
A new approach for discovering business process models
from event logs

Stijn Goedertier, David Martens, Bart Baesens, Raf Haesen and Jan Vanthienen

DEPARTMENT OF DECISION SCIENCES AND INFORMATION MANAGEMENT (KBI)

Faculty of Economics and Applied Economics

KBI 0716

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6304652?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A New Approach for Discovering
Business Process Models From Event Logs

Stijn Goedertier1, David Martens1, Bart Baesens1,2,
Raf Haesen1,3 and Jan Vanthienen1

1 Katholieke Universiteit Leuven,
Department of Decision Sciences & Information Management,

Naamsestraat 69, B-3000 Leuven, Belgium
{stijn.goedertier;david.martens;jan.vanthienen}@econ.kuleuven.be

2 University of Southampton, School of Management, United Kingdom,
Highfield Southampton, SO17 1BJ, United Kingdom,

bart@soton.ac.uk

3 Vlekho Business School Brussels, Belgium
Koningsstraat 336, 1000 Brussels, Belgium

raf.haesen@vlekho.wenk.be

Abstract

Process mining is the automated acquisition of process models from the event logs
of information systems. Although process mining has many useful applications, not
all inherent difficulties have been sufficiently solved. A first difficulty is that process
mining is often limited to a setting of non-supervised learning since negative information
is often not available. Moreover, state transitions in processes are often dependent on
the traversed path, which limits the appropriateness of search techniques based on
local information in the event log. Another difficulty is that case data and resource
properties that can also influence state transitions are time-varying properties, such
that they cannot be considered as cross-sectional. This article investigates the use
of first-order, ILP classification learners for process mining and describes techniques
for dealing with each of the above mentioned difficulties. To make process mining a
supervised learning task, we propose to include negative events in the event log. When
event logs contain no negative information, a technique is described to add artificial
negative examples to a process log. To capture history-dependent behavior the article
proposes to take advantage of the multi-relational nature of ILP classification learners.
Multi-relational process mining allows to search for patterns among multiple event rows
in the event log, effectively basing its search on global information. To deal with time-
varying case data and resource properties, a closed-world version of the Event Calculus
has to be added as background knowledge, transforming the event log effectively in
a temporal database. First experiments on synthetic event logs show that first-order
classification learners are capable of predicting the behavior with high accuracy, even
under conditions of noise.

1

Discovering Business Process Models From Event Logs 2

1 Introduction

Process mining is the automated acquisition of process models from the event logs of
information systems such as ERP, Role Based Access Control (RBAC), and Workflow
Management (WfM) systems (van der Aalst and van Dongen, 2002; van der Aalst et al.,
2003; van der Aalst et al., 2007). Event logs contain information about the occurrence
of business events: who performed a particular activity in the context of a particular
business process involving some particular business information at a particular time. In
many organizations, such event logs conceal an untapped reservoir of knowledge about
the way employees conduct every-day business transactions. To date these event logs have
been put to use in the context of Business Activity Monitoring (BAM) and Business Process
Intelligence (BPI) for the purpose of among others performance measurement, exception
notification and escalation management. The vast quantity of available events in event
logs, however, makes it difficult to get a good idea about the generally performed behavior
using only descriptive statistics. Instead data mining and machine learning techniques can
be used to reconstruct general models of the common behavior that is portrayed by the
event logs. The latter is called process mining. Process models that have been discovered
through process mining enable organizations to compare the behavior in the event log with
the business conduct it would expect from its employees and other stakeholders. Such delta
analysis (van der Aalst, 2004) can be helpful in the context of guaranteeing compliance
to new regulations (e.g. the Sarbanes-Oxley Act) (Securities and Exchange Commission,
U.S.A., 2002; Kaarst-Brown and Kelly, 2005) or in the context of business process redesign
and optimization.

Currently many algorithms have been developed to describe or predict control-flow,
data or resource-related aspects of processes and many of them have been integrated into
the ProM framework (van Dongen et al., 2005). An important but difficult learning task
in process mining is the discovery of sequence constraints from event logs, referred to as
Process Discovery (van der Aalst et al., 2004; Alves de Medeiros et al., 2007). Other
process learning tasks involve, among others, learning allocation policies (Ly et al., 2005)
and revealing social networks (van der Aalst and Song, 2004; van der Aalst et al., 2005)
from event logs. However, regardless of the type of knowledge that is to be obtained from
the logs, process mining faces a number of inherent difficulties:

1. Unsupervised learning: First of all, process mining is often limited to a setting of
unsupervised learning because negative information about state transitions that were
prevented from taking place is often not available.

2. Global search: History often influences current flow of a business process. While a
history of related events is a potentially strong predictor and is readily available in
process logs, the inclusion of such an event history in the hypothesis space of process
mining algorithms is non-trivial because non-locality is difficult to represent. Many
current process mining algorithms are based on local search techniques in the event
log.

Discovering Business Process Models From Event Logs 3

3. Time-varying properties: Business processes do not only consist of activity events,
which represent a state change in the life cycle of an activity, but also consist of data
events, which represent a state change in the data life cycle of case data. Case data
and resource properties often influence activity state transitions. However, these
properties are as time-varying as activities themselves and cannot be considered as
cross-sectional.

This article investigates the use of first-order, ILP classification learners for process mining
and describes techniques for dealing with each of the above mentioned difficulties. To
make process mining a supervised learning task, we propose to include negative events in
the event log. When event logs contain no negative information, a technique is described
to add artificial negative examples to a process log. To capture history-dependent behavior
the article proposes to take advantage of the multi-relational nature of ILP classification
learners. Multi-relational process mining allows to search for patterns among multiple
event rows in the event log, effectively basing its search on global information. To deal
with time-varying case data and resource properties, a closed-world version of the Event
Calculus has to be added as background knowledge, transforming the event log effectively
in a temporal database.

