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Inria and LIX, École Polytechnique

France
tomer.libal@inria.fr marco.volpe@inria.fr

Different theorem provers tend to produce proof objects in different formats and this is especially the
case for modal logics, where several deductive formalisms (and provers based on them) have been
presented. This work falls within the general project of establishing a common specification language
in order to certify proofs given in a wide range of deductive formalisms. In particular, by using a
translation from the modal language into a first-order polarized language and a checker whose small
kernel is based on a classical focused sequent calculus, we are able to certify modal proofs given in
labeled sequent calculi, prefixed tableaux and free-variable prefixed tableaux. We describe the general
method for the logic K, present its implementation in a Prolog-like language, provide some examples
and discuss how to extend the approach to other normal modal logics.

1 Introduction

Modal logics are very popular and feature in many areas of computer science, including formal verification,
knowledge representation, the field of logics of programs, computational linguistics and agent-based
systems. Two common approaches for the automatic proving of modal theorems are the tableau method
[11] and the resolution principle [19]. Theorem provers based on such approaches normally contain
non-trivial optimizations and cores which might compromise the amount of trust we can place in them.
Nevertheless, only few of these provers do actually return an evidence supporting their results and even
these evidences might not be checkable by a computer.

ProofCert [15] is a project whose main goal is the certification of a wide range of proof evidences. By
using well-established concepts of proof theory, ProofCert proposes foundational proof certificates (FPC)
as a framework to specify proof evidence formats. Describing a format in terms of an FPC allows software
to check proofs in this format, much like a context-free grammar allows a parser to check the syntactical
correctness of a program. The parser in this case would be a kernel: a small and trusted component that
checks a proof evidence with respect to an FPC specification.

Checkers [8] is a generic proof certifier based on the ProofCert ideas. It allows for the certification of
arbitrary proof evidences using various trusted kernels. The certification is carried out by using dedicated
FPC specifications which guide the construction of proofs in the target kernels. A particularly trusted
and low-level kernel is the focused classical sequent calculus LKF [13]. In [17], a translation from the
language of the labeled sequent system G3K [18] for propositional modal logic into the language of LKF
was described. G3K is of interest when trying to certify proofs of modal theorem provers due to its close
relationship with the refutational technique of prefixed tableaux, on which many modal theorem provers
are based.

In this paper, we propose two distinct FPC specifications, both relying on such a translation. The first
one requires a detailed proof description from the prover and allows for a step-by-step checking, while the
second one only needs some core information about the original proof and operates by performing some
proof reconstruction. These specifications enable the automated checking of proof evidences coming from
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2 Certification of prefixed tableau proofs for modal logic

different deductive formalisms for the modal logic K. In particular, we will show how to apply them to
the certification of proofs given in G3K, in Fitting-style prefixed tableaux and in a free-variable variant
of prefixed tableau systems. While the first calculus is designed for positive proofs, the other two are
based on a refutational method. Still, the most dramatic change in the form of the derivations is presented
in the third method, as the free-variable optimization introduces the notion of meta-variables and can
significantly change the structure of the proofs generated. Proof evidences arising from these formalisms,
when paired with the corresponding specification, can be automatically certified by Checkers over the
LKF kernel. We show, by means of examples, that using the ProofCert flexible notion of a proof evidence
and Checkers modular design, we are able to support proof checking for these three different formalisms,
by making use of the same translation.

To the best of our knowledge, the work presented here is the first attempt to independently certify
the proofs generated by propositional modal theorem provers. The approach closest to ours is probably
Dedukti’s [6] independent certification for the classical first-order tableau prover Zenon modulo [7].

In the next section, we present some background on ProofCert, modal logic and theorem proving.
In Section 3, we describe the different FPC specifications. Such specifications are then used in order to
enhance the capabilities of Checkers, as we demonstrate on some examples. In Section 4, we conclude
and discuss some possible future work.

2 Background

2.1 A general proof checker

There is no consensus about what shape should a formal proof evidence take. The notion of structural
proofs, which is based on derivations in some calculus, is of no help as long as the calculus is not fixed.
One of the ideas of the ProofCert project is to try to amend this problem by defining the notion of a
foundational proof certificate (FPC) as a pair of an arbitrary proof evidence and an executable specification
which denotes its semantics in terms of some well known target calculus, such as the Sequent Calculus.
These two elements of an FPC are then given to a universal proof checker which, by the help of the FPC,
is capable of deriving a proof in the target calculus. Since the proof generated is over a well known and
low-level calculus which is easy to implement, one can obtain a high degree of trust in its correctness.

The proof certifier Checkers is a λProlog [16] implementation of this idea. Its main components are
the following:

• Kernel. The kernels are the implementations of several trusted proof calculi. Currently, there are
kernels over the classical and intuitionistic focused sequent calculus. Section 2.2 is devoted to
present LKF, i.e. the classical focused sequent calculus that will be used in the paper.

• Proof evidence. The first component of an FPC, a proof evidence is a λProlog description of a
proof output of a theorem prover. Given the high-level declarative form of λProlog, the structure
and form of the evidence are very similar to the original proof. We will see the precise form of the
different proof evidences we handle in Section 3.

