41,505 research outputs found

    Dynamic railway junction rescheduling using population based ant colony optimisation

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Efficient rescheduling after a perturbation is an important concern of the railway industry. Extreme delays can result in large fines for the train company as well as dissatisfied customers. The problem is exacerbated by the fact that it is a dynamic one; more timetabled trains may be arriving as the perturbed trains are waiting to be rescheduled. The new trains may have different priorities to the existing trains and thus the rescheduling problem is a dynamic one that changes over time. The aim of this research is to apply a population-based ant colony optimisation algorithm to address this dynamic railway junction rescheduling problem using a simulator modelled on a real-world junction in the UK railway network. The results are promising: the algorithm performs well, particularly when the dynamic changes are of a high magnitude and frequency

    Semantic Support for Log Analysis of Safety-Critical Embedded Systems

    Full text link
    Testing is a relevant activity for the development life-cycle of Safety Critical Embedded systems. In particular, much effort is spent for analysis and classification of test logs from SCADA subsystems, especially when failures occur. The human expertise is needful to understand the reasons of failures, for tracing back the errors, as well as to understand which requirements are affected by errors and which ones will be affected by eventual changes in the system design. Semantic techniques and full text search are used to support human experts for the analysis and classification of test logs, in order to speedup and improve the diagnosis phase. Moreover, retrieval of tests and requirements, which can be related to the current failure, is supported in order to allow the discovery of available alternatives and solutions for a better and faster investigation of the problem.Comment: EDCC-2014, BIG4CIP-2014, Embedded systems, testing, semantic discovery, ontology, big dat

    Opportunistic Sensing in Train Safety Systems

    Get PDF
    Train safety systems are complex and expensive, and changing them requires huge investments. Changes are evolutionary and small. Current developments, like faster - high speed - trains and a higher train density on the railway network, have initiated research on safety systems that can cope with the new requirements. This paper presents a novel approach for a safety subsystem that checks the composition of a train, based on opportunistic sensing with a wireless sensor network. Opportunistic sensing systems consist of changing constellations sensors that, for a limited amount of time, work together to achieve a common goal. Such constellations are selforganizing and come into being spontaneously. The proposed opportunistic sensing system selects a subset of sensor nodes from a larger set based on a common context.We show that it is possible to use a wireless sensor network to make a distinction between carriages from different trains. The common context is acceleration, which is used to select the subset of carriages that belong to the same train out of all the carriages from several trains in close proximity. Simulations based on a realistic set of sensor data show that the method is valid, but that the algorithm is too complex for implementation on simple wireless sensor nodes. Downscaling the algorithm reduces the number of processor execution cycles as well as memory usage, and makes it suitable for implementation on a wireless sensor node with acceptable loss of precision. Actual implementation on wireless sensor nodes confirms the results obtained with the simulations

    An optimization model for line planning and timetabling in automated urban metro subway networks

    Full text link
    In this paper we present a Mixed Integer Nonlinear Programming model that we developed as part of a pilot study requested by the R&D company Metrolab in order to design tools for finding solutions for line planning and timetable situations in automated urban metro subway networks. Our model incorporates important factors in public transportation systems from both, a cost-oriented and a passenger-oriented perspective, as time-dependent demands, interchange stations, short-turns and technical features of the trains in use. The incoming flows of passengers are modeled by means of piecewise linear demand functions which are parameterized in terms of arrival rates and bulk arrivals. Decisions about frequencies, train capacities, short-turning and timetables for a given planning horizon are jointly integrated to be optimized in our model. Finally, a novel Math-Heuristic approach is proposed to solve the problem. The results of extensive computational experiments are reported to show its applicability and effectiveness to handle real-world subway networksComment: 30 pages, 6 figures, 9 table

    A study of topologies and protocols for fiber optic local area network

    Get PDF
    The emergence of new applications requiring high data traffic necessitates the development of high speed local area networks. Optical fiber is selected as the transmission medium due to its inherent advantages over other possible media and the dual optical bus architecture is shown to be the most suitable topology. Asynchronous access protocols, including token, random, hybrid random/token, and virtual token schemes, are developed and analyzed. Exact expressions for insertion delay and utilization at light and heavy load are derived, and intermediate load behavior is investigated by simulation. A new tokenless adaptive scheme whose control depends only on the detection of activity on the channel is shown to outperform round-robin schemes under uneven loads and multipacket traffic and to perform optimally at light load. An approximate solution to the queueing delay for an oscillating polling scheme under chaining is obtained and results are compared with simulation. Solutions to the problem of building systems with a large number of stations are presented, including maximization of the number of optical couplers, and the use of passive star/bus topologies, bridges and gateways
    corecore