88 research outputs found

    Wireless Power Transfer Techniques for Implantable Medical Devices:A Review

    Get PDF
    Wireless power transfer (WPT) systems have become increasingly suitable solutions for the electrical powering of advanced multifunctional micro-electronic devices such as those found in current biomedical implants. The design and implementation of high power transfer efficiency WPT systems are, however, challenging. The size of the WPT system, the separation distance between the outside environment and location of the implanted medical device inside the body, the operating frequency and tissue safety due to power dissipation are key parameters to consider in the design of WPT systems. This article provides a systematic review of the wide range of WPT systems that have been investigated over the last two decades to improve overall system performance. The various strategies implemented to transfer wireless power in implantable medical devices (IMDs) were reviewed, which includes capacitive coupling, inductive coupling, magnetic resonance coupling and, more recently, acoustic and optical powering methods. The strengths and limitations of all these techniques are benchmarked against each other and particular emphasis is placed on comparing the implanted receiver size, the WPT distance, power transfer efficiency and tissue safety presented by the resulting systems. Necessary improvements and trends of each WPT techniques are also indicated per specific IMD

    A Class-E Inductive Powering Link with Backward Data Communications for Implantable Sensor Systems

    Get PDF
    The design and implementation of a wireless power and data transfer system based on inductive coupling, having the potential to be used in numerous implantable bio-medical sensors and systems, is presented. The system consists of an external (primary) unit and an internal (secondary) unit. The external unit incorporates a high-efficiency switch-mode Class-E amplifier operating at ~200 kHz for driving the primary coil. The secondary unit consists of a parallel resonant coil followed by the power recovery circuitry. Means for backward data communication from the internal to the external unit over the same pair of coils has been realized using a simple FSK-based modulation scheme incorporated into the internal unit. FSK demodulation and associated filtering are integrated with the base inductive powering system. Prototype system test results indicate the inductive link efficiency can exceed 80% under optimum operating conditions with the overall power transfer efficiency of approximately 30%. The communication system is capable of transmitting up to 10kbps of data with the FSK carrier frequency (i.e., middle-frequency) being only 120kHz. The complete system functions reliably over an inter-coil distances exceeding 2.5cm with a 5V dc supply

    Wireless Power Transfer For Biomedical Applications

    Get PDF
    In this research wireless power transfer using near-field inductive coupling is studied and investigated. The focus is on delivering power to implantable biomedical devices. The objective of this research is to optimize the size and performance of the implanted wireless biomedical sensors by: (1) proposing a hybrid multiband communication system for implantable devices that combines wireless communication link and power transfer, and (2) optimizing the wireless power delivery system. Wireless data and power links are necessary for many implanted biomedical devices such as biosensors, neural recording and stimulation devices, and drug delivery and monitoring systems. The contributions from this research work are summarized as follows: 1. Development of a combination of inductive power transfer and antenna system. 2. Design and optimization of novel microstrip antenna that may resonate at different ultra-high frequency bands including 415 MHz, 905 MHz, and 1300MHz. These antennas may be used to transfer power through radiation or send/receive data. 3. Design of high-frequency coil (13.56 MHz) to transfer power and optimization of the parameters for best efficiency. 4. Study of the performance of the hybrid antenna/coil system at various depths inside a body tissue model. 5. Minimizing the coupling effect between the coil and the antenna through addressed by optimizing their dimensions. 6. Study of the effects of lateral and angular misalignment on a hybrid compact system consisting of coil and antenna, as well as design and optimize the coilâs geometry which can provide maximum power efficiency under misalignment conditions. 7. Address the effects of receiver bending of a hybrid power transfer and communication system on the communication link budget and the transmitted power. 8. Study the wireless power transfer safety and security systems

    A Novel Power-Efficient Wireless Multi-channel Recording System for the Telemonitoring of Electroencephalography (EEG)