• FPC specification. The basic idea of Checkers is to try and generate a proof of the theorem of
the evidence in the target kernel. In order to achieve that, the different kernels have additional
predicates which take into account the information given in the evidence. Since the form of this
information is not known to the kernel, Checkers uses FPC specifications in order to interpret it.
These logical specifications are written in λProlog and interface with the kernel in a sound way in
order to certify proofs. Writing these specifications is the main task for supporting the different
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outputs of the modal theorem provers we consider in this paper and they are, therefore, explained in
detail in Section 3.

2.2 Classical Focused Sequent Calculus

Theorem provers usually employ efficient proof calculi with a lower degree of trust. At the same time,
traditional proof calculi like the sequent calculus enjoy a high degree of trust but are very inefficient
for proof search. In order to use the sequent calculus as the basis of automated deduction, much more
structure within proofs needs to be established. Focused sequent calculi, first introduced by Andreoli [1]
for linear logic, combine the higher degree of trust of sequent calculi with a more efficient proof search.
They take advantage of the fact that some of the rules are “invertible”, i.e. can be applied without requiring
backtracking, and that some other rules can “focus” on the same formula for a batch of deduction steps.
In this paper, we will make use of the classical focused sequent calculus (LKF) system defined in [13].
Fig. 1 presents, in the black font, the rules of LKF.

Formulas in LKF can have either positive or negative polarity and are constructed from atomic
formulas, whose polarity has to be assigned, and from logical connectives whose polarity is pre-assigned.
The connectives ∧−,∨− and ∀ are of negative polarity, while ∧+,∨+ and ∃ are of positive polarity.

Deductions in LKF are done during invertible or focused phases. Invertible phases correspond to the
application of invertible rules to negative formulas while a focused phase corresponds to the application
of focused rules to a specific, focused, positive formula. Phases can be changed by the application of
structural rules. A polarized formula A is a bipolar formula if A is a positive formula and no positive
subformula occurrence of A is in the scope of a negative connective in A. A bipole is a pair of a negative
phase below a positive phase within LKF: thus, bipoles are macro inference rules in which the conclusion
and the premises are ⇑-sequents with no formulas to the right of the up-arrow.

It might be useful sometimes to delay the application of invertible rules (focused rules) on some
negative formulas (positive formulas) A. In order to achieve that, we define the following delaying
operators ∂+(A) = true∧+ A and ∂−(A) = false∨− A. Clearly, A,∂+(A) and ∂−(A) are all logically
equivalent but ∂+(A) is always considered as a positive formula and ∂−(A) as negative.

In order to integrate the use of FPC into the calculus, we enrich each rule of LKF with proof evidences
and additional predicates, given in blue font in Fig. 1. We call the resulted calculus LKFa. LKFa extends
LKF in the following way. Each sequent now contains additional information in the form of the proof
evidence Ξ. At the same time, each rule is associated with a predicate (for example initiale(Ξ, l)) which,
according to the proof evidence, might prevent the rule from being called or guide it by supplying such
information as the cut formula to be used.

Note that adding the FPC definitions in Fig. 1 does not harm the soundness of the system but only
restricts the possible rules which can be applied at each step. Therefore, a proof obtained using LKFa is
also a proof in LKF. Since the additional predicates do not compromise the soundness of LKFa, we allow
their definition to be external to the kernel and in fact these definitions, which are supplied by the user, are
what allow Checkers to check arbitrary proof formats. Section 3 is mainly devoted to the definitions of
these programs for the different proof formats of the modal theorem provers.

2.3 Prefixed tableaux for modal logic

2.3.1 Modal logic

The language of (propositional) modal formulas consists of a functionally complete set of classical
propositional connectives, a modal operator � (here we will also use explicitly its dual ♦) and a
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INVERTIBLE RULES
Ξ′ `Θ⇑A,Γ Ξ′′ `Θ⇑B,Γ andNegc(Ξ,Ξ

′,Ξ′′)

Ξ `Θ⇑A∧− B,Γ

Ξ′ `Θ⇑A,B,Γ orNegc(Ξ,Ξ
′)

Ξ `Θ⇑A∨− B,Γ
(Ξ′y) `Θ⇑ [y/x]B,Γ allc(Ξ,Ξ′)

Ξ `Θ⇑∀x.B,Γ †

FOCUSED RULES
Ξ′ `Θ⇓B1 Ξ′′ `Θ⇓B2 andPose(Ξ,Ξ

′,Ξ′′)

Ξ `Θ⇓B1∧+ B2

Ξ′ `Θ⇓Bi orPose(Ξ,Ξ
′, i)

Ξ `Θ⇓B1∨+ B2

Ξ′ `Θ⇓ [t/x]B somee(Ξ, t,Ξ′)
Ξ `Θ⇓∃x.B

IDENTITY RULES

Ξ′ `Θ⇑B Ξ′′ `Θ⇑¬B cute(Ξ,Ξ′,Ξ′′,B)
Ξ `Θ⇑ · cut

〈l,¬Pa〉 ∈Θ initiale(Ξ, l)
Ξ `Θ⇓Pa

init

STRUCTURAL RULES

Ξ′ `Θ⇑N releasee(Ξ,Ξ
′)

