17 research outputs found

    Studi Komparasi Eksperimental Emisi Gas Buang Lscs Piston Chamber dan Flat Piston Chamber Four Stroke Small Marine Diesel Engine pada Beban Konstan 1000 Watt

    Get PDF
    Performa pembakaran dan karakteristik emisi gas buang dari motor diesel dipengaruhi oleh pembentukan campuran bahan bakar/udara. Oleh karena itu, campuran bahan bakar/udara yang homogen dalam ruang bakar dan peningkatan daerah campuran bahan bakar/udara secara signifikan dapat meningkatkan pemanfaatan udara dan membatasi pembentukan jelaga dalam motor diesel. Saat ini, rasio udara berlebih dari motor diesel pada umumnya adalah sekitar 1,8-2,2 dan rasio udara berlebih dari motor diesel yang digunakan untuk alat alat berat seperti marine diesel engine adalah sekitar 1,6-1,8. Dengan demikian, perlu untuk mengusulkan sistem pembakaran baru untuk mengurangi beban pada sistem turbocharger dan sistem intake/exhaust dan menunjukkan kinerja yang sangat baik di bawah rasio udara berlebih yang rendah. Dalam penelitian ini, penulis mengusulkan sistem motor diesel pembakaran baru, yang memiliki nilai ekonomi yang sangat tinggi dan kinerja emisi gas buang pada rasio udara lebih dari 1/3. Beban dari sistem turbocharger dan sistem intake/exhaust berkurang. Densitas daya dan Efisiensi termal ditingkatkan, dan konsumsi bahan bakar berkurang secara cukup signifikan. Selain itu, sistem pembakaran baru ini menunjukkan kinerja emisi yang sangat baik di bawah kondisi udara tipis/berkurang. Sistem pembakaran baru ini kita kenal dengan nama Lateral swirl combustion system (LSCS). Dan pada penelitian ini kita membandingkan emisi gas buang yang dihasilkan dari dua buah bentuk Piston Chamber yaitu LSCS Piston Chamber dan Flat Piston Chamber. Untuk mengetahui kelayakan penggunaan LSCS Piston Chamber, maka dilakukanlah pengujian kandungan gas buang pada sebuah motor diesel. Gas buang yang dihasilkan motor diesel diukur dengan menggunakan alat GreenLine 4000 Gas Analyser. Gas yang diukur terdiri atas CO2, SO2, NOx, CO, dan HC. Hasil pengukuran tersebut nantinya akan dibandingkan dengan hasil pengukuran yang didapatkan pada penggunaan Flat Piston Chamber. Dari analisa dapat ditarik kesimpulan bahwa pada pergantian Flat Piston ke LSCS Piston pada beban 1000 Wattt pada variasi putaran engine mengalami penurunan konsentrasi emisi gas buang rata โ€“ rata CO2, SO2, CO, NOx, HC dan (NOx+HC) sebesar 1,46 %, 1,56 %, 0,13 %, 0,31 %, 0,51 % dan 0,38 % . Hasil pengukuran emisi gas buang CO2, SO2, NOx, CO, dan HC pada beban konstan 1000 Watt dan variasi putaran engine dapat diperoleh kesimpulan bahwa LSCS Piston Chamber yang mempunyai konsentrasi emisi gas buang paling rendah dibandingkan dengan Flat Piston Chamber. Kata kunci - Motor diesel, emisi gas buang, LSCS Piston Chamber, Flat Piston Chamber

    The Influence of Piston Bowl Geometries on In-Cylinder Air Flow in a Direct-Injection (DI) Diesel Engine for Biodiesel Operation / S. Jaichandar, E. James Gunasekaran and A. Gunabalan

    Get PDF
    Thermal efficiency improvement, fuel consumption and pollutant emissions reduction from biodiesel fueled engines are critical requirements in engine research. In order to achieve these, a rapid and better air-fuel mixing condition is desired. The mixing quality of biodiesel with air can be improved by selecting the best engine design particularly combustion chamber design and injection system parameters. The present work investigates the effect of varying the piston bowl geometry on the air flow characteristics such as swirl velocity, Swirl Ratio (SR), and Turbulent Kinetic Energy (TKE) inside the engine cylinder. The pistonโ€™s bowl geometry was modified into several configurations that include Shallow depth combustion chamber (SCC), Toroidal combustion chamber (TCC), Shallow depth reentrant combustion chamber (SRCC) and Toroidal re-entrant combustion chamber (TRCC) from the standard Hemispherical combustion chamber (HCC), without altering the compression ratio of the engine. A commercially available CFD code STAR-CD was used to analyze the in-cylinder flow at different conditions. Flow conditions inside the cylinder were predicted by solving momentum, continuity and energy equations. The results confirmed that the piston bowl geometry had little influence on the in-cylinder flow during the intake stroke and the first part of compression stroke i.e. up to 300oafter suction TDC. However, the piston bowl geometry plays a significant role in the latter stage of the compression stroke i.e. beyond 300oafter suction TDC to compression TDC. The intensity of maximum swirl velocity at the end of compression stroke for TRCC was observed higher as 18.95 m/s and a strong recirculation was observed due to the geometry. Compared to baseline HCC the TRCC had higher, maximum swirl ratio and turbulent kinetic energy by about 28% and 2.14 times respectively. From the analysis of results, it was found that TRCC configuration gives better in-cylinder flows

    STUDI KOMPARASI EKSPERIMENTAL EMISI GAS BUANG LSCS PISTON CHAMBER DAN FLAT PISTON CHAMBER FOUR STROKE SMALL MARINE DIESEL ENGINE PADA BEBAN KONSTAN 1000 WATT

