR scheduling problems by that coordinates instrument

assignment decisions with OR scheduling.

In the next section, we describe the details of the implementation of our TS algorithm to solve the integrated OR

scheduling problem.

3.3 Elements of the Tabu Search approach

3.3.1 Initial Schedule

As most metaheuristic methods begin with an initial solution, we develop a fast and efficient constructive approach

to yield an initial solution. Our construction heuristic H2 works in two phases. In phase 1, we generate surgeries for

(Day, OR) assignments following a rule of thumb based on the results of the experiments performed in Chapter 2.

First, we fix the number of days and the number of ORs to use. Because instruments can be sterilized overnight, an

intuitive idea is to schedule surgeries on separate days. Therefore, a list of (Day,OR) tuples is created. The (Day,OR)

tuples are used in the day-first order. For example, (Day 1, OR 1) will be used first. After that, (Day 2, OR 1) will be

used instead of (Day 1, OR 2). A dictionary is maintained that keeps track of the total duration of surgeries assigned to

each (Day,OR). Next, we select the first surgery from the randomly ordered list of surgeries. The surgery is assigned
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to the first (Day,OR) that is eligible for assignment. The surgeries assigned to each (Day,OR) are sequenced in the

order they were assigned. This procedure determines the start and end time of each surgery. Once a sequence has been

generated, OR related costs such as overtime cost, idle-time cost, and the cost of opening the ORs are computed. The

procedure is repeated to identify the number of (Day,OR) to use. The combination with the lowest OR-related cost is

chosen as the starting solution of phase 1.

Definition 1. Let Edk be the end time of surgeries on (Day d, OR k). Let li be the duration of the surgery i. Let SL be

the planned session length and T be the total number time slots. Then, a (Day, OR) = (d, k) is eligible if i, Edk < SL

and Edk + li ≤ T .

In phase 2, surgical instruments are assigned to the surgeries. Since instruments can be sterilized overnight, at the

beginning of the next day, all surgical instruments are considered sterilized and available. Therefore, Phase 2 is

repeated for each day separately. For each day, phase 2 begins by creating a list of instruments. The time of availability

Am for each instrument m is set to zero. The time of availability is the earliest time an instrument is available for use.

The first surgery is then selected and the eligible instruments are assigned to the surgery. If there is no eligible

instrument available, a rental instrument is assigned for surgery. The process continues until all surgeries have surgical

instruments assigned. For each instrument, we keep track of information on the surgeries to which it is assigned.

Once an instrument is used for surgery, it must go through a sterilization process. This is accounted for by adding

the duration of sterilization with the duration of surgery. By doing so, we keep track of the time at which it becomes

available again. This process is repeated for all days. Once an initial instrument assignment has been generated, the

total instrument-related cost such as the usage cost and the rental cost is computed.

Definition 2. Let Si be the start time of surgery i on day d. Let li and γ be the duration of surgery i and sterilization

time, respectively, in time slots. Let Dir be the requirement of surgery i for the type of instrument r. Let Am be the

earliest time the instrument m is available. Let Pmr be a binary matrix that denotes whether the instrument m is of type

r. Then an instrument m is an eligible instrument for surgery i, if Am < Si and Pmr = 1.

Definition 3. The time of availability Am is updated as Am = Si + li + γ

The pseudocode of phase 1 of the heuristic H2 is given below. The algorithm begins by initializing two empty sets,

set N surgeries which is a randomly ordered set. The set β is a set of all open (Day, OR) tuple. We maintain a list of

surgeries assigned to each (day, OR) tuple denoted by βdk. We begin by assigning the first surgery to the first (Day,

OR) tuple in the set β . For subsequent surgeries, we select the first eligible (Day,OR) tuple and assign the surgery.

Once the surgical assignments to (Day, OR) tuples have been generated, we calculate the cost of the schedule given

by Z1. We keep track of the incumbent cost of the schedules, ZS. The number of available (Day,OR) tuples is then
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reduced until the problem becomes infeasible. The minimum cost solution is selected as the starting solution for phase

2.

Algorithm 4 Pseudocode of Phase 1 of H2

1: procedure ▷

2: Step 0: Initialize sets N, β , Z1 = ∞ and βdk = []

3: Step 1:

4: for i ∈ L do

5: for (d,k) ∈ β do:

6: if (d,k) is eligible :

7: βdk ∪ i

8: else next (d,k)

9: end for

10: end for

11: Step 2: Sequence surgeries in the order they were assigned

12: Step 3: Compute Z1

13: Step 4:

14: if ZS < Z1

15: Z1 = ZS

16: Step 5: Update β and go to step 1

The pseudocode of phase 2 of the heuristic H2 is given below. The algorithm begins by initializing βd which is a list

of surgeries assigned to day d, an instrument assignment matrix Vi, a time of availability matrix A for each instrument

m. For each day, surgery i with the earliest start time is chosen from βd . Next, the instrument requirement for surgery

i is checked. If an eligible instrument is available for use, the instrument is assigned to the surgery i, otherwise a

rental instrument is assigned. Once an instrument m is assigned for surgery i, the time of availability matrix for that

instrument is updated. This process is repeated for each day in the planning horizon. The total instrument-related cost

of the solution is denoted by ZI .
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Algorithm 5 Pseudocode of Phase 2 of H2

1: procedure ▷

2: Step 0: Initialize sets N, β , Z1 = ∞ and βd

3: Step 1:

4: for d ∈ δ do

5: for i ∈ βd do:

6: if instrument m is eligible:

7: Vi ∪m

8: else Vi ∪R

9: end for

10: end for

11: Step 3: Compute ZI

This completes our initial solution heuristic H2. The total cost of the initial schedule is given by ZF = ZS +ZI . The

resulting solution is used as a starting point for our Tabu search.

3.3.2 Neighborhood definition

In scheduling problems, a solution is represented by a series of surgeries. A neighborhood for a given solution is

defined as the set of permutations that can be created by a certain perturbation of the current solution. Some common

perturbation schemes used for scheduling problems are adjacent exchange, random exchange, and insertion [47]. In the

proposed TS algorithm, we use three perturbation methods that are based on two exchange schemes: 1) two exchanges

in the same OR (2EX1), 2) two exchanges between different ORs of the same day (2EX2), and 3) two exchanges

between the two days in any OR (2EX3).

A solution to our problem is represented by the sequence of surgeries that will be carried out in each (Day,OR) tuple.

The following is a sample representation of an OR schedule.

Day 1, OR 1: Surgery 1 - Surgery 2 - Surgery 3 - Surgery 4

Day 1, OR 2: Surgery 5 - Surgery 6 - Surgery 7

Day 2, OR 1: Surgery 8 - Surgery 9 - Surgery 10 - Surgery 11

Day 2, OR 2: Surgery 12 - Surgery 13 - Surgery 14 - Surgery 15

Example 1. Let πddkk be the current sequence of surgeries in (Day d, OR k). Let πd1k1 = [1,2,3,4], πd1k2 = [5,6,7],

πd2k1 = [8,9,10,11], and πd2k2 = [12,13,14,15].
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We will use Example 1 to formally define the exchange schemes.

Definition 4. Let πd1k1 be the current sequence of surgeries in (Day 1, OR 1). Then, a neighbor of πd1k1 using the

2EX1 scheme is obtained exchanging surgeries at positions i, j. Surgery πd1k1 [i] is then swapped with surgery πd1k1 [ j].

In Example 1, πd1k1 = [1,2,3,4]. Let i = 2, j = 3, then the neighbor according to 2EX1 would be π̄d1k1 = [1,3,2,4].