The remainder of this article is structured as follows. First an introduction is provided
to first-order classification and it is shown how event logs can be represented in this logic
context. In the next section the problem of lacking negative information is discussed and
an algorithm is proposed to supplement the event log with artificial negative examples.
Provided with this information several event operators are defined in section 4 that are
used in section 5 for the purpose of Process Discovery. In section 6 it is shown how the
time-varying nature of case and resource properties can be incorporated. Finally, section
7 provides a brief overview of related work.

2 First-Order Classification Learners

Classification learning is learning how to assign a data point to a predefined class or
group according to its predictive characteristics. The result of a classification technique is
a model which makes it possible to classify future data points based on a set of specific
characteristics in an automated way. Classification techniques are often applied for credit
scoring (Baesens et al., 2003; Martens et al., ming) and medical diagnostic (Pazzani et al.,
2001). In process mining classification learning has, for instance, been applied for “Decision
Mining” (Rozinat and van der Aalst, 2006) and Process Discovery (Maruster et al., 2006).

Inductive Logic Programming (ILP) (Muggleton, 1990) is a research domain in Ma-
chine Learning in which the learners use logic programming to represent data, background
knowledge, the hypothesis space and the learned hypothesis. Formally, an ILP learner will
search for a hypothesis H in a hypothesis space S that predicts or describes patterns in a
data set D. A particularly salient feature of ILP is that the representation language L of
the hypothesis can be explicitly defined as a logic program. Such a representation language

Discovering Business Process Models From Event Logs 4

ID Gender Age Income
Important
Costumer

C1
C2
C3
C4

M
F
M
F

30
19
56
48

215000
140000
50000
28000

Yes
Yes
No
No

(a) customer

Partner 1 Partner 2

C1
C3

C2
C4

(b) partner

Figure 1: Multi-relational datasets

is called the language bias and completely defines the hypothesis space S that needs to be
searched. In addition, users of ILP learners can specify background knowledge B about
the data, that often avoids a lot of preprocessing. Consequently, the effectiveness by which
an ILP learner can be applied on a learning task depends on the choices that are made
in representing the data, the background knowledge and the language bias. In this paper
we make use of Tilde (Blockeel and De Raedt, 1998), a first-order decision tree learner
available in the ACE-ilProlog data mining system (Blockeel et al., 2002). As many ILP
algorithms (Džeroski and Lavrač, 2001), Tilde is the first-order variant of a propositional
learner. In particular, the Tilde algorithm is a first-order generalization of the well-known
C4.5 algorithm for decision tree induction (Quinlan, 1993). ILP learners are also called
multi-relational data mining (MRDM) learners (Džeroski and Lavrač, 2001; Džeroski,
2003). Multi-relational data mining extends classical, uni-relational data mining in the
sense it can not only learn patterns that occur within single tuples (within rows), but can
also find patterns that may over different tuples of different relations (between multiple
rows of a single or multiple tables). To understand the idea, consider the following exam-
ple. The example database of Figure 1 consists of two tables, whereby the second table
indicates which persons from the first table are married with each other (Džeroski, 2003).
From this database, one wants to establish a decision tree so that the important customers
can be identified swiftly. Propositional learners create classification rules of the following
form: IF (income > 100000) THEN important customer = YES. Observe that only the
information from the first table was used for the creation of this rule. Relational algorithms
on the other hand are able to use the relationships that exist among multiple tuples. An
example of such a rule is: IF (x is married with a person with income > 100000) THEN im-
portant customer (x) = YES. To allow propositional learners to exploit this multi-relational
information the multi-relational data mining problem has to be converted a uni-relational
problem, as shown in Figure 2. We can see that we need three extra columns to describe
the properties of the partner. This technique has been applied to multi-relational data
mining (Lavrac et al., 1991) and allows to keep on using propositional learners. Nonethe-
less, it is less elegant, as it transfers the problem of non-local search to the input space.
More importantly, it also exponentially increases the dimensions of the input space. High
dimensional input spaces are typically hard to handle by classical data mining techniques,
a problem known as ‘curse of dimensionality’ (Tan et al., 2005).

For the purpose of discovering history-dependent patterns, this multi-relational prop-

Discovering Business Process Models From Event Logs 5

ID Gender Age Income
Important
Costumer

C1
C2
C3
C4

M
F
M
F

30
19
56
48

215000
140000
50000
28000

Yes
Yes
No
No

Gender
Partner

Age
Partner

Income
Partner

F
M
F
M

19
30
48
56

140000
215000
28000
50000

Figure 2: Transformation to uni-relational problem

erty is much desired, as it allows learning based on global information in the event log.
Alternatively the event history of an event log instance could in part be represented as extra
propositions (extra columns), for instance including all immediately preceding event infor-
mation as extra columns in the event log. To use ILP learners on an event log, the log has
to be represented as a logic program of ground facts. In our experiments, an activity event
is represented as an atom event(AId,AT,BId,ET,AgentId,PL,TS) with following arguments:

• AId a unique non-business identifier for the activity

• AT represents the activity type

• BId represents a unique business identifier of the activity

• ET represents the activity event

• AgentId represents the worker that brings about the activity state transition

• PL is a list of parameters that pertain to the event

• TS is a time stamp

It is useful to think of a process instance as a trajectory in a state space (Bider et al.,
2000), in which the domain of the different possible activities, events and business concepts
span the state space. Declarative classification rules can be used to define the valid state
transitions in that state space. Each activity in a process instance can undergo a number
of distinct state transitions that are recorded as events, for instance:

• create(AId,BId): creates a new activity instance AId with business identifiers BId.
As a result a created event is added to the state of the process instance.