Ξ `Θ⇓N release
Ξ′ `Θ,〈l,C〉⇑Γ storec(Ξ,C, l,Ξ′)

Ξ `Θ⇑C,Γ
store

Ξ′ `Θ⇓P 〈l,P〉 ∈Θ decidee(Ξ, l,Ξ′)
Ξ `Θ⇑ · decide

Figure 1: The augmented LKF proof system LKFa. The proviso † requires that y is not free in Ξ,Θ,Γ,B.
The symbol Pa denotes a positive atomic formula.

denumerable set P of propositional symbols. Along this paper, we will work with formulas in negation
normal form, i.e., such that only atoms may possibly occur negated in them. Notice that this is not a
restriction, as it is always possible to convert a propositional modal formula into an equivalent formula in
negation normal form. The grammar is specified as follows:

A ::= P | ¬P | A∨A | A∧A | �A | ♦A

where P ∈P . We say that a formula is a �-formula (♦-formula) if its main connective is � (♦). The
semantics of the modal logic K is usually defined by means of Kripke frames, i.e., pairs F = (W,R) where
W is a non empty set of worlds and R is a binary relation on W . A Kripke model is a triple M = (W,R,V )
where (W,R) is a Kripke frame and V : W → 2P is a function that assigns to each world in W a (possibly
empty) set of propositional symbols.

Truth of a modal formula at a point w in a Kripke structure M = (W,R,V ) is the smallest relation |=
satisfying:

M ,w |= P iff P ∈V (w)

M ,w |= ¬P iff P 6∈V (w)

M ,w |= A∨B iff M ,w |= A or M ,w |= B

M ,w |= A∧B iff M ,w |= A and M ,w |= B

M ,w |=�A iff M ,w′ |= A for all w′ s.t. wRw′

M ,w |= ♦A iff there exists w′ s.t. wRw′ and M ,w′ |= A.
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CLASSICAL RULES

x : P,Γ ` ∆,x : P init
x : A,x : B,Γ ` ∆

x : A∧B,Γ ` ∆
L∧

Γ ` ∆,x : A Γ ` ∆,x : B
Γ ` ∆,x : A∧B R∧

x : A,Γ ` ∆ x : B,Γ ` ∆

x : A∨B,Γ ` ∆
L∨

Γ ` ∆,x : A,x : B
Γ ` ∆,x : A∨B R∨

MODAL RULES

y : A,x : �A,xRy,Γ ` ∆

x : �A,xRy,Γ ` ∆
L�

xRy,Γ ` ∆,y : A
Γ ` ∆,x : �A R�

xRy,y : A,Γ ` ∆

x : ♦A,Γ ` ∆
L♦

xRy,Γ ` ∆,x : ♦A,y : A
xRy,Γ ` ∆,x : ♦A

R♦

In R� and L♦, y does not occur in the conclusion.

Figure 2: G3K: a labeled sequent system for the modal logic K

By extension, we write M |= A when M ,w |= A for all w ∈W and we write |= A when M |= A for every
Kripke structure M .

2.3.2 The standard translation from modal logic into classical logic

The following standard translation (see, e.g., [5]) provides a bridge between propositional modal logic
and first-order classical logic:

STx(P) = P(x) STx(A∧B) = STx(A)∧STx(B)
STx(¬P) = ¬P(x) STx(�A) = ∀y(R(x,y)⊃ STy(A))

STx(A∨B) = STx(A)∨STx(B) STx(♦A) = ∃y(R(x,y)∧STy(A))

where x is a free variable denoting the world in which the formula is being evaluated. The first-order
language into which modal formulas are translated is usually referred to as first-order correspondence
language [5] and consists of a binary predicate symbol R and a unary predicate symbol P for each
P ∈P . When a modal operator is translated, a new fresh variable is introduced. It is easy to show
that for any modal formula A, any model M and any world w, we have that M ,w |= A if and only if
M |= STx(A)[x← w].

2.3.3 Labeled sequent systems

Several different deductive formalisms have been used for modal proof theory and theorem proving. One
of the most interesting approaches has been presented in [12] with the name of labeled deduction. The
basic idea behind labeled proof systems for modal logic is to internalize elements of the corresponding
Kripke semantics (namely, the worlds of a Kripke structure and the accessibility relation between such
worlds) into the syntax. A concrete example of such a system is the sequent calculus G3K presented in
[18]. G3K formulas are either labeled formulas of the form x : A or relational atoms of the form xRy,
where x,y range over a set of variables and A is a modal formula. In the following, we will use ϕ,ψ to
denote G3K formulas. G3K sequents have the form Γ ` ∆, where Γ and ∆ are multisets containing labeled
formulas and relational atoms. In Fig. 2, we present the rules of G3K, which is proved to be sound and
complete for the basic modal logic K [18].
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CLASSICAL RULES
σ : A∧B

σ : A, σ : B
∧F

σ : A∨B
σ : A | σ : B

∨F

MODAL RULES
σ : �A
σ .n : A

�F
σ : ♦A
σ .n : A

♦F

In �F , σ .n is used. In ♦F , σ .n is new.

