292 research outputs found

    Characterization of 30 76^{76}Ge enriched Broad Energy Ge detectors for GERDA Phase II

    Get PDF
    The GERmanium Detector Array (GERDA) is a low background experiment located at the Laboratori Nazionali del Gran Sasso in Italy, which searches for neutrinoless double beta decay of 76^{76}Ge into 76^{76}Se+2e^-. GERDA has been conceived in two phases. Phase II, which started in December 2015, features several novelties including 30 new Ge detectors. These were manufactured according to the Broad Energy Germanium (BEGe) detector design that has a better background discrimination capability and energy resolution compared to formerly widely-used types. Prior to their installation, the new BEGe detectors were mounted in vacuum cryostats and characterized in detail in the HADES underground laboratory in Belgium. This paper describes the properties and the overall performance of these detectors during operation in vacuum. The characterization campaign provided not only direct input for GERDA Phase II data collection and analyses, but also allowed to study detector phenomena, detector correlations as well as to test the strength of pulse shape simulation codes.Comment: 29 pages, 18 figure

    The Identification of Scientific Programs to Utilize the Space Environment

    Get PDF
    A program to identify and develop ideas for scientific experimentation on the long duration exposure facility (LDEF) was completed. Four research proposals were developed: (1) Ultra pure germanium gamma ray radiation detectors in the space environment, intended to develop and demonstrate an X-ray and gamma-ray spectroscopy system incorporating a temperature cyclable high-purity germanium detector and diode heat pipe cryogenic system for cooling, (2) growth, morphogenesis and metabolism of plant embryos in the zero-gravity environment, to investigate if the space environment induces mutations in the embryogenic cells so that mutants of commercial significance with desirable attributes may be obtained, (3) effect of zero gravity on the growth and pathogenicity of selected zoopathic fungi. It is possible that new kinds of treatment for candidiasis, and tichophytosis could eventuate from the results of the proposed studies, and (4) importance of gravity to survival strategies of small animals. Gravitational effects may be direct or mediate the selection of genetic variants that are preadapted to weightlessness

    Inner Shell Atomic Processes in Highly Charged Argon EBIT Plasma Relevant to Astrophysics

    Get PDF
    Astrophysics is a broad and dynamic field that has led to an ever increasing number of incredible discoveries. Just in the past decade or so astrophysicists have detected gravitational waves (and the electromagnetic counterpart) from a neutron star merger, imaged a black hole for the first time, discovered thousands of new planets orbiting stars, and have shown that the expansion of the Universe is accelerating. Many of these discoveries come from new facilities with advanced technologies, an increase in computational capabilities, and creative new analytical techniques. These continued improvements have led to higher quality data that often reveals that our understanding of the processes responsible for the observations is far from complete. It is the field of laboratory astrophysics (experimental and theoretical) that aims to advance our understanding of the underlying processes for more reliable interpretations of astrophysical observations. With this motivation in mind, this work first describes the electron beam ion trap (EBIT), a facility well suited for systematic atomic studies. The EBIT has a nearly mono-energetic electron beam and allows for the injection of a variety of species, including astrophysically relevant elements such as Fe or Ar. Since ions are present almost everywhere in the Universe, and are responsible for much of the measured emission, it is important to note that the tunable electron beam energy can reach up to about 30 keV and is capable of producing basically all charge states of astrophysically relevant elements. The narrow electron beam energy profile allows the user to select the charge state and to an extent the excited state, and is well suited for systematic studies. The EBIT contains a series of electrodes used to manipulate the electron beam and electrostatically trap the ions. The space charge of the electron beam and shape of the trapping electrodes work to radially trap ions. Observation ports are located radially around the trap and are oriented perpendicular to the direction of the electron beam. The non-thermal uni-directional electron beam interacts with stationary ions in the trap. This setup leads to non-statistically populated magnetic sublevels that produce polarized and anisotropic emission, and provides a unique opportunity to study magnetic sublevels which are typically inaccessible in spectroscopic observations. In the second part of this work we take advantage of this capability of the EBIT and report the measurement of the linear polarization of He-like and Li-like Ar transitions. Measurements were taken with two Johann-type crystal spectrometers in different orientations corresponding to the dispersion plane parallel and perpendicular to the electron beam direction. The Li-like transitions result from the resonant dielectronic recombination process while the He-like transitions are produced from electron impact excitation. Our results show a strong positive polarization of the w, j, k, and q transitions (in notation of Gabriel (1972)), and a negative polarization of the a, x, y, and z lines. Since the polarization depends on the magnetic sublevel specific direct excitation or dielectronic capture cross-sections, our results can be used to benchmark different methods used to calculate these cross-sections. In this work we compare measurements with polarization values calculated using the density matrix formalism. For dielectronic recombination, the Flexible Atomic Code (FAC) (Gu 2008) was used to produce the atomic data (Qd values, autoionization energies, and cross-sections) required to calculate the polarization and produce the synthetic spectra. Since measurements were taken at the resonance energy, cascade effects were ignored. For transitions resulting from direct excitation the collisional-radiative model NOMAD (Ralchenko & Maron 2001) was used to solve the system of steady-state rate equations for the magnetic sublevel populations, and included excitation up to n = 5. For both direct excitation and dielectronic recombination the theoretical predictions agree well with measured values. The final part of this work was motivated by an exciting 2014 study (Bulbul et al. 2014) that reported a possible dark matter signature at 3.55 keV - 3.57 keV in the stacked spectra of galaxy clusters. To help rule out possible atomic origins suggested by the authors, we measured Ar emission from 1s^(2)2l-1s2l3l ² satellite transitions near 3.6 keV x-ray energy. X-rays were measured simultaneously with a high count-rate, high-purity Ge detector and a high energy-resolution Johann-type crystal spectrometer. The collisional-radiative model NOMAD was used to create synthetic spectra for comparison with both our EBIT measurements and with spectra produced with the AtomDB database (Foster et al. 2012) and the Astrophysical Plasma Emission Code (APEC) (Smith et al. 2001) used in the 2014 work. Excellent agreement was found between the NOMAD and EBIT spectra at each electron beam energy, providing a high level of confidence in the atomic data used. Comparison of the NOMAD and APEC spectra revealed a number of missing lines at 3.56 keV, 3.62 keV, 3.64 keV, and 3.66 keV in the APEC spectra. These features are primarily due to Be-like Ar DR data missing in the database. At an electron temperature of Te = 1.72 keV, the inclusion of 1s2l2l\u272l\u27\u27 and 1s2l2l\u273l\u27\u27 data in AtomDB increased the total flux in the 3.5 keV to 3.66 keV energy band by a factor of 2. While important, this extra emission is not enough to fully explain the unidentified line found in the galaxy cluster spectra (Gall et al. 2019) leaving the possibility open for dark matter related origin
    corecore