• assign(AId,AgentId): the assignment of activity AId to an agent AgentId that is
recorded as an assigned event.

• addConcept(AId,C), removeConcept(AId,C), updateConcept(AId,C1,C2): add, remove or up-
date a business concept C in the state space. This is recorded respectively as a
conceptAdded, a conceptUpdated or a conceptRemoved event. Case data, business con-
cepts, are represented as triples of the form concept(subject,predicate,object). Used
in languages such as RDF, triples are in principle capable of representing any first-
order atom.

Discovering Business Process Models From Event Logs 6

• complete(AId): requests the completion of activity AId, recorded as an event of the
type completed.

In the sample event logs underneath this paragraph the activity life cycle of two activities
within a credit application context is represented.

event(9001,applyForCredit,100,created,0,[concept(9001,parent,9000)],0).

event(9001,applyForCredit,100,conceptAdded,0,[concept(100,type,application)],0).

event(9001,applyForCredit,100,assigned,0,[concept(9001,assignedTo,1)],12).

...

event(9001,applyForCredit,100,conceptAdded,12,[concept(100,beneficiary,1)],14).

event(9001,applyForCredit,100,conceptAdded,12,[concept(100,applicant,10)],15).

event(9001,applyForCredit,100,conceptAdded,12,[concept(100,loanType,bullet_loan)],15).

event(9001,applyForCredit,100,conceptAdded,12,[concept(100,collateralType,consumer)],16).

event(9001,applyForCredit,100,completed,1,[],17).

...

event(9006,reviewCredit,100,created,0,[concept(9006,parent,9002)],56).

...

event(9006,reviewCredit,100,assignRejected,0,[concept(9006,assignedTo,10)],71).

event(9006,reviewCredit,100,assigned,0,[concept(9006,assignedTo,8)],78).

event(9006,reviewCredit,100,conceptAdded,8,[concept(100,risk,low)],80).

event(9006,reviewCredit,100,completed,8,[],81).

3 Inducing Artificial Negative Examples

Without negative information learning can be much harder. For instance, a two-year old
will have more difficulties in learning a precise definition of the concept ‘balloon’ when
shown only a balloon than when presented both a ball and a balloon and pointed to their
difference. Event logs rarely contain this negative information. Consequently, it is difficult
to identify the distinguishing properties that characterize the underlying process model.
A more thorough discussion on on the lack of negative information in event logs can be
found in (Alves de Medeiros et al., 2007). Because of the lack of negative information,
many learning tasks in process mining are in principle an unsupervised learning tasks. In
general, it is necessary to provide learners with a strong inductive bias, to obtain useful
descriptions in this context of unsupervised learning (Mitchell, 1997). Another consequence
of the often lacking negative information is that classification learners cannot be applied,
as classification is namely a supervised learning task. To make process mining a supervised
learning problem suitable for classification, we propose to include negative information
in the event log in the form of negative events. A negative event reports that a state
transition could not take place. For each positive activity event type one can think of
a negative one. For instance, for the event types created and assigned the event types
createRejected and assignRejected can be conceived. Learning the classification rules that
predict whether, given the state of a process instance, a particular state transition can occur,
then boils down to learning the classification rule that predicts when either a positive or a
negative event occurs. In this way, we have formulated process mining tasks such as Process
Discovery, authorization, task allocation, and input validation as classification problems.
Sometimes, process logs naturally contain negative events. An access log, for instance,

Discovering Business Process Models From Event Logs 7

contains information about the workers that have obtained authorization, and information
about the workers who were refused authorization to perform a particular task. In many
cases, however, information systems do not reveal their internal functioning in terms of
negative events. For instance, when a WfMS creates a number of work items and assigns
them to several work trays, it will not expose the work items it did not create or provide
information about the work trays to which it could not allocate a work item.

Negative examples can be introduced by replaying each process instance ti, represent-
ing an ordered list of events, event-by-event and verifying whether a state transition of
interest ε could occur. At each event e(i,k) ∈ ti, it is tested for each possible activ-
ity state transition of interest ε whether there exists up to that point k similar traces
tj : ∀l, l < k, similar(e(j,l), e(i,l)) in the event log in which at that point a state tran-
sition e(j,k) has taken place that is similar to ε, as denoted by a similarity operator
similar(e(j,k), ε). If such a state transition does not occur in other traces, this is an indica-
tion that the state transition should be prevent from occurring. Consequently, a negative
event can be added at this point k in the event trace ti. If on the other hand a similar trace
is found in which the state transition of interest does occur, than this behavior is present in
the event log and no negative event is generated. To avoid an imbalance in the proportion
of negative versus positive events the addition of negative events can be manipulated with
a negative event injection probability π. More formally, this process of adding negative
examples can be described as follows:

1 For each process instance ti in the event log

2 For each event e(i,k) in ti

3 For each activity state transition ε of interest

4 if @ tj : ∀l, l < k, similar(e(j,l), e(i,l)) ∧ similar(e(j,k), ε)

5 then recordNegativeEvent(ti,k,ε,π)

The addition of artificial negative examples to the input space of a learner, adds the
assumption that all possible trajectories through the state space have corresponding process
instances in the event log. Formulated differently, adding artificial negative examples to
an event log on which later on classification is performed, forces a classification learner
to conclude that trajectories that do not occur in the original event log, do not occur in
the state space of the process model. This assumption is unrealistic, particularly for the
event logs of processes with large state spaces. Consequently, the addition of artificial
negative examples to a process log would prevent a learner from generalizing to unseen
examples. However, this outcome needs to be put in the right perspective. Firstly, state
is a relative notion, such that the similarity operator can be adapted to the learning task
at hand. For instance, when learning sequence constraints among activities, the events
involving the scheduling, assignment and data manipulation can possibly be left out of
consideration. This notion of abstract state allows generalization beyond the observed
examples. Secondly, it is useful to induce a process model that covers only the modeled
examples. For instance, when mining a control-flow model for the purpose of delta-analysis,

Discovering Business Process Models From Event Logs 8

the induced process model should preferably cover all the presented examples, and no more
than the presented examples.