Definition 5. Let πd1k1 and πd1k2 be current sequence of surgeries in (day 1, OR 1) and (day 1, OR 2). Then, a

neighboring solution is obtained using the 2EX2 scheme by swapping the surgeries in position i from πd1k1 and in

position j from πd1k2 . Surgery πd1k1 [i] is swapped with surgery πd1k2 [ j].

In Example 1, πd1k1 = [1,2,3,4] and πd1k2 = [5,6,7]. Let i = 2 and j = 3, then the neighbor according to 2EX2 would

be π̄d1k1 = [1,7,3,4] and π̄d1k2 = [5,6,2].

Definition 6. Let πd1k1 and πd2k1 be the current sequence of surgeries in (day 1, OR 1) and (day 2, OR 1). Then,

a neighboring solution using the 2EX3 scheme is obtained by exchanging the surgeries in position i from πd1k1 and

position j from πd2k1 . Surgery πd1k1 [i] is swapped with surgery πd2k1 [ j].

In Example 1, πd1k1 = [1,2,3,4] and πd2k1 = [8,9,10,11]. Let i = 1 and j = 1, then the neighbor according to 2EX3

would be π̄d1k1 = [8,2,3,4] and π̄d2k1 = [1,9,10,11].

To speed up the search process, we only consider feasible moves in a neighborhood. This helps us to eliminate several

solutions from consideration. Before any move is considered, a feasibility check is performed. The definition of a

feasible neighboring move for our neighborhood is given below.

Definition 7. Let Ek1 and Ek2 be the end times of the last surgery in the ORs k1 and k2, respectively. Let surgery i ∈ k1

and has duration li and surgery j ∈ k2 has duration l j time slots. A swap (i, j) is feasible if Ek1 − li + l j ≤ T , and

Ek2 − l j + li ≤ T .

Candidate Lists

Examining the entire neighborhood with TS provides high-quality solutions, in general. However, doing so is com-

putationally expensive [47, 66]. For this reason, it is important to apply TS in conjunction with a strategy that can

isolate regions of the neighborhood that have the desired qualities. One of the prominent strategies is called Preferred

attribute candidate lists. With this strategy, certain attributes of the moves that are expected to be attributes of good

solutions are put on a list of candidates [66]. It can be advantageous to isolate certain attributes of moves that are

expected also to be attributes of potentially good solutions, and to limit consideration to those moves whose compo-

sition includes some portion of these preferred attributes. Some surgeries are generally better candidates than others

to be scheduled early or later in the sequence. The candidate list considers swaps whose composition includes at least
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one of these preferred attributes. For example, in the 2EX2 neighborhood, moves that minimize overtime in one OR

and idletime in another OR are potentially good moves to evaluate. These moves are added to our Preferred attribute

candidate lists for the 2EX2 neighborhood. Moves on this list are evaluated first to perform a modified search within

each neighborhood, followed by an evaluation of other moves from the neighborhood. Next, we describe the modified

neighborhood search methods for each neighborhood.

Preferred attribute move for 2EX1: In the first neighborhood 2EX1, swapping two surgeries in the same

OR does not affect overtime or idletime. In that case, we search for two adjacent surgeries that have

a common instrument requirement. Examining the moves in which adjacent surgeries do not have a

common instrument requirement is likely to yield improved solutions. For example, suppose that adjacent

surgeries positioned at i and i+ 1 have a common instrument requirement. If surgery at position i is

swapped with surgery i−1 or surgery at position i+1 is swapped with i+2, then it is likely that surgeries

previously positioned at i and i+ 1 can reuse the same instrument after sterilization. As a result, moves

(i, i− 1), (i+ 1, i+ 2) are added to the candidate list. This is done for each (Day,OR) tuple. If there are

no moves on the candidate list, we continue with the definition 4 of the 2EX1 neighborhood where the

values of i and j are generated randomly.

Preferred attribute move for 2EX2: In the second neighborhood 2EX2, we swap surgeries in two different

ORs the same day. In this case, swapping two surgeries can affect overtime or idletime. Since OR-related

costs are very high, examining the moves that minimize OR-related costs is likely to yield improved

solutions. For example, consider a schedule with cost Zsold suppose that k1 and k2 are the two ORs in the

neighborhood under consideration on day d and Edk1 < SL and Edk2 > SL. This indicates that idletime

and overtime costs are incurred in ORs k1 and k2, respectively. For each swap between surgery i ∈ βdk1

with duration li and surgery j ∈ βdk2 with duration l2, we calculate new values of Edk1 = Edk1 − li + l j and

Edk2 = Edk2 − l j + li. With the new ending times for each OR, we calculate the new cost of the schedule

Zsnew . If Znew
s < Zold

s , move (i, j) is added to the candidate list. This process is repeated for each day on

the planning horizon as swapping two surgeries on the same day does not affect the OR-related costs on

other days. If there are no moves in the candidate list, we continue with the definition 5 of the 2EX2

neighborhood where the values of i and j are generated randomly.

The preferred attribute move for 2EX3: In the third neighborhood 2EX3, we swap surgeries in two differ-

ent (Day, OR) tuples on different days. In the modified search for 2EX3, two different types of moves are

added to the candidate list that exibit preferred attributes. The first type of move minimizes OR-related

costs in two ORs on different days d1 and d2. We search for two tuples of different days for which
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Ed1k1 < SL and Ed2k2 > SL. Then the exact same process as described above is followed for the two (Day,

OR) tuples under consideration. Once moves that minimize the OR-related costs are added to the candi-

date list, we prioritize moves that can likely reduce the instrument-related costs. For example, let surgery

i ∈ βd1 and uses rental instrument of type R1 and surgery j ∈ βd2 and uses rental instrument of type R2.

We add move (i, j) to the candidate list. This reduces the requirement for the instrument of type R1 and

R2 by 1 for days d1 and d2, respectively. If these surgeries share an instrument requirement, then these

moves are added at the end of the list. If there are no moves on the candidate list, we continue with the

definition 6 of the 2EX3 neighborhood where the values of i and j are randomly generated.

3.3.3 Move strategy

The move strategy determines how the neighbors are visited. The commonly used move strategies are the best move

and the first-better move [47]. In the first-better-move strategy, neighbors are evaluated one after the other. If an

improving solution is found, a move is made to that solution. In the best-move strategy, all neighbors are evaluated,

and then only a move is made to the most improving solution. Evaluating all neighborhoods is not computationally

efficient if the neighborhoods are large. Since the 2EX2 and 2EX3 neighborhoods are relatively large, we use the

first-better-move strategy.

The move value, the difference between the objective function value of the current incumbent solution and that of a

neighboring solution must be calculated for all neighboring solutions considered. However, in our problem structure,

each day is independent of each other and, therefore, the evaluation of a neighbor in 2EX1 and 2EX2 only changes

the cost for the corresponding day. The evaluation of the neighbors in 2EX3 changes the costs for two days of

consideration. Therefore, for efficiency, only changes in the days affected by the move are included in that calculation,

significantly reducing the effort required for the evaluation of the move.

3.3.4 Tabu List

The Tabu list Tl stores all forbidden moves called Tabu moves. The size of the list Tl is bound by a parameter Lt , called

the Tabu list size. When the cardinality of Tl is Lt , before adding a new element to Tl , the oldest element is removed

from the list. The size Lt of the Tabu list could be fixed or could be dynamically changed through certain adjustments

[64]. Via an initial set of experiments, we establish that a Tabu list of size 6 is appropriate for our experiments and

implement it as a first-in, first-out queue. Our definition of a Tabu move is given below.

