661 research outputs found

    Certification of Prefixed Tableau Proofs for Modal Logic

    Get PDF
    International audienceDifferent theorem provers tend to produce proof objects in different formats and this is especially the case for modal logics, where several deductive formalisms (and provers based on them) have been presented. This work falls within the general project of establishing a common specification language in order to certify proofs given in a wide range of deductive formalisms. In particular, by using a translation from the modal language into a first-order polarized language and a checker whose small kernel is based on a classical focused sequent calculus, we are able to certify modal proofs given in labeled sequent calculi, prefixed tableaux and free-variable prefixed tableaux. We describe the general method for the logic K, present its implementation in a Prolog-like language, provide some examples and discuss how to extend the approach to other normal modal logics

    Generating Schemata of Resolution Proofs

    Full text link
    Two distinct algorithms are presented to extract (schemata of) resolution proofs from closed tableaux for propositional schemata. The first one handles the most efficient version of the tableau calculus but generates very complex derivations (denoted by rather elaborate rewrite systems). The second one has the advantage that much simpler systems can be obtained, however the considered proof procedure is less efficient

    Smart matching

    Full text link
    One of the most annoying aspects in the formalization of mathematics is the need of transforming notions to match a given, existing result. This kind of transformations, often based on a conspicuous background knowledge in the given scientific domain (mostly expressed in the form of equalities or isomorphisms), are usually implicit in the mathematical discourse, and it would be highly desirable to obtain a similar behavior in interactive provers. The paper describes the superposition-based implementation of this feature inside the Matita interactive theorem prover, focusing in particular on the so called smart application tactic, supporting smart matching between a goal and a given result.Comment: To appear in The 9th International Conference on Mathematical Knowledge Management: MKM 201

    Superposition as a logical glue

    Full text link
    The typical mathematical language systematically exploits notational and logical abuses whose resolution requires not just the knowledge of domain specific notation and conventions, but not trivial skills in the given mathematical discipline. A large part of this background knowledge is expressed in form of equalities and isomorphisms, allowing mathematicians to freely move between different incarnations of the same entity without even mentioning the transformation. Providing ITP-systems with similar capabilities seems to be a major way to improve their intelligence, and to ease the communication between the user and the machine. The present paper discusses our experience of integration of a superposition calculus within the Matita interactive prover, providing in particular a very flexible, "smart" application tactic, and a simple, innovative approach to automation.Comment: In Proceedings TYPES 2009, arXiv:1103.311

    Hypertableau Reasoning for Description Logics

    Full text link
    We present a novel reasoning calculus for the description logic SHOIQ^+---a knowledge representation formalism with applications in areas such as the Semantic Web. Unnecessary nondeterminism and the construction of large models are two primary sources of inefficiency in the tableau-based reasoning calculi used in state-of-the-art reasoners. In order to reduce nondeterminism, we base our calculus on hypertableau and hyperresolution calculi, which we extend with a blocking condition to ensure termination. In order to reduce the size of the constructed models, we introduce anywhere pairwise blocking. We also present an improved nominal introduction rule that ensures termination in the presence of nominals, inverse roles, and number restrictions---a combination of DL constructs that has proven notoriously difficult to handle. Our implementation shows significant performance improvements over state-of-the-art reasoners on several well-known ontologies

    Modal Hybrid Logic

    Get PDF
    This is an extended version of the lectures given during the 12-th Conference on Applications of Logic in Philosophy and in the Foundations of Mathematics in Szklarska Poręba (7–11 May 2007). It contains a survey of modal hybrid logic, one of the branches of contemporary modal logic. In the first part a variety of hybrid languages and logics is presented with a discussion of expressivity matters. The second part is devoted to thorough exposition of proof methods for hybrid logics. The main point is to show that application of hybrid logics may remarkably improve the situation in modal proof theory

    A new translation from deduction into integer programming

    Get PDF

    Probabilistic Bisimulation: Naturally on Distributions

    Full text link
    In contrast to the usual understanding of probabilistic systems as stochastic processes, recently these systems have also been regarded as transformers of probabilities. In this paper, we give a natural definition of strong bisimulation for probabilistic systems corresponding to this view that treats probability distributions as first-class citizens. Our definition applies in the same way to discrete systems as well as to systems with uncountable state and action spaces. Several examples demonstrate that our definition refines the understanding of behavioural equivalences of probabilistic systems. In particular, it solves a long-standing open problem concerning the representation of memoryless continuous time by memory-full continuous time. Finally, we give algorithms for computing this bisimulation not only for finite but also for classes of uncountably infinite systems
    • …
    corecore