Notice that the procedure of injecting negative events potentially requires a large num-
ber of process instances. This is particularly the case when the underlying process model
contains a lot of concurrent (parallel) activities. Because the trace of a process instance is
linearized into a list, many process instances are required to cover each possibility. For in-
stance, N pairwise parallel tasks have N ! possible orderings. A possible solution is to limit
the number of possible activity events in the log, for instance, by only considering activity
completed events. Another solution is to to leave out or regroup a number of concurrent
tasks in the event log.

4 History-Dependent Processes

Sometimes the behavior of process instances is dependent on their own history. For instance,
a worker is refused authorization to perform a certain task, when he or she has performed
a related task in the past. Another example is the occurrence of history-based joins in
the control flow of a business process (van Hee et al., 2006b). This non-local behavior
of business processes presents many challenges, not only for process mining but also for
process modeling (Alur and Henzinger, 1994; van Hee et al., 2006a).

In representing process mining as first-order classification, we propose to include the
event history as a relevant element of the state space of business processes. The multi-
relational nature of first-order classification learning allows to search for patterns among
an unlimited number of rows in the event history log of each particular process instance.
However, the effectiveness by which an ILP learner can be applied on a learning task de-
pends in part on the chosen language bias L. Too simple refinement steps result in refined
hypotheses that have little or no extra explanatory power. Too complex refinement steps
might specify too large a hypothesis space making search inefficient. In (Alur and Hen-
zinger, 1994; van Hee et al., 2006a), Linear Temporal Logic (LTL) language for representing
non-local guard conditions is proposed. LTL is nonetheless unsuitable to make up the lan-
guage bias of an ILP learner, because there is no immediate transformation of the LTL
modal operators to first-order predicate logic. Instead we use more simple event history
operators, that, in combination with conjunction, disjunction and negation-as-failure pro-
vide a reasonably expressive language bias that yields good results in learning non-local
classification problems. The following event operators are required:

• The “historic event operator” HETime
BId (AT,ET,HT) evaluates to true when in the

history of process instance BId at time HT , relative to time point T , an activity
event of type ET has taken place for an activity of type AT .

• The “non-event operator” NETime
BId (AT,ET,HT) evaluates to true when the specified

Discovering Business Process Models From Event Logs 9

event does not occur within a time interval [HT, T ime] and is defined as follows:

NETime
BId (AT,ET,HT) ⇔

@HT2 ∈ [HT, T ime] : HETime
BId (AT,ET,HT2)

• The “has no sequel” evaluates to true when within a process instance a particular
transition has taken place, but that it has not (yet) been followed by another specified
state transition. The operator is defined as follows:

NSTime
BId (AT1, ET1, AT2, ET2) ⇔

HETime
BId (AT1, ET1, T1) ∧NETime

BId (AT2, ET2, T1)

For readability, the operators will be used in the remainder of the text without the indices
and event type parameters, though these will be implicitly assumed.

5 Process Discovery as Learning Preconditions

Process Discovery entails the discovery of the process control flow from the event log (van der
Aalst et al., 2004; Alves de Medeiros et al., 2007), and has been the main focus of process
mining. Such induced models can be visualized by for example a Petri Net or a work-
flow net. To learn the control flow from events, several algorithms have been proposed,
such as the α (van der Aalst et al., 2004), α++ (Wen et al., 2006) and a genetic based
approach (Alves de Medeiros et al., 2007).

Process Discovery can be represented as the learning of first-order preconditions. To
illustrate this we have taken the “Driver’s License” example (Alves de Medeiros et al., 2007),
a non-trivial example with non-local non-free choice and hidden activities, and extended it
with a parallel construct and loop. This extended example is displayed in Figure 3. For the
purpose of mining activity preconditions the above defined “has no sequel” event operator
NS has shown to be particularly successful in representing the activity preconditions in
the event log. As an illustration, we refer to the induced activity preconditions in Table 1
for the process model in Figure 3.

The following experimental setup was put into place. An artificial event log was gen-
erated with 450 process instances from the process model in Figure 3 with a maximum of
three allowed loops. As is common, learning was performed on a training set, whereas the
reported performance is done on the test set (out-of-sample performance), as to provide an
objective measure for the predictive performance on new, unseen examples. The test log

was created as follows. The entire event log, consisting of about 7300 activity completed

events was first supplemented with about 7000 negative completeRejected events by applying
the above described procedure with a negative event injection probability π of 100%. After
this procedure the first 350 process instances (the first 350 drivers) were removed from
event log to retain a test set of 100 process instances. Although the negative events in the

Discovering Business Process Models From Event Logs 10

start

applyForLicense

attendClasses
DriveCars

doTheoretical
Exam

doPracticalExam
RideMotorBikes

attendClasses
RideMotorBikes

doPracticalExam
DriveCars

getResult

receiveLicense

obtainSpecial
Insurance

end

A0

A1

A2 A3

A4

A5 A6

A7

A8

A10

A9

Figure 3: An extended version of the Diver’s License example (Alves de Medeiros et al., 2007)

Table 1: A representation of the preconditions of the driver’s license process in Figure 3

activity precondition

A0 start NS(A0, A1)
A1 applyForLicense NS(A0, A1) ∨

(count(Acreated
1) < 3 ∧ NS(A7, A1)

