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1. Introduction

An agent-based model (ABM) is a computational model which can simulate the
actions and interactions of individuals and organisations, in complex and realistic
ways. Even a simple agent-based models can exhibit complex behavior patterns and
provide valuable information about the dynamics of the real-world system which
they emulate. Agent Based Models transcend the numerous restrictive assumptions
underlying most main-stream models and can create the emergent properties aris-
ing from complex spatial interaction and subtle interdependencies between prices
and actions, driven by learning and feedback mechanisms. The theoretical assump-
tion of mathematical optimization by agents in equilibrium is replaced by the less
restrictive postulate of agents with bounded rationality adapting to market forces.
Many approaches have been adopted in modelling agent behaviour for financial
agent-based models. Agents can range from passive automatons with no cognitive
function, to active data-gathering decision makers with sophisticated learning capa-
bilities. Indeed, agents are not only heterogenous and interacting but also adaptive;
they have different circumstances, different histories and adapt continuously to the
overall situation they create. Agents can engage in comprehensive forms of learn-
ing that include inductive reasoning (experimentation with new ideas) as well as
aspects of reinforcement learning, social mimicry, and forecasting of future events.
When agent interaction is contingent on past experience, and especially when there
is a continuous adaptation to that experience, mathematical analysis is very limited
in its ability to derive the dynamic consequences.

Traditional economic models can get reasonably good insights into the economy
by assuming that human behaviour leads to stable, self-regulating markets, with
prices never departing too far from equilibrium. But the theory of complex systems
shows that although a system may have an equilibrium state, its basin of attrac-
tion may be very narrow and the system rarely settles there. The equilibrium may
also be very sensitive to small perturbations, and therefore becomes less relevant
for the understanding of the system. The highly stylised, analytically tractable
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2 AGENT-BASED MODELLING FOR FINANCIAL MARKETS

traditional models in economics and finance are not well-suited to study crisis situ-
ations (Bouchaud [2008], Farmer and Foley [2009], Kirman [2010]); in fact there is
no framework in classical economics for the understanding of crises. ABMs on the
contrary can represent unstable systems with crashes and booms that develop out
of non-linear responses to proportionally small changes.

Economists have developed powerful tools to understand the role of strategic
interaction among a limited number of agents, but the embeddedness of economic
activity in social settings has been largely ignored by the economic profession until
the early 1990s. Since then the study of socio-economic networks has exploded,
with main focus the development of models of strategic network formation. The
underlying assumption in these models is that the payoffs to each individual pro-
vide the incentives to form or sever links, and the basis for a welfare evaluation.
By focusing on the optimal behavior of agents in forming links, these theoreti-
cal models provide useful insights to understand why certain network structures
emerge. Nonetheless the networks that emerge as stable or efficient are too simple
(such as star networks) and rarely observed in reality. Thus, these models are not
well suited in terms of matching the properties of observed large social networks,
characterised by considerable amount of heterogeneity in the network structures.
As suggested by Jackson [2007], agent-based simulation could be a valuable tool
to study more realistic network formation models that could capture, both, more
node heterogeneity and randomness in behaviour.

The last few years have seen significant popular coverage of the potential of agent-
based models for preventing financial crises and better understanding the economy.
A article in the Economist (Economist [2010]) suggests that Agent Based Models
might do better than conventional economic models, such as dynamic stochastic
general equilibrium models, in foreseeing financial crises. In a recent interview
on Institutional Investors Farmer [2012] advocates the use of ABM simulations to
understanding the economy and financial markets as complex evolving systems.
Buchanan [2009] asks whether, in analogy to traffic forecasting models, it may
be possible to build a control centre (or war room) for financial markets, where
policy makers could be alerted to potential crises and run appropriate simulations in
order to understand how best to respond to ongoing events. Regulators and policy
makers (Trichet [2010], Haldane [2009]) have also been calling for novel approaches
and tools to monitor the state of the economy, that recognise its complex and
interconnected nature.

Despite the widespread interest in ABM approaches, agent-based models remain
at the fringe of mainstream economics. Some critics argue that ABMs are too
narrow in focus. Agent-based modelling in financial markets has devoted a lot
of attention to providing a behavioural explanation of a number of universally
observed facts (or stylized facts) of financial time series which were inconsistent
with standard asset pricing models; while it has a achieved considerable success in
this area, there has been less engagement with the more general topics of interest
to the more traditional financial market research communities.

Another criticisms which is made of agent-based modelling is the lack of clarity
about how one can do policy with them. Farmer and Foley [2009] describe the
substantial progress that has been made using ABMs to model large parts of an
economy; however, they acknowledge the need to go further and to apply the ABM
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methodology to the creation of larger models which can incorporate multiple mar-
kets. In this direction promising results have been achieved by the Eurace project
(Deissenberg et al. [2008]) which represents the first attempt to create a large scale
model of the European economy. More recently, the CRISIS project1 has under-
taken the challenging task to build an integrated finance/macroeconomic ABM to
produce a quantitative understanding of financial crisis. A visionary project, the
FuturICT Knowledge Accelerator2 is another major effort towards large scale ABM
and foresees, among its goals, the development of a sophisticated simulation plat-
form, with models driven and calibrated by data aggregated in real-time. This
might be used to address issues such as risk, trust, resilience and sustainability and
support the policy making, along with business and individual decisions.

The most fundamental critique from economists is that ABMs lack microfounda-
tions for agents’ economic activities unlike traditional intertemporal optimization
models3. The aim of this review is to show how agent based models in financial mar-
kets, have evolved from simple zero intelligence agents, that follow rather arbitrary
rules of thumb, into more sophisticated agents described by better microfounded
rules of behaviour. We then look at the key issue of model calibration. Finally we
look at some cases where ABMs have been successful at providing insight for policy
making.

2. Earlier ABM reviews

A number of ABM reviews have been published over the last 10 years testifying
the growing academic interest for these methodology, both in the economics and
physics communities. In this review we focus on showing the development of models
of financial markets and in the increasing structural and behavioral sophistication,
thinking about empirical issues for such models, thinking about policy issues and
future possibilities. The below reviews offer complementary foci.

A relatively early and comprehensive survey of agent-based modelling for finance
is LeBaron [2006]. LeBaron concentrates on questions of design before surveying
the types of existing models and some empirical issues. The design section is
of particular interest to those pursuing agent-based modelling of financial markets
from an economics perspective. It covers issues such as preferences (and time), price
formation, evolution, learning, how to represent information and social learning.
The importance of having ‘benchmarks’, or parameters for which the model is well
understood, is highlighted. LeBaron survey covers a range of models running from
‘few type’ models to very dynamic, heterogeneous models. The ‘few types’ models
analyze a small number of strategies, typically technical or fundamental, that are
used by agents to trade a risky asset. The proportion of agents adopting different
strategies is determined by the strategies past performance. These models tend
to be more analytic than computational. In ’many type’ models the small sets
of tractable trading rules are replaced with larger sets of strategies. Model remain
close to a well-defined theoretical framework but extend the framework by including
learning agents. The next set of artificial market models moves away from testing
specific theoretical models. These models are characterised by a dynamic ecology
of trading strategies and simulations are used to determine which strategies will

1http://www.crisis-economics.eu/home
2http://www.futurict.eu/
3Of course many traditional ‘microfounded’ models have their own significant limitations.
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emerge and survive, and which will fail. The Santa Fe Artificial Stock Market,
which we return to below, is one of the earliest examples of such models.

