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ABSTRACT

Left Ventricular Assist Devices (LVAD) are being used to assist blood
circulation in heart failure patients. The requirement to have a continuous energy
supply is deteriorating the patients’ life quality since they need either to carry along
two heavy battery packs or to attach a power cable. For this reason, a wireless power
transmission (WPT) system is developed to power the LVAD. Within its effective
charging region, the WPT system will offer an autonomous charging process which
may lead to a smaller battery pack and cableless experience to the user. Previous
WPT systems for cardiovascular applications are either compromised by poor transfer
efficiency, short transmission distance or safety issues. To address these problems,
an impedance matching WPT system is being designed. For increasing the overall
transfer efficiency, both sides impedance matching technique and low loss matching
networks are being worked on. In addition, efficiency specific design approach is
being developed to reduce design complexity. As a result, the transfer efficiency and
transmission distance of the impedance matched WPT have been increased by a factor
of 7 and 6 times respectively. The conceptual idea for implementing such a system is
also discussed in this thesis. Furthermore, safety measurements have been performed
to ensure the system is safe to be used.
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ABSTRAK

Pesakit lemah jantung memerlukan Peranti Pembantu Ventrikal Kiri (LVAD)
untuk membantu pengepaman darah ke seluruh badan. Bekalan elektrik sama
ada daripada bateri ataupun kabel elektrik adalah diperlukan untuk memastikan
LVAD sentiasa berfungsi. Ini telah membawa banyak kesukaran kepada pengguna
LVAD. Oleh yang demikian, sistem penghantaran kuasa tanpa wayar (WPT) telah
direka bentuk demi memberikan kesenangan kepada pengguna. Dengan adanya
sistem ini, bekalan elektrik yang beterusan boleh diberikan kepada pengguna. Ini
akan menyumbang kepada penggunaan bateri yang lebih kecil. Sistem WPT yang
digunapakai sebelum ini mempunyai masalah-masalah seperti kecekapan yang rendah,
jarak penghantaran yang pendek dan isu-isu keselamatan semasa dipakai. Bagi
menangani masalah-masalah ini, sistem WPT yang berasaskan prinsip kepadanan
impedan telah dihasilkan. Teknik padanan impedan pada kedua-dua belah sistem
dan teknik litar padanan yang bersifat kehilangan kuasa rendah telah direka bentuk
demi meningkatkan kecekapan sistem WPT ini. Di samping itu, cara reka bentuk
WPT yang lebih mudah telah dikeluarkan. Hasil kajian menunjukkan peningkatan
kecekapan sistem sebanyak 7 kali ganda dan peningkatan jarak pemindahan sebanyak
6 kali ganda. Konsep pemasangan bagi sistem yang telah dicadang juga dibincang
dalam tesis ini. Pengukuran dari segi keselamatan juga dilaksanakan bagi memastikan
sistem ini bertugas mengikut penunjuk keselamatan yang sedia ada.
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CHAPTER 1

INTRODUCTION

1.1 Background Study

Heart disease is the major cause of death disease in Malaysia. It remains to
be the leading cause of death for more than four decades and contributes to 30% of
mortality. Due to donor shortages, left ventricular assist device (LVAD) is commonly
used in Institut Jantung Negara (IJN) Malaysia for treating heart failure patients. It is
an implanted mechanical pump which function is to assist the blood circulation. LVAD
can be utilized as either bridge-to-transplant therapy or as the destination therapy.

The pump is fed by two external batteries which are about 2kg in weight. The
batteries can only last for less than 6 hours of continuous operations. It requires 4
to 5 hours to recharge a fully depleted battery on the given charging station. While
sleeping, the patient is required to connect with a backup power cable in order to
safeguard the LVAD operations. Consequently, the patient’s freedom and mobility are
greatly hindered.

Based on the feedbacks from the medical doctor of IJN, patients often forget
to switch on the charging station after battery replacement. Other than that, frequent
battery removal as well causes oxidation to the connector leads and results in a poor
electrical connection.