Figure 3: A prefixed tableau system for the modal logic K

2.3.4 Prefixed tableau systems

Prefixed tableaux can also be seen as a particular kind of labeled deductive system. They were introduced
in [11]. The formulation that we use here is closer to the one in [9] and it is given in terms of unsigned
formulas. A prefix is a finite sequence of positive integers (written by using dots as separators). Intuitively,
prefixes denote possible worlds and they are such that if σ is a prefix, then σ .1 and σ .2 denote two worlds
accessible from σ . A prefixed formula is σ : A, where σ is a prefix and A is a modal formula in negation
normal form. A prefixed tableau proof of A starts with a root node containing 1 : A, informally asserting
that A is false in the world named by the prefix 1. It continues by using the branch extension rules given
in Figure 3. We say that a branch of a tableau is a closed branch if it contains σ : P and σ : ¬P for some
σ and some P. The goal is to produce a closed tableau, i.e., a tableau such that all its branches are closed.
Classical rules in Figure 3 are the prefixed version of the standard ones. For what concerns the modal
rules, the ♦ rule applied to a formula σ : A intuitively allows for generating a new world, accessible from
σ , where A holds, while the � rule applied to a formula � : A allows for moving the formula A to an
already existing world accessible from σ . We say that a prefix is used on a branch if it already occurs in
the tableau branch and it is new otherwise.

2.3.5 Free-variable prefixed tableau systems

Prefixed tableau systems have a deficiency that is also common in first-order sequent calculi. Resolution
methods [21], which introduce meta-variables and unification may have an exponential speed-up in proof
complexity over sequent calculi [2]. In a similar way, free-variable prefixed tableaux [20] aim at improving
prefixed tableaux by the introduction of meta variables and simple unification. This construct allows
for the delaying of the �F rule and might result with shorter proofs, as can be seen in Fig. 8 where the
free-variable tableau has 9 rule applications versus the 12 of the standard tableau proof. The addition of
meta-variables comes with the cost that careful restrictions must be posed on the tableau proofs in order
to preserve soundness. In particular, the unification of these meta-variables must be restricted in order to
prevent such unsoundness. In this paper, we are not interested in proof generation but in the structure of
proofs only and will therefore omit further discussion on this topic. The interested reader can refer to [4]
for further reading.

3 Certification of tableau modal proofs

3.1 A translation from the modal language into a first-order polarized language

In [17], it has been shown how it is possible to translate a modal formula A into a polarized first-order
formula A′ in such a way that a strict correspondence between rule applications in a G3K proof of A
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and bipoles in an LKF proof of A′ holds. Such a correspondence has been used in order to prove some
adequacy theorem and to define a focused version of G3K. Here we will further exploit it for checking
labeled sequent and prefixed tableaux derivations in the augmented variant LKFa.

The translation is obtained from the standard translation of Section 2.3.2 by adding some elements of
polarization. First of all, when translating a modal formula into a polarized one, we are often in a situation
where we are interested in putting a delay in front of the formula only in the case when it is negative and
not a literal. For that purpose, we define A∂+

, where A is a modal formula in negation normal form, to be
A if A is a literal or a positive formula and ∂+(A) otherwise.

Given a world x, we define the translation [.]x from modal formulas in negation normal form into
polarized first-order formulas as:

[P]x = P(x) [A∧B]x = [A]x
∂+
∧− [B]x∂+

[¬P]x = ¬P(x) [A∨B]x = [A]x
∂+
∨− [B]x∂+

[�A]x = ∀y(¬R(x,y)∨− [A]y∂+
) [♦A]x = ∃y(R(x,y)∧+ ∂−([A]y

∂+
))

In this translation, delays are used to ensure that only one connective is processed along a given
bipole, e.g., when we decide on (the translation of) a ♦-formula [♦A]x, the (translation of the) formula
A is delayed in such a way that it gets necessarily stored at the end of the bipole. Based on that, we
define the translation [.] from labeled formulas and relational atoms into polarized first-order formulas
as [x : A] = [A]x and [xRy] = R(x,y). We will sometimes use the extension of this notion to multisets of
labeled formulas, i.e., [Γ] = {[ϕ] | ϕ ∈ Γ}. Note that predicates of the form P(x) and R(x,y) are considered
as having positive polarity. Finally, we define a translation from G3K sequents into LKF sequents:

[(ϕ1, . . . ,ϕn ` ψ1, . . . ,ψm)] =` [¬ϕ1]
∂+

, . . . , [¬ϕn]
∂+

, [ψ1]
∂+

, . . . , [ψm]
∂+

⇑ ·

where [¬ϕ] is [(¬A)]x if ϕ = x : A and is ¬R(x,y) if ϕ = xRy.
We recall here a result from [17], where a more formal statement and a detailed proof can be found.

Theorem 1 Let Π be a G3K derivation of a sequent S from the sequents S1, . . . ,Sn. Then there exists an
LKF derivation Π′ of [S] from [S1], . . . , [Sn], such that each rule application in Π corresponds to a bipole
in Π′. The viceversa, for first-order formulas that are translation of modal formulas, also holds.

Such a result is easily extended to the case of prefixed tableaux, by relying on the correspondence between
prefixed tableaux and nested sequents [10], which are a subclass of labeled sequents. We omit the details.