Hommes [2006] surveys heterogeneous agent models (HAM) with an emphasis
on models which are at least somewhat tractable by analytical methods. HAM
are simple, stylized versions of the more complicated and computationally oriented
ABM but share with them the paradigm shift, from the representative agent ap-
proach, towards a behavioral approach in which heterogenous, boundedly rational
agents follow rule of thumb strategies. Such strategies, while simple, perform well
and lead to sophisticated macro level structure. Attention is initially focused on
early models which include ‘fundamentalist’ and ‘chartist’ agents; the former form-
ing their expectations on market fundamentals and the later on trends in historical
price patterns. Other topics covered include examples of disequilibrium HAMs
which present complex market dynamics such as cycles or chaotic fluctuations, sys-
tems of agents with stochastic or social interactions and financial market models
with herding behavior. Hommes and Wagener [2009a] survey simple HAM mod-
els in which financial markets are viewed as complex evolutionary systems. They
introduce the main features of adaptive belief systems and discusses a number of
examples, discuss their empirical implications, and confront the models with data
from laboratory experiments with human subjects. A number of chapters in the
same edited collection (Hens and Schenk-Hopp [2009]) overview cutting hedge re-
search on financial markets that model the dynamics of asset prices as driven by
the heterogeneity of investors.

In Kirman [2002], and in greater length in Kirman [2011], consideration is given
to the way agent-based modellers build models of economic systems (and more
generally how economic modelling should be done). An argument is made for
models which take into account direct interactions of agents and in particular for
approaches which utilize a network to model these interactions.

Samanidou et al. [2007] outlines the main ingredients of some influential early
models in financial markets to move to a number of more recent contributions,
appearing in both the physics and economics literature. In particular they focus
on models that formalise the description of financial markets as multi agent sys-
tems, and can reproduce empirically observed universal scaling laws. The authors
nonetheless point out how the ability of most of these models to explain interesting
empirical facts vanishes for realistically large populations of agents.

A more recent survey is Cristelli et al. [2011] which discuss, in a unified frame-
work, a number of influential agent based models for finance with the objective
of identifying possible lines of convergence. Models are compared both in term of
their realism and their tractability. The question which model is better has no
clear answer because the stylized facts are relatively limited and not too difficult to
reproduce in an ABM framework. As already observed by Samanidou et al. [2007],
Cristelli et al. [2011] confirms that in most models considered the stylized facts do
not correspond to a genuine asymptotic behavior but can only be obtained for a
specific number of agents and in a limited region of parameters. For this reason
the authors argue that self-organization should be a crucial ingredient in ABM to
drive the dynamics of the system spontaneously to the realistic region.

An extensive review of Econophysicists’ work in agent-based models is provided
in Chakraborti et al. [2011]. Three key areas are examined: models of order-driven
markets, kinetic theory models for wealth distribution and game theoretic models
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(particularly for the minority game). The authors conclude that existing models
either are simple toy models that cannot be calibrated with real data, or more
realistic models, suitable for calibration, but poorly tractable and whose sensitivity
to the various parameters is particularly difficult to understand. Finally, they
observe that the cancellation of orders is the least realistic mechanism implemented
in existing models and that no agent-based model of order books deals with the
multidimensional case. Thus fully reproducing empirical observations on correlation
and dependence is still an open challenge for ABM.

A broader perspective can be found in Chen [2012] which gives a historical
overview of how agent-based computational economics has developed looking at
four origins: the market, cellular automata, tournaments (or game theoretic) and
experiments. In thinking about financial markets the first is of most obvious rele-
vance but work stemming from all four approaches have played a role in the agent-
based modelling of financial markets. The market, understood as a decentralized
process, has been a key motivation for agent-based work; Chen argues that the rise
of agent-based computational economics can be understood as an attempt to bring
the ideas of many and complex heterogenous agents back into economic considera-
tion. Zero intelligence (ZI) agents, or randomly behaving agents, have been a key
part of finance research. The intuition behind this assumption, is that, given the
law of large numbers, no matter what the individual motivations behind agents
behaviour are, their aggregate behavior appears equivalent to that of randomly-
behaving agents. Other simple programmed agents have included features such as
swarming, social intelligence and regime switching. Computer tournaments have
been used to solicit human programmed behaviors for complicated dynamic games
and to test computer generated solutions. Experiments, or less formal observation
of human behavior, have been important for agent-based modelling and calibration.
We return to the issue of calibration in section 5.

A recent survey focused on zero-intelligence approaches for finance is Ladley
[2012]. ZI models have allowed researchers to gain insight into market dynamics
without having to make diverse behavioural assumptions regarding the strategies of
traders. By removing strategy from market participants, the researcher may gain
an insight into the effect of the market mechanism on the overall market dynamics.
The simplicity of these models has the additional benefit, in some cases, of making
them analytically tractable. Ladley shows how ZI models may do poorly where
there are opportunities for learning (zero-intelligence agents don’t learn) and where
feedback loops between agents action and the state of the environment they operate
generate complex dynamics.

3. Traditional approaches and empirical evidence

Much research in financial markets has focused on thinking about fully rational
agents (perhaps with some learning) processing information (which may be imper-
fect) to infer the correct ‘fundamental’ value of an asset. There is no scope in
these models for chartist agents or herding behaviour. The argument is essentially
that the predictability of prices should be reduced to zero by rational investors
who should earn higher profits and drive less rational traders out of the market.
Nonethelss artificial stock market models show that the market does not gener-
ally select the rational, fundamental strategy, and that simple technical trading
strategies may survive.
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The idea of market efficiency is central to much financial research, with both
strong theoretical and empirical literatures. In empirical terms, models such as the
random walk are arguably pretty good approximations for evidently unpredictable
financial markets. A benchmark (theoretical) model for thinking about efficiency is
outlined in Grossman and Stiglitz [1980] where agents can purchase a signal about
an asset. In an efficient world with a small cost on the signal no one would buy
the signal; but how then could it be (informationally) efficient? This paradoxical
character of information efficiency is a theme of much criticism of such concepts.

While relating market efficiency to empirical studies is controversial, it is gener-
ally accepted that there are many empirical financial phenomena which are difficult
to explain using traditional models. As many authors have noted the empirical dis-
tributions of returns of many market indices and currencies, over different but
relatively short time intervals, shows an asymptotic power law decay (Mandelbrot
[1963]; Pagan [1996]; Guillaume et al. [1997]; Gopikrishnan et al. [1999]). A Gauss-
ian, as predicted by the random-walk hypothesis, is recovered only on time scales
longer than a month. Moreover, while stock market returns are uncorrelated on
lags larger than a single day, the correlation function of the volatility is positive
and slowly decaying, indicating long-memory effects. This phenomenon is known in
the literature as volatility clustering (Ding et al. [1993]; DeLima and Crato [1994];
Ramsey [1997]; Ramsey and Zhang [1997]). The empirical evidence also points to
persistency in trading volume and positive cross-correlation between volume and
volatility (Tauchen and Pitts [1983]; Ronalds et al. [1992]; Pagan [1996]). There
is also evidence that both the moments of the distribution of returns (Ghashghaie
et al. [1996]; Baviera et al. [1998]) and the volatility auto-correlations (Baviera et al.
[1998]; Pasquini and Serva [2000]) display multi-scaling.

Recently, the empirical analysis of limit order data has revealed a number of
intriguing features in the dynamics of placement and execution of limit orders.
In particular, Zovko and Farmer [2002] found a fat-tailed distribution of limit or-
der placement from the current bid/ask. Bouchaud et al. [2002] and Potters and
Bouchaud [2003] found a fat-tailed distribution of limit order arrivals and a fat-
tailed distribution of the number of orders stored in the order book. The analysis
of order book data has also added to the debate on what causes fat tailed fluctu-
ations in asset prices. Gabaix et al. [2003] put forward the proposition that large
price movements are caused by large order volumes. A variety of studies have sug-
gested that the mean market impact is an increasing function of the order size.
Nonethelss Farmer et al. [2004] have shown that large price changes in response
to large orders are very rare. Order submission typically results in a large price
change when a large gap is present between the best price and the price at the next
best quote (see also Weber [2005] and Gillemot et al. [2006]).