Definition 8. Let i and j be the two surgeries swapped in iteration n. Then swapping of surgeries (i, j) or ( j, i) is

considered Tabu for the next Nt iterations.
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In example 1, πd1k1 = [1,2,3,4]. Let i = 2, j = 3, then the neighbor according to 2EX1 would be π̄d1k1 = [1,3,2,4]. We

add a tuple (3,2) to the Tabu list. For the next Nt iterations, any swap between these surgeries will not be considered.

3.3.5 Stopping condition

The algorithm begins with the 2EX1 neighborhood for each day and each OR and searches for the solution space

following the rules described above. As the 2EX1 neighborhood is comparatively small, we explore all the neighbors

in the 2EX1 neighborhood. After that, the algorithm explores the 2EX2 neighborhood of the current solution. This

neighborhood is explored for each day for a certain number of iterations. If no better solution is found, the algorithm

switches to the 2EX3 neighborhood. We call this the intensification phase, or inner loop. In this phase, we search the

neighborhood of the current solution and move to the best feasible neighbor solution that is not Tabu. The inner loop

is terminated when a prespecified number of iterations is reached.

In the diversification phase, that is, the outer loop, there are two main diversification techniques used in the literature,

restart diversification and continuous diversification. In the continuous diversification process, diversification mea-

sures are included in regular neighborhood search procedures. In restart diversification, the search is moved towards

unvisited regions by introducing few rarely used components to the current solution. The TS algorithm is restarted

from that point on. We use restart diversification where we restart the TS algorithm with a different initial solution.

To begin with a new initial solution, we randomly order the set N and run the heuristic H2 again. When this is done,

the surgeries are assigned to different (Day,OR) tuples, and therefore different solution spaces are searched. The outer

loop is terminated when a pre-specified number of iterations is reached.

3.3.6 Description of the TS algorithm

The pseudocode of the algorithm presented in 6 combines the aforementioned elements of the Tabu search. The

algorithm starts by initializing some parameters first. The parameters NI and No denote the number of inner and outer

iterations to be performed. The Tabu list, Tl , is initially an empty set. For each outer iteration, we start with a new

current solution Xc. For each inner iteration, the 2EX1 neighborhood is explored in search of a better solution. If

an improving non-Tabu solution Xb is found, we set Xc = Xb. The Tabu list is updated after we change the current

solution. We increase the inner iteration number and continue with the same neighborhood. If an improving solution

is not found, the neighborhood is changed to 2EX2 and then to 2EX3. Both 2EX2 and 2EX3 are evaluated for a certain

number of moves in addition to all the moves on the preferred attributes candidate list. At the end of an iteration, if

an improving neighboring solution is not found, we select the neighbor with the least non-improving cost and call it
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neighbor Xb, and set it to current solution, i.e., Xc = Xb. After NI iterations, we diversify the search by restarting with

a new initial solution.

Algorithm 6 Pseudo code for TS algorithm

1: procedure ▷
2: Initialize Nin, Nout , Tl = []
3: while Nout < No do
4: Obtain initial solution Xc,
5: while Nin < NI do
6: Perform search in 2EX neighborhoods
7: Select first most improving/ least non-improving, non Tabu neighbor Xb
8: Set Xc = Xb, Zc = Zb
9: Update Tl

10: if Zb < Z∗

11: Z∗ < Zb
12: Nin = Nin +1
13: end while
14: Nout = Nout +1
15: end while

3.4 Computational Results

The objective of our computational analysis is to evaluate the performance of the TS algorithm in terms of execution

time and the quality of the solutions provided. We demonstrate this using the same case studied in Chapter 2. The same

set of surgical cases from Chapter 2 was used to solve the integrated OR scheduling problem using TS. To convert the

duration of surgeries into time slots l, we round the actual duration to the nearest half-hour. We solve the problem of

creating a weekly OR schedule, and hence the number of days δ is chosen to be 5. Our data analysis indicates that

different services do not share more than 3 ORs. Therefore, the number of ORs, K, is set to 3 ORs. The number of

surgeries to be scheduled is set to N = 30. This number is also inspired by data that indicate that up to 2-3 surgeries are

scheduled in an OR on a typical day. We consider instruments of six different types, that is, R = 6, and the inventory

level, Ir, is set to two instruments per type. The requirement matrix for surgical instruments was generated randomly

for each type of surgery. We assume that surgeries may not require more than 1 instrument of each type. From the

data collected from GMH, we observed that instances of multiple expensive instruments of the same type are used for

one surgery are rare.

We set the following problem parameters: fixed cost of opening the OR, ck = $360, session length s = 16, total number

of time slots T = 20, overtime cost, co =$100, and the idle time cost, cu = $22.5. We assume that using 2 hours of

overtime is equivalent to opening a new OR. We set the usage cost as cF = $18 and the instrument rental cost as cR =

$36. The opening cost of the OR, the overtime cost, and the idle time costs are kept the same for all experiments. The
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sterilization time, γ , is set at 6 time intervals, that is, 3 hours, based on an expert opinion from GMH. We assume that

the instruments are sterilized immediately after surgery. As the sterilization department works for 24 hours in shifts,

surgical instruments can be sterilized overnight and it is assumed that they are available for use at the start of the next

day.

By changing the parameters of the TS algorithm, we conducted an initial set of experiments. In these experiments, we

tested different values of inner and outer iterations, different sizes of Tabu list, different limits on how many swaps to

be evaluated before changing the neighborhoods, etc. We observed that Tabu list of size 6 works best for our problem

instances. We run the algorithm for 90 minutes to complete a sufficient number of iterations of small, medium, and

large-sized instances. The number of inner iterations is set to 30 iterations. In each inner iteration, we create the

preferred attribute lists. All neighbors in this attribute list are examined first. Additionally, we examine 50 and 75

additional neighbors in neighborhoods 2EX2 and 2EX3, respectively. After all inner iterations are performed, we

begin with a new solution. We perform 50 outer iterations to examine a diverse set of solutions. The TS algorithm is

coded using the Python programming language and is executed on a high performance computer cluster with an HP

computer with an Intel Xeon processor with 12 cores and 42GB of memory.

We distinguish between small, (i.e., N = 10), medium, (i.e., N = 20), and large, (i.e., N = 30) problem instances.

Each set of problems consists of 10 different instances and is solved using the LD-SH method described in Chapter

2. When problem (P) is solved using LD-SH, the lower bound LBmax is provided by LD, while the best upper bound

UB is provided by the SH counterpart of LD-SH. We solve these problem sets again using the TS algorithm. When

using the TS algorithm, the least cost solution is used as the upper bound UB, as this is the best value of the objective

function. The lower bound used for the comparison is the same as that of LD. The error gap for these experiments is

calculated as follows.

Error Gap(%) =
UB−LB

UB
∗100 (3.1)

Tables 3.1, 3.2, and 3.3 compare the results of TS for mixed-duration problem instances with the LD-SH developed in

Chapter 2. We also report the minimum, maximum, and average running time at which the incumbent solution found

via TS was recorded.
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LD TS

Error Gap % Run Time (Hours) Error Gap % Run Time (Hours) Incumbent Sol. Time (Hours)

Avg 0.00 0.01 0.00 1.50 0.006

Min 0.00 0.01 0.00 1.50 0.00

Max 0.08 0.02 0.00 1.50 0.06

Table 3.1: Results for Computational Performance (Small)

LD TS

Error Gap % Run Time (Hours) Error Gap % Run Time (Hours) Incumbent Sol. Time (Hours)

Avg 1.60 1.10 0.60 1.50 0.03

Min 0.00 0.10 0.00 1.50 0.00

Max 8.07 5.00 8.07 1.50 0.21

Table 3.2: Results for Computational Performance (Medium)

LD TS

Error Gap % Run Time (Hours) Error Gap % Run Time (Hours) Incumbent Sol. Time (Hours)

Avg 5.61 3.90 3.77 1.50 0.05

Min 0.34 0.37 0.00 1.50 0.00

Max 10.22 5.00 10.22 1.50 0.11

Table 3.3: Results for Computational Performance (Large)

Observation 1: For small-sized problems, TS algorithm finds an optimal solution for every instance. For

medium- and large-sized problems, the average error gap is 0.6% and 3.77%, respectively. This indicates

an improvement in solution quality on average. However, the maximum error gap is 8.07% and 10.22%,

respectively, which is the same as the LD-SH method. This indicates that some problems were inherently

difficult to solve. LBs from LD-SH not being tight can also be one of the factors for such a large error

gap in some of the instances. In few instances, the TS solution finds the optimal solution for large-sized

problems which LD-SH fails to do.