3.2 Foundational proof certificate specifications

The translation presented in Section 3.1 can be used in order to check labeled sequent and prefixed tableau
proofs in LKF. In fact, given the correspondence between rule applications in the original calculus and
bipoles in LKF, we can state an easy and faithful encoding of proofs, mainly based on specifying on which
formulas we decide every time we start a new bipole. We propose here two different FPC specifications.
The first one requires a quite detailed proof evidence from the prover, while in the second one we only
require the prover to provide some core information about the proof evidence and we check that it is
correct by reconstructing the rest of the proof.

By observing G3K and prefixed tableau rules (Section 2.3), one can notice that a proof in these
formalisms is fully represented by specifying:

1. at each step, on which formula we apply a rule;

2. in the case of a ♦-formula for G3K (or a �-formula for tableaux), with respect to which label
(prefix) we apply the rule;
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3. in the case of an initial (closure) rule, with respect to which complementary literal we apply it.

For this reason, an adequate and detailed proof evidence of a labeled sequent or prefixed tableau proof
will consist in a tree describing the original proof (we will call it a decide tree in the following). Each
node is decorated by a pair containing: (i) the formula on which a rule is applied, as explained in (1),
together with (ii) a (possibly null) further index carrying additional information, to be used in cases (2)
and (3) above. Formulas in the decide tree will drive the construction (bottom-up) of the LKF derivation,
in the sense that, by starting from the root, at each step, the LKF kernel will decide on the given formula
and proceed, constrained by properly defined clerks and experts, along a positive and a negative phase.
Theorem 1 guarantees that at the end of a bipole, we will be in a situation which is equivalent to that of
the corresponding G3K or tableau proof. As described in item (2) above, if we are applying an ∃-rule
in LKF, then we need further information specifying with respect to which eigenvariable we apply the
rule. This is done by linking, in the proof evidence, the formula under consideration to the corresponding
new-world-generating formula (a �-formula in the case of G3K; a ♦-formula in the case of tableaux).
Similarly, in the case of a closure (3), the additional information in the node will specify the index of the
complementary literal.

In order to provide an FPC specification for a particular format, we need to define the specific items
that are used to augment LKF. In particular, the constructors for proof certificate terms and for indexes
must be provided: this is done in λ -Prolog by declaring constructors of the types cert and index. In
Figure 4, we show the type declaration for the fittings-tableaux FPC that takes as input a decide tree
corresponding to a proof, as specified above. In this declaration, we assume that term and atm are already
declared, with the obvious intended meaning.

Several constructors are used to build indexes denoting formulas. eind is used to denote the root
formula (ideally, the theorem to be proved). lind and rind are used to denote, respectively, the left and
right direct subformulas of a formula (in case of a formula whose main connective is unary, we use lind
to build the index of its only direct subformula). We have a specific constructor bind for subformulas
of a �-formula in a tableau proof (or of a ♦-formula in a G3K proof). This takes two arguments, the
first one being the index of the formula itself and the second one being the index of the corresponding
eigenvariable-generating formula, i.e., of the formula that introduced the eigenvariable used in the current
rule application. Finally, none is used in special cases when an index is not necessary. For instance,
for the formula ((�p)∧ (♦¬q))∨ (�(¬p∨q)) of Example 1 (Figure 8 (a)), we have the following (non
exhaustive) mapping of indexes to formulas:

eind -> 1 : ((�p)∧ (♦¬q))∨ (�(¬p∨q)) lind(eind) -> 1 : (�p)∧ (♦¬q)
lind(lind(eind)) -> 1 : �p rind(lind(eind)) -> 1 : ♦¬q
bind(lind(lind(eind)),rind(lind(eind))) -> 1.1 : p

A dectree represents a decide tree as described above: the two indexes taken as arguments represent,
respectively, the index of the formula on which to decide and the index possibly used for additional
information; the third argument (a list of dectrees) is used to represent the (at most two) subtrees of this
formula. Finally, we define a constructor fitcert that represents a certificate in the fittings-tableaux
FPC specification. Together with the decide tree, representing the proof evidence, it takes two more
arguments, which are used along the proof by the clerk and expert predicates: (i) a list of indexes to be
used when storing formulas; and (ii) a list of pairs (index, atm) containing for each instantiated tableau
♦-formula the corresponding eigenvariable. Both such arguments are initialized as empty when a proof
checking starts.

In addition to the type declaration, the FPC definition must supply the logic program defining the clerk
predicates and the expert predicates. Writing no specification for a given predicate defines that predicate
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eind : index none : index

lind : index -> index rind : index -> index

bind : index -> index -> index

rel : term -> term -> atm

dectree : index -> index -> list dectree -> dectree

fitcert : list index -> dectree -> list (pair index atm) -> cert

Figure 4: Type declaration for the fittings-tableaux FPC specification.