    Get PDF
    Performa pembakaran dan karakteristik emisi gas buang dari motor diesel dipengaruhi oleh pembentukan campuran bahan bakar/udara. Oleh karena itu, campuran bahan bakar/udara yang homogen dalam ruang bakar dan peningkatan daerah campuran bahan bakar/udara secara signifikan dapat meningkatkan pemanfaatan udara dan membatasi pembentukan jelaga dalam motor diesel. Saat ini, rasio udara berlebih dari motor diesel pada umumnya adalah sekitar 1,8-2,2 dan rasio udara berlebih dari motor diesel yang digunakan untuk alat alat berat seperti marine diesel engine adalah sekitar 1,6-1,8. Dengan demikian, perlu untuk mengusulkan sistem pembakaran baru untuk mengurangi beban pada sistem turbocharger dan sistem intake/exhaust dan menunjukkan kinerja yang sangat baik di bawah rasio udara berlebih yang rendah. Dalam penelitian ini, penulis mengusulkan sistem motor diesel pembakaran baru, yang memiliki nilai ekonomi yang sangat tinggi dan kinerja emisi gas buang pada rasio udara lebih dari 1/3. Beban dari sistem turbocharger dan sistem intake/exhaust berkurang. Densitas daya dan Efisiensi termal ditingkatkan, dan konsumsi bahan bakar berkurang secara cukup signifikan. Selain itu, sistem pembakaran baru ini menunjukkan kinerja emisi yang sangat baik di bawah kondisi udara tipis/berkurang. Sistem pembakaran baru ini kita kenal dengan nama Lateral swirl combustion system (LSCS). Dan pada penelitian ini kita membandingkan emisi gas buang yang dihasilkan dari dua buah bentuk Piston Chamber yaitu LSCS Piston Chamber dan Flat Piston Chamber. Untuk mengetahui kelayakan penggunaan LSCS Piston Chamber, maka dilakukanlah pengujian kandungan gas buang pada sebuah motor diesel. Gas buang yang dihasilkan motor diesel diukur dengan menggunakan alat GreenLine 4000 Gas Analyser. Gas yang diukur terdiri atas CO2, SO2, NOx, CO, dan HC. Hasil pengukuran tersebut nantinya akan dibandingkan dengan hasil pengukuran yang didapatkan pada penggunaan Flat Piston Chamber. Dari analisa dapat ditarik kesimpulan bahwa pada pergantian Flat Piston ke LSCS Piston pada beban 1000 Wattt pada variasi putaran engine mengalami penurunan konsentrasi emisi gas buang rata โ€“ rata CO2, SO2, CO, NOx, HC dan (NOx+HC) sebesar 1,46 %, 1,56 %, 0,13 %, 0,31 %, 0,51 % dan 0,38 % . Hasil pengukuran emisi gas buang CO2, SO2, NOx, CO, dan HC pada beban konstan 1000 Watt dan variasi putaran engine dapat diperoleh kesimpulan bahwa LSCS Piston Chamber yang mempunyai konsentrasi emisi gas buang paling rendah dibandingkan dengan Flat Piston Chamber.ย Kata kunci - Motor diesel, emisi gas buang, LSCS Piston Chamber, Flat Piston Chamber

    Numerical Methodology for Optimization of Compression-Ignited Engines Considering Combustion Noise Control

    Full text link
    [EN] It is challenging to develop highly efficient and clean engines while meeting user expectations in terms of performance, comfort and drivability. One of the critical aspects in this regard is combustion noise control. Combustion noise accounts for about 40 percent of the overall engine noise in typical turbocharged diesel engines. The experimental investigation of noise generation is difficult due to its inherent complexity and measurement limitations. Therefore, it is important to develop efficient numerical strategies in order to gain a better understanding of the combustion noise mechanisms. In this work, a novel methodology was developed, combining computational fluid dynamics (CFD) modeling and genetic algorithm (GA) technique to optimize the combustion system hardware design of a high-speed direct injection (HSDI) diesel engine, with respect to various emissions and performance targets including combustion noise. The CFD model was specifically set up to reproduce the unsteady pressure field inside the combustion chamber, thereby allowing an accurate prediction of the acoustic response of the combustion phenomena. The model was validated by simulating several steady operating conditions and comparing the numerical results against experimental data, in both temporal and frequency domains. Thereafter, a GA optimization was performed with the goal of minimizing indicated specific fuel consumption (ISFC) and combustion noise, while restricting pollutant (soot and NOx) emissions to their respective baseline values. Eight design variables were selected pertaining to piston bowl geometry, nozzle inclusion angle, number of injector nozzle holes and in-cylinder swirl. An objective merit function based on the emissions, ISFC and combustion noise, was constructed to quantify the strength of the engine designs, and was determined using the CFD model as the function evaluator. The in-cylinder noise level was characterized by the total resonance energy of local pressure oscillations. The optimum engine configuration thus obtained, showed a significant improvement in terms of efficiency and combustion noise compared to the baseline system, along with both soot and NOx emissions within their respective constraints. This optimum configuration included a deeper and tighter bowl geometry with higher swirl and larger number of nozzle holes. Subsequently, a more detailed acoustics analysis based on proper orthogonal decomposition (POD) technique was carried out to further explore the combustion noise benefits achieved by the GA optimum. This computational study is a first of its kind (to the best of the authorsยฟ knowledge), which demonstrates a comprehensive framework to incorporate combustion noise into a numerical optimization strategy for engine design.The equipment used in this work was partially supported by FEDER and the Spanish Government through grant no. DPI2015-70464-R and by Fondo Europeo de Desarrollo Regional (FEDER) project funds "Dotacion de infraestructuras cientifico tecnicas para el Centro Integral de Mejora Energetica y Medioambiental de Sistemas de Transporte (CiMeT), (FEDER-ICTS-2012-06)," framed in the operational program of unique scientific and technical infrastructure of the Spanish Ministerio de Economia y Competitividad. J. Gomez-Soriano was partially supported through contract FPI-S2-2016-1353 of the "Programa de Apoyo para la Investigacion y Desarrollo (PAID-01-16)" of Universitat Politecnica de Valencia. The submitted manuscript was created partly by UChicago Argonne, LLC, Operator of Argonne National Laboratory. Argonne, a US Department of Energy (DOE) Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. This research was partly funded by the US DOE Office of Vehicle Technologies, Office of Energy Efficiency and Renewable Energy under Contract No. DE-AC02-06CH11357. The authors wish to thank Gurpreet Singh and Leo Breton, program managers at DOE, for their support.Broatch, A.; Novella Rosa, R.; Gรณmez-Soriano, J.; Pinaki, P.; Som, S. (2018). Numerical Methodology for Optimization of Compression-Ignited Engines Considering Combustion Noise Control. SAE International Journal of Engines. 11(6):625-642. https://doi.org/10.4271/2018-01-0193S62564211

    Effect of nozzle and combustion chamber geometry on the performance of a diesel engine operated on dual fuel mode using renewable fuels