4. Modelling Approaches

In this section we survey the range of models used for financial agent-based mod-
elling where the market mechanism is a major area of interest. In building these
kinds of models two key areas are pertinent: understanding the structure of the
market and understanding the modelling of behavior. In order to focus on ques-
tions of market structure behaviour can be modelled in very simple ways, ranging
from leaving it out entirely (having for example market orders placed randomly),
to zero intelligence trading (where we have individuals but they trade essentially
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randomly, though typically subject to some constraints such as a budget) through
to more sophisticated models which include ideas such as bounded rationality, game
theoretic principles or approaches from behavioral sciences. Another key element is
the way in which heterogeneity is featured in the model: for the simpler models it
often arises purely from the random behavior of (statistically) identical individuals,
but for the more complex models the heterogeneity often plays a more central role.
Approaches from across the range are surveyed below. We focus initially on three
categories of models for agents in markets: zero intelligence agents, heterogeneous
agents interacting through a market mechanism and heterogeneous agents interact-
ing directly. This approach allows us to think about the level of sophistication in
agent behavior and in the structural detail of the interactions in the models.

Direct interactions, or social interactions, are meant to capture how the choice
of each agent is influenced by the choices of others. Various alternatives have been
considered in the social utility literature: global interaction, where individuals tend
to conform to the average behaviour of the entire population, and local interac-
tions, where individuals have an incentive to conform to or information on a specific
population sub-group. While interactions could be heterogeneous (with different
strengths and signs between pairs) and asymmetric (Iori and Koulovassilopoulos
[2004]), the literature has mostly focused on pairwise symmetric spillover, in which
case the payoff of a particular choice increases when others behave similarly. Posi-
tive social interaction models generate polarised group behaviour even when agents
characteristics are uncorrelated. Models allow for the neighborhood composition to
evolve over time, possibly in a self-organized way. Typically agents can form new
alliances according to some fitness maximisation scheme.

ABMs challenge the neoclassical hypothesis of agents relying on perfect knowl-
edge of the economy and infinite computing capabilities to form rational expecta-
tions. Rather, they embrace the bounded rationality paradigm according to which
the expectation formation process is driven by adaptive learning or evolutionary
selection via genetic algorithms (Chen et al. [2008]). Agents may use technical
trading rules or Artificial Neural Networks (ANNs) (Terna [2002] ) to forecast mar-
ket prices. In most of the behavioural models surveyed below agents face discrete
choices (submit buy or sell orders, switch between different strategies, severe or
form new links, and so on). Bounded rationality in this context may enter via the
assumption that, while utility is deterministic, the agents’ choice process is sto-
chastic. This formulation captures the difficulty agents face in evaluating different
features of the various alternatives and do not necessarily select what is best for
them.

4.1. Zero Intelligence Agents. We start with zero intelligence agent models;
these models actually vary substantially in what is meant by the term zero intelli-
gence and range from very random behaviors, perhaps constrained by a budget, to
those where there may be some kind of strategy specified. However, one can identify
two key features in most of such models: lack of (explicit) learning and a minimalist
approach to agent behavior. In addition to more obvious agent-based economics
models, we consider some approaches from physics which are closely related.

Research in zero intelligence trading for financial markets was started by Gode
and Sunder [1993], although there is some related earlier work by Becker [1962] on
random agents and aggregate outcomes. In Gode and Sunder [1993] zero intelligence
traders are compared to a set of human traders and aggregate outcome compared.
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These zero intelligence traders are “not intended as descriptive models of individual
behavior”, rather, the point of the model is to think about efficiency arising from the
structure. The key result is that for their model, in terms of the aggregate property
of allocative efficiency4, zero intelligence (“irrational”) traders perform comparably
well to human traders. The mechanism studied is that of a double auction in which
buyers and sellers submit limit order asks or bids and can accept these asks or bids.
Each bid is independently and uniformly drawn from the range [1, 2, . . . , 200]. When
they match or cross they are accepted. Each buyer has a valuation vi and each seller
a reserve cost ci. For a until sold at price p the profit is thus p− ci. Two variants
are investigated and compared to results from experiments: one where agents trade
randomly over the full range of possible values and one where agents have a budget
constraint, that is they must make profit or pay less than their valuation. The later
achieves an average efficiency extremely close to that of human traders.

In Gode and Sunder [1997] this research is continued with a exploration of ex-
planations for allocative efficiency for markets. Again zero intelligence traders are
constrained to avoid losses, but otherwise bid randomly. A larger number of mar-
kets are investigated, including modifications such as limited collection of bids, a
limit of trading to only one round, current bid and ask prices not being made pub-
lic, and the results suggest that for many market structures the simple rules, rather
than complex behaviors, may give rise to most of the efficiency of a market.

In the spirit of Gode and Sunder [1993], Duffy and Ünver [2006] asks whether
a simple agent-based model can generate the kind of bubbles and crashes which
have been observed in experimental settings; the question here is not a matter of
efficiency but of replication and understanding of observed behavior. The experi-
mental setup is a round based trading market with cash and a single asset, at most
one unit of which could be sold or bought each round via an order book. The agent-
based model used is somewhat more complex than Gode and Sunder [1993], indeed
they term it “near-zero-intelligence”, the key difference is rather than having purely
random prices (albeit constrained to profitable prices) the average transaction price
of the previous round is known. This provides a mechanism for the generation of
price bubbles which does not depend on the more sophisticated strategies of many
later models.

Another relatively recent example of the kind of work which shows that zero-
intelligence trading can give rise to observed market phenomena (in contrast to the
experimental results which are the point of comparison for the above research) is
Ladley and Schenk-hopp [2007] which looks at a limit-order driven market using
a zero-intelligence approach in keeping with the original intuitive style (there is a
no-loss constraint on orders) and each buyer/seller has a reservation price as in
Gode and Sunder [1993]. Orders are randomly drawn pairs (p, q) drawn form the
set of feasible trades (price p must not incur a loss and q units must be available for
sale) and when an order is placed the previous order from that trader is removed.
In contrast to the original version traders randomly enter and exit the market. The
goal is to determine whether characteristics of the order book are a result of the
market mechanism or trader strategy. An ‘average’ order book is constructed by
looking at best five bid and ask prices and this is compared to empirical findings.
The bid-ask spread is found to be about twice the width of either adjacent spread

4Allocative efficiency is total profit divided by maximum total profit, or sum of consumer and
producer surplus.



AGENT-BASED MODELLING FOR FINANCIAL MARKETS 9

and the volume available is almost constant across prices; both of these correspond
to empirical findings. As tick size is reduced the volume offered at the best price is
reduced, another empirical observation. As the model lacks sophisticated behavior
on the part of traders, it suggests these and other properties of such markets may
in large part arise from the mechanism.

While the above models take a minimal approach to agent based modelling, it is
possible to go even further to the extent of having implicit agents with actions, such
as the placing of market orders, occurring randomly at a market rather than at an
explicit individual level. A major contribution in this area is Daniels et al. [2003],
which is explored in more detail in Farmer et al. [2005a]. In this work order arrival
and cancellations are modelled as Poisson random processes (rather than being the
explicit actions of agents). Orders arrive in chunks of size σ at rate µ shares per
unit time with equal probability of being a buy or sell order. Offers are placed with
uniform probability at multiples of a tick size over an infinite interval. At time t the
best asks and bids are a(t) and b(t), with spread s(t) = a(t) − b(t). The shape of
the order book will be a key consideration: in particular the distribution of stored
market orders. Market orders are matched against limit orders, in order of price,
and removed. Based on this model predictions can be made for key properties of
the market, in particular for the diffusion rate of prices and the spread (difference
between best buying and selling prices) and price impact functions. This is possible
as the model is simple enough to characterise these properties through dimensional
analysis. This kind of model is tested against data from the London Stock Exchange
in Farmer et al. [2005b] where it can explain over 95% of the spread and over 75%
of the variance of the price diffusion rate with a single free parameter. These, and
similar, results suggest there may be simple laws connecting price and properties of
the market which do not depend on sophisticated strategies on the part of agents.