Observation 2: For small-sized problems, TS algorithm finds the optimal solution for each instance.

Although we did not stop the TS algorithm for 1.5 hours, the average time to find the incumbent solution
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was 0.006 hours. This indicates that most of the optimal solutions were obtained almost instantaneously.

For medium-sized problems, the average incumbent solution time was 0.03 hours, much shorter than that

of the LD-SH algorithm. For large-sized problems, average time to find the best solution was 0.05 hours.

This indicates that for medium- and large-sized problems, the TS algorithm did not improve after finding

the solution in earlier iterations

Quality of Upper Bounds

To understand the quality of the solutions provided by the TS algorithm, we compare the best value of the objective

function of TS, Zt , with the best upper bound values, UBmin, reported in Chapter 2. Similar to Chapter 2, we distinguish

between short, l < 4 (hours) and long l > 4 (hours) surgeries. These experiments also allow us to examine under what

conditions the TS algorithm performs better compared to the LD-SH method. In this part of our computational study,

we solve all the problems described in Table 2.5 in Chapter 2. Tables 3.4, 3.5, and 3.6 summarize the results of these

experiments. We define the UB gap as the percent improvement in total costs if we use the TS algorithm instead of the

MIP based method. Negative values indicate that the TS algorithm obtained an improved feasible solution compared

to the solutions obtained using LD-SH. The UB gap for these experiments is calculated as follows.

UB Gap(%) =
Zt −UBmin

Zt ∗100 (3.2)

UB Gaps %

Problems Minimum Average Maximum

Problem 1 0.00 0.00 0.00

Problem 2 -0.87 -0.17 0.74

Problem 3 -1.19 -0.13 5.94

Table 3.4: Result of UB comparison for short-duration surgeries

UB Gaps %

Problems Minimum Average Maximum

Problem 4 -0.81 -0.08 0.00

Problem 5 -0.62 -0.18 0.00

Problem 6 -0.80 -0.33 4.91

Table 3.5: Result of the UB comparison for the mix of short and long-duration surgeries
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UB Gaps %

Problems Minimum Average Maximum

Problem 7 -0.94 -0.19 1.46

Problem 8 -0.91 0.15 2.99

Problem 9 -0.68 1.43 5.88

Table 3.6: Result of the UB comparison for long-duration surgeries

Observation: For short, mixed, and long-duration surgeries, TS provides high-quality solutions for all

problem sizes. For large-sized problems 3, 6, and 9, TS, on average, finds a solution within -0.13%,

-0.3%, and 1.43% of the LD-SH method, respectively. For problems 1 to 7, the average error gap is less

than or equal to 0%. This indicates that by using the TS algorithm, the feasible solution can be improved.

TS performs excellently for small and medium-sized instances. For large-sized problems, the performance

of TS deteriorates. Although the average UB gap is less than 1.43%, the maximum error gaps are 5.94%,

4.91%, and 5.88% respectively. Large problem instances have a larger neighborhood to explore, and we

stop the search after 1.5 hours have elapsed. These could be some of the factors due to which the UB

gaps are significantly large in some instances. TS has a worse performance for long-duration surgeries in

general compared to LD-SH.

As TS chooses the neighboring solution first via a candidate list of neighbors and then via regular neighborhood

search, the trajectory of solutions examined is different from that of Lagrangean decomposition-based heuristics. In

the previous chapter, we conducted sensitivity analyses with respect to cost ratios (see Figure 2.4). We conduct the

same sensitivity analyses with respect to f/v ratios using TS algorithm. For these experiments, we vary the rental

instrument cost cR from 18, 36, 90, 180, 360, 450 to generate ratio values (r1 – r6) as 0.05, 0.1, 0.25, 0.5, 1, 1.25

respectively. The results of the TS experiments were compared with those of the LD-SH and LD-BD methods. Figure

3.1 summarizes these results. The blue, black, and red lines indicate the error gap for the LD-SH, LD-BD, and TS

heuristics. The results indicate that for all values of cR, the performance of the TS algorithm is comparable to LD-SH.

For higher values of cR, TS provides excellent results in general.
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Figure 3.1: Sensitivity analysis w.r.t. Cost Ratios

3.5 Conclusion

The research and models presented here are motivated by the opportunities for improvement observed in GMH’s

inventory management and OR scheduling practices. The Lagrangean decomposition algorithm developed in the

previous chapter takes several hours on average to find high-quality solutions. Furthermore, each iteration of the

algorithm sometimes takes several minutes. This indicates that there is an opportunity to improve these solutions.

We faced challenges when trying to solve larger-sized problems using the methods developed in the previous chapter

and commercially available solvers. Moreover, most hospitals and clinics may not have access to the state-of-the-art

solvers. In this chapter, we propose a new construction heuristic H2 and a TS algorithm to solve an integrated OR

scheduling problem to minimize the cost of opening the ORs, overtime, and idle-time along with the costs of using

and renting instruments.

115



Heuristic H2 obtains the initial OR schedule with instrument assignment in less than 1 second on average for the

large-sized problems. This is a significant improvement over the heuristic H1, which requires one to spend several

minutes to solve two MIP models (Models S and F) to obtain the initial solution.

In our TS algorithm, we use three neighborhoods. Neighborhoods are changed after a certain number of moves

have been evaluated. After all three neighborhoods have been examined, we begin with a new initial solution. A

candidate list of solutions with the preferred attributes is created separately for each neighborhood to prioritize the

examination of favorable solutions. The candidate list and the changing neighborhood structure together prevent

examining the entire neighborhood. The results of TS algorithm are compared with the solutions obtained via the

Lagrangean decomposition-based algorithm. The running time of 1.5 hours is set for all problems solved with the

TS algorithm. For small-sized problems, the TS algorithm finds the optimal solution for every instance. For medium

and large-sized problems, we obtain solutions within the error gaps of 0.5% and 4%, respectively. We also report the

time in which the incumbent solutions were found. For all instances, the average time to the incumbent solution is

significantly shorter than the average running time of LD-SH algorithms. In some instances, the best solution does

not improve for a long time. In general, TS provides high-quality upper bounds compared to LD-SH. Although the

average UB gap is less than 1.43%, UB gaps can be as large as 6%. The performance of the TS algorithm worsens

when only long-duration surgeries are considered. These experiments indicate that the TS algorithm yields solutions

that are better than those obtained via LD-SH in a significantly shorter period of time. These solutions are found using

the 40% of time used by LD-SH on average.
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Chapter 4

Conclusion and Future Research

In this dissertation, we study tactical and operational problems that arise in the perioperative services departments of

hospitals. We focus on scheduling operating rooms (OR) and managing necessary resources such as equipment, and

surgical instruments. Our work demonstrates how the use of mathematical and simulation optimization methods in

novel ways can improve healthcare systems. These methods have been used for healthcare operations management for

decades. Our contribution to the existing literature lies in the study of newly developed models and solution methods

in the areas of material handling, OR scheduling, and inventory management of surgical instruments in hospitals. For

these studies, we collaborated with Greenville Memorial Hospital (GMH) in South Carolina.