    Get PDF
    This research introduces the development of a novel EEG recording system that is modular, batteryless, and wireless (untethered) with the supporting theoretical foundation in wireless communications and related design elements and circuitry. Its modular construct overcomes the EEG scaling problem and makes it easier for reconfiguring the hardware design in terms of the number and placement of electrodes and type of standard EEG system contemplated for use. In this development, portability, lightweight, and applicability to other clinical applications that rely on EEG data are sought. Due to printer tolerance, the 3D printed cap consists of 61 electrode placements. This recording capacity can however extend from 21 (as in the international 10-20 systems) up to 61 EEG channels at sample rates ranging from 250 to 1000 Hz and the transfer of the raw EEG signal using a standard allocated frequency as a data carrier. The main objectives of this dissertation are to (1) eliminate the need for heavy mounted batteries, (2) overcome the requirement for bulky power systems, and (3) avoid the use of data cables to untether the EEG system from the subject for a more practical and less restrictive setting. Unpredictability and temporal variations of the EEG input make developing a battery-free and cable-free EEG reading device challenging. Professional high-quality and high-resolution analog front ends are required to capture non-stationary EEG signals at microvolt levels. The primary components of the proposed setup are the wireless power transmission unit, which consists of a power amplifier, highly efficient resonant-inductive link, rectification, regulation, and power management units, as well as the analog front end, which consists of an analog to digital converter, pre-amplification unit, filtering unit, host microprocessor, and the wireless communication unit. These must all be compatible with the rest of the system and must use the least amount of power possible while minimizing the presence of noise and the attenuation of the recorded signal A highly efficient resonant-inductive coupling link is developed to decrease power transmission dissipation. Magnetized materials were utilized to steer electromagnetic flux and decrease route and medium loss while transmitting the required energy with low dissipation. Signal pre-amplification is handled by the front-end active electrodes. Standard bio-amplifier design approaches are combined to accomplish this purpose, and a thorough investigation of the optimum ADC, microcontroller, and transceiver units has been carried out. We can minimize overall system weight and power consumption by employing battery-less and cable-free EEG readout system designs, consequently giving patients more comfort and freedom of movement. Similarly, the solutions are designed to match the performance of medical-grade equipment. The captured electrical impulses using the proposed setup can be stored for various uses, including classification, prediction, 3D source localization, and for monitoring and diagnosing different brain disorders. All the proposed designs and supporting mathematical derivations were validated through empirical and software-simulated experiments. Many of the proposed designs, including the 3D head cap, the wireless power transmission unit, and the pre-amplification unit, are already fabricated, and the schematic circuits and simulation results were based on Spice, Altium, and high-frequency structure simulator (HFSS) software. The fully integrated head cap to be fabricated would require embedding the active electrodes into the 3D headset and applying current technological advances to miniaturize some of the design elements developed in this dissertation

    Enhancing wireless power transfer efficiency for potential use in cardiovascular applications

    Get PDF
    Left Ventricular Assist Devices (LVAD) are being used to assist blood circulation in heart failure patients. The requirement to have a continuous energy supply is deteriorating the patients’ life quality since they need either to carry along two heavy battery packs or to attach a power cable. For this reason, a wireless power transmission (WPT) system is developed to power the LVAD. Within its effective charging region, the WPT system will offer an autonomous charging process which may lead to a smaller battery pack and cableless experience to the user. Previous WPT systems for cardiovascular applications are either compromised by poor transfer efficiency, short transmission distance or safety issues. To address these problems, an impedance matching WPT system is being designed. For increasing the overall transfer efficiency, both sides impedance matching technique and low loss matching networks are being worked on. In addition, efficiency specific design approach is being developed to reduce design complexity. As a result, the transfer efficiency and transmission distance of the impedance matched WPT have been increased by a factor of 7 and 6 times respectively. The conceptual idea for implementing such a system is also discussed in this thesis. Furthermore, safety measurements have been performed to ensure the system is safe to be used

    WIRELESS POWER TRANSFER TO BIOMEDICAL IMPLANTS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Investigation of high bandwith biodevices for transcutaneous wireless telemetry