∧ NS(A7, A8) ∧ NS(A7, A9))
A2 attendClassesDriveCars NS(A1, A2) ∧ NS(A1, A3)
A3 attendClassesRideMotorBikes NS(A1, A2) ∧ NS(A1, A3)
A4 doTheoreticalExam NS(A2, A4) ∨ NS(A3, A4)
A5 doPracticalExamDriveCars NS(A4, A5) ∧ NS(A4, A6)

NS(A9, A5) ∧ NS(A9, A6)
∧ NS(A2, A5)

A6 doPracticalExamRideMotorBikes NS(A4, A5) ∧ NS(A4, A6)
NS(A9, A5) ∧ NS(A9, A6)
∧ NS(A3, A6)

A7 getResult NS(A7, A5) ∨ NS(A7, A6)
A8 receiveLicense NS(A7, A1) ∧ NS(A7, A8)
A9 obtainSpecialInsurance NS(A2, A9) ∨ NS(A3, A9)
A10 end NS(A8, A10) ∨

(count(Acreated
1) >= 3 ∧ NS(A7, A1)

∧ NS(A7, A8) ∧ NS(A7, A9))

Discovering Business Process Models From Event Logs 11

test log were created with information that is in part not present in the test log, this pro-
cedure allows best to evaluate the performance of learned classification rules with respect
to prohibiting behavior that is not in the process instances. The training log is composed
of the first 350 process instances. The log consisting of some 5300 completed events was
supplemented with some 4400 negative completeRejected events on the basis of training log
events only. To test the performance of first-order activity precondition learning under
noise, the training set has been modified with different types of noise. After adding noise,
the noisy training sets were supplemented with negative events also with a negative event
injection probability π of 10%. In the literature, six noise types are described in (Maruster,
2003; Alves de Medeiros et al., 2007): missing head, missing body, missing tail, swap tasks,
remove task, and mix all. For reasons of brevity we report performance results with swap
tasks, identified by (Alves de Medeiros et al., 2007) as being the most difficult, and mix all,
which a combination of all other noise types. The reported noise percentages of 10% and
30% are also consistent with the literature.

In classification out-of-sample accuracy results are often reported. However, accuracy
has the disadvantage that it is relative to the underlying class distributions. For example,
suppose we have a log with 100 positive activity events for one activity type and 9900
negative activity events. A classifier that classifies all activity events as negative, will
have an accuracy of 99%, a high figure though classifying none of the positive examples
correctly. In Process Discovery it is important that the discovered preconditions allow
every event trace in the log (completeness) but preferable no more event traces that do not
occur in the log (preciseness) (Alves de Medeiros et al., 2007). Rather than using accuracy
as a performance measure, we therefore propose two performance measures that are more
suitable to the problem domain of Process Discovery:

• true positive rate TP or completeness: the frequency of correctly classified pos-
itive events in the test set. This probability can be estimated as follows: TP =
E+

positive/Etotal
positive, where E+

positive is the amount of correctly classified positive events
and Etotal

positive is the total amount of positive events.
• true negative rate TN or preciseness: the frequency of correctly classified neg-

ative events in the test set. This probability can be estimated as follows: TN =
E−negative/Etotal

negative, where E−negative is the amount of correctly classified negative
events and Etotal

negative is the total amount of negative events.

Notice that the true negative rate gives an accurate idea of the preciseness of the learned
precondition as negative events are precisely representatives for traces that are not in the
sample log. In Table 2 we report these evaluation measures for each precondition learned
under different noise circumstances.

To perform first-order classification, we have used the Tilde ILP classification learner.
Like C4.5, Tilde (Blockeel and De Raedt, 1998; Blockeel et al., 2002) obtains classification
rules by recursively partitioning the dataset according to logical conditions, that can be
represented as nodes in a tree. This top-down induction of logical decision trees (Tilde)

Discovering Business Process Models From Event Logs 12

Table 2: Out-of-sample performance of the learned preconditions. Both completeness TP and
preciseness TN is given as in the following pattern: (TP,TN).

Noise Type
no noise 10% mix all 10% swap tasks 30% mix all 30% swap tasks

A0 (1.00,1.00) (1.00,1.00) (1.00,1.00) (1.00,1.00) (1.00,1.00)
A1 (1.00,1.00) (1.00,0.91) (1.00,0.91) (1.00,0.91) (1.00,0.91)
A2 (1.00,1.00) (1.00,1.00) (1.00,1.00) (1.00,1.00) (1.00,0.83)
A3 (1.00,1.00) (1.00,1.00) (1.00,1.00) (1.00,1.00) (1.00,0.83)
A4 (1.00,1.00) (1.00,1.00) (1.00,1.00) (1.00,0.91) (1.00,0.82)
A5 (1.00,1.00) (1.00,1.00) (1.00,1.00) (1.00,0.92) (1.00,1.00)
A6 (1.00,1.00) (1.00,1.00) (1.00,1.00) (1.00,0.92) (1.00,1.00)
A7 (1.00,1.00) (1.00,1.00) (1.00,0.83) (1.00,0.92) (1.00,0.83)
A8 (1.00,1.00) (1.00,1.00) (1.00,0.91) (1.00,1.00) (1.00,0.82)
A9 (1.00,1.00) (1.00,0.91) (1.00,1.00) (1.00,0.72) (1.00,0.69)
A10 (1.00,1.00) (1.00,1.00) (1.00,1.00) (1.00,1.00) (1.00,0.82)

is driven by refining the node criteria according to the provided language bias L. Unlike
C4.5, Tilde is capable of inducing first-order logical decision trees (FOLDT). A FOLDT is
a tree that holds logical formula containing variables instead of propositions. Variables can
be introduced in any node, but must not occur in higher nodes. The language bias L of
Tilde was restricted to the “has no sequel” event operator NS(A,B) (on every combination
of activity type A, B), the event operator HE(A) and aggregate predicate count(HE(A))
(Van Assche et al., 2006) that counts the number of occurrences of an activity type within
a specific process instance. Tilde’s C4.5 gain ratio was used as a heuristic for selecting the
best branching criterion. In addition, Tildes C4.5 post pruning method was used with a
standard confidence level of 0.25.

doPracticalExamRideMotorBikes(BId,Time,-C)

completedWithoutSequel(attendClassesRideMotorBikes,doPracticalExamRideMotorBikes,BId,Time) ?