Our first study was motivated by the inefficiencies observed in the GMH material handling system. GMH staff re-

ported long lines of AGVs waiting for the elevator on the mezzanine floor after material handling activities started in

the afternoon. Congestion caused by AGVs contributes to delays in delivering the required surgical material, including

surgical instruments, to the ORs. Congestion also affects the delivery of soiled surgical instruments, further extending

sterilization activities. Delays due to the material handling activities impact the utilization of AGVs, surgical instru-

ments, sterilization equipment, and personnel time. These delays also force GMH to use the rental and consigned

instruments. The simulation-optimization framework presented in Chapter 1 enables hospitals to identify the factors

that affect the performance of material handling and inventory management systems, and develop solutions that im-

prove their efficiency. Our work highlights the role of coordinating decisions between material handling and inventory

management to improve the level of service provided by ORs. We find that using fewer AGVs leads to reduced con-

gestion, as evidenced by the average travel time and the corresponding range of travel time, which is narrower. On

the contrary, when the objective is to minimize the task completion time, the simulation experiments suggest using

relatively more AGVs. The solution recommended by the simulation-optimization method uses fewer AGVs on all
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days than the current policy of using 11 AGVs on each day. Upon the implementation of this solution, it was found

that the task completion time is not different from that of current practice. However, the recommended solution takes

on average 2.5 fewer minutes to deliver each surgical case cart than the current practice. To validate these results, we

conducted a pilot study at GMH. The results of this pilot study indicated that travel time was significantly reduced

with our recommended solution. Our simulation experiments also indicate that the current material handling approach

is more sensitive to the level of surgical instrument inventory, whereas the two alternative approaches that we propose

are not. When there is a low inventory level, the two-batch and JIT approaches can reduce surgical delays by 83%

and 95%, respectively. By choosing alternative approaches, GMH could reduce its inventory by 2-4 units for every

specialty. Both of these approaches also use fewer AGVs than the current approach. The staff at our partner hospital

have considered the models we developed and the experimental results as valuable inputs, and have implemented our

recommendations in some capacity.

This study can be extended in multiple directions. First, we focus only on the material handling and inventory man-

agement of surgical instruments. In addition to these, there are several other material movements that occur simul-

taneously in the hospital. During the pilot study, we learned that GMH prioritizes food delivery over other material

movements. One way to extend this study is to optimize the material handling of all delivery services, such as food,

linen, surgical instruments, and trash, simultaneously. The interaction of other delivery services with the movement of

surgical instruments and its impact on the required inventory levels could be investigated. Furthermore, in our models,

we do not have disruptive events such as patient no-shows, cancellations, incorrect case cart loading, AGV failures,

etc. Investigating the effects of one or a combination of these factors can be a part of future work. Furthermore, an

important assumption for this study is that each instrument is being used once it has been moved to the OR and, there-

fore, sterilized. Several studies indicate that instruments may not be opened despite being on the doctor’s preference

card (DPC). An extension of this study is to develop a stochastic tray optimization model where there is a certain

probability for each surgical instrument to be actually used in surgery.

Our second study shows the importance of coordinating OR scheduling and inventory management decisions in im-

proving OR efficiency and reducing costs. In particular, this work shows that integrating these decisions can increase

the utilization of ORs and surgical instruments while reducing the cost of the system. We propose easy-to-implement

solution methods, including a construction heuristic and a Lagrangian decomposition-based heuristic, and evaluate

them. These solution approaches outperform the commercial solver, Gurobi, in terms of running time and solution

quality. The use of the integrated OR scheduling model results in 1 to 4.3 fewer instruments being rented each week

on average for all surgery durations considered compared to current practice. This corresponds to a 1-3% cost re-

duction per week. The greatest improvement is observed when scheduling short-duration surgeries. This is because
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many short-duration surgeries are scheduled in a day. Thus, instruments can be reused frequently. We find that the

number of ORs and the length of planning horizon do not impact overtime and idle time costs as much. However,

the total available (day,OR) time has a high impact on OR-related costs. The number of instruments used, reused,

and rented is affected by both the planning horizon and the number of ORs available each day. The planning horizon

has a greater impact than the number of ORs on these factors. The algorithms we developed to solve the integrated

OR scheduling problem show significant improvement in terms of solution quality and running time when compared

to directly solving the original problem formulation with the Gurobi optimization solver. On average, the proposed

algorithms improve optimality gap by 0.3% for small-sized problems and 5.5% for medium and large-sized problems.

The proposed algorithms reduce running time by 95%, 56%, and 15% on average for small, medium, and large-sized

problems to find these improved solutions.

The models presented here are particularly suitable for hospitals using an open scheduling strategy; and other health-

care facilities can also learn from these practices. One of the possible extensions to our model is to study the stochastic

version of the integrated OR scheduling problem. Certain parameters in our formulation are usually unknown at the

time the schedules are generated; however, their values when they are realized can significantly impact costs. For

example, while some surgeries are completed on time or ahead of schedule, while others take longer than expected.

Unavailable surgical materials or some complications can also delay surgeries. These stochastic surgery durations can

affect overtime, idle time, and instrument availability. The algorithms presented in this study, for example, Bender’s

decomposition algorithm (BDA), can be extended to solve a stochastic version of our problem. However, the run-time

performance of such a stochastic program needs to be investigated and potentially improved. The cuts developed for

BDA are also valid for the stochastic integrated OR scheduling problem. However, feasibility cuts will have to be

added if a feasible assignment of surgeries to the tuple (day,OR) is not found. We currently do not include patient

no-shows, cancellations, and emergency surgeries in our formulation. Studying the effects of one or a combination of

these factors and developing models and methods for extended models can become part of future work in this area.

Finally, our third study develops solution approaches to find near-optimal solutions to the integrated OR scheduling

problem without the use of state-of-the-art optimization solvers. We propose easy-to-implement solution methods that

include a new construction heuristic and a Tabu Search (TS) algorithm, and evaluate them. To improve the running

time of TS, we implement a changing neighborhood structure to search for a solution in different regions of the feasible

space. To further improve the run time, we implement a preferred attribute list for the neighborhood search. Solutions

with certain favorable attributes are placed on a candidate list and examined first before the rest of the solutions. We

evaluate our metaheuristic approach via a case study using data from GMH. These solution approaches outperform the

commercial solver, Gurobi, and previously developed Lagrangian heuristic-based approaches in terms of running time
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and solution quality. For small-sized instances, TS finds the optimal solution for every instance. For medium-sized

instances, TS finds solutions within the 0.5% error gap. For large-sized instances, TS finds solutions within a 4% error

gap. TS algorithm reduces the running time by 60% on average to find an improved solution compared to LD-SH.

This shows that hospitals can use this method to determine their schedule for each week.

Meta-heuristics such as TS have shown their efficiency in solving various complex optimization problems. They

generate a lot of data in the search process, including the sequence of solutions, moves, local optima, and bad solutions.

Machine learning can be used to analyze the data to extract useful information that can be used to improve search

performance. Algorithms have been developed to improve metaheuristics in terms of convergence speed, solution

quality, and robustness. Thus, one possible extension of this study is to consider these algorithms and compare the

results with the proposed TS method.
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Appendix A Appendix Chapter 1

Table 1: Model Inputs and Outputs

Component Details
Model Output
(Responses)
Response 1 Average and standard deviation of trip time of AGVs carrying clean surgical case carts.
Response 2 Average and standard deviation of trip time of AGVs carrying soiled surgical case carts.
Response 3 Average completion time for all surgical case carts.