    Get PDF
    PhD ThesisBIODEVICE implants for telemetry are increasingly applied today in various areas applications. There are many examples such as; telemedicine, biotelemetry, health care, treatments for chronic diseases, epilepsy and blindness, all of which are using a wireless infrastructure environment. They use microelectronics technology for diagnostics or monitoring signals such as Electroencephalography or Electromyography. Conceptually the biodevices are defined as one of these technologies combined with transcutaneous wireless implant telemetry (TWIT). A wireless inductive coupling link is a common way for transferring the RF power and data, to communicate between a reader and a battery-less implant. Demand for higher data rate for the acquisition data returned from the body is increasing, and requires an efficient modulator to achieve high transfer rate and low power consumption. In such applications, Quadrature Phase Shift Keying (QPSK) modulation has advantages over other schemes, and double the symbol rate with respect to Binary Phase Shift Keying (BPSK) over the same spectrum band. In contrast to analogue modulators for generating QPSK signals, where the circuit complexity and power dissipation are unsuitable for medical purposes, a digital approach has advantages. Eventually a simple design can be achieved by mixing the hardware and software to minimize size and power consumption for implantable telemetry applications. This work proposes a new approach to digital modulator techniques, applied to transcutaneous implantable telemetry applications; inherently increasing the data rate and simplifying the hardware design. A novel design for a QPSK VHDL modulator to convey a high data rate is demonstrated. Essentially, CPLD/FPGA technology is used to generate hardware from VHDL code, and implement the device which performs the modulation. This improves the data transmission rate between the reader and biodevice. This type of modulator provides digital synthesis and the flexibility to reconfigure and upgrade with the two most often languages used being VHDL and Verilog (IEEE Standard) being used as hardware structure description languages. The second objective of this thesis is to improve the wireless coupling power (WCP). An efficient power amplifier was developed and a new algorithm developed for auto-power control design at the reader unit, which monitors the implant device and keeps the device working within the safety regulation power limits (SAR). The proposed system design has also been modeled and simulated with MATLAB/Simulink to validate the modulator and examine the performance of the proposed modulator in relation to its specifications.Higher Education Ministry in Liby

    Remote Powering and Data Communication Over a Single Inductive Link for Implantable Medical Devices