    Get PDF
    none6siRenewable and alternative fuels have numerous advantages compared to fossil fuels as they are biodegradable, providing energy security and foreign exchange saving and addressing environmental concerns, and socio-economic issues as well. Therefore renewable fuels can be predominantly used as fuel for transportation and power generation applications. In view of this background, effect of nozzle and combustion chamber geometry on the performance, combustion and emission characteristics have been investigated in a single cylinder, four stroke water cooled direct injection (DI) compression ignition (CI) engine operated on dual fuel mode using Honge methyl ester (HOME) and producer gas induction. In the present experimental investigation, an effort has been made to enhance the performance of a dual fuel engine utilizing different nozzle orifice and combustion chamber configurations. In the first phase of the work, injector nozzle (3, 4 and 5 hole injector nozzle, each having 0.2, 0.25 and 0.3 mm hole diameter and injection pressure (varied from 210 to 240 bar in steps of 10 bar) was optimized. Subsequently in the next phase of the work, combustion chamber for optimum performance was investigated. In order to match proper combustion chamber for optimum nozzle geometry, two types of combustion chambers such as hemispherical and re-entrant configurations were used. Re-entrant type combustion chamber and 230 bar injection pressure, 4 hole and 0.25 mm nozzle orifice have shown maximum performance. Results of investigation on HOME-producer gas operation showed 4-5% increased brake thermal efficiency with reduced emission levels. However, more research and development of technology should be devoted to this field to further enhance the performance and feasibility of these fuels for dual fuel operation and future exploitations.openYaliwal, V.S.; Banapurmath, N.R.; Gireesh, N.M.; Hosmath, R.S.; Donateo, Teresa; Tewari, P.G.Yaliwal, V. S.; Banapurmath, N. R.; Gireesh, N. M.; Hosmath, R. S.; Donateo, Teresa; Tewari, P. G

    Keberkesanan manual pembelajaran kendiri (MPK) Kemahiran berfikir aras tinggi (KBAT) dalam proses pengajaran dan pembelajaran dalam kalangan pelajar politeknik

    Get PDF
    Kemahiran Berfikir Aras Tinggi (KBAT) adalah aspek penting dalam pengajaran dan pembelajaran. Pemikiran seseorang boleh memberi kesan kepada keupayaan pembelajaran, kepantasan dan keberkesanan pembelajaran. Tujuan kajian ini adalah untuk menilai keberkesanan MPK KBA T dalam proses pengajaran dan Pembelajaran dalam kalangan pelajar politeknik. Kajian ini menggunakan pendekatan kuantitatif dan reka bentuk Kuasi Experimental yang terdiri daripada kumpulan rawatan (KR) dan kumpulan kawalan (KK) yang melibatkan 78 orang pelajar. Rubrik penilaian tugasan kerja kursus dimodifikasikan untuk menilai aras pencapaian tugasan kerja kursus pelajar. Hasil dapatan kajian menunjukkan bahawa pencapaian tugasan kerja kursus pra bagi KR dan KK berada di tahap yang baik dan memuaskan. Selain itu, terdapat perbezaan yang signifikan min markah tugasan kerja kursus pos individu antara KR dan KK secara keseluruhan. Hasil dapatan kajian juga menunjukkan bahawa terdapat perbezaan yang signifikan min markah antara tugasan kerja kursus pra dan pos individu secara keseluruhan bagi KR. Secara kesimpulan, terdapat keberkesanan yang signifikan KBA T menerusi penggunaan manual pembelajaran kendiri KBAT terhadap pencapaian tugasan kerja kursus pelajar politeknik

    Methodology to develop heuristic for re-entrant flow shop with two potential dominant machines using bottleneck approach

    Get PDF
    This paper presents a bottleneck-based methodology to solve scheduling problem of M1,M2,M3,M4,M3,M4 re-entrant flow shop where M1 and M4 have high tendency of being the dominant machines. Two generalised makespan algorithms using bottleneck approach were developed for the identified bottleneck. Each algorithm has specific correction factor which was used to ensure the accuracy of the makespan computation. Using these correction factors, a constructive heuristic was developed to solve for near-optimal scheduling sequence. For small size problems, the heuristic results were compared with the optimum makespan generated from complete enumeration. For medium and large size problems, the heuristic performance was measured by comparing its makespan with the solutions generated by the NEH and lowerbound. At weak and strong dominance level, the heuristic shows good performance against the lowerbound and better results compared to the NEH for large and medium size problems