Model Input
(Experimental Factors)
Input 1 The path of AGVs.
Input 2 Number of AGVs required (maximum up to 11 AGVs).
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Day Distribution

Mon. DISC(0.004,0,0.05,30,0.096,60,0.139,90,0.181,120,0.248,150,0.309,180,0.355,210,0.397,240,0.444,270,

0.516,300,0.562,330,0.614,360,0.662,390,0.704,420,0.73,450,0.758,480,0.789,510,0.828,540,0.861,570,

0.889,600,0.895,630,0.917,660,0.928,690,0.932,720,0.946,750,0.952,780,0.954,810,0.959,840,0.961,870,

0.965,900,0.969,930,0.969,960,0.972,990,0.976,1020,0.976,1050,0.978,1080,0.98,1110,0.983,1140,

0.987,1170,0.987,1200,0.989,1230,0.993,1260,0.993,1290,0.998,1320,0.998,1350,0.998,1380,1,1410)

Tue. DISC(0.006,0,0.035,30,0.088,60,0.146,90,0.203,120,0.259,150,0.307,180,0.359,210,0.42,240,0.461,270,

0.518,300,0.572,330,0.61,360,0.653,390,0.689,420,0.72,450,0.752,480,0.789,510,0.821,540,0.85,570,

0.875,600,0.902,630,0.908,660,0.919,690,0.929,720,0.935,750,0.946,780,0.948,810,0.952,840,0.958,870,

0.96,900,0.965,930,0.969,960,0.969,990,0.973,1020,0.975,1050,0.975,1080,0.975,1110,0.979,1140,

0.985,1170,0.987,1200,0.988,1230,0.99,1260,0.992,1290,0.994,1320,0.996,1350,1,1380,1,1410)

Wed. DISC(0,0,0.004,30,0.033,60,0.075,90,0.133,120,0.18,150,0.264,180,0.308,210,0.353,240,0.399,270,

0.472,300,0.523,330,0.577,360,0.621,390,0.645,420,0.694,450,0.74,480,0.785,510,0.818,540,0.843,570,

0.893,600,0.914,630,0.923,660,0.934,690,0.944,720,0.951,750,0.958,780,0.964,810,0.964,840,0.964,870,

0.969,900,0.974,930,0.976,960,0.978,990,0.978,1020,0.984,1050,0.985,1080,0.985,1110,0.989,1140,

0.991,1170,0.995,1200,0.995,1230,0.995,1260,0.995,1290,0.995,1320,0.995,1350,0.998,1380,1,1410)

Thu. DISC(0.006,0,0.043,30,0.111,60,0.159,90,0.203,120,0.263,150,0.31,180,0.355,210,0.413,240,0.462,270,

0.513,300,0.544,330,0.592,360,0.638,390,0.675,420,0.713,450,0.754,480,0.787,510,0.818,540,0.838,570,

0.874,600,0.895,630,0.912,660,0.925,690,0.933,720,0.939,750,0.946,780,0.952,810,0.953,840,0.956,870,

0.959,900,0.963,930,0.969,960,0.97,990,0.97,1020,0.973,1050,0.976,1080,0.979,1110,0.98,1140,

0.98,1170,0.98,1200,0.982,1230,0.984,1260,0.989,1290,0.993,1320,0.993,1350,0.994,1380,1,1410)

Fri. DISC(0.016,0,0.053,30,0.105,60,0.156,90,0.2,120,0.268,150,0.353,180,0.411,210,0.451,240,0.486,270,

0.53,300,0.579,330,0.626,360,0.674,390,0.716,420,0.751,450,0.788,480,0.805,510,0.844,540,0.875,570,

0.9,600,0.912,630,0.923,660,0.933,690, 0.94,720,0.951,750,0.954,780,0.954,810,0.956,840,0.96,870,

0.963,900,0.963,930,0.967,960,0.967,990,0.97,1020,0.97,1050,0.974,1080,0.974,1110,0.975,1140,

0.975,1170,0.979,1200,0.981,1230,0.986,1260,0.991,1290,0.993,1320,0.995,1350,0.998,1380,1,1410)

Table 2: Discete Distribution for Soiled Case Cart Release Times
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Component Include/Exclude Justification

Entities

Surgical Cases Include Necessary for modeling the system.

Dummy entities Include Necessary for modeling empty transporter movements.

Activities (Departments/locations)

Picking process (MD) Include Key influence on completion time

Inspection (CCSA) Exclude Assumption: required material is always available and picked

Manual transport to OR (CCSA - OR) Exclude Limited impact on material handling process

Surgery (ORD) Include Necessary for modeling

Separation of Instruments from carts (CSSD) Exclude Limited impact on material handling process

Sterilization of instruments (CSSD) Exclude Limited impact on material handling process

Cart wash (CSSD) Include Key influence on completion time

Queues

OR Exclude Assumption: required Ors are always available

For AGVs Include Key influence on travel time and completion time

For elevator Include Key influence on travel time and completion time

Resources

AGVs Include Required to limit the number of transporters in use

OR Exclude Assumption: Ors are always available.

Elevators Include Required to move material. Number of elevators/capacity impact travel and completion time

Case cart Include Required to move material. Number of case cart impact travel and completion time

Surgical staff Exclude Assumption: required staff is always available and picked

Picking process staff Include Required to pick material. Number of employees impact completion time

CSSD staff Exclude Assumption: required staff is always available and picked

Cart washer Include Required for cleaning of case carts. Number of cartwasher impact completion time

Transporter

AGVs Include Experimental factor

AGV Network Paths Include Experimental factor

Table 3: Model Scope
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Table 4: Model Level of Details

Component Detail Include/Exclude Justification

Entities

Surgical Cases

Quantity TRIA (60,68,75): Monday Include Limits to number of entities

TRIA (65,72,76): Tuesday Include Limits to number of entities

TRIA (60,65,72): Wednesday Include Limits to number of entities

TRIA (69,75,80): Thursday Include Limits to number of entities

TRIA (55,62,69): Friday Include Limits to number of entities

Arrival pattern Constant (24 hours) Include Generated every 24 hours

Attributes Type of entity Clean/Soiled/Washed. Needed to identify the route . Include Information required for each entity

Routing Determine which path transporter takes Include Routing dependent on entity type

Dummy entities

Quantity One for each surgical case Include Limits to the number of entity = 1

Arrival pattern The entity is generated based on the signal Exclude Information required for each entity

Attributes Type of entity Free/To parking. The attribute is needed to identify route to pickup next case cart or to go to parking location Include Information required for each entity

Routing Determine which path transporter takes Include Routing dependent on entity type. Afftects the response (Travel time)

Activities (Departments/locations)

Picking Proces (MD)

Quantity One for each surgical case entity Include Model each picking process as it has impact on the response completion time

Nature (X in Y out) - Exclude Sub-components/Instruments are not modelled and so no assembly is represented

Cycle time TRIA(2,3,5) minutes. Distribution obtained via time study Include Required for modelling completion time.

Breakdown/repair - Exclude No breakdowns in picking process

Set-up/changeover - Exclude No changeovers

Resources Case cart = 1, MD Employee = 1 Include Identify number of case carts and number of staff required for picking process

Shifts - Exclude No work takes place outside of on-shift time.

Routing - Exclude Routing of entity has no effect

Surgery (OR Department)

Quantity One for each surgical case entity Include Model each surgery process as it has impact on the responses.

Nature (X in Y out) - Exclude Sub-components are not modelled.

Cycle time Modeled based on the distribution provided in appendix. Include Required for modelling. Has significant effect on responses.