    Get PDF
    RÉSUMÉ Les implants médicaux électroniques (Implantable Medical Devices - IMDs) sont notamment utilisés pour restaurer ou améliorer des fonctions perdues de certains organes. Ils sont capables de traiter des complications qui ne peuvent pas être guéries avec des médicaments ou par la chirurgie. Offrant des propriétés et des améliorations curatives sans précédent, les IMDs sont de plus en plus demandés par les médecins et les patients. En 2017, le marché mondial des IMD était évalué à 15,21 milliards de dollars. D’ici 2025, il devrait atteindre 30,42 mil-liards de dollars, soutenu par un taux de croissance annuel de 9,24% selon le nouveau rapport publié par Fior Markets. Cette expansion entraîne une augmentation des exigences pour as-surer des performances supérieures, des fonctionnalités supplémentaires et une durée de vie plus longue. Ces exigences ne peuvent être satisfaites qu’avec des techniques d’alimentation avancées, un débit de données élevé et une électronique miniaturisée robuste. Construire des systèmes capables de fournir toutes ces caractéristiques est l’objectif principal d’un grand nombre de chercheurs. Parmi plusieurs technologies sans fil, le lien inductif, qui consiste en une paire de bobines à couplage magnétique, est la technique sans fil la plus largement utilisée pour le transfert de puissance et de données. Cela est dû à sa simplicité, sa sécurité et sa capacité à transmettre à la fois de la puissance et des données de façon bidirectionnelle. Cependant, il existe encore un certain nombre de défis concernant la mise en œuvre d’un tel système de transfert d’énergie et de données sans fil (Wireless Power and Data Transfer - WPDT system). Un défi majeur est que les exigences pour une efficacité de transfert d’énergie élevée et pour une communication à haut débit sont contradictoires. En fait, la bande passante doit être élargie pour des débits de données élevés, mais réduite pour une transmission efficace de l’énergie. Un autre grand défi consiste à réaliser un démodulateur fonctionnant à haute vitesse avec une mise en œuvre simple et une consommation d’énergie ultra-faible. Dans ce projet, nous proposons et expérimentons un nouveau système WPDT dédié aux IMD permettant une communication à haute vitesse et une alimentation efficace tout en maintenant une faible consommation d’énergie, une petite surface de silicium et une mise en œuvre simple du récepteur. Le système proposé est basé sur un nouveau schéma de modulation appelé "Carrier Width Modulation (CWM)", ainsi que sur des circuits de modulation et de démodulation inédits. La modulation consiste en un coupe-circuit synchronisé du réservoir LC primaire pendant un ou deux cycles en fonction des données transmises.----------ABSTRACT Implantable Medical Devices (IMDs) are electronic implants notably used to restore or en-hance lost organ functions. They may treat complications that cannot be cured with medica-tion or through surgery. O˙ering unprecedented healing properties and enhancements, IMDs are increasingly requested by physicians and patients. In 2017, the worldwide IMD market was valued at USD 15,21 Billion. By 2025, it is expected to attain USD 30.42 Billion sus-tained by a compound annual growth rate of 9.24% according to a recent report published by Fior Markets. This expansion is bringing-up more demand for higher performance, additional features, and longer device lifespan and autonomy. These requirements can only be achieved with advanced power sources, high-data rates, and robust miniaturized electronics. Building systems able to provide all these characteristics is the main goal of many researchers. Among several wireless technologies, the inductive link, which consists of a magnetically-coupled pair of coils, is the most widely used wireless technique for both power and data transfer. This is due to its simplicity, safety, and ability to provide simultaneously both power and bidirectional data transfer to the implant. However there are still a number of challenges regarding the implementation of such Wireless Power and Data Transfer (WPDT) systems. One main challenge is that the requirements for high Power Transfer Eÿciency (PTE) and for high-data rate communication are contra-dictory. In fact, the bandwidth needs to be widened for high data rates, but narrowed for eÿcient power delivery. Another big challenge is to implement a high-speed demodulator with simple implementation and ultra-low power consumption. In this project, we propose and experiment a new WPDT system dedicated to IMDs allow-ing high-speed communication and eÿcient power delivery, while maintaining a low power consumption, small silicon area, and simple implementation of the receiver. The proposed system is based on a new Carrier Width Modulation (CWM) scheme, as well as novel modu-lation and demodulation circuits. The modulation consists of a synchronized opening of the primary LC tank for one or two cycles according to the transmitted data. Unlike conventional modulation techniques, the data rate of the proposed CWM modulation is not limited by the quality factors of the primary and secondary coils. On the other hand, the proposed CWM demodulator allows higher-speed demodulation and simple implementation, unlike conven-tional demodulators for a similar modulation scheme. It also o˙ers a wide range of data rates under any selected frequency from 10 to 31 MHz

    Wireless Technologies for Implantable Devices

    Get PDF
    Wireless technologies are incorporated in implantable devices since at least the 1950s. With remote data collection and control of implantable devices, these wireless technologies help researchers and clinicians to better understand diseases and to improve medical treatments. Today, wireless technologies are still more commonly used for research, with limited applications in a number of clinical implantable devices. Recent development and standardization of wireless technologies present a good opportunity for their wider use in other types of implantable devices, which will significantly improve the outcomes of many diseases or injuries. This review briefly describes some common wireless technologies and modern advancements, as well as their strengths and suitability for use in implantable medical devices. The applications of these wireless technologies in treatments of orthopedic and cardiovascular injuries and disorders are described. This review then concludes with a discussion on the technical challenges and potential solutions of implementing wireless technologies in implantable devices
    corecore