    Study of fuel additives for residual fuel oil applicable to ships

    Get PDF
    ์ตœ๊ทผ ์ฃผ์š” ํ•ด์šดํšŒ์‚ฌ ๋“ค์€ ์—ฐ๋ฃŒ๋น„ ์ ˆ๊ฐ์„ ๋ชฉ์ ์œผ๋กœ, ์„ ๋ฐ•์šฉ ์—ฐ๋ฃŒ ์ฒจ๊ฐ€์ œ์˜ ๋ณธ์„  ์ ์šฉ์— ๋งŽ์€ ๊ด€์‹ฌ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ์„ ๋ฐ•์€ ๊ฒฝ์ œ์ ์ด๋ฉด์„œ๋„ ์›ํ•˜๋Š” ์„ฑ๋Šฅ์„ ๋ฐœํœ˜ํ•  ์ˆ˜ ์žˆ๋Š” ์—ฐ๋ฃŒ์œ ๊ฐ€ ์—๋„ˆ์ง€์›์œผ๋กœ ๊ณต๊ธ‰๋˜์–ด์•ผ ์„ ๋ฐ•์˜ ์šดํ•ญ ์•ˆ์ •์„ฑ์ด๋‚˜ ๊ฒฝ์ œ์„ฑ์„ ํ™•๋ณดํ•  ์ˆ˜ ์žˆ๋‹ค. ์‹ค์ œ๋กœ ์—ฐ๋ฃŒ์ฒจ๊ฐ€์ œ๋ฅผ ์ ์šฉํ•˜๋Š” ์‚ฌ์šฉ์ž๋“ค์ด ์ฒจ๊ฐ€์ œ ์ ์šฉ์„ ๊ฒ€ํ† ํ•˜๋Š” ๋ฐฐ๊ฒฝ์œผ๋กœ๋Š” ์œ ์ง€๋ณด์ˆ˜ ๋น„์šฉ์˜ ๊ฐ์†Œ, ์—ฐ๋ฃŒ ์ ˆ๊ฐ ๋ฐ ์œ ํ•ด ๋ฐฐ์ถœ๊ฐ€์Šค ๊ฐ์†Œ๋ฅผ ๊ฐ€์žฅ ๋Œ€ํ‘œ์ ์ธ ์ด์œ ๋กœ ๋“ค๊ณ  ์žˆ๋‹ค. ์„ ๋ฐ•์— ์„ค์น˜๋œ ๋Œ€๋ถ€๋ถ„์˜ ๋””์ ค์—”์ง„์ด ์—ฐ๋ฃŒ์œ  ํ’ˆ์งˆ์— ๋Œ€ํ•œ ๋ฏผ๊ฐ์„ฑ์ด ๋‹ค์†Œ ๋–จ์–ด์ง€๊ธด ํ•˜๋‚˜, ์ด ๋˜ํ•œ ์ดˆ๊ธฐ ๊ฐœ๋ฐœ์ด๋‚˜ ์„ค๊ณ„ ๋‹จ๊ณ„์—์„œ๋ถ€ํ„ฐ ๋งค๋‰ด์–ผ์— ๋ช…์‹œ๋œ ์ตœ์ ์˜ ์—ฐ๋ฃŒ์œ ๊ฐ€ ๊ณต๊ธ‰๋˜๋Š” ์กฐ๊ฑด์—์„œ ์ถฉ๋ถ„ํžˆ ์•ˆ์ •์ ์œผ๋กœ ๊ทธ๋ฆฌ๊ณ  ํšจ์œจ์ ์œผ๋กœ ์šด์ „๋  ์ˆ˜ ์žˆ๋„๋ก ๊ณ ๋ ค๋˜์—ˆ์Œ์€ ๋ถ€์ •ํ•  ์ˆ˜ ์—†๋‹ค. ๊ธฐ๊ด€์˜ ์„ค๊ณ„ ๊ธฐ์ค€๊ณผ ์‹œ์žฅ์—์„œ ๊ตฌํ•  ์ˆ˜ ์žˆ๋Š” ์—ฐ๋ฃŒ์œ ์˜ ํ’ˆ์งˆ์ด ์™„๋ฒฝํžˆ ์ผ์น˜ํ•  ์ˆ˜๋Š” ์—†๋‹ค. ์‹ค์ œ๋กœ ์‹œ์žฅ์—๋Š” ๋‹ค์–‘ํ•œ ์ข…๋ฅ˜์˜ ์—ฐ๋ฃŒ๊ฐ€ ์กด์žฌํ•˜๋ฉฐ ์ด๋“ค์˜ ๊ธฐ๋ณธ ๋ฌผ์„ฑ์ด ์ฒœ์ฐจ๋งŒ๋ณ„ ์ผ ๋ฟ ์•„๋‹ˆ๋ผ, ํ™”ํ•™์  ์„ฑ์ƒ๋„ ๋‹ค์–‘ํ•˜๋‹ค. ISO์—์„œ ์„ ๋ฐ• ๊ธฐ๊ด€์— ์ ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์„ ๋ฐ•์šฉ ์—ฐ๋ฃŒ์œ ์˜ ํ’ˆ์งˆ ๊ธฐ์ค€์„ ์ •ํ•˜์—ฌ ํ†ต์šฉํ•˜๊ณ  ์žˆ๊ธด ํ•˜๋‚˜, ์‹ค์ œ ์„ ๋ฐ•์—์„œ ์ˆ˜๊ธ‰ ๋ฐ›๊ฑฐ๋‚˜ ๋ณธ์„ ์—์„œ ์ž์ฒด ์ œ์กฐํ•˜์—ฌ ์‚ฌ์šฉํ•˜๋Š” ์—ฐ๋ฃŒ์œ ์˜ ์„ฑ์ƒ์€ ISO์˜ ํ‘œ์ค€์น˜ ๋ฒ”์œ„๋ฅผ ๋ฒ—์–ด๋‚˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ์ข…์ข… ๋ฐœ์ƒํ•˜๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ณ ๊ธ‰์œ ๋กœ ๊ฐ„์ฃผํ•  ์ˆ˜ ์žˆ๋Š” ์ฆ๋ฅ˜์œ ๋ฅผ ๋ฐฐ์ œํ•˜๊ณ , ์‹ค์ œ ์›์–‘ํ•ญํ•ด ์„ ๋ฐ•์ด ์ฃผ๋กœ ์‚ฌ์šฉํ•˜๊ณ  ์žˆ๋Š” ์ž”์‚ฌ์œ ์— ์—ฐ๋ฃŒ ์ฒจ๊ฐ€์ œ๊ฐ€ ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•ด ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ์ž”์‚ฌ์œ ์šฉ ์—ฐ๋ฃŒ์ฒจ๊ฐ€์ œ๋ฅผ ์‹ค์ œ ์—”์ง„์—์„œ ์ฒจ๊ฐ€ํ•˜์—ฌ ์šด์ „ํ•จ์œผ๋กœ์จ ๊ฐ๊ด€์ ์ธ ์„ฑ๋Šฅ ๊ฒ€์ฆ์„ ์‹œ๋„ํ•˜์˜€์œผ๋ฉฐ, ๋ถ„์‚ฐ ์•ˆ์ •์ œ์™€ ์—ฐ์†Œ ์ด‰๋งค์˜ ๋ฐ˜์‘ ๋ฉ”์ปค๋‹ˆ์ฆ˜์— ๋Œ€ํ•œ ๊ธฐ๊ณ„๊ณตํ•™์ ์ธ ์ธก๋ฉด์—์„œ์˜ ๋ฐ˜์‘ ๋ชจ๋ธ ์ œ์•ˆ์„ ์‹œ๋„ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๊ด‘ํ•™์  ๋ถ„์„์„ ํ†ตํ•œ ๋ฐ˜์‘ ๋ฉ”์ปค๋‹ˆ์ฆ˜ ๊ฒ€์ฆ์— ์—ฐ๊ตฌ์˜ ์ด›์ ์„ ๋งž์ท„๋‹ค. ์ž”์‚ฌ์œ ๋Š” ์ƒ์•• ์ฆ๋ฅ˜, ๊ฐ์•• ์ฆ๋ฅ˜, ์ด‰๋งค ๋ถ„ํ•ด, ์—ด ๋ถ„ํ•ด ๋“ฑ์˜ ์ •์ œ๊ณผ์ •์„ ํ†ตํ•ด ๊ณ ํ’ˆ์งˆ์˜ ์ฆ๋ฅ˜ ์—ฐ๋ฃŒ์œ ๋ฅผ ์ถ”์ถœํ•ด ๋‚ด๊ณ  ๋‚จ์€ ์ž”์กด ์—ฐ๋ฃŒ์œ ๋ฅผ ์˜๋ฏธํ•œ๋‹ค. ์ž”์‚ฌ์œ ์˜ ํ’ˆ์งˆ์€ ์•„์ด๋Ÿฌ๋‹ˆํ•˜๊ฒŒ๋„ ์ •์ œ ๊ธฐ์ˆ ์ด ๊ณ ๋„ํ™” ๋˜์–ด๊ฐ์— ๋”ฐ๋ผ ์•…ํ™”๋˜์–ด ๊ฐ€๊ณ  ์žˆ๋‹ค. ์ด์œ ๋Š” ์ƒํ’ˆ์  ๊ฐ€์น˜๊ฐ€ ๋†’์€ ์—ฐ๋ฃŒ์œ ๋ฅผ ์ •์ œ ๊ณผ์ •์—์„œ ์ตœ๋Œ€ํ•œ ์ถ”์ถœํ•˜๊ธฐ ์œ„ํ•ด ์—ด๋ถ„ํ•ด, ์ด‰๋งค ๋ถ„ํ•ด ๊ณต์ •์ด ๊ณ ๋„ํ™” ๋˜๋ฉด์„œ ์›์œ ๊ฐ€ ๋ฐ›๊ฒŒ ๋˜๋Š” ๋ฌผ๋ฆฌํ™”ํ•™์  ์ŠคํŠธ๋ ˆ์Šค๊ฐ€ ํฌ๊ฒŒ ์ฆ๋Œ€๋˜์—ˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋˜ํ•œ, ์ด‰๋งค ๋ถ„ํ•ด์˜ ๋ฐ˜์‘ ํšจ์œจ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉํ•œ ์ตœ๋Œ€ ๋ฐ˜์‘๋ฉด์ ์˜ ์ด‰๋งค๋Š” ์ž”์‚ฌ์œ ์— ๋ฏธ์†Œ ์ž…์ž๋กœ ๋‚จ์•„ ์—”์ง„์˜ ์—ฐ๋ฃŒ ๋ฐ ์—ฐ์†Œ์‹œ์Šคํ…œ์— ์‹ฌ๊ฐํ•œ ์†์ƒ์„ ์•ผ๊ธฐํ•  ์ˆ˜ ์žˆ๋‹ค. ์ž”์‚ฌ์œ ๋Š” ๋‚˜ํ”„ํ…๊ณ„ ํƒ„ํ™”์ˆ˜์†Œ (CnH2n โ€“ ํ™˜ํ˜•๊ตฌ์กฐ)๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ์ด๋Š”, ํŒŒ๋ผํ•€๊ณ„ ๋ณด๋‹ค๋„ ๋” ์•ˆ์ •ํ•œ ๊ตฌ์กฐ์ด๋‹ค. ์ฃผ์š” ๊ตฌ์„ฑ ๋ฌผ์งˆ์€ ์•„์ŠคํŒ”ํ…์ด๋ฉฐ, ์•„์ŠคํŒ”ํ…์€ ์—ฐ์†Œ์‹œ ๋ฐ˜์‘์†๋„๊ฐ€ ๋Š๋ฆฌ๊ณ  ์—ฐ๋ฃŒ ๋ถ„์‚ฌ ์‹œ ์•ก์ ์˜ ํฌ๊ธฐ๊ฐ€ ๋ฏธ์†Œํ™” ๋˜๊ธฐ ์–ด๋ ค์šด ํŠน์„ฑ์ด ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ, ์—ฐ์†Œ ํ›„ ์นด๋ณธ ๋ˆ„์ ์ธต์ด ์ƒ์„ฑ๋˜๊ฑฐ๋‚˜ ์ž…์ž์ƒ ๋ฌผ์งˆ์ด ์ƒ์„ฑ๋˜๊ธฐ ์‰ฌ์šด ํŠน์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ์—ฐ๋ฃŒ์ฒจ๊ฐ€์ œ ๊ธฐ์ˆ ์€ ์ธ๋ฅ˜๊ฐ€ ๊ธฐ๊ด€์„ ๊ฐœ๋ฐœํ•œ ์ด๋ž˜๋กœ ํ•จ๊ป˜ ์„ฑ์žฅํ•ด ์˜จ ๊ธฐ์ˆ ์ด๋‹ค. ๊ณผ๊ฑฐ๋กœ๋ถ€ํ„ฐ, ์˜ฅํƒ„๊ฐ€ ํ–ฅ์ƒ์ œ, ์œคํ™œ์„ฑ ํ–ฅ์ƒ์ œ ๋“ฑ ๋‹ค์–‘ํ•œ ํ˜•ํƒœ๋กœ ํ™œ์šฉ๋˜์–ด ์˜ค๊ณ  ์žˆ๋‹ค. ๋‹ค๋งŒ, ๋Œ€๋ถ€๋ถ„ ์ž๋™์ฐจ ์‚ฐ์—…์„ ์œ„์ฃผ๋กœ ํ•จ๊ป˜ ๋ฐœ์ „ํ•ด ์™”์œผ๋ฉฐ, ์ž”์‚ฌ์œ ์— ์ ์šฉ ๊ฐ€๋Šฅํ•œ ์ฒจ๊ฐ€์ œ์˜ ๊ฐœ๋ฐœ์ด ์ด๋ค„์ง„ ๊ฑด ์—ญ์‚ฌ๊ฐ€ ์˜ค๋ž˜๋˜์ง€ ์•Š์•˜์Œ์— ์ฃผ๋ชฉํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ํ˜„์žฌ ์„ ๋ฐ•์— ์ ์šฉ ๊ฐ€๋Šฅํ•œ ๋Œ€ํ‘œ์ ์ธ ์ข…๋ฅ˜์˜ ์—ฐ๋ฃŒ ์ฒจ๊ฐ€์ œ๋กœ๋Š” ๋ถ„์‚ฐ ์•ˆ์ •์ œ, ํƒ„์†Œ ์ ์ธต ๋ฐฉ์ง€์ œ, ํ•ด์œ ํ™”์ œ, ์œ ๋™์„ฑ ํ–ฅ์ƒ์ œ, ์œคํ™œ์„ฑ ํ–ฅ์ƒ์ œ, ์—ฐ์†Œ ์ด‰๋งค, ๋ถ€์‹ ๋ฐฉ์ง€์ œ ๋ฐ ๋‹ค๊ธฐ๋Šฅ ์ฒจ๊ฐ€์ œ๋ฅผ ๋“ค ์ˆ˜ ์žˆ๊ฒ ๋‹ค. ๊ทธ ์ค‘์—์„œ๋„ ์‹œ์žฅ์—์„œ ๊ฐ€์žฅ ๋งŽ์€ ํ™œ์šฉ์„ ๋ณด์ด๊ณ  ์žˆ๋Š” ์ฒจ๊ฐ€์ œ๋Š” ๋ถ„์‚ฐ ์•ˆ์ •์ œ๊ฐ€ ์žˆ์œผ๋ฉฐ ๊ทธ ๋’ค๋ฅผ ์ด์–ด ์—ฐ์†Œ ์ด‰๋งค๊ฐ€ ๋˜ํ•œ ๋งŽ์ด ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๋ถ„์‚ฐ ์•ˆ์ •์ œ์˜ ๋ฐ˜์‘ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๋ฌธํ—Œ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•˜์—ฌ ํ™•์ธํ•˜๊ณ  ๊ทธ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ๋˜ํ•œ ์—ฐ์†Œ ์ด‰๋งค์˜ ๋ฐ˜์‘ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๋ฌธํ—Œ ๋ฐ ์‹คํ—˜ ๊ฒฐ๊ณผ์— ์ฃผ๋ชฉํ•˜์—ฌ ๋„์ถœํ•˜๊ณ  ์ด ๋˜ํ•œ ๊ด‘ ๋ถ„์„ ๊ธฐ์ˆ ๋กœ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ๋ถ„์‚ฐ์•ˆ์ •์ œ๋ฅผ ์ž”์‚ฌ์œ  ํƒฑํฌ์— ์ฒจ๊ฐ€ํ•˜๊ฒŒ ๋˜๋ฉด, ๋ถ„์‚ฐ ์•ˆ์ •์ œ๊ฐ€ ์—ฐ๋ฃŒ์œ ์— ์นจ์œคํ•˜๊ฒŒ ๋˜๋Š” ๊ณผ์ •์ด ์žˆ๊ณ , ์นจ์œคํ•œ ์•ˆ์ •์ œ๋Š” ์‘์ถ• ๊ฒฝํ–ฅ์ด ๊ฐ•ํ•œ ์•„์ŠคํŒ”ํ… ์ž…์ž๋“ค์„ ๋ถ„๋ฆฌ์‹œํ‚ค๊ฒŒ ๋œ๋‹ค. ์นจ์œค ๊ณผ์ • ๋ฐ ๋ถ„๋ฆฌ๊ณผ์ •์ด ์™„๋ฃŒ๋˜๋ฉด, ๋งˆ์ง€๋ง‰์€ ์นจ์œค ๋ฐ ๋ถ„๋ฆฌ ๊ณผ์ •์„ ์ง€์†์ ์œผ๋กœ ์œ ์ง€ํ•˜๋Š” ๋ฉ”์ปค๋‹ˆ์ฆ˜์ด ํ•„์š”ํ•จ์„ ํ™•์ธ ํ•˜์˜€๋‹ค. ๋ถ„์‚ฐ์„ฑ์„ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ์— ๋”ฐ๋ฅด์ž๋ฉด, ๋ถ„์‚ฐ์ œ์˜ 3๊ฐ€์ง€ ๋ฐ˜์‘ ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์ค‘ ์นจ์œค ๋ฐ ๋ถ„๋ฆฌ๊ณผ์ •์„ ์œ ์ง€ํ•˜๋Š” ์„ฑ๋Šฅ ์ฐจ์ด๊ฐ€ ์กด์žฌํ•จ์ด ์‹คํ—˜์— ์˜ํ•ด ๋ฐํ˜€์กŒ์œผ๋ฉฐ, ์ด์— ๋Œ€ํ•œ ๋Œ€์‘์ด ํ•„์š”ํ•˜๋‹ค. ์—ฐ์†Œ ์ด‰๋งค์˜ ํšจ๊ณผ๋ฅผ ๊ฒ€์ฆํ•˜๊ณ  ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์—”์ง„ ์—ฐ๋ฃŒ ์†Œ๋ชจ๋Ÿ‰ ๊ณ„์ธก, ๋ฐฐ์ถœ๊ฐ€์Šค ๊ณ„์ธก, ์ •์  ์—ฐ์†Œ๊ธฐ ๊ณ„์ธก, ์—ด ๊ณ„์ธก, ๊ด‘ ๊ณ„์ธก ๋“ฑ์˜ ๋ถ„์„์„ ํ™œ์šฉํ•˜์˜€๋‹ค. ์—ฐ๋ฃŒ ์†Œ๋ชจ๋Ÿ‰ ๊ณ„์ธก ๊ฒฐ๊ณผ๋Š” ์ฒจ๊ฐ€์ œ๊ฐ€ ์—ฐ์†Œ ์ด‰๋งค์ด๊ฑด ๋ถ„์‚ฐ์„ฑ ํ–ฅ์ƒ์ œ ์ด๊ฑด ๊ฐ„์— ๋ฌด๊ด€ํ•˜๊ฒŒ ์—ฐ๋ฃŒ ์†Œ๋ชจ๋Ÿ‰ ์ €๊ฐ์— ํšจ๊ณผ๋ฅผ ์ค„ ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋Š” ์ž”์‚ฌ์œ ์˜ ํŠน์„ฑ์œผ๋กœ๋ถ€ํ„ฐ ์„ค๋ช… ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ž”์‚ฌ์œ  ์†์— ๋‹ค๋Ÿ‰ ํ•จ์œ ๋œ ์•„์ŠคํŒ”ํ…์€ ์‘์ง‘์„ฑํ–ฅ์ด ๊ฐ•ํ•˜๋‚˜ ๋ถ„์‚ฐ์„ฑ ํ–ฅ์ƒ์ œ๊ฐ€ ์‘์ง‘์„ ๋ฐฉ์ง€ํ•˜์˜€๊ณ , ์ด๋Š” ๊ฒฐ๊ตญ ์—ฐ๋ฃŒ์œ ๋‚ด ๊ฐ€์šฉ ์—๋„ˆ์ง€ ๋ถ„์œจ์ด ์ฆ๊ฐ€๋˜์—ˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์—ฐ์†Œ ์ด‰๋งค๋Š” ๋ฐ˜์‘์„ฑ์ด ์ข‹์€ ๊ธˆ์†์ด๋‚˜ ์ „์ด๊ธˆ์†์„ ์ฃผ์š” ๊ตฌ์„ฑ์„ฑ๋ถ„์œผ๋กœ ํ™œ์šฉํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋“ค์€ ์—ฐ์†Œ ์ดˆ๊ธฐ์— ํ™œ์„ฑ ๋ž˜๋””์ปฌ ์ƒ์„ฑ์— ๊ธฐ์—ฌํ•˜์—ฌ ํ™œ๋ฐœํ•œ ์—ฐ์†Œ ํ™”ํ•™๋ฐ˜์‘์„ ์กฐ์žฅํ•˜๊ฒŒ ๋˜์–ด ์—ฐ์†Œ๊ฐ€ ์ด‰์ง„๋˜๋Š” ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค. ๋˜ํ•œ, ์—ฐ์†Œ ํ›„์—๋„ ๋ฐฐ์ถœ๊ฐ€์Šค ์˜จ๋„๊ฐ€ ์ถฉ๋ถ„ํžˆ ๋†’๋‹ค๋ฉด ์ด‰๋งค ํ™œ์„ฑ์„ ์œ ์ง€ํ•˜์—ฌ ํƒ„์†Œ ์ ์ธต์˜ ๋ฐฉ์ง€, ์ค‘์งˆ์˜ ํƒ„์†Œ๋ถ„ ๊ฐ์†Œ ๋“ฑ์˜ ํšจ๊ณผ๊ฐ€ ์žˆ์–ด ๋ณด์ด๋ฉฐ, ๊ฒฐ๊ตญ ์ž…์ž์ƒ ๋ฌผ์งˆ์˜ ์ €๊ฐ์—๋„ ํšจ์œจ์ ์œผ๋กœ ์ž‘์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ฐฐ์ถœ๊ฐ€์Šค ๊ด€์ ์—์„œ๋Š” ์—ฐ์†Œ ํ™œ์„ฑํ™”๋กœ ์ธํ•˜์—ฌ ์งˆ์†Œ์‚ฐํ™”๋ฌผ ๋ฐฐ์ถœ์ด ์ฆ๊ฐ€ํ•จ์ด ๊ด€์ฐฐ๋˜์—ˆ๋‹ค. ๋”๋ถˆ์–ด, ์ฒจ๊ฐ€์ œ ๋ถˆํฌํ•จ ์—ฐ๋ฃŒ์— ๋น„ํ•ด ์ด์‚ฐํ™”ํƒ„์†Œ ๋ฐฐ์ถœ ๋†๋„๋Š” ์ฆ๊ฐ€ํ•˜์˜€๊ณ  ์‚ฐ์†Œ ๋ฐฐ์ถœ ๋†๋„๋Š” ๊ฐ์†Œํ•˜์˜€๋‹ค. ์ด๋Š” ๋ถ„์ž๋Ÿ‰์ด ํฐ ์ž”์‚ฌ์œ ์˜ ์—ฐ์†Œ์— ์‚ฐ์†Œ๊ฐ€ ์ ๊ทน ๊ฐœ์ž…ํ•  ์ˆ˜ ์žˆ๋„๋ก ์ž์œ ๋ž˜๋””์ปฌ์ด ์ถฉ๋ถ„ํžˆ ํšจ๊ณผ์ ์œผ๋กœ ์ž‘์šฉํ–ˆ๊ณ , ๊ทธ ๊ฒฐ๊ณผ๋กœ ๋งŽ์€ ์–‘์˜ ์ด์‚ฐํ™”ํƒ„์†Œ๊ฐ€ ์ƒ์„ฑ๋˜์—ˆ์Œ์ด๋‹ค. ๊ด‘ ๊ณ„์ธก ๊ฒฐ๊ณผ์—์„œ๋Š” ์—ฐ์†Œ์ด‰๋งค ์ฒจ๊ฐ€์ œ๋“ค์ด ๋น„์ •์งˆ์˜ ํƒ„์†Œ ๊ตฌ์กฐ๋ฅผ ๋ฐฐ์ถœํ•˜์˜€๊ณ , ์ฒจ๊ฐ€์ œ๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์ง€ ์•Š๊ฑฐ๋‚˜ ํšจ๊ณผ๊ฐ€ ์˜๋ฌธ์‹œ๋˜์—ˆ๋˜ ์ฒจ๊ฐ€์ œ์—์„œ ํ‘์—ฐ(graphite)๊ตฌ์กฐ๊ฐ€ ๊ณ„์ธก๋˜์—ˆ๋‹ค. ์ด๋Š” ์ฒจ๊ฐ€์ œ์˜ ์˜ํ–ฅ์œผ๋กœ ์ธํ•˜์—ฌ ์œ ์šฉํ•œ ํƒ„์†Œ์„ฑ๋ถ„์„ ์—”์ง„์˜ ์—ฐ์†Œ๊ณผ์ • ์ค‘์— ๋‹ค ์†Œ์ง„ํ•˜์˜€๊ธฐ์— ๋‚˜ํƒ€๋‚œ ๊ฒฐ๊ณผ๋กœ ๋ณด์ธ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ๊ณ ์ฐฐํ•œ ๊ฒฐ๊ณผ๋ฅผ ์ข…ํ•ฉํ•จ์œผ๋กœ์จ, ์„ ๋ฐ• ์ž”์‚ฌ์œ ์šฉ ์—ฐ๋ฃŒ ์ฒจ๊ฐ€์ œ์˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ผ๋ถ€ ๊ทœ๋ช…ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ถ๊ทน์ ์œผ๋กœ ์ฒจ๊ฐ€์ œ๊ฐ€ ๊ธ์ •์ ์œผ๋กœ ์ž‘์šฉํ•˜๊ณ  ์žˆ์œผ๋‚˜, ๋ณธ ์—ฐ๊ตฌ๋Š” 4 ํ–‰์ • ์‚ฌ์ดํด(stroke cycle) ๋””์ ค์—”์ง„์—์„œ ์ˆ˜ํ–‰๋˜์—ˆ๊ณ , ๊ด€๋ จ ๋ฌธํ—Œ์— ์˜ํ•˜๋ฉด ์„ธํƒ„๊ฐ€์˜ ์˜ํ–ฅ์ด ์ ๊ฑฐ๋‚˜ ์ „ํ˜€ ์˜ํ–ฅ์„ ๋ฐ›์ง€ ์•Š๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ง„ 2 ํ–‰์ • ์‚ฌ์ดํด ์—”์ง„์— ์—ฐ์†Œ ํ™œ์„ฑ ๋ชฉ์ ์œผ๋กœ ์ฒจ๊ฐ€์ œ ์‚ฌ์šฉ์€ ์ถ”๊ฐ€์ ์ธ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•  ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค. ๋‹ค๋งŒ, ์ƒ์šฉ ์—”์ง„์ค‘์—์„œ ์ž”์‚ฌ์œ ๋ฅผ ์‚ฌ์šฉํ•˜๋˜ ํ–‰์ •์ด ์งง์•„ ํ‰๊ท  ํ”ผ์Šคํ†ค ์†๋„๊ฐ€ ์ƒ๋Œ€์ ์œผ๋กœ ๋†’์€ ์ผ๋ถ€ 4 ํ–‰์ • ์‚ฌ์ดํด ์—”์ง„์—์„œ๋Š” ์—ฐ์†Œ ์ด‰๋งค ํ˜น์€ ๋ถ„์‚ฐ์ œ๊ฐ€ ์‚ฌ์šฉ ๋ชฉ์ ์— ๋ถ€ํ•ฉํ•˜๊ฒŒ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ๋ฏธ์—ฐ ํƒ„์†Œ์˜ ๋ฐฐ์ถœ ๊ฐ์†Œ, ์ž…์ž์ƒ ๋ฌผ์งˆ ๊ฐ์†Œ ๋“ฑ์˜ ์—ฐ์†Œ ๊ฐœ์„ ์œผ๋กœ ์ธํ•œ ํšจ๊ณผ๋Š” ๊ธฐ๋Œ€ํ•  ์ˆ˜ ์žˆ์œผ๋‚˜, ์งˆ์†Œ์‚ฐํ™”๋ฌผ์€ ์ฒจ๊ฐ€์ œ ์ œ์กฐ์‚ฌ๊ฐ€ ์ œ์‹œํ•˜๊ณ  ์žˆ๋Š” ๋ฐ˜์‘ ๋ฉ”์ปค๋‹ˆ์ฆ˜์œผ๋ก  ์ €๊ฐํ•  ์ˆ˜ ์—†๋‹ค๊ณ  ํŒ๋‹จ๋œ๋‹ค.1. Introduction 1.1 Marine fuel 12 1.2 Basic properties of marine residual fuel oil 20 1.2.1 Viscosity 21 1.2.2 Density 21 1.2.3 Flash point 22 1.2.4 Pour point 22 1.2.5 Sulfur 22 1.2.6 Carbon residue 22 1.2.7 Water 23 1.2.8 Ash 23 1.2.9 Vanadium, magnesium and sodium 23 1.2.10 Aluminium and silicon 24 1.3 Additives 24 1.3.1 History of additives 24 1.3.2 Information and technical achievements of diesel additives from bibliography 27 2. Understanding additives and review of relevant literatures 2.1 Combustion with fuel additives 44 2.2 Chemistry of combustion 45 2.3 Additive effects on ignition delay 48 2.4 Additive effects on emissions 49 2.4.1 Reduction of NO to N2 by reaction with particles of Fe 49 2.4.2 Additive effects to the creation of Polycyclic Aromatic Hydrocarbon(PAH) 50 2.4.3 Additive effects to the emission reduction 53 2.4.4 Effects of an ignition-enhancing, diesel-fuel additive on diesel-spray evaporation, mixing, ignition, and combustion 54 3. Experimental setup and analyzers 3.1 Fuel oil samples 56 3.2 Fuel dispersability analysis 58 3.3 Fuel Ignition/Combustion Analysis (FIA/FCA) 60 3.4 Thermo Gravimetirc Analysis 65 3.5 Engine and auxiliary system 67 3.5.1 Low engine load test setup 67 3.5.2 Full engine load test setup 71 4. Results and Discussion 4.1 Dispersability 73 4.2 Investigation of fuel dispersant mechanism 76 4.2.1 Basic properties 76 4.2.2 Dispersants 84 4.2.3 Deposit control by dispersants 85 4.2.4 Dispersant structure 86 4.3 Fuel oil combustion characteristics by FIA/FCA 88 4.4 Thermogravimetric analysis 100 4.5 Fuel oil consumption 104 4.5.1 Fuel oil consumption at low engine load 104 4.5.2 Fuel oil consumption at fuel engine load 106 4.6 Investigation of fuel combustion improver effect to engine combustion 112 4.7 Emission characteristics 123 4.7.1 Emission characteristics at low engine load 123 4.7.2 Emission characteristics at full engine load 127 4.8 Optical analysis 130 4.8.1 Raman spectroscopy 131 4.8.2 Energy dispersive X-ray spectroscopy 133 5. Conclusions 5.1 Dispersability 138 5.2 Dispersant mechanism 139 5.3 Fuel oil combustion characteristics by FIA/FCA 139 5.4 Thermogravimetric Analysis 142 5.5 Fuel oil consumption evaluation 142 5.5.1 Fuel oil consumption at low engine load 143 5.5.2 Fuel oil consumption at full engine load 143 5.6 Investigation of fuel combustion improver effect to engine combustion 143 5.7 Emission characteristics 144 5.7.1 Emission characteristics at low engine load 144 5.7.2 Emission characteristics at full engine load 145 5.8 Optical analysis 145 5.8.1 Raman spectroscopy 145 5.8.2 Energy dispersive X-ray spectroscopy 145 References 14