4.2. Heterogeneous Agents with Market Mediated Interactions. While
zero intelligence models can replicate many stylized facts about financial markets,
they cannot address many questions about modelling behavior (as, for good reason,
they omit this) and, given we are using an agent-based modelling methodology, are
less comprehensive than is necessary. The models we explore below have richer
behaviors and agent interactions, though for now we restrict our attention to those
with purely market mediated interactions.

An example of early research in building models of financial markets, where
traders have strategies and speculate on endogenous price fluctuations, is Caldarelli
et al. [1997]. As in many later models, each trader switches between cash and a
single stock. All traders start with the same quantity of each and all have access
to the complete price history of the stock. At each time period agent’s strategy is
an amount of stock Si,t to buy/sell. Each agent has a mapping from the history
of prices to a fraction of stock Si,t to buy/sell, somewhat in the style of Arthur
[1994]. In this case strategies are moving averages of combinations of derivatives of
logged prices. This simple model generates a complex price history with the scaling
of price variations close to that observed in real financial markets.

The distribution of returns is something poorly captured by traditional financial
market models. Research which explores this issue from a behaviourally minimal
but structurally detailed way is LiCalzi and Pellizzari [2003]. The model5 consists

5We go into a little detail about the basic specification as this model is representative at a
basic level of many models we look at later.
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of an economy with two assets, a bond and a stock. The price of the stock depends
on demand and supply of agents. The total supply of cash and stock is constant
though not all traders may be active at once. Traders enter market with cash ci and
stock si and can buy additional stock or sell stock through an order book process
which allows both market orders (which can be fully or partially filled) and limit
orders. All agents are fundamentalists (we look at richer models elsewhere in this
section) and try to buy low and sell high relative to their individual estimate of
the fundamental value, vi, of the stock. Upon entering the market each agent has
an investment horizon hi, enter market at time t and wish to maximise their gains
over time hi − t. Bonds have a risk free return of r, so i requires a sufficient risk
premium πi to invest in the stock, or

vi
p
≥ 1 + (r + πi)(hi − t)

and the agent will invest in the bond (sell stock) if

vi
p
≤ 1 + r(hi − t).

Based on the above agents buy/sells stock at best prices available in order book
when it makes sense (given their valuation) to buy or sell. When such orders
are not available they place their own limit orders. This trading takes place in a
number of sessions (“days”). Simulations include both the approach above with
its risk attitude and knowledge of r and ‘zero intelligence’ trading where only vi is
known. Even in the later simple case we see fat tailed logged returns suggesting
this is a result of the structure rather than behavior. While this phenomena may be
largely due to structural causes, additional properties such as volatility clustering
and short-term correlations cannot be explained by the market structure alone.

In Lux and Marchesi [1999] a model of a financial market with chartists and
fundamentalists which gives rise to scaling laws is described. A closely related
model is investigated in more detail in Lux and Marchesi [2000]. Here there is a
market maker balancing demand and supply of nc agents with chartist strategies
and nf agents with fundamentalist strategies is explored. The total number of
agents is kept as a constant N = nc + nf . There is further heterogeneity in that
within the chartist group agents may be optimistic or pessimistic about the short
term future, we have n+ and n− of each and an opinion index

x =
n+ − n−

nc
, x ∈ [−1, 1].

The chartists buy or sell (a fixed number of units) if they are optimistic or pes-
simistic respectively. Fundamentals buy or sell if the market value is below or above
the fundamental value. Agents endogenously switch between these groups with the
transition probabilities arising from economy wide average profits and parameters
for the inertia between groups. The switching probability from positive to negative
is

π+− = ν(
nc
N

expU)

and from negative to positive is

π−+ = ν(
nc
N

exp−U)
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where

U = α1x+ α2
ṗ

ν
.

and ν is a frequency of opinion revaluation parameter, α1, α2 are parameters for
the relative importance of majority and price trend. The simulation results give
consistent statistical characteristics for the market, including both fat tails and
volatility clustering which correspond to empirical observations. Usually the macro
behavior of this model is stable, but outbreaks of volatility can occur and the
stylised facts of simulated time series data correspond to those observed in real
markets. The market behavior is related in Lux and Marchesi [2000] to the concept
of “on-off intermittency”: there is an attracting state which become temporarily
unstable due to the crossing of some local stability threshold; in this model it is the
fraction of traders adopting chartists versus fundamentalist strategies.

LeBaron [2005] looks at the development of the Santa Fe artificial stock market,
one of the first major attempts to build a (somewhat) detailed agent-based model of
a financial market. As in many of the models considered elsewhere in this survey,
the initial artificial stock market model is one with a risk free asset and a risky
stock paying a dividend

dt = d+ ρ(dt−1 − d) + µt

where d, ρ are fixed parameters and µ ∼ N (0, σ2
µ). Agents have individual expec-

tations for the price change of the stock and for its variance. The more modern
versions of the Santa Fe artificial stock market use a constant relative risk aver-
sion preference for the formation of individual demands for the stock. Agents use
a classifier system to estimate the returns. The classifier is based on a the pres-
ence of a number of properties, for example “price greater than five period moving
average”. These properties are mapped to estimation parameters. Agents each
have an individual evolving set of 100 rules such that periodically the twenty worst
performing rules are removed and replaced with new rules via both crossover and
mutation from their existing rules. This kind of individual based selection between
rules is similar in style to Arthur [1994]. The model generates many features of real
financial data, specifically excess kurtosis in returns, low linear autocorrelation and
persistent volatility.

The above models use some kind of switching, either between classes or strate-
gies. An alternative is to think about agents using a mixed strategy, giving different
weights to different components. In Chiarella and Iori [2002] a model of a simpli-
fied limit order book market is built in order to investigate the effects of differing
combinations of strategies on aggregate outcomes. Attention is also given to how
structural details of the market (tick size and order lifetime) affect these aggregate
outcomes. In the model weights are given to fundamentalist and chartist compo-
nents of an agent’s strategy and a return is individual estimated via

r̂t = g1
(pf − pt)

pt
+ g2r̄L + nε.

The sign of g2 indicates a trend chasing (> 0) or contrarian (< 0) chartist compo-
nent.

Building on Chiarella and Iori [2002], LeBaron and Yamamoto [2007] introduces
learning to the order driven market. These parameters (weights) predications made
using equation from Chiarella and Iori [2002], that is g1, g2 and ni are initially
assigned randomly and are updated via a genetic algorithm in which the fitness
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function fi is based on the mean squared deviation of realized prices from predicted
prices given by

fi =
1∑

5 rounds(pt − Ei(pt))2

where the Ei(pt) was based on the individual i’s weighted estimations of return
and the probability of a strategy being copied into the next round is

Pi =
fi∑N
j fj

.

In addition to this copying, there is also a small probability of mutation, where one
of the parameters of the price prediction function is replaced by a new value drawn
from the original distribution. The key stylized fact they are able to capture is
long memory in trading volume, volatility of return and in sign of market orders6;
this entails that future values of these quantities are (significantly) predictable from
past values. A modified version of the rescaled range or R/S statistic is used to test
the simulated data and they are able to reject their null hypothesis of short-range
dependence (or lack of long memory) in a majority of simulations for all of volume,
volatility and sign of market order quantities. When the simulations were carried
out without evolution there was insufficient evidence to reject the null hypothesis
in most cases.

