39 research outputs found

    Fuzzy Bi-level Decision-Making Techniques: A Survey

    Full text link
    © 2016 the authors. Bi-level decision-making techniques aim to deal with decentralized management problems that feature interactive decision entities distributed throughout a bi-level hierarchy. A challenge in handling bi-level decision problems is that various uncertainties naturally appear in decision-making process. Significant efforts have been devoted that fuzzy set techniques can be used to effectively deal with uncertain issues in bi-level decision-making, known as fuzzy bi-level decision-making techniques, and researchers have successfully gained experience in this area. It is thus vital that an instructive review of current trends in this area should be conducted, not only of the theoretical research but also the practical developments. This paper systematically reviews up-to-date fuzzy bi-level decisionmaking techniques, including models, approaches, algorithms and systems. It also clusters related technique developments into four main categories: basic fuzzy bi-level decision-making, fuzzy bi-level decision-making with multiple optima, fuzzy random bi-level decision-making, and the applications of bi-level decision-making techniques in different domains. By providing state-of-the-art knowledge, this survey paper will directly support researchers and practitioners in their understanding of developments in theoretical research results and applications in relation to fuzzy bi-level decision-making techniques

    Fuzzy Random Noncooperative Two-level Linear Programming through Absolute Deviation Minimization Using Possibility and Necessity

    Get PDF
    This paper considers fuzzy random two-level linear programming problems under noncooperative behaviorof the decision makers. Having introduced fuzzy goals of decision makers together with the possibiliy and necessity measure, following absolute deviation minimization, fuzzy random two-level programin problems are transformed into deterministic ones. Extended Stackelberg solutions are introduced andcomputational methods are also presented

    An Evolutionary Algorithm Using Duality-Base-Enumerating Scheme for Interval Linear Bilevel Programming Problems

    Get PDF
    Interval bilevel programming problem is hard to solve due to its hierarchical structure as well as the uncertainty of coefficients. This paper is focused on a class of interval linear bilevel programming problems, and an evolutionary algorithm based on duality bases is proposed. Firstly, the objective coefficients of the lower level and the right-hand-side vector are uniformly encoded as individuals, and the relative intervals are taken as the search space. Secondly, for each encoded individual, based on the duality theorem, the original problem is transformed into a single level program simply involving one nonlinear equality constraint. Further, by enumerating duality bases, this nonlinear equality is deleted, and the single level program is converted into several linear programs. Finally, each individual can be evaluated by solving these linear programs. The computational results of 7 examples show that the algorithm is feasible and robust

    Multilevel decision-making: A survey

    Full text link
    © 2016 Elsevier Inc. All rights reserved. Multilevel decision-making techniques aim to deal with decentralized management problems that feature interactive decision entities distributed throughout a multiple level hierarchy. Significant efforts have been devoted to understanding the fundamental concepts and developing diverse solution algorithms associated with multilevel decision-making by researchers in areas of both mathematics/computer science and business areas. Researchers have emphasized the importance of developing a range of multilevel decision-making techniques to handle a wide variety of management and optimization problems in real-world applications, and have successfully gained experience in this area. It is thus vital that a high quality, instructive review of current trends should be conducted, not only of the theoretical research results but also the practical developments in multilevel decision-making in business. This paper systematically reviews up-to-date multilevel decision-making techniques and clusters related technique developments into four main categories: bi-level decision-making (including multi-objective and multi-follower situations), tri-level decision-making, fuzzy multilevel decision-making, and the applications of these techniques in different domains. By providing state-of-the-art knowledge, this survey will directly support researchers and practical professionals in their understanding of developments in theoretical research results and applications in relation to multilevel decision-making techniques

    Fuzzy Bilevel Optimization

    Get PDF
    In the dissertation the solution approaches for different fuzzy optimization problems are presented. The single-level optimization problem with fuzzy objective is solved by its reformulation into a biobjective optimization problem. A special attention is given to the computation of the membership function of the fuzzy solution of the fuzzy optimization problem in the linear case. Necessary and sufficient optimality conditions of the the convex nonlinear fuzzy optimization problem are derived in differentiable and nondifferentiable cases. A fuzzy optimization problem with both fuzzy objectives and constraints is also investigated in the thesis in the linear case. These solution approaches are applied to fuzzy bilevel optimization problems. In the case of bilevel optimization problem with fuzzy objective functions, two algorithms are presented and compared using an illustrative example. For the case of fuzzy linear bilevel optimization problem with both fuzzy objectives and constraints k-th best algorithm is adopted.:1 Introduction 1 1.1 Why optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Fuzziness as a concept . . . . . . . . . . . . . . . . . . . . .. . . . . . . 2 1.3 Bilevel problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Preliminaries 11 2.1 Fuzzy sets and fuzzy numbers . . . . . . . . . . . . . . . . . . . . . 11 2.2 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Fuzzy order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Fuzzy functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 3 Optimization problem with fuzzy objective 19 3.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Solution method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 Local optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4 Existence of an optimal solution . . . . . . . . . . . . . . . . . . . . 25 4 Linear optimization with fuzzy objective 27 4.1 Main approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3 Optimality conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.4 Membership function value . . . . . . . . . . . . . . . . . . . . . . . . 34 4.4.1 Special case of triangular fuzzy numbers . . . . . . . . . . . . 36 4.4.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 5 Optimality conditions 47 5.1 Differentiable fuzzy optimization problem . . . . . . . . . . .. . . . 48 5.1.1 Basic notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.1.2 Necessary optimality conditions . . . . . . . . . . . . . . . . . . .. 49 5.1.3 Suffcient optimality conditions . . . . . . . . . . . . . . . . . . . . . . 49 5.2 Nondifferentiable fuzzy optimization problem . . . . . . . . . . . . 51 5.2.1 Basic notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.2.2 Necessary optimality conditions . . . . . . . . . . . . . . . . . . . 52 5.2.3 Suffcient optimality conditions . . . . . . . . . . . . . . . . . . . . . . 54 5.2.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6 Fuzzy linear optimization problem over fuzzy polytope 59 6.1 Basic notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.2 The fuzzy polytope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 6.3 Formulation and solution method . . . . . . . . . . . . . . . . . . .. . 65 6.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7 Bilevel optimization with fuzzy objectives 73 7.1 General formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7.2 Solution approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 7.3 Yager index approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.4 Algorithm I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 7.5 Membership function approach . . . . . . . . . . . . . . . . . . . . . . .78 7.6 Algorithm II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80 7.7 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 8 Linear fuzzy bilevel optimization (with fuzzy objectives and constraints) 87 8.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 8.2 Solution approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 8.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 8.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 9 Conclusions 95 Bibliography 9