+--yes: completedWithoutSequel(attendClassesRideMotorBikes,doTheoreticalExam,BId,Time) ?

| +--yes: [completeRejected]

| +--no: completedWithoutSequel(obtainSpecialInsurance,applyForLicense,BId,Time) ?

| +--yes: [completed]

| +--no: [completeRejected]

+--no: [completeRejected]

The above decision tree represents the precondition for activity doPracticalExamRide-

MotorBikes that has been learned under no noise conditions. As can be observed from the
tree its conditions are not entirely structurally equivalent with the suggested preconditions
in Table 1. Nonetheless one can observe perfect completeness and preciseness for this
activity precondition (A6 and all the other activities in Table 2 under no noise conditions).
An explanation for this outcome is that the preconditions are logically equivalent with
respect to the underlying model. For example the condition

completedWithoutSequel(obtainSpecialInsurance,applyForLicense,BId,Time)

can be shown to be equivalent with

NS(A9, A5) ∧ NS(A9, A6).

Discovering Business Process Models From Event Logs 13

However, rather than favoring local preconditions the decision tree induction algorithm
has favored preconditions with immediate discriminating power. For the moment, this
non-preference for local conditions prevents the construction of a graphical model from the
learned preconditions. In bold face we have indicated the learned preconditions that are
structurally equivalent with the suggested rules. Under conditions of noise, it is observed
with regard to the completeness criterion that every induced precondition portrays a perfect
recall of the positive events. At least in this respect, the proposed Process Discovery
technique is robust to noise. With respect to the preciseness criterion, however, it is
observed that the preconditions relax, allowing negative events to take place and thus
scoring lower on the preciseness criterion. For example, under 30% swap tasks noise, the
induced activity precondition for the parallel task obtainSpecialInsurance deteriorates to
0.69, indicating that 31% of the identified negative events are not classified correctly. The
reason is that noise invalidates the supplemented negative events as it portrays behavior
that is not in the original process model. This behavior with regard to noise is consistent
with other learners.

A classification never took more than five minutes to run. Having to learn the pre-
conditions of 10 activities this means that the process model can be learned in under half
an hour. In general first-order classification problems potentially have an extremely large
search space. However, we have tried to limit the hypothesis space H by limiting the lan-
guage bias L to the three aforementioned language constructs. The greedy search strategy
performed by Tilde’s C4.5 top down induction of decision trees also contributes to this
computational efficiency result.

6 Including Time-Varying Properties

Business processes have a dynamic nature and as such it is naturally the case that case
data and resource properties also portray time-varying behavior. For instance, a worker
in a bank can move from the risk control department to the sales department. Another
example is that a case data property is changed within a business process instance. If
learners want to relate the behavior of business processes to the values of case data and
resource properties, they will have to take into account this time-varying nature.

In first-order logic there is a formalism that elegantly captures the time-varying nature
of facts, namely the Event Calculus. The Event Calculus, introduced by Kowalski and
Sergot (Kowalski and Sergot, 1986), is a logic programming formalism to represent and
reason about the effect of events and the state of the system expressed in terms of fluents.
The Event Calculus is appealing for several reasons. For instance, the Event Calculus
builds on a first-order predicate logic framework, for which efficient reasoning algorithms
exist. In addition the Event Calculus has the ability to reason about time, in which fluents
come to existence or cease to hold dynamically.

To take into account the time-varying nature of properties, we propose to included a
closed-world version of the Event Calculus into the background knowledge B of an ILP

Discovering Business Process Models From Event Logs 14

learner. With this background knowledge, we can express the meaning of the above men-
tioned conceptAdded, conceptRemoved and concept Updated events. As a consequence we can
include time-dependent properties into the language bias of ILP learners. Rather than for
example including predicates like

fromDepartment(agentA,sales)

we can now express these properties by including a time point at which they hold:

fromDepartment(agentA,sales,t8),

effectively transforming the event log into a temporal database.
To illustrate the use of time-varying properties, we have set up an experiment around an

artificial credit approval process depicted in Figure 4. Credit approval in practice requires a
good collaboration between the sales and the risk department of a bank. Moreover, strict

access control policies have to be put in place, to prevent unlawful or unwanted acts. An
example of such an access rules for the depicted process model can be: “Employees cannot
perform the activity ReviewCredit when they also have done the activity CheckDebt on the
creditApplication. Furthermore, agents have to be from the department risk_control and
must not be the applicant of the creditApplication.” In the experiment we have included
200 process instances, with the time-varying behavior that employees can randomly switch
between the sales and the risk department. In the tree shown below, the outcome of one such
experiment under conditions of zero noise is displayed. It can be observed that the dynamic
access control rules is learned with perfect recall, demonstrating the representational power
of the proposed language bias and background knowledge. For the reasons of article length,
we will not go into more detail into these experiments.

authorizationReviewCredit(BId,AgentId,Time)

historicevent(CheckDebt,BId,assigned,AgentId,Time) ?

+--yes: [assignRejected]

+--no: fromDepartment(AgentId,risk_control,Time) ?