In the style of Chiarella and Iori [2002], Chiarella et al. [2009] looks at more so-
phisticated agents with heterogeneous strategies. Again agents have components of
each return forecasting strategy (with heterogeneous weights) and different param-
eters for each component; however, now utility functions are introduced for each
agent and further heterogeneity is facilitated by varying risk aversion. The agents
maximise their expected utilities via on their individual estimate of stock return,
based on their weighted average of the three components. Simplifying a little, this
estimate is

r =
1

g1 + g2 + n

[
g1

1

τf
ln(pf/p) + g2r̄ + nε

]
where these estimates are individual, g1, g2, n are the heterogeneous weightings
given to each of the fundamentalist, chartist and noise components, τf is the time
scale for mean reversion to the fundamental price, pf is the fundamental price and
r̄ is the chartist component based on estimated return over previous times steps.
The agents can place limit or market orders in order book depending on best prices
available and their estimate of return. The results suggest that chartist strategies
generate longer tails in the distribution of orders (in keeping with empirical find-
ings). The increase in volatility following a large price movement can be explained
by the large and opposite contributions to price expectations from the chartist and
fundamentalist components.

4.3. Heterogeneous Agents with Direct Interactions. While for many pur-
poses it is ideal to have parsimonious models, as we are adopting a computational
approach, we do not have to be limited to those models which can be analytically
analysed or even those which attempt to create the simplest possible model of an
agent for a particular scenario. Drawing on insights from behavioral sciences and

6Whether most orders are buyer or seller initiated.
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knowledge of market structures we can build considerably more comprehensive mod-
els; these models may include sophisticated learning behaviors and explicit mod-
elling of the direct interactions of agents. Traditional approaches tend to suggest
that an irrational departure from market fundamentals should not be sustainable.
However, empirical evidence of repeated financial market bubbles (and subsequent
crashes) suggests that ruling out such behavior means omitting a major feature of
financial markets from models. There is some more traditional work which includes
the idea of herding, such as Banerjee [1992] where because agents are making a
choice sequentially and basing their choice on those choices already made by oth-
ers, agents may over-rule their own (better) information (see Hirshleifer and Teoh
[2009] for a recent review on herding behaviour in financial markets).

It is possible to identify three stages in the modelling of direct interactions.
The first is global interactions, where an agent uniformly randomly interacts with
another agent. The second is local interactions on a lattice, where interactions are
constrained to a set of neigbhbors but in a regular way. The final stage is local
interactions on a network. With respect to interactions on a network, more recent
work takes seriously issues such as how inter-agent structures arise. We can see the
evolution from early models where the network is assumed, to later models where
the network structure may arise endogenously.

An early piece of work thinking about the interactions of individual agents and
the macro consequences is Kirman [1993]; many works in agent-based modelling for
financial markets build on this analytic foundation of recruitment. The basic idea
here is that we have a system such as an ant hill with N agents (ants) who retrieve
food from two sources, “black” and “white”. The state is just the number of ants k
using the “black” source. Ants switch between the two resources via an individual
process of recruitment: two ants meet and one switches to another’s source with
probability (1− δ). There is an additional ε probability that an ant switches food
source without an interaction. So at each time step the system evolves from state
k to k + 1 with probability

P (k, k + 1) =

(
1− k

N

)(
ε+ (1− δ) k

N − 1

)
and from k to k − 1 with probability

P (k, k − 1) =

(
k

N

)(
ε+ (1− δ)N − k

N − 1

)
.

We can characterize the long term behavior of this Markov chain, with particularly
interesting results when most of the time the system is at the extreme values. If
we think of the choice of source as choice of opinion or strategy for trading, then
these states are ones where we may see herding.

Another early approach to crowding behavior, or herding, is Bak et al. [1997]
which adopts methods from Physics. There are N traders, each of which can own
one share; if they do then they are potential sellers, if they don’t then they are
potential buyers. Each has a price ps(j) or pb(j), the price they are willing to sell
or buy at respectively, which is determined by their individual strategy. Scenarios
considered include markets with only fundamental traders and with noise traders
(random valuations initially uniformly distributed within a range, then fluctuating
randomly). In the most interesting version of the model imitation is introduced
for the noise traders, such that when they are selecting a new price they randomly
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copy a price from another agent (of either type). What happens as the proportion
of rational traders is varied? When there are few rational traders (c. 2%) they can
be priced out of the market in a “bubble”. When there are many (c. 20%) the
prices are kept within their range.

Vriend [2000] distinguishes between learning at an individual and at a population
level, in the former case the agent learns exclusively on the basis of his experience,
in the later case the agent also bases his learning on the experience of other players.
The example which forms the focus of Vriend [2000] is a Cournot oligopoly game
with n firms choosing quantity qi to be produced and where market price is

P (Q) = a+ b(
∑
i

qi)
c

and a, b, c are set such that this is a downward slopping curve. Fixed costs of K and
marginal costs of k are assumed. Two ways of implementing a genetic algorithm
for this kind of scenario are identified. The first is where each individual firm has
an output rule (specifying production quantity) and after many periods some kind
of crossover and/or mutation is applied based on the relative success of the rules.
The second (or individual) learning, as in Arthur [1994] and LeBaron [2005], has
a set of rules for each agent and those most successful recently are more likely to
be used. For the Cournot oligopoly model these approaches result in completely
different aggregate outcomes, with social learning producing a much higher average
output than individual learning. In both cases convergence to these distinct levels
is relatively fast (it only requires a few genetic algorithm steps, with 100 days of
production in between each). The finiteness of the model is important as it allows
individual agents some influence over the actions of others. Also this is not really
a typical search problem for applying a genetic algorithm (it is far too simple) but
this kind of effect may occur for much more complex models.

Building on the approaches in papers such as Kirman [1993] and Lux and March-
esi [2000], Westerhoff [2009] builds a model with strategy switching between funda-
mental and technical trading. In contrast with Kirman [1993], above, the switching
of opinions is now more sophisticated: the probability of adopting the rule used
by another trader now depends on past profitability of the rule and no longer has
the same symmetric, random specification. This is accomplished via fitness vari-
ables AC and AF for the chartist and fundamentalist strategies respectively, each
a discounted sum of the past returns. The Kirman [1993] style dynamics are mod-
ified by including an weighting on transition probabilities given by 0.5 + sλ where
s ∈ {−1, 1} and the sign of s reflects the relative fitness of the strategy to be
changed to. This switching leads to periods dominated by a fundamentalist rule,
but with major shifts towards technical rules which increase volatility and may
result in bubbles and crashes.

A major area of research for agent-based models of financial markets is the Minor-
ity Game. In it an odd number of agents choose between two options independently
and want to be in the minority. There have been hundreds of research papers on
this topic as it is seen to be a good model for thinking about financial market issues.
It developed from Arthur [1994] which considered a model of individual inductive
reasoning about aggregate outcomes for attendance at the ‘El Farol’ bar. This kind
of model, where every agent wishes to be in the minority is seen to encapsulate key
qualities of financial markets. Challet et al. [2005] includes both an introduction to
and a comprehensive collection of many major papers on the Minority Game.
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In Challet et al. [2000] the basic formulation of the minority game is built on
in multiple ways such as the introduction of heterogeneity (in the form of classes
of agent), an increase in memory length, the possibility of having more strategies
and agents getting information of other agents. The idea is to think about various
financial market issues in the context of this well understood model. The initial
formulation is standard with agents i = 1, . . . N and actions ai(t) = ±1. The gain
of agent i at time t is gi(t) = −ai(t)A(t) where

A(t) =

n∑
j=1

aj(t).

A particularly interesting section is that which looks at what happens if an agent
knows ahead of time the actions of a subset of other agents. This agent can then
adopt a different strategy depending on the aggregate decision of the subset. This
agent always gains at least as much as the average. If there are more agents with
this extra information then the gain is reduced.