to hold for no list of arguments. In Figure 5, we define clerks and experts for the fittings-tableaux
FPC specification. According to this specification, each decide step is completely determined by the proof
evidence: in the decidee expert, I denotes the index of the formula on which to decide; notice also that
the first element of the fitcert (the list of indexes) is reinitialized to be empty, as this list will be used,
along the bipole, to construct appropriate indexes for the subformulas being created. For example, in
orNegc, two indexes (lind I and rind I) are created and put inside such a list. In the end of the bipole,
these indexes will be used to store the subformulas with a proper index. orNegc (as well as andNegc)
is described by two cases. The first one corresponds to the case when the ∨− rule (∧− rule) is being
applied on the formula on which we have just decided; the second one corresponds to the case when the
∨− connective (∧− connective) arises from the translation of a �-formula (♦-formula). In the former
case, we have to take care of the indexes generated; in the latter, we do not. With regard to andPose, we
remark that the connective ∧+ can only occur in a formula that is the translation of a ♦-formula and for
this reason we have only one case. releasec leaves things unchanged. In the case of allc, we update the
list of maps between formulas and corresponding eigenvariables and in somee, by using the information
contained in such a list and the information contained in the second index of the current node in the
decide tree (specifying to which universal formula the current existential formula corresponds), we are
able to instantiate the ∃ with the proper eigenvariable. In the storec clerk, we use the index created so far
to properly store the formula under consideration; note that in the case of relational atoms, we simply
store the formula with the index none. Finally, in order to apply an initial rule, the expert initiale

checks that the complementary formula is indexed with the second element of the decide tree (O in the
specification).

As already remarked, the fittings-tableaux FPC specification allows for a very detailed and
completely faithful checking of an original proof in both the G3K sequent calculus and the Fitting-style
prefixed tableau system of Section 2.3.4. In fact, at least as long as the logic K is considered, a proof
of a modal formula A in the first setting can be easily converted into a refutation of ¬A in the second
formalism, where: at a given connective rule in G3K corresponds the rule of the dual connective in a
tableau and at an initial rule application corresponds a closure of a branch1. This means that we can use
the same format for proof evidence, the same translation and the same FPC specification for both the
formalisms. In the case of a theorem proved in G3K, we will obtain in LKF a proof of its translation
(as defined in Section 3.1); in the case of prefixed tableaux, we will obtain a proof of the translation of
the negated formula. Further remarks on the implementation and on some experiments will be given in
Section 3.3

Having such a faithful proof representation can appear in some cases rather naive and space-consuming.

1Clearly, if one considers the two-sided sequent version of G3K given here, it is also necessary to take care of the different
meaning of having a connective on the left or on the right side of the sequent. This can be done by defining a translation from
two-sided G3K sequents into one-sided sequents, as shown, e.g., in [17].
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∀ L,I,O,D,M. decidee (fitcert L (dectree I O D) M) I (fitcert [] (dectree I O D) M).

∀ I,O,H,T,M. orNegc (fitcert [] (dectree I O [H|T]) M) (fitcert [lind I, rind I] H M).

∀ E,L,D,M. orNegc (fitcert [E|L] D M) (fitcert [E|L] D M).

∀ I,O,H,G,T,M. andNegc (fitcert [] (dectree I O [H,G|T]) M) (fitcert [lind I] H M) (

fitcert [rind I] G M).

∀ E,L,D,M. andNegc (fitcert [E|L] D M) (fitcert [E|L] D M) (fitcert [E|L] D M).

∀ L,I,O,T,M,F. andPose (fitcert L (dectree I O T) M) (fitcert L (dectree I none T) M) (

fitcert L (dectree I O T) M).

∀ C. releasee C C.

∀ I,O,H,T,M. allc (fitcert [] (dectree I O [H|T]) M) (Eigen\ fitcert [lind I] H [pair I

Eigen|M]).

∀ I,O,H,T,M,X. somee (fitcert [] (dectree I O [H|T]) M) X (fitcert [bind I O] H M) :- (

pair O X) ∈ M.

∀ C,X,Y. storec C (n (rel X Y)) none C :- !.

∀ C,X,Y. storec C (p (rel X Y)) none C :- !.

∀ H,T,D,M,F. storec (fitcert [H|T] D M) F H (fitcert T D M).

∀ L,I,O,D,M. initiale (fitcert L (dectree I O D) M) O.

Figure 5: Definition of the fittings-tableaux FPC specification.

It is quite common, in the context of proof checking, to work with less precise proof evidences, that only
contain crucial information about a given proof, and let the checker perform some proof reconstruction of
the rest. The second FPC specification that we propose, simpfit-tableaux (Figures 6 and 7), aims at
this goal. Instead of telling LKF, at each beginning of a new bipole, on which formula to decide, we only
provide the checker with the following information:

• a mapping between � and ♦-formulas, i.e., which eigenvariable to use at each instantiation of an
existential formula;

• a mapping between complementary literals, i.e., all the pairs of literals with respect to which we
can apply an initial rule.

This information is specified in the proof evidence by two further constructors: boxinfo and closure.
Together with such a proof evidence, a simpfit-tableaux certificate requires other elements:

• an integer, used as a flag, for dealing with the creation of indexes: 1 means that we have just
decided on a formula and thus we need to create subindexes at the first rule application concerning
a connective; we have 0 otherwise;

• a list of indexes, used, as in fittings-tableaux, for storing formulas with the proper index;

• a list of maps between universal formulas and eigenvariables, updated by the allc clerk;

• a further list of indexes denoting formulas on which we have already decided: since the decide step
is not driven by the certificate, as in the previous FPC, this list is required in order to avoid that the
checker keeps deciding on a same formula.