    Combustion and emission characteristics of IC engines fueled by hydrogen and hydrogen/diesel mixtures and multi-objective optimization of operating parameters

    Get PDF
    โ€œThe present study considers combustion of hydrogen in IC engines. In general, the work focuses on simulating the engine performance and emissions at different operation parameters, and using optimization techniques. Task I work deals with the engine performance and emissions of a single cylinder spark-ignition (SI) engine fueled by hydrogen. The engine was simulated at different equivalence ratios, exhaust gas recirculation (EGR) and ignition timing. The results indicate that NOx emissions, engine power, and efficiency are reduced by increasing EGR level, and increased with increasing equivalence ratio and advanced ignition timing. The best operating conditions for hydrogen engines were obtained by solving the multi-objective problem of maximizing engine power and efficiency while minimizing the NOx. Task II deals with the engine performance and emissions of dual-fuel CI engines fueled by a hydrogen/diesel mixture. The engine was simulated under conditions of various hydrogen levels (%) by energy, diesel injection timing, and EGR levels (%). More hydrogen present inside the engine cylinder led to lower soot emissions, higher thermal efficiency, and higher NOx emissions. Ignition timing delayed as the hydrogen rate increased, due to a delay in OH radical formation. Exhaust gas recirculation (EGR) method and diesel injection timing were considered as well, due to their potential effects on the engine outputs. To obtain the best possible maximum efficiency along with lower NOx and soot emissions, optimization methods in (Task III) for the operating parameters were considered. Multi-objective problem with conflicting objectives was solved by using regression analysis, artificial neural networks, and genetic algorithmsโ€--Abstract, page iv
    corecore