A model with interacting agents which can give rise to volatility clustering is
presented in Iori [2002]. A modified random field Ising model is used to model
the behavior of agents in a financial market. There is an L × L lattice, with each
node i being an agent, connected to his four nearest neighbors. Initially each agent
owns the same amount of capital with Mi(0) units of cash and Ni(0) units of
stock. At each time step three actions, Si(t), are possible: −1 if they sell a unit of
stock, 0 if they do nothing and 1 if they buy. A market maker clears orders and
adjusts prices. Agents make decisions based an idiosyncratic signal νi(t) (a shock
to personal preferences) and through exchanges of information between neighbors.
The aggregate signal is:

Yi(t̃) =
∑
i,j

JijSj(t̃) +Aνi(t)

where Jij captures influence. For simple cases of Jij this model is well understood
in Statistical Physics, for example if Jij = 1 then this is the Ising model and
traders would all agree (with large resultant fluctuations in price). In addition to
the above formulation, friction is introduced otherwise agents would sell given any
positive or negative signal, however small. Synchronization effects (which generate
large fluctuations in returns) are shown to arise purely from imitation among these
simple traders. These fluctuations exhibit the mutliscaling phenomena observed
empirically (Pasquini and Serva [2000]).

Traditional models of financial markets have particular difficulties in explaining
the presence of bubbles. Föllmer et al. [2005] looks at a model of a financial market
where the demand of agents for assets is determined by their forecasts of prices. The
agents switch between rules in a way which is driven by the success of the rules and
influenced by other traders. Expectations of prices can be heterogeneous, though
agents are not, in contrast to related approaches, systematically wrong. The prices
can move far from the fundamentals, but the fundamentals do determine the long
run behavior. These rules are supplied by the recommendations Rit of a guru or
financial expert i. Agents choose from the available experts randomly, with choices
weighted by the discounted average of past profits for those recommendations. This
model allows clear investigation of the effects of different kinds of rules (or gurus).
In particular it is seen that the switching in forecasting method can actually be
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self-fulfilling and may result in bubbles. Chartist experts increase both variance
and kurtosis of the limiting empirical distribution of logarithmic prices; they cause
(temporary) bubbles and crashes in the model.

In Stauffer and Sornette [1999] clusters of agents aggregate and shatter via vari-
ation of a parameter p for connectivity. These clusters act together and the idea is
that there may be times when traders act very individualistically and times when
herding is strong. This is developed from a model in in Cont and Bouchaud [2000]
which is simple enough (in contrast to say Bak et al. [1997]) to allow for some
analytical results. There is a market with N agents and a single asset with price
at time t of x(t). Demand for agent i is a random variable φi ∈ [−1, 0, 1] where
positive represents a bullish agent (wanting to buy) and negative a bearish agent
(wanting to sell). If φi = 0 then the agent doesn’t trade in that period. So the
excess demand for the market is

D(t) =

N∑
i=1

φt(t)

and as demand is assumed to be symmetric, or

P (φi = +1) = P (φi = −1) = a and P (φi = 0) = 1− 2a

then average excess demand is 0. Price change is assumed to be proportionate to the
excess demand with a parameter λ for market depth (controlling how sensitive the
price is to excess demand). The key element of the model is communication between
agents, which is modelled here by a set of clusters which coordinate individual
demand; so the excess demand is now the weighted sum over cluster demands, or

1

λ

k∑
α=1

Wαφα(t)

Modelling clustering of agents via the a random graph model for links between
agents allows us to characterize the distribution of cluster sizes, depending on a
single parameter for overall willingness of agents to coordinate their demand. Once
we have distribution of cluster sizes it is possible to characterize the distribution
of aggregate demand and hence price changes. In particular two key results are
derived: heavy tailed density of price changes and the heaviness of tails (kurtosis of
price change) is inversely proportional to order flow; these results hold for a range of
parameter values. In Stauffer and Sornette [1999] the stylized facts of interest arise
not from a parameter value being within a certain range, but from the variation of
‘herding strength’.

The kind of herding models we have seen above (in the style of Kirman [1993])
have been connected to network structure. A review of the mean field approxima-
tion approach to determining transition rates and resulting equilibrium distribution
is provided in Alfarano [2008]. Transition probabilities are reformulated for indi-
viduals based on their neighbors, now the probability of switching for an individual
is

pi =
a+ λn(i, j)

a+ λN

where a is the idiosyncratic parameter, λ is the global herding intensity and n(i, j) is
the number of i’s neighbors in the opposite state. The probability of not switching
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is simply given by 1− pi. Results for regular, scale free, random7 and small world
networks are compared to the mean field results which are a reasonable approxima-
tion for the simulated results on networks. Only the random network captures the
stylized fact of constant variance in proportion in particular states for any system
size. When heterogeneity in behavior is introduced it has little effect on outcomes,
in contrast to introducing a heterogeneous network structure which can have a
major effect on the aggregate outcomes.

Endogenous network formation for financial markets is considered in Tedeschi
et al. [2012]. Unlike work such as Föllmer et al. [2005], where the idea of ‘gurus’ is
something built into the market via the availability of a set of rules, the idea of a
‘guru’ here arises as an endogenous result of an information network. Each agent
has an outward connection to another agent and the ‘guru’ is the agent with the
most incoming links.

Agents have cash and stocks and a wealth relative to the wealthiest agent which
is used as a measure of fitness,

f it =
W i
t

Wmax
t

.

Agents may randomly rewire (choose another agent to be connected to) and they
do this based on the fitness of agents. The probability of i rewiring to agent j from
k is

pir =
1

1 + e−β
i(fj

t −fk
t )
.

Agent’s expectations are a combination of their own individual expectations and
those of the agent they are connected to. In the model gurus emerge endoge-
nously, rise and fall in popularity over time, and are possibly replaced by new gurus.
Traders have an incentive to imitate and a desire to be imitated since herding turns
out to be profitable. The assumption that noise traders quickly go bankrupt and
are eliminated from the market is unrealistic in presence of herding and positive
feedback. We show that more sophisticated strategies underperform the guru and
his followers and positive intelligence agents can not invade a market populated by
noise traders when herding is high.

5. Calibration of agent-based models of financial markets

Relating agent-based modelling and empirical knowledge is a key challenge of
agent-based modelling in general. In the case of financial markets we typically have
large volumes of high resolution data which should be helpful both for calibrating
and evaluating models. The typical approach taken for ABM, as with most of the
work surveyed above, is to replicate stylized facts from financial markets. However,
in addition to this kind of qualitative replication, attempts have been made to
more fully calibrate models from empirical data of particular financial markets. We
consider some general issues then look at specific examples of calibration of financial
market models.

A general guide to empirical validation of agent-based models can be found in
Fagiolo et al. [2007]. It highlights keys issues facing modellers attempting empirical
validation, attempts to classify models and identifies unresolved issues. Problems

7Uniform random probability of any particular link existing.
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and solutions are split into three categories: (i) relating theory and empirical re-
search, (ii) relating models and real world systems and (iii) how the empirical
validation deals with the these first two issues. Agent-based modelling is sum-
marised. A key aspect of the approach adopted here is to think of there being
a ‘real world data generating process’ (rwDGP) and ’model data generating pro-
cess’ (mDGP). The later must be simpler than the former and its ’goodness’ is to
be evaluated by comparing simulated outputs and real-world observations. The
lack on consensus about validation is remarked upon and four categories of hetero-
geneity in approaches identified: those relating to nature of object studied, in the
goal of the analysis, in the modelling assumptions and in the method sensitivity
analysis. Three methods of validation with particular relevance to modelling mar-
kets are examined: the indirect approach the Werker-Brenner approach and the
’history-friendly’ approach. Indirect calibration is where stylised facts are identi-
fied and a model build with reference to known microeconomic description, then the
stylised facts are used to restrict parameters. The Werker-Brenner approach com-
bines Bayesian inference, retaining only those parameters associated with highest
likelihood of empirical data, and an attempt to identify structure from remaining
models. The ‘history-friendly’ approach uses case studies (for example of particular
financial markets) and, for it, a good model is one which generates stylised facts
for those studies.