The simpfit-tableaux FPC specification is rather general and can be used to certify proofs also
in formalisms that are farther from sequent calculus (and from LKF in particular). For example, we
applied this FPC to check proofs given in the free-variable tableau systems of Section 2.3.5. A faithful
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boxinfo : index -> index -> boxinfo.

closure : index -> index -> closure.

use : index -> use.

simpfitcert : int -> list index -> list closure -> list boxinfo -> list (pair

index atm) -> list use -> cert.

Figure 6: Type declaration for the simpfit-tableaux FPC specification.

reproduction of a proof in such a formalism would not be trivial in LKF, because free-variable tableaux
admit the application, on a given branch, of a �-rule before the corresponding ♦-rule (see, e.g., tableau (b)
in Figure 8). However, we can extract from such proofs the information about eigenvariable instantiation
and closures and use it while freely constructing the rest of the proof.

3.3 Examples

In this section we apply the specifications from the previous section to several examples. Since none of
the theorem provers we have experimented with produced a proof as an output, we had to modify their
source codes in order to obtain some information about their execution states and then create the proof
evidences by hand. The prover we have chosen to produce this partial information with is ModLeanTAP
[4], a free variable modal tableau prover written in Prolog. Here we consider the following two examples:

1. (�(p⇒ q))⇒ ((�p)⇒ (�q)) 2. (♦¬p∨♦¬q)∧�(p∧q)

The first example is taken from the ModLeanTAP self testing benchmark 2. The second example is more
involved since it requires the setting of two different worlds for the same box formula. This example
is taken from [4] and demonstrates the importance of an FPC specification for the proofs generated by
free-variable prefixed-tableaux as can be seen from Fig. 8. This figure shows the prefixed tableaux and
free-variable prefixed tableaux derivations of the two examples.

We have extracted two types of proofs for the above examples using ModLeadTAP. The first type of
proofs contains detailed step-by-step evidence. This form of proof can normally be extracted from prefixed
tableaux and G3K proofs. The second type contains only the essential information: the relationship
between all the boxes and diamonds and between all literal which were used for closing a branch. Since
free-variable tableau provers often use optimization techniques which breaks the relationship between
their proof structure and that of normal tableaux, most of this information loses its importance and we
require only the essential information to be included.

Checkers can be obtained online 3 and can be executed by running in a bash terminal: 4.
$ ./prover.sh ftab1

where the argument is the name of the λProlog module denoting the proof evidence one wishes to check.
In this example, the name is the module of the detailed proof (to be used with the fittings-tableaux
FPC specification) of the first problem, which can be found in Fig. 9. The module for the “essential” one
(to be used with the simpfit-tableaux FPC specification) can be found in Fig. 10. More examples can
be found in the following folder (shipped together with Checkers):
/src/test/tableaux

2A set of problems which can be found in modleantest.pl in http://formal.iti.kit.edu/beckert/modlean/.
3The exact version can be found on the “gandalf2016” branch in the git repository https://github.com/proofcert/

checkers.
4Checkers depends on the λProlog interpreter Teyjus (http://teyjus.cs.umn.edu/)

http://formal.iti.kit.edu/beckert/modlean/
https://github.com/proofcert/checkers
https://github.com/proofcert/checkers
http://teyjus.cs.umn.edu/
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∀ F,I,C,B,E,U,D,U2. decidee (simpfitcert F I C B E U) D (simpfitcert 1 [D] C B E U2) :-

use D ∈ U, U2 = U \ {use D}.

∀ F,I,C,B,E,U. decidee (simpfitcert F I C B E U) none (simpfitcert 1 [none] C B E U).

∀ I,C,B,E,U. orNegc (simpfitcert 1 [I] C B E U) (simpfitcert 0 [lind I, rind I] C B E U).

∀ I,C,B,E,U. orNegc (simpfitcert 0 I C B E U) (simpfitcert 0 I C B E U).

∀ I,C,B,E,U. andNegc (simpfitcert 1 [I] C B E U) (simpfitcert 0 [lind I] C B E U) (

simpfitcert 0 [rind I] C B E U).

∀ I,C,B,E,U. andNegc (simpfitcert 0 I C B E U) (simpfitcert 0 I C B E U) (simpfitcert 0 I

C B E U).

∀ F,I,C,B,E,U. andPose (simpfitcert F I C B E U) (simpfitcert 0 I C B E U) (simpfitcert 0

I C B E U).

∀ C. releasee C C.

∀ F,I,C,B,E,U. allc (simpfitcert F [I] C B E U) (Eigen\ simpfitcert 0 [lind I] C B [pr I

Eigen|E] U).

∀ F,I,C,B,E,U,X. somee (simpfitcert F [I] C B E U) X (simpfitcert 0 [bind I O] C B2 E [(

use I)|U]) :- (pair O X) ∈ E, (boxinfo I O)∈B, B\{boxinfo I O}=B2.

∀ F,I,C,B,E,U,X,Y. storec (simpfitcert F I C B E U) (n (rel X Y)) none (simpfitcert 0 I C

B E U) :- !.