    Improved two-phase solution strategy for multiobjective fuzzy stochastic linear programming problems with uncertain probability distribution

    Get PDF
    Multiobjective Fuzzy Stochastic Linear Programming (MFSLP) problem where the linear inequalities on the probability are fuzzy is called a Multiobjective Fuzzy Stochastic Linear Programming problem with Fuzzy Linear Partial Information on Probability Distribution (MFSLPPFI). The uncertainty presents unique difficulties in constrained optimization problems owing to the presence of conflicting goals and randomness surrounding the data. Most existing solution techniques for MFSLPPFI problems rely heavily on the expectation optimization model, the variance minimization model, the probability maximization model, pessimistic/optimistic values and compromise solution under partial uncertainty of random parameters. Although these approaches recognize the fact that the interval values for probability distribution have important significance, nevertheless they are restricted by the upper and lower limitations of probability distribution and neglected the interior values. This limitation motivated us to search for more efficient strategies for MFSLPPFI which address both the fuzziness of the probability distributions, and the fuzziness and randomness of the parameters. The proposed strategy consists two phases: fuzzy transformation and stochastic transformation. First, ranking function is used to transform the MFSLPPFI to Multiobjective Stochastic Linear Programming Problem with Fuzzy Linear Partial Information on Probability Distribution (MSLPPFI). The problem is then transformed to its corresponding Multiobjective Linear Programming (MLP) problem by using a-cut technique of uncertain probability distribution and linguistic hedges. In addition, Chance Constraint Programming (CCP), and expectation of random coefficients are applied to the constraints and the objectives respectively. Finally, the MLP problem is converted to a single-objective Linear Programming (LP) problem via an Adaptive Arithmetic Average Method (AAAM), and then solved by using simplex method. The algorithm used to obtain the solution requires fewer iterations and faster generation of results compared to existing solutions. Three realistic examples are tested which show that the approach used in this study is efficient in solving the MFSLPPFI

    Exact Algorithms for Mixed-Integer Multilevel Programming Problems

    Get PDF
    We examine multistage optimization problems, in which one or more decision makers solve a sequence of interdependent optimization problems. In each stage the corresponding decision maker determines values for a set of variables, which in turn parameterizes the subsequent problem by modifying its constraints and objective function. The optimization literature has covered multistage optimization problems in the form of bilevel programs, interdiction problems, robust optimization, and two-stage stochastic programming. One of the main differences among these research areas lies in the relationship between the decision makers. We analyze the case in which the decision makers are self-interested agents seeking to optimize their own objective function (bilevel programming), the case in which the decision makers are opponents working against each other, playing a zero-sum game (interdiction), and the case in which the decision makers are cooperative agents working towards a common goal (two-stage stochastic programming). Traditional exact approaches for solving multistage optimization problems often rely on strong duality either for the purpose of achieving single-level reformulations of the original multistage problems, or for the development of cutting-plane approaches similar to Benders\u27 decomposition. As a result, existing solution approaches usually assume that the last-stage problems are linear or convex, and fail to solve problems for which the last-stage is nonconvex (e.g., because of the presence of discrete variables). We contribute exact finite algorithms for bilevel mixed-integer programs, three-stage defender-attacker-defender problems, and two-stage stochastic programs. Moreover, we do not assume linearity or convexity for the last-stage problem and allow the existence of discrete variables. We demonstrate how our proposed algorithms significantly outperform existing state-of-the-art algorithms. Additionally, we solve for the first time a class of interdiction and fortification problems in which the third-stage problem is NP-hard, opening a venue for new research and applications in the field of (network) interdiction

    Synthesis, Interdiction, and Protection of Layered Networks

    Get PDF
    This research developed the foundation, theory, and framework for a set of analysis techniques to assist decision makers in analyzing questions regarding the synthesis, interdiction, and protection of infrastructure networks. This includes extension of traditional network interdiction to directly model nodal interdiction; new techniques to identify potential targets in social networks based on extensions of shortest path network interdiction; extension of traditional network interdiction to include layered network formulations; and develops models/techniques to design robust layered networks while considering trade-offs with cost. These approaches identify the maximum protection/disruption possible across layered networks with limited resources, find the most robust layered network design possible given the budget limitations while ensuring that the demands are met, include traditional social network analysis, and incorporate new techniques to model the interdiction of nodes and edges throughout the formulations. In addition, the importance and effects of multiple optimal solutions for these (and similar) models is investigated. All the models developed are demonstrated on notional examples and were tested on a range of sample problem sets

    Soft Computing

    Get PDF
    Soft computing is used where a complex problem is not adequately specified for the use of conventional math and computer techniques. Soft computing has numerous real-world applications in domestic, commercial and industrial situations. This book elaborates on the most recent applications in various fields of engineering
    corecore