Richiardi [2012] is a recent introduction to agent-based computational economics
with a emphasis on interpretation of results and estimation. In addressing estima-
tion the necessary approach is contrasted with that for an analytical model. One
must compare artificial data with real data and should change the structural pa-
rameters of the model such that these two sets of data become as close as possible.
There are various ways in which one might measure this closeness and form an
objective function for the optimisation algorithm. One method suggested is that
the method of simulated moments different orders of moments are weighted by their
uncertainty. For real data this can be estimated and for simulated data this can be
reduced by repeated simulation.

Judd [2006] offers a general overview of methodological computational issues
related to agent-based economic modelling. The main appeal of computational ap-
proaches is outlined, namely that the elements of economic investigations previously
sacrificed for simplicity can be investigated. Two common objections to numerical
approaches are examined. Firstly, the lack of generality to which it is argued that
theories look at a “continuum of examples”, but perhaps a measure zero set of
plausible or interesting examples. Viewed this way, Judd argues that the relevance
and robustness of examples is more important than the number. A second common
objection, errors, is dismissed, as when handled carefully these can be negligible.
The main question for Judd is how we systematically do computational (economic)
research? We can’t prove theorems using computers (in the conventional sense)
but we can search for counter examples to a proposition, use Monte Carlo sampling
methods (which can be clearly expressed in terms of classical or Bayesian statistics),
use regression methods to obtain “shape” of some distribution and we can perhaps
straightforwardly adapt a computer model to a new case (something which is often
not at all straightforward for a theorem).

In Chen et al. [2012] the development of agent-based (computational) modelling
is described from an econometrics viewpoint. Of particular relevance to this section
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are the accounts of (i) ABM and stylized facts and (ii) the use of econometric meth-
ods for estimation for ABM. The first of these gives a comprehensive description
of thirty stylized facts observed in the literature (we looked at research focusing on
many of these in section 4) and how these relate to the number of agent types in
the model. The later offers a clear account of the major options in estimating an
agent-based model. Essentially one can carry out direct or indirect estimation. The
former case may be possible for simpler agent-based models. One uses statistical
techniques to estimate the probability of parameters. The later case will typically
be necessary for more complex models. We see examples of both approaches below.

One of the first examples of validation/estimation of an agent-based model of
financial markets is Gilli and Winker [2003]. This uses a stochastic approximation
of an objective function for estimating the parameters of a foreign exchange model.
Bianchi et al. [2007] looks at a case study of validating the “Complex Adaptive
Trivial System” model of Mauro et al. [2005]. This model has reproduced many
stylized facts of financial markets with ad hoc parameter values. The calibration
process here takes a sample of Italian firms and estimates parameters for the model
using this real world data. The model is modified, mostly making it more realistic
(introducing realistic heterogeneity for firms), though the new model uses a homo-
geneous market interest rate (as micro-level data is not available to do otherwise).
The process used is one of indirect inference, minimizing the distance between the
actual and simulated distributions of the model, this allows for a close match of the
simulated results to the empirical data. A ‘simple’ agent-based model of order flow
is validated in Mike and Farmer [2008] where we have a random order placement
process. The original model is from Daniels et al. [2003] which we introduce above,
though now additional empirical regularities are modelled, specifically the order
signs, the order price and order cancellations all now have empirically motivated
models, allowing for a more realistic model of order placement than the previous
approach. The model is constructed based on a single stock and tested on 24 oth-
ers. For those with small tick sizes and low volatility the constructed model works
particularly well.

In Ghonghadze and Lux [2010] a framework for collective opinion formation is
created and compared to two more standard time series models, when applied to
EU business and consumer survey data. Specifically the model’s performance in
out-of-sample forecasting is compared to ARMA(p, q) and ARFIMA(p, d, q) uni-
variate time series models. In the model we have two opinion states, positive and
negative, with n+ and n− of agents holding each view; let nt = (n+t − n−t )/2 be
the configuration and assuming we have 2N agents the aggregate expectation is
the ratio xt = nt/N . A Master equation can be formulated for this system and
a continuous approximation can be numerically solved allowing us to calibrate the
system from the EU data. It typically does better than the ARMA models and
performs similarly to the ARFIMA models for individual series (though looking at
the performance across all the data, it does better than the ARFIMA models in a
majority of cases).

Housing bubbles had an important role to play in the recent financial crisis,
though this is an area that has historically been of little interest for macroeconomics.
In Geanakoplos et al. [2012] a retrospective model of housing which includes large
amounts of actual data from Washington, DC. As it is a detailed agent-based model
it can include large amounts of heterogeneous, individual level data which many
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models would have to omit or aggregate. This includes information on race, income
(from detailed IRS income data for area), wealth, age and household position. In
addition demographic trends such as population size, death rates and migration
patterns can be included along with economically relevant parameters such as loan-
to-value ratios.

6. Policy and ABMs

Below we look at several applications of agent-based modelling of financial mar-
kets to policy. Agent-based modelling seems to be particularly useful when exper-
imenting with policy rules. Agent-based models may capture details an analytical
model cannot and may be more acceptable to policy makers as they are less ab-
stract (Dawid and Neugart [2011]). As we mentioned above building large scale
forecasting models is a goal of many agent-based modellers, though a difficult task.

A publication by Agentlink, Luck [2005], attractively presents numerous uses of
agent-based modelling for commercial purposes, including their success for practical
use in financial markets. It notes, for example, the ability of agent-based traders
to outperform human traders by 7% and the use of agent-based auctioning systems
for the decentralized allocation of resources in many substanial real world settings.
Even at the time of its publication a large proportion of trades on many financial
markets are carried out by some kind of automated trader (potentially exactly
corresponding to a trading agent in an financial market ABM).

One early and successful commercial application of ABM was developed by
Bios Group for the National Association of Security Dealers Automated Quotation
(NASDAQ) Stock Market 8. In 1997, the NASDAQ Stock Market was about to im-
plement a sequence of apparently small changes: reduction in tick size, from 1/8th
to 1/16th and so on down to pennies. In the agent-based NASDAQ model, market
maker and investor agents (institutional investors, pension funds, day traders, and
casual investors) buy and sell shares by using various strategies. The agents’ access
to price and volume information approximates that in the real-world market, and
their behaviors range from very simple to complicated learning strategies. Neural
networks, reinforcement learning, and other artificial intelligence techniques were
used to generate strategies for agents. The model produced some unexpected re-
sults. Specifically, the simulation suggests a reduction in the market’s tick size can
reduce the market’s ability to perform price discovery, leading to an increase in the
bid-ask spread. A spread increase in response to tick-size reduction is counterin-
tuitive because tick size is a lower bound on the spread. In the remainder of this
section we look at some recent research drawing on ABMs for policy work.

The impact of Tobin style transaction taxes on an artificial financial market is
explored in Mannaro et al. [2008]. The motivation for this tax comes from the
proposal by James Tobin to charge a small tax or 0.1% on all foreign exchange
transactions which should discourage short term speculation while leaving longer
term investors relatively unaffected; this, it is widely believed, would reduce market
volatility9. A model similar to many of those above, that is with one stock, cash
and various classes of traders, is considered under a transaction tax regime. A
number of computational experiments are carried out. It seems that in this model

8www.cbi.cgey.com/journal/issue4/features/future/future.pdf
9This is a controversial view and many have argued the opposing viewpoint. This kind of

transaction tax has, at the time of writing, not been fully implemented in practice.
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transaction taxes increase volatility and that when both a taxed and un-taxed mar-
ket is available the volume traded in the taxed market reduces which may increase
volatility. Another examination of transaction taxes in an agent-based model is
Pellizzari and Westerhoff [2009] in which two micro-structures are considered: a
continuous double auction and a central dealership. In the former case, while vol-
ume decreases with the transaction tax so too does liquidity, eliminating gains in
stability from reduced volume of trading. In the later case as liquidity is provided
by the dealership then the volatility of the market can be significantly reduced via
the imposition of a transaction tax.