Breakdown/repair - Exclude No breakdowns in surgeries.

Set-up/changeover - Exclude No changeovers

Resources - Exclude All ORs are always available.

Shifts - Exclude No work takes place outside of on-shift time.

Routing - Exclude Routing of entity has no effect.

Cart wash (CSSD)

Quantity One for each surgical case entity Include Model each washing process as it has impact on the responses.

Nature (X in Y out) - Exclude Sub-components are not modelled.

Cycle time Fixed : 20 minutes cycle Include Influence on resource availability

Breakdown/repair - Exclude Breakdowns are rate and thus not modeled.

Set-up/changeover - Exclude No changeovers

Resources Cart Washer Include Identify number of cart washers required for washing process

Shifts - Exclude No work takes place outside of on-shift time.

Routing - Exclude Routing of entity has no effect.
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Table 5: Model Level of Details (continued)

Component Detail Include/Exclude Justification

Queues

For AGVs

Quantity 3 Include All AGVs are individual. One for each department except CCSA.

Capacity MD- 4 AGVs, CSSD - 1 AGV, and 3 - 2nd Floor soiled cart storage area Include Experimental factor.

Dwell time Until availability of AGV Include Afftects the response completion time.

Queue discipline FIFO Include Afftects the response completion time.

Breakdown/repair - Exclude Failures are rare and so have little effect on responses.

Routing Based on distance of AGV. Shortest distance first. Include Routing of AGVs defines the key interaction between system components.

For elevator

Quantity 3 Include All elevators are individual. One for each elevator.

Capacity - Exclude Capacity for elevator queues is limited via number of AGVs in the departments.

Dwell time Until availability of elevator Include Afftects the responses travel/completion time.

Queue discipline FIFO Include Afftects the responses travel/completion time.

Breakdown/repair - Exclude Failures are rare and so have little effect on responses.

Routing To next department using routing logic Exclude Routing of entities to and from elevator defines the key interaction between system components.

Resources

AGVs

Quantity - Include Experimental factor.

Where required Identify case carts that require transport Include Required to allocate work to AGVs

Shifts - Exclude No work takes place outside of on-shift time

Elevator

Quantity Elevator J - 2, Elevator G - 2, Elevator K - 1 Include Because there maybe fewer elevators than requesting AGVs, it is possible for elevator shortages to be a bottleneck affecting the responses

Where required Identify the AGVs that require transport between the floors Include Required to move the elevators between the floors

Shifts - Exclude No work takes place outside of on-shift time

Case cart

Quantity 110 Include Because there maybe fewer case carts than surgeries, it is possible for case cart shortages to be a bottleneck affecting the responses

Where required - Exclude The case carts are only located and assigned at MD.

Shifts - Exclude No work takes place outside of on-shift time

Picking process staff

Quantity 4 Include Because there are fewer picking process staff than surgeries, it is possible for staff shortages to be a bottleneck affecting the response completion time

Where required - Exclude The picking process staff is located only at MD.

Shifts - Exclude No work takes place outside of on-shift time

Cart washer

Quantity 3 Include Because there are fewer cartwashers than surgeries, it is possible for case cart shortages to be a bottleneck affecting the responses

Where required - Exclude The cartwashers are located only at CSSD.

Shifts - Exclude No work takes place outside of on-shift time

Transporter

AGVs

Quantity 20 Include Because there maybe fewer AGVs than surgeries, it is possible for AGV shortages to be a bottleneck affecting the responses

Type Guided Include Has influence on the responses.

AGV straight velocity 200 units distance Include Has influence on the responses.

AGV turning factor 0.5 Include Has influence on the responses.

Acceleration/Deceleration 0.98 per second squared Include Has influence on the responses.

Zone control rule End Include Has influence on the responses/ required for safety.

Shift - Exclude No work takes place outside of on-shift time

AGV Network Paths

Quantity 53 network links, 2 paths Include Necessary for modeling. Has influence on the responses.

Type Department/elevator links: Spur, Other links: Unidirectional Include Has influence on the responses.

Routing - Include Experimental factor.
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Table 6: Fraction of Delayed Deliveries by Month

Simulation of Current System Simulation of Implemented Solution

Month Delayed per day Average Std Min Max Delayed per day Average Std Min Max

January 0.613 0.037 0.014 0.02 0.055 0.645 0.038 0.013 0.02 0.055

February 2.214 0.059 0.026 0.02 0.149 2.214 0.060 0.027 0.02 0.149

March 0.581 0.042 0.02 0.021 0.083 0.613 0.043 0.023 0.021 0.104

April 3.633 0.071 0.036 0.02 0.168 3.633 0.071 0.036 0.02 0.168

May 3.161 0.069 0.038 0.019 0.165 3.194 0.069 0.039 0.019 0.165

June 1.433 0.044 0.023 0.021 0.141 1.433 0.044 0.023 0.021 0.141

July 3.161 0.073 0.047 0.019 0.178 3.161 0.073 0.048 0.019 0.178

August 3.645 0.079 0.049 0.019 0.196 3.645 0.080 0.048 0.019 0.196

Table 7: Travel Time by Month (Min)

Simulation of Current System Simulation of Implemented Solution

Month Average Std Min Max Average Std Min Max

January 9.513 2.431 2.725 13.106 6.968 1.798 2.724 11.714

February 9.277 2.607 2.733 13.046 6.766 1.91 2.73 11.714

March 9.404 2.451 2.757 13.106 6.934 1.883 2.721 12.083

April 8.981 2.803 2.72 13.106 6.58 2.01 2.732 11.714

May 9.175 2.685 2.731 13.106 6.706 1.963 2.724 11.714

June 9.234 2.588 2.727 13.106 6.73 1.923 2.721 11.714

July 9.157 2.701 2.746 13.106 6.692 1.933 2.721 11.714

August 9.096 2.743 2.73 13.106 6.727 2 2.72 11.714

Material Handling Process: The research team collaborated with the Perioperative Services Department (PSD) of

Greenville Memorial Hospital (GMH). The PSD consists of three departments: the Materials Department (MD) and

the Central Sterile Storage Department (CSSD), both of which are located on the mezzanine floor (see Figure ??), and

the Operating Room Department (ORD) located on the second floor. GMH has 46 AGVs that are used to complete

tasks such as, the delivery of food, linen, trash, sterile surgical material (instruments and supplies), etc. Each task is
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assigned a priority level, which changes during the day. This assignment is an effort to balance the use of AGVs. For

example, the movement of sterile surgical material from MD to ORD has the highest priority during 3-6pm. Thus, a

total of 10 AGVs are dedicated to the delivery of sterile surgical material during this time period.

Every day, MD receives a list of instruments and soft goods that should be delivered to ORD between 3 and 6pm. This

list is generated based on doctors’ preferences and will be used in surgeries scheduled the next day. Instruments and

soft goods are loaded manually into clean case carts. A team of 5 employees is tasked with loading the AGVs. This

team is assigned to other tasks during the second shift. Carts are then manually moved to one of the 4 detents available

at MD. Detents are areas equipped with the rails necessary for loading and unloading an AGVs. Once a request for

an AGV is submitted to AGV control system, an available AGV, closest to the MD, is assigned to the case cart. The

case cart is loaded on an AGV. This movement of the AGV is depicted in Figure 1 as “Path of AGV with Clean Cart.”