For these reasons, a wireless power transmission (WPT) system is being
proposed to improve patient’s life quality. This system will charge the battery used
to power the LVAD automatically as long as it is staying within its effective charging
area. As a result, forgetful human interventions can be eliminated. The patient can
now move freely without being entangled by the power cable. Since power is more
readily available, a smaller battery can be used without replacement.
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Previous attempts to implement the WPT system into the biomedical devices
based on the concept of inductive power transfer (IPT) system did not demonstrate
a good performance. For example, transcutaneous energy transfer (TET) system in
AbioCor mechanical heart was having the issues on transfer efficiency, transmission
distance, size and patient safety (Congdon, 2013; Dissanayake et al., 2010; Hashimoto
and Shiba, 2015). Another attempt based on the magnetic coupled resonant system
was put in place to drive a LVAD. Despite its good transfer efficiency, high operating
frequency does violate the safety regulation (Hui et al., 2014). Besides, its practical
implementation is also restricted by its space occupying multi-coils system.

The challenges to apply WPT system in driving the LVAD will be uncovered
in this thesis and corresponding solutions were discussed in-depth.

1.2 Problem Statement

The following issues have to be considered altogether while designing a WPT
system dedicated to power a LVAD.

1. Efficiency - Efficient WPT is required to ensure sufficient amount of power is
delivered to the target. Additionally, efficient system is also intended to reduce
the transmitting power which may lead to excessive tissue heating for safety
considerations.

2. Size and weight - The WPT system should not burden the user who is wearing
the system. Hence, it needs to be small in size and light in weight.

3. Safety (Christ et al., 2013b) - The WPT system must be safe to be used in order
to reduce any adverse health effect. In order to do so, the safety measure of the
system should be studied along with the.

Existing WPT system failed to accomplish all the above-mentioned criteria. Even
though high efficiency had been reported, they are either too bulky or unsafe to be used
for biomedical application (Kim et al., 2015; Kurs et al., 2007). When it is bounded
by all the above-mentioned criteria, the only feasible solution to have an efficient WPT
system is by impedance matching (Pinuela et al., 2013).
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Nevertheless, current impedance matching solution did suffer from the
following limitations:

1. Both side matching (Park et al., 2011) - Due to the complexity of having a
matching design on both transmitting and receiving end simultaneously, previous
works are mainly focusing on single side matching or remaining to be a
conceptual discussion. However, it is important to have both side matching in
order to enhance the overall transfer efficiency of the WPT system.

2. Efficiency specific design (Awai and Ishizaki, 2012) - Previous studies have
limited knowledge regarding the impedance matching design and the transfer
efficiency. In order to avoid repeating trial and error design steps, it is important
to relate the impedance matching design with the efficiency outcome.

3. Power loss in the matching circuit (Huwig and Wambsganss, 2013) -
Conventional matching circuit used to transform the impedance into the optimal
value suffers great power loss due to the lossy inductor. To maintain the overall
transfer efficiency, it is required to have a low loss impedance transformation
network.

4. Coil size different (Li et al., 2012) - It is common to have the size disparity
between the transmitter and receiver due to the smaller size of the implanted
devices. The impedance matching design must cater for this working condition.

5. Different WPT topologies (Hannan et al., 2014) - There is a total of four
different WPT topologies based on the series and parallel combinations of the
transmitter and receiver. Certain topology is preferable over the rest in some
specific application (Guo and Jegadeesan, 2012; Ni et al., 2013). The impedance
matching design approach must not be only tackling on one or two topologies.

All the mentioned problems in this section and the relevant works will be examined in
details in Chapter 2 of this thesis.

1.3 Objectives

This study aims to fill up the research gap by solving the problems mentioned
in the previous section. Therefore, the objectives of this study are:
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1. To design an innovative purely resistive both side impedance matching technique
to enhance the overall transfer efficiency of the WPT system.

2. To simplify designing steps of the WPT system by having an efficiency specified
ratio impedance matching design.

3. To design a purely capacitive low loss impedance transformation networks
dedicated to reduce the power loss during the impedance transformation process.

At the same time, all the proposed techniques must be applicable to the system with
different coil size and different WPT topologies.