Hommes and Wagener [2009b] study the effects of financial innovation upon price
volatility and welfare. They introduce hedging instruments in an asset pricing
model with heterogeneous beliefs and show that more hedging instruments may
destabilize markets and decrease welfare when agents are boundedly rational and
choose investment strategies based on reinforcement learning.

Gsell [2008] incorporates algorithmic trading into the ABM of Chiarella et al.
[2009]. Two strategies of order splitting have been implemented: (1) a simple static
execution strategy, where the overall volume is executed linearly over time, (2) a
dynamic execution strategy whose aggressiveness varies over time depending on the
current market situation and the algorithms previously achieved performance. The
results of the simulation show that Algorithmic Trading has an impact on market
outcome in terms of price impact and market volatility.

In more recent work Anand et al. [2010], related to the understanding of current
economic issues, a rule based approach is adopted with a focus on modelling credit
derivative markets. When considering the purchase of an asset backed security
(ABS) agents can choose whether to rely on a signal from a rating agency or they
can carry out independent risk analysis. If many other agents also believe the
rating agency then it is rational to believe that the ABS is liquid, irrespective of
its underlying quality. In this model this simple but rational approach can result
in a highly fragile state of the market as rules spread through the economy.

Unlike many agent-based models which take a fairly minimal approach the Eu-
race model is a large macroeconomic model which includes a number of interacting
markets and agents whose balance sheets are rigorously modelled. Cincotti et al.
[2010] gives an account of how the Eurace model was used to look at the provision
of credit. The model includes detailed financial markets, credit markets and a cen-
tral bank which can pursue quantitative easing. Two policy options, quantitative
easing and fiscal tightening, are explored across multiple runs of the model and the
results suggest that while quantitative easing increases inflation in both short and
long run it leads to a better macroeconomic results (higher output).

In Thurner et al. [2010] leverage is connected to systemic financial risk. Here the
kind of heavy tailed fluctuations which have arisen in some of the above models,
through strategies such as trend following, are shown to arise from the effects of
leverage. The focus is on collateralized loans with margin calls; a type of loan
where a loan to value (of collateral) ratio must be maintained alongside interest
payments by repaying rather than rolling over debt. This has a feedback effect
(selling collateral reduces value of collateral which demands further sale of collateral
and so on) which increases as the level of leverage increases. In this context the
policy of leverage restriction may have unintended consequences, causing a local
failure to become systemic.
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7. Conclusions

As this survey has shown, much ABM research has concentrated on proof of con-
cepts rather then the development of robust tools to control and forecast complex
real-world financial markets. Nevertheless, stylized models are extremely useful for
understanding how complex macro-scale phenomena emerge from micro-rules. This
kind of exercise has allowed for the testing of existing economic theories and their
refinement toward greater realism.

The ABM surveyed in this review show a clear evolution towards better micro
funded behavioural approaches to modelling the agents’ decision process. Still
in many situations, agents, while behaving purposefully, use rules of thumbs and
inductive reasoning to make decisions. While the fully rational utility maximiser
of classical economics does not represent real people, more sophisticated models of
behavior may be important for a fuller understanding of financial market dynamics.
In Brenner [2006] various learning processes are surveyed that could guide modeling
of economic agents behaviour as closely as possible to that of humans. Choosing
between the various approaches can be difficult and there is not yet a consensus
about which approaches are best in which situations. Evolutionary approaches are
good for population level results though not individual dynamics. Fictitious play
is both simple and supported by evidence. Where more information about beliefs
is available stochastic belief learning may be a good approach. In short there are
a rich and increasing set of behavioral models which could be applied to financial
market ABMs.

When it come to modelling interactions, much work has been done both in
Physics (Newman [2010]) and in Economics (Goyal [2009]; Jackson [2010]) on the
subject of networks. Financial systems are networks, which have become increas-
ingly more complex and interlinked. Nonetheless the literature on financial net-
works is still at an early stage (Allen and Babus [2009]), with most of the research
concentrating on financial stability and contagion. The focus of ABM is typically
on understanding systems dynamics on given network structure. From a regula-
tory perspective, questions such as optimal networks design or optimal design of
incentives that lead to the formation of networks with desirable characteristic offer
interesting opportunity for ABM research.

The calibration and validation of ABM is challenging. One key advantage for
ABM with its explicit modelling of heterogeneous individuals is the possibility of
calibration using fine-grained microeconomic data (see for example Geanakoplos
et al. [2012]) and evidence from laboratory experiments with human subjects (Duffy
[2006], Hommes and Lux [2009], Heckbert [2009]). Using experimental techniques,
well-defined decision scenarios can be reproduced, and strategies that humans ac-
tually use in dealing with complex situations may be revealed. This approach offers
a way to capture the heuristics of decision making in a model which is grounded in
empirical data.

In section 6 we give multiple examples of the use of ABM for financial market
related policy. However, the application of ABM to financial market policy, and in-
deed, macroeconomic policy matters in general is clearly still in its infancy. Drawing
on increasingly sophisticated modelling techniques, detailed structural modelling
and better calibration methods, such as the kind of individual based calibration
made possible by agent-level modelling, has great promise for the future.
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Hans Föllmer, Ulrich Horst, and Alan Kirman. Equilibria in financial markets with
heterogeneous agents: a probabilistic perspective, volume 41. 2005.



AGENT-BASED MODELLING FOR FINANCIAL MARKETS 25

X. Gabaix, P. Gopikrishnan, V. Plerou, and H. E. Stanley. A theory of power-low
distributions in financial market fluctuations. Nature, 43:267–270, 2003.

John Geanakoplos, Robert Axtell, Doyne J. Farmer, Peter Howitt, Benjamin Con-
lee, Jonathan Goldstein, Matthew Hendrey, Nathan M. Palmer, and Chun-Yi
Yang. Getting at systemic risk via an agent-based model of the housing markets.
American Economic Review, 102:53–58, 2012.

S. Ghashghaie, W. Breymann, J. Peinke, P. Talkner, and Y. Dodge. Turbulent
cascades in foreign exchange markets. Nature, 381:767–770, 1996.

Jaba Ghonghadze and Thomas Lux. Modeling the dynamics of eu economic senti-
ment indicators: An interaction-based approach. 2010.

L. Gillemot, J.D. Farmer, and F. Lillo. Theres more to volatility than volume.
Quantitative Finance, 6:371–384, 2006.

M. Gilli and P. Winker. A global optimization heuristic for estimating agent based
models. Computational Statistics & Data Analysis, 42(3):299 – 312, 2003. ISSN
0167-9473. ¡ce:title¿Computational Ecomometrics¡/ce:title¿.

Dhananjay K. Gode and Shyam Sunder. Allocative efficiency of markets with zero-
intelligence traders: Market as a partial substitute for individual rationality.
Journal of Political Economy, 101(1):pp. 119–137, 1993. ISSN 00223808.

Dhananjay K. Gode and Shyam Sunder. What makes markets allocationally effi-
cient? Quarterly Journal of Economics, 12:603–630, 1997.

P. Gopikrishnan, V. Plerou, M. Meyer, L.A.M. Amaral, and H.E. Stanley. Scal-
ing of the distribution of fluctuations of financial market indices. 1999. URL
http://xxx.lanl.gov//cond-mat/9905305.

Sanjeev Goyal. Connections: an introduction to the economics of networks. Prince-
ton University Press, 2009.

Stanford E. Grossman and Joesph E. Stiglitz. On the impossibility of information-
ally efficient markets. American Economic Review, 70(3):393–408, 1980.

Markus Gsell. Assessing the impact of algorithmic trading on markets: A simulation
approach. 2008. URL http://ssrn.com/abstract=1134834.

D.M. Guillaume, M.M. Dacorogna, R.R. Davé, U.A. Müller, and R.B Olsen. From
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