1,224 research outputs found

    A new approach for discovering business process models from event logs.

    Get PDF
    Process mining is the automated acquisition of process models from the event logs of information systems. Although process mining has many useful applications, not all inherent difficulties have been sufficiently solved. A first difficulty is that process mining is often limited to a setting of non-supervised learnings since negative information is often not available. Moreover, state transitions in processes are often dependent on the traversed path, which limits the appropriateness of search techniques based on local information in the event log. Another difficulty is that case data and resource properties that can also influence state transitions are time-varying properties, such that they cannot be considered ascross-sectional.This article investigates the use of first-order, ILP classification learners for process mining and describes techniques for dealing with each of the above mentioned difficulties. To make process mining a supervised learning task, we propose to include negative events in the event log. When event logs contain no negative information, a technique is described to add artificial negative examples to a process log. To capture history-dependent behavior the article proposes to take advantage of the multi-relational nature of ILP classification learners. Multi-relational process mining allows to search for patterns among multiple event rows in the event log, effectively basing its search on global information. To deal with time-varying case data and resource properties, a closed-world version of the Event Calculus has to be added as background knowledge, transforming the event log effectively in a temporal database. First experiments on synthetic event logs show that first-order classification learners are capable of predicting the behavior with high accuracy, even under conditions of noise.Credit; Credit scoring; Models; Model; Applications; Performance; Space; Decision; Yield; Real life; Risk; Evaluation; Rules; Neural networks; Networks; Classification; Research; Business; Processes; Event; Information; Information systems; Systems; Learning; Data; Behavior; Patterns; IT; Event calculus; Knowledge; Database; Noise;

    Analysis and modeling a distributed co-operative multi agent system for scaling-up business intelligence

    Get PDF
    Modeling A Distributed Co-Operative Multi Agent System in the area of Business Intelligence is the newer topic. During the work carried out a software Integrated Intelligent Advisory Model (IIAM) has been develop, which is a personal finance portfolio ma

    Methodological review of multicriteria optimization techniques: aplications in water resources

    Get PDF
    Multi-criteria decision analysis (MCDA) is an umbrella approach that has been applied to a wide range of natural resource management situations. This report has two purposes. First, it aims to provide an overview of advancedmulticriteriaapproaches, methods and tools. The review seeks to layout the nature of the models, their inherent strengths and limitations. Analysis of their applicability in supporting real-life decision-making processes is provided with relation to requirements imposed by organizationally decentralized and economically specific spatial and temporal frameworks. Models are categorized based on different classification schemes and are reviewed by describing their general characteristics, approaches, and fundamental properties. A necessity of careful structuring of decision problems is discussed regarding planning, staging and control aspects within broader agricultural context, and in water management in particular. A special emphasis is given to the importance of manipulating decision elements by means ofhierarchingand clustering. The review goes beyond traditionalMCDAtechniques; it describes new modelling approaches. The second purpose is to describe newMCDAparadigms aimed at addressing the inherent complexity of managing water ecosystems, particularly with respect to multiple criteria integrated with biophysical models,multistakeholders, and lack of information. Comments about, and critical analysis of, the limitations of traditional models are made to point out the need for, and propose a call to, a new way of thinking aboutMCDAas they are applied to water and natural resources management planning. These new perspectives do not undermine the value of traditional methods; rather they point to a shift in emphasis from methods for problem solving to methods for problem structuring. Literature review show successfully integrations of watershed management optimization models to efficiently screen a broad range of technical, economic, and policy management options within a watershed system framework and select the optimal combination of management strategies and associated water allocations for designing a sustainable watershed management plan at least cost. Papers show applications in watershed management model that integrates both natural and human elements of a watershed system including the management of ground and surface water sources, water treatment and distribution systems, human demands,wastewatertreatment and collection systems, water reuse facilities,nonpotablewater distribution infrastructure, aquifer storage and recharge facilities, storm water, and land use

    Energy management and guidelines to digitalisation of integrated natural gas distribution systems equipped with expander technology

    Get PDF
    In a swirling dynamic interaction, digital innovation, environment and anthropological evolution are swiftly shaping the smart grid scenario. Integration and flexibility are the keywords in this emergent picture characterised by a low carbon footprint. Digitalisation, within the natural limits imposed by the thermodynamics, seems to offer excellent opportunities for these purposes. Of course, here starts a new challenge: how digital technologies should be employed to achieve these objectives? How would we ensure a digital retrofit does not lead to a carbon emission increase? In author opinion, as long as it remains a generalised question, none answer exists: the need to contextualise the issue emerges from the variety of the characteristics of the energy systems and from their interactions with external processes. To address these points, in the first part of this research, the author presented a collection of his research contributions to the topic related to the energy management in natural gas pressure reduction station equipped with turbo expander technology. Furthermore, starting from the state of the art and the author's previous research contributions, the guidelines for the digital retrofit for a specific kind of distributed energy system, were outlined. Finally, a possible configuration of the ideal ICT architecture is extracted. This aims to achieve a higher level of coordination involving, natural gas distribution and transportation, local energy production, thermal user integration and electric vehicles charging. Finally, the barriers and the risks of a digitalisation process are critically analysed outlining in this way future research needs

    Data-driven solutions to enhance planning, operation and design tools in Industry 4.0 context

    Get PDF
    This thesis proposes three different data-driven solutions to be combined to state-of-the-art solvers and tools in order to primarily enhance their computational performances. The problem of efficiently designing the open sea floating platforms on which wind turbines can be mount on will be tackled, as well as the tuning of a data-driven engine's monitoring tool for maritime transportation. Finally, the activities of SAT and ASP solvers will be thoroughly studied and a deep learning architecture will be proposed to enhance the heuristics-based solving approach adopted by such software. The covered domains are different and the same is true for their respective targets. Nonetheless, the proposed Artificial Intelligence and Machine Learning algorithms are shared as well as the overall picture: promote Industrial AI and meet the constraints imposed by Industry 4.0 vision. The lesser presence of human-in-the-loop, a data-driven approach to discover causalities otherwise ignored, a special attention to the environmental impact of industries' emissions, a real and efficient exploitation of the Big Data available today are just a subset of the latter. Hence, from a broader perspective, the experiments carried out within this thesis are driven towards the aforementioned targets and the resulting outcomes are satisfactory enough to potentially convince the research community and industrialists that they are not just "visions" but they can be actually put into practice. However, it is still an introduction to the topic and the developed models are at what can be defined a "pilot" stage. Nonetheless, the results are promising and they pave the way towards further improvements and the consolidation of the dictates of Industry 4.0
    corecore