+--yes: applicant(BId,-F,Time),not(F=AgentId) ?

| +--yes: [assignRejected]

| +--no: [assigned]

+--no: [assignRejected]

7 Related Work

Several authors have represented process mining as classification learning and have to
some extent discussed un-supervised learning, history-dependent behavior and time-varying
properties. For instance, Maruster et al. (Maruster et al., 2006) were among the first
to investigate the use of rule-induction for Process Discovery. However, the authors use
propositional rule induction techniques on a table of direct metrics for each process task
in relation to the other process tasks, which is generated in a pre-processing step. This
approach circumvents the lack of negative examples by this pre-processing step and uses

Discovering Business Process Models From Event Logs 15

cu
st

o
m

e
r

ba
n

k

ri
sk

 c
o

nt
ro

l
sa

le
s

Check
Debt

Check
Income

Make
Proposal

Reject
Credit

timeout

review credit and
review collateral

accept proposal

reject proposal

Review
Credit

apply for credit

Review
Collateral

Complete
Contract

Apply
For

Credit

Accept
Proposal

Reject
Proposal

timeout

make proposal

reject credit

Request
Change

request change

timeout
apply for credit

check income and
check debt

Figure 4: A BPMN representation of the credit approval process model

the uni-relational RIPPER algorithm (Cohen, 1995). The multi-relational nature of the
ILP learner used in this paper allows to directly perform classification on the event log and
is capable of dealing with non-local dependencies and time-varying properties.

Rozinat et al. (Rozinat and van der Aalst, 2006) discuss the use of propositional classi-
fication for the purpose of “decision mining”. In decision mining so-called decision points
are semi-automatically identified in process logs, and the classification problem consists
of determining which case data properties lead to taking certain paths in the processes.
Because of this preprocessing step, the authors can take into account the time-varying na-
ture of case data properties. The activity precondition learning approach suggested in this
paper also allows to take into account (time-varying) case data properties for predicting
the conditions under which a task make come into existence, for instance for the discovery
of mandatory case data properties in a context of case handling (van der Aalst et al., 2005).

Alves de Medeiros et al. (Alves de Medeiros et al., 2007) point out the difficulties that
process mining algorithms have when only taking into account local information, i.e. the
immediately preceding and succeeding tasks. The authors have implemented an approach
based on genetic algorithms. In this approach no negative examples are introduced, but
this problem is circumvented by the incorporation of both a completeness and preciseness
measure in the fitness function that drives the genetic algorithm towards suitable models.
However, as the algorithm focuses on control flow, the described approach is not capable
of taking into account case data properties. As in (Alves de Medeiros et al., 2007), the
approach of this article is based on global information in the event log and consequently,
is capable of discovering sequence, choice, parallelism, loops, invisible tasks, and non-
free-choice constructs. What is lacking at this point is a graphical representation of the

Discovering Business Process Models From Event Logs 16

discovered process model.

8 Conclusion

This paper has illustrated that it is possible to represent process mining as a first-order
classification problem on logs with positive as well as negative events. In particular, it
has been shown how three inherent difficulties of process mining, the lack of negative
information, history-dependent behavior and time-varying properties, can be elegantly dealt
with in this representation. A first Process Discovery experiment has shown promising
results on a non-trivial learning problem with loop, parallelism and non-local non-free
choice. We have suggested two novel activity-level metrics for evaluating the completeness
and preciseness requirements of Process Discovery, namely the true positive and the true
negative rate. In the experiment without noise a model can be discovered with perfect
completeness and preciseness indicating the suitability of the proposed language bias for
Process Discovery. Additional experiments have shown the learner to be robust to noise.
The Dynamic Access Control Discovery experiment has illustrated that a closed-world
version of the Event Calculus can be applied to deal with time-varying aspects.

References

Alur, R. and Henzinger, T. A. (1994). A really temporal logic. J. ACM, 41(1):181–204.

Alves de Medeiros, A., Weijters, A. J., and Aalst, W. M. (2007). Genetic process mining:
an experimental evaluation. Data Min. Knowl. Discov., 14(2):245–304.

Baesens, B., Van Gestel, T., Viaene, S., Stepanova, M., Suykens, J., and Vanthienen, J.
(2003). Benchmarking state-of-the-art classification algorithms for credit scoring. Journal
of the Operational Research Society, 54(6):627–635.

Bider, I., Khomyakov, M., and Pushchinsky, E. (2000). Logic of change: Semantics of
object systems with active relations. Autom. Softw. Eng., 7(1):9–37.

Blockeel, H. and De Raedt, L. (1998). Top-down induction of first-order logical decision
trees. Artif. Intell., 101(1-2):285–297.

Blockeel, H., Dehaspe, L., Demoen, B., Janssens, G., Ramon, J., and Vandecasteele, H.
(2002). Improving the efficiency of inductive logic programming through the use of query
packs. J. Artif. Intell. Res. (JAIR), 16:135–166.

Cohen, W. (1995). Fast effective rule induction. In Prieditis, A. and Russell, S., editors,
Proceedings of the 12th International Conference on Machine Learning, pages 115–123,
Tahoe City, CA. Morgan Kaufmann Publishers.

REFERENCES 17

Dustdar, S., Fiadeiro, J. L., and Sheth, A. P., editors (2006). Business Process Manage-
ment, 4th International Conference, BPM 2006, Vienna, Austria, September 5-7, 2006,
Proceedings, volume 4102 of Lecture Notes in Computer Science. Springer.

Džeroski, S. (2003). Multi-relational data mining: an introduction. SIGKDD Explorations,
5(1):1–16.

Džeroski, S. and Lavrač, N., editors (2001). Relational Data Mining. Springer-Verlag,
Berlin.

Kaarst-Brown, M. L. and Kelly, S. (2005). It governance and sarbanes-oxley: The latest
sales pitch or real challenges for the it function? In HICSS ’05: Proceedings of the
Proceedings of the 38th Annual Hawaii International Conference on System Sciences
(HICSS’05) - Track 8, page 236.1, Washington, DC, USA. IEEE Computer Society.