∀ F,I,C,B,E,U,X,Y. storec (simpfitcert F I C B E U) (p (rel X Y)) none (simpfitcert 0 I C

B E U) :- !.

∀ F,H,T,C,B,E,U,A. storec (simpfitcert F [H|T] C B E U) (n A) H (simpfitcert 0 T C B E U)

:- !.

∀ F,H,T,C,B,E,U,Form. storec (simpfitcert F [H|T] C B E U) Form H (simpfitcert 0 T C B E

[(use H)|U]).

∀ F,I,T,C,B,E,U,Compl. initiale (simpfitcert F [I|T] C B E U) Compl :- member (closure I

Compl) C.

∀ F,I,T,C,B,E,U,Compl. initiale (simpfitcert F [I|T] C B E U) Compl :- member (closure

Compl I) C.

∀ F,I,T,C,B,E,U. initiale (simpfitcert F [I|T] C B E U) none.

Figure 7: Definition of the simpfit-tableaux FPC specification.

4 Conclusion

The examples given in the previous section were relatively simple and it is our intention to apply the tool
to a real benchmark of problems, such as the one described in [3]. In order to achieve this goal, we need
to find tableau provers which output detailed enough proofs.

We also aim at extending the approach to variants of the logic K. With regard to this, we remark
that the translation of [17] for G3K sequents was proved to be effective not only for K but for all those
modal logics characterized by Kripke frames whose relational properties can be expressed by means
of geometric theories (most common modal logics fall within this class). Extending our approach to
deal with such logics in the case of labeled sequent calculi is therefore straightforward. If we consider
Fitting-style prefixed tableaux, however, we notice that they are typically extended to capture specific
relational properties, e.g., transitivity, not by using rules that operate on the relational atoms, but rather
by modifying the existing rules concerning modalities or by adding further such rules. This tends to
break the strict correspondence between rule applications and bipoles, but, as observed in [14], such a
correspondence can be somehow recovered, e.g., by using an encoding that involves the application of a
cut rule.
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1 : �p∧♦¬q

1 : �(¬p∨q)

1 : �p

1 : ♦¬q

1.1 : ¬q

1.1 : p

1.1 : ¬p∨q

1.1 : ¬p 1.1 : q

(a) Tableau for example 1

1 : ♦¬p∨♦¬q

1 : �(p∧q)

1.x : p∧q

1.x : p

1.x : q

1 : ♦¬p

1.1 : ¬p

x 7→ 1

1 : ♦¬q

1.2 : ¬q

x 7→ 2

(b) FV tableau for example 2

1 : ♦¬p∨♦¬q

1 : �(p∧q)

1 : ♦¬p

1.1 : ¬p

1.1 : p∧q

1.1 : p

1.1 : q

1 : ♦¬q

1.2 : ¬q

1.2 : p∧q

1.2 : p

1.2 : q

(c) Tableau for example 2

Figure 8: Prefixed and free-variable prefixed tableau derivations

module f t a b 1 . % module d e c l a r a t i o n
a c c u m u l a t e f i t t i n g s −t a b l e a u x . % f p c s p e c i f i c a t i o n module
a c c u m u l a t e l k f−k e r n e l . % k e r n e l module
modalProblem ” D e t a i l e d p r o o f o f ModLeanTAP problem t 1 ” % problem d e s c r i p t i o n
( ( ( d i a (−− p1 ) ) ! ! ( box (++ q1 ) ) ) ! ! ( d i a ( (++ p1 ) && (−− q1 ) ) ) ) % modal theorem
( f i t c e r t [ ] ( % p r o o f e v i d e n c e

( d e c t r e e e i n d none [
( d e c t r e e ( l i n d e i n d ) none [

( d e c t r e e ( r i n d ( l i n d e i n d ) ) none [
( d e c t r e e ( l i n d ( l i n d e i n d ) ) ( r i n d ( l i n d e i n d ) ) [

( d e c t r e e ( r i n d e i n d ) ( r i n d ( l i n d e i n d ) ) [
( d e c t r e e ( b ind ( ( r i n d e i n d ) ) ( ( r i n d ( l i n d e i n d ) ) ) ) none [

( d e c t r e e ( l i n d ( b ind ( ( r i n d e i n d ) ) ( ( r i n d ( l i n d e i n d ) ) ) ) ) ( b ind ( ( l i n d ( l i n d e i n d ) ) ) ( ( r i n d ( l i n d e i n d ) ) ) ) [ ] ) ,
( d e c t r e e ( l i n d ( r i n d ( l i n d e i n d ) ) ) ( r i n d ( b ind ( ( r i n d e i n d ) ) ( ( r i n d ( l i n d e i n d ) ) ) ) ) [ ] ) ] ) ] ) ] ) ] ) ] ) ] ) ) [ ] ) .

Figure 9: src/test/tableaux/ftab1.mod

In the spirit of generality pursued by the ProofCert project, we also plan to consider deductive
formalisms other than tableaux, e.g., resolution. Since propositional modal resolution provers are often
based on a translation into a first-order language, we expect to be able to reuse part of this work also in
that setting.
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