1.4 Scope of the Study

The design of the WPT system for biomedical devices is limited to the
following scopes:

1. Power - Maximum transmissible power must not be over 30 Watts which is
confined by the safety regulations.

2. Frequency - The operating frequency must be lower than 1 MHz bounded by
the ISM bandwidth and safety concerns.

3. Compact - Two-coil WPT system is used instead of the four-coils WPT system
to reduce the size and weight of the system.

4. Efficiency - The WPT system should be able to have at least 60% transfer
efficiency.

5. Distance - The transmissible distance should be more than one coil diameter or
about to be 12cm.

6. Target Device - Thoratec HeartMate II R© LVAD and HeartWare R© LVAD.

1.5 Organization of The Thesis

Chapter 1 is briefly introducing the motivation for the study and those
challenges for having a WPT system in powering the LVAD. This research is aimed at
improving the transfer efficiency of the WPT system by impedance matching. Hence,
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limitations in current studies for having an impedance matched WPT system to drive
the LVAD has been highlighted in the problem statement section. The objectives are
formulated to address the research gaps. Finally, job scopes for this study are being
listed.

Chapter 2 is all about the literature studies. Reviews on the WPT technologies
and their applications on cardiovascular applications have been done. Then, the safety
measure is being reviewed thoroughly. For improving the efficiency of the WPT
system, impedance matching technique is used. There is critical reviews section focus
on how to fill up the research gap in designing an impedance matched WPT system for
driving a LVAD. Some relevant theories are also part of this chapter.

The methodologies for having a WPT system in driving a LVAD are presented
in Chapter 3. It is first showing the idea for integrating the WPT system in a big picture.
The system framework is shown and the design specifications are being listed. In-
depth analyses are carried out to understand the working principle of the WPT systems.
Then, the three proposed solutions to improve the transfer efficiency of a WPT system
are organized to follow the order of the objectives. All the proposed solutions are being
verified by mathematics models, software simulations, and experimental prototypes for
consistency and correctness of the design. To indicate the safeness of the WPT system,
safety measurements are also carried out to the readied designed system.

Chapter 4 is showing all the results from the previous chapter accompanies
by discussions. The results to be shown are consisting of the system analyses, three
proposed solutions and safety measurements. The results are oriented to improve
the transfer efficiency and the matching of the impedances. Benchmarking with
previous literature is being included. Safety test results are portrayed alongside with
the exposure guidelines. After that, the advantages offer by the proposed WPT system
as compared to other two systems used in cardiovascular applications are shown.

Chapter 5 is concluding all the findings from this study with respect to the
research objectives. Knowledge contributions are also listed out along the way.
Possible expansion to the current study is also mentioned as the future works.



125

1. Since frequency matching tends to violate the safety regulation, it is not
encouraged to be used in practical especially from the biomedical perspective.
However, it remains to be the simplest approach to tune the system to work
efficiently in the over coupled regime. To solve this problem, researchers are
coming out with the adaptive matching technique to match the impedance at
different operating distance. However, the proposed system is over complicated
due to the requirement of complex tracking and feedback systems. The added
complexity is mainly due to the considerations to take care of every single
possible operating distance, which results in a significantly large amount of
matching set. In order to address this problem, a limited set of matching systems
can be used and consequently lead to a much simpler control system. Examining
Figure [fig:DiffEff], there exists overlapping between each matching set. By
properly setting the matching set combination, there will be only 5 to 6 sets of
matching circuit required. Hence, a much simpler adaptive impedance matching
circuits can be yielded.

2. This study can be further extended to drive multiple receivers in order to power
up several medical devices at the same time. However, cross coupling among the
receivers will hinder the power received by each individual receiver. In order to
avoid the happening of the over-power or under-power condition, proper tuning
of the load impedance can be the next study.

3. The issue of coils misalignment is not being studied in this work. This is one of
the practical implementation issues when used to drive a LVAD. Even though it
is commonly known that misalignment will lower the coupling coefficient and
consequently lead to a poor transfer efficiency, it is recommended to perform the
experimental study to get the better understanding of the system limitations.

5.4 Chapter Summary

This chapter is concluding the research findings with respect to the research
objectives in chapter 1. At the same time, knowledge contributions by this work
has been mentioned. Some possible future works to extend this study are also being
presented.
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