To move the case cart to the 2nd floor, this AGV uses elevator J. The clean case cart is then dropped off at one of

the 2 detents in the case cart storage area (CCSA). Since CCSA is located next to elevator J on the 2nd floor. The

CCSA is not shown in Figure ??. Since, delivery of food and linen take priority after 6pm, AGVs become increasingly

unavailable for the movement of surgical case during those times. Thus, it is expected that the delivery of surgical case

carts is completed before other services take priority. The case carts are stored at the CCSA overnight. The case cart

is then moved manually to the OR. After the surgery, the soiled cart is moved manually to the detents on the second

floor. Once a request for an AGV is submitted to AGV control system, the assigned AGV moves the soiled cart to the

CSSD using the path “Path of AGV with Clean and Soiled Cart” depicted in Figure ??. The soiled instruments are

washed and sterilized at the CSSD, a process that takes up to 3 or 4 hours. The sterilized instruments are loaded to a

clean case cart and moved to MD for storage. The soiled case carts are washed at the cart washer. The washed case

cart is moved to MD for the next cycle. The movement of AGVs with washed case carts is depicted in Figure ?? as

“Path of AGVs with Washed Cart”.

AGV Scheduling and Operations: The scheduling of AGVs is completed in 2 steps: First, a fleet of AGVs is

assigned to tasks during the day based on task priority. Tasks are the delivery of food, delivery of trash, delivery of

linen, delivery of surgical carts, etc. Task priorities change during the day. Next, tasks are assigned to AGVs based

on a version of the first-come-first-serve rule. For example, if case cart 1 Is ready for pick-up, the 1st available AGV

which is located closest to the case cart, will be assigned to deliver the cart.

The operation of AGVs follows certain guidelines, such as, (i) AGVs are not allowed to pass each other; (ii) if an AGV

stops, then other AGVs following will also stop and maintain a safe distance; (iii) at most 2 AGVs can use an elevator

at the same time; (iv) an AGV will not seize elevator J if every detent in the second floor is busy. These operational

practices lead to congestion; (v) if no task are available, the AGV is moved to the parking area.
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Appendix B Appendix Chapter 2

(M1)

ZS = min cuŪ + coŌ+
N

∑
i=1

T

∑
t=1

λit X̄it (1a)

t ∗ Z̄it ≤ s+ Ō ∀t ∈ T, i ∈ N (1b)

s−
N

∑
i=1

T

∑
t=1

Z̄it ≤ Ū , (1c)

t+li−1

∑
t ′=t

Z̄it ′ ≥ li ∗ X̄it ∀i ∈ N,1 ≤ t ≤ T − li +1, (1d)

T

∑
t=1

Z̄it = li ∀i ∈ N, (1e)

Ndk

∑
i=1

Z̄it ≤ 1 ∀t ∈ T, (1f)

T

∑
t=1

X̄it = 1 ∀i ∈ Ndk, (1g)

T

∑
t=1

X̄it ≤ 1 ∀i ∈ N, (1h)

T

∑
t=T−li+1

X̄it = 0 ∀i ∈ N, (1i)

Z̄it ∈ {0,1}, Ō ≥ 0, Ū ≥ 0, X̄it ∈ {0,1} (1j)

129



(M2)

ZS = min cuŪ + coŌ+
Ndk

∑
i=1

T

∑
t=1

λit X̄it (2a)

t ∗ Z̄it ≤ s+ Ō ∀t ∈ T, i ∈ Ndk (2b)

s−
Ndk

∑
i=1

T

∑
t=1

Z̄it ≤ Ū , (2c)

t+li−1

∑
t ′=t

Z̄it ′ ≥ li ∗ X̄it ∀i ∈ Ndk,1 ≤ t ≤ T − li +1, (2d)

T

∑
t=1

Z̄it = li ∀i ∈ Ndk, (2e)

Ndk

∑
i=1

Z̄it ≤ 1 ∀t ∈ T, (2f)

T

∑
t=1

X̄it ≤ 1 ∀i ∈ Ndk, (2g)

T

∑
t=T−li+1

X̄it = 0 ∀i ∈ Ndk, (2h)

Z̄it ∈ {0,1}, Ō ≥ 0, Ū ≥ 0, X̄it ∈ {0,1} (2i)

X∗
idk represents the assignment of the surgeries to (Day,OR) tuples in (MP). These assignments are denothed by set

Ndk.

Proposition 4. The inequality (2.14a) is a valid Bender’s optimality cut and does not remove any globally integer

feasible solution.

Proof. • Case 1:

∑
i/∈Ndk

Xidk + ∑
i∈Ndk

(1−Xidk) = 0

(ZSP
dk −L)( ∑

i/∈Ndk

Xidk + ∑
i∈Ndk

(1−Xidk)) = 0

θdk ≥ ZSP
dk

Thus, ∧ (X = X∗) =⇒ θdk ≥ ZSP
dk .
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• Case 2:

∑
i/∈Ndk

Xidk + ∑
i∈Ndk

(1−Xidk)≥ 1

(ZSP
dk −L)( ∑

i/∈Ndk

Xidk + ∑
i∈Ndk

(1−Xidk))≤ ZSP
dk − (ZSP

dk −L)

= L

≤ θdk

Thus, ∧ (X ̸= X∗) =⇒ θdk ≥ L.

Here, first case corresponds to all the assignments for a (Day,OR) tuple being the same. In this case, the equation

2.14a reduces to assumed inequality. The second case corresponds to at least one of the assignments for the (Day,OR)

tuple under consideration. In this case, inequality 2.14a is redundant by the choice of value of L. The proof of validity

for2.16a and 2.15a inequalities is on the same lines.

Proposition 5. Inequality (2.15a) is a valid Bender’s optimality cut.

Proof. • Case 1:

∑
i∈Ndk

(1−Xidk) = 0

(ZSP
dk −L)( ∑

i∈Ndk

(1−Xidk)) = 0

θdk ≥ ZSP
dk

Thus, ∧ (X > X∗) =⇒ θdk ≥ ZSP
dk .

• Case 2:

∑
i∈Ndk

(1−Xidk)≥ 1

(ZSP
dk −L)( ∑

i∈Ndk

(1−Xidk))≤ ZSP
dk − (ZSP

dk −L)

= L

≤ θdk
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Thus, ∧ (X ≯ X∗) =⇒ θdk ≥ L.

Here, the first case corresponds to the support of X being a superset of the support of X∗ and 2.15a reduces to the

assumed inequality. The second case corresponds to the support of X not being a superset of the support of X∗, and

2.15a is redundant by the choice of value of L. The important condition for the inequality 2.15a to be valid is that every

superset of the support of X∗ must yield θdk ≥ ZSP
dk . In other words, adding any surgery to the currently scheduled set

of surgeries in a (Day,OR) tuple should not reduce the cost of scheduling for the same.

Proposition 6. Inequality (2.16a) is a valid Bender’s optimality cut.

Proof. • Case 1:

∑
i/∈Ndk

Xidk = 0

(ZSP
dk −L)( ∑

i/∈Ndk

Xidk) = 0

θdk ≥ ZSP
dk

Thus, ∧ (X < X∗) =⇒ θdk ≥ ZSP
dk .

• Case 2:

∑
i/∈Ndk

Xidk ≥ 1

(ZSP
dk −L)( ∑

i/∈Ndk

Xidk)≤ ZSP
dk − (ZSP

dk −L)

= L

≤ θdk

Thus, ∧ (X ≮ X∗) =⇒ θdk ≥ L.

Here, the first case corresponds to the support of X being a subset of the support of X∗, and 2.16a reduces to the

assumed inequality. The second case corresponds to the support of X not being a subset of the support of X∗, and

2.16a is redundant by the choice of value of L. The important condition for the inequality 2.16a to be valid is that
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every subset of the support of X∗ must yield θdk ≥ ZSP
dk . In other words, removing any surgery from the currently

scheduled set of surgeries in a (Day,OR) tuple should not reduce the cost of scheduling for the same.
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