Kowalski, R. and Sergot, M. (1986). A logic-based calculus of events. New Gen. Comput.,
4(1):67–95.

Lavrac, N., Džeroski, S., and Grobelnik, M. (1991). Learning Nonrecursive Definitions of
Relations with LINUS. In Kodratoff, Y., editor, EWSL, volume 482 of Lecture Notes in
Computer Science, pages 265–281. Springer.

Ly, L. T., Rinderle, S., Dadam, P., and Reichert, M. (2005). Mining staff assignment
rules from event-based data. In Bussler, C. and Haller, A., editors, Business Process
Management Workshops, volume 3812, pages 177–190.

Martens, D., Baesens, B., Van Gestel, T., and Vanthienen, J. (forthcoming). Comprehensi-
ble credit scoring models using rule extraction from support vector machines. European
Journal of Operational Research.

Maruster, L. (2003). A machine learning approach to understand business processes. PhD
thesis, Eindhoven University of Technology, Eindhoven.

Maruster, L., Weijters, A. J. M. M., van der Aalst, W. M. P., and van den Bosch, A.
(2006). A rule-based approach for process discovery: Dealing with noise and imbalance
in process logs. Data Min. Knowl. Discov., 13(1):67–87.

Mitchell, T. (1997). Machine Learning. McGraw Hill.

Muggleton, S. (1990). Inductive logic programming. In Proceedings of the First Interna-
tional Conference on Algorithmic Learning Theory, pages 42–62.

Pazzani, M., Mani, S., and Shankle, W. (2001). Acceptance by medical experts of rules
generated by machine learning. Methods of Information in Medicine, 40(5):380–385.

Quinlan, J. R. (1993). C4.5: programs for machine learning. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA.

REFERENCES 18

Rozinat, A. and van der Aalst, W. M. P. (2006). Decision Mining in ProM. In Dustdar
et al. (2006), pages 420–425.

Securities and Exchange Commission, U.S.A. (2002). Sarbanes oxley act 2002. Securities
and Exchange Commission (SEC), U.S.A.

Tan, P.-N., Steinbach, M., and Kumar, V. (2005). Introduction to Data Mining. Addison
Wesley.

Van Assche, A., Vens, C., Blockeel, H., and Džeroski, S. (2006). First order random forests:
Learning relational classifiers with complex aggregates. Machine Learning, 64(1-3):149–
182.

van der Aalst, W. (2004). Business alignment: Using process mining as a tool for delta
analysis. In Proceedings of the 5th Workshop on Business Process Modeling, Development
and Support (BPMDS’04), Caise 04 Workshops, pages 138–145.

van der Aalst, W., Reijers, H., and Song, M. (2005). Discovering social networks from
event logs. Computer Supported Cooperative Work, 14(6):549–593.

van der Aalst, W., Reijers, H., Weijters, A., van Dongen, B., Alves de Medeiros, A.,
Song, M., and Verbeek, H. (2007). Business process mining: An industrial application.
Information Systems, 32(5):713–732.

van der Aalst, W. and Song, M. (2004). Mining social networks: Uncovering interac-
tion patterns in business processes. In Proceedings of the International Conference on
Business Process Management (BPM 2004), volume 3080 of Lecture Notes in Computer
Science, pages 244–260. Springer.

van der Aalst, W., Weijters, A., and Maruster, L. (2004). Workflow mining: Discovering
process models from event logs. IEEE Transactions on Knowledge and Data Engineering,
16(9):1128–1142.

van der Aalst, W. M. P. and van Dongen, B. F. (2002). Discovering workflow performance
models from timed logs. In Han, Y., Tai, S., and Wikarski, D., editors, EDCIS, volume
2480 of Lecture Notes in Computer Science, pages 45–63. Springer.

van der Aalst, W. M. P., van Dongen, B. F., Herbst, J., Maruster, L., Schimm, G., and
Weijters, A. J. M. M. (2003). Workflow mining: A survey of issues and approaches. Data
Knowl. Eng., 47(2):237–267.

van der Aalst, W. M. P., Weske, M., and Grünbauer, D. (2005). Case handling: a new
paradigm for business process support. Data Knowl. Eng., 53(2):129–162.

van Dongen, B. F., Alves de Medeiros, A. K., Verbeek, H. M. W., Weijters, A. J. M. M.,
and van der Aalst, W. M. P. (2005). The ProM Framework: A New Era in Process
Mining Tool Support. In Ciardo, G. and Darondeau, P., editors, ICATPN, volume 3536
of Lecture Notes in Computer Science, pages 444–454. Springer.

REFERENCES 19

van Hee, K., Oanea, O., Serebrenik, A., Sidorova, N., and Voorhoeve, M. (2006a). Modelling
history-dependent business processes. In MSVVEIS, pages 76–85.

van Hee, K. M., Oanea, O., Serebrenik, A., Sidorova, N., and Voorhoeve, M. (2006b).
History-based joins: Semantics, soundness and implementation. In Dustdar et al. (2006),
pages 225–240.

Wen, L., Wang, J., and Sun, J.-G. (2006). Detecting implicit dependencies between tasks
from event logs. In Zhou, X., Li, J., Shen, H. T., Kitsuregawa, M., and Zhang, Y., editors,
APWeb, volume 3841 of Lecture Notes in Computer Science, pages 591–603. Springer.

	OR-ProM.pdf
	OR-ProM.pdf
	Introduction
	First-Order Classification Learners
	Inducing Artificial Negative Examples
	History-Dependent Processes
	Process Discovery as Learning Preconditions
	Including Time-Varying Properties
	Related Work
	Conclusion

