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1 Introduction

1.1 Why optimization

The mathematical area of optimization plays a very important role in our modern life. In
our age of scarce natural resources such as oil and gas, it is particularly important not to
waste. This requires an optimal use of these supplies. The same applies to other limited
resources as well a time. This strive for optimal solutions is not limited to industrial
applications but has long reached our daily life.
Our quest is complicated by the fact that we - more often than not - have to make

decisions without being able to rely on precise information. We have to deal with an
amount of uncertainty every single day. Moreover, our understanding of linguistic variables
often depends on e.g. mood. Let us consider the phrase "The shop is near the house".
In terms of fuzzy logic we understand word "near" di�erently. It strongly depends on
the age of the decision making person (or decision-maker for short). Thus, the young
decision-maker can say that the phrase is true, even if the distance from the house to
the shop exceeds 2 km. For the old person, the phrase holds true only if the distance is
less than, say, 800 m. Of course, in this example we have to de�ne what words "young"
and "old" mean. However, it becomes now clear that di�erent persons de�ne usual things
di�erently. Thus, it makes perfect sense to speak about fuzzy optimization problems from
a vague predicate approach, as it is understood that this vagueness arises from the way
we express the decision-makers' (i.e. our) knowledge and not from any random event. In
short, it is supposed that the nature of the data de�ning the problem is fuzzy.
In practical situations, the problem of optimization is even more complicated, since it

involves con�ict resolution. Each partly involved decision-makers try to maximize their
own bene�ts. Such an optimization problem can be illustrated with the following example
of gas use: The government tries to maximize pro�t with its tax-policy for private gas
companies. In turn, those companies try to maximize their pro�t by setting a price for
gas. Consumers decide on which company to choose by comparing prices. They try to
minimize costs by choosing the company that o�ers a smallest gas price. The easiest way
for the government is to prescribe in�nitely large taxes. But with such a policy it will
loose all the companies and a region (e.g. a city) can be left without any gas. Therefore,
the government has to establish taxes wisely. Each company, in turn, has to �x prices
which are acceptable for the clients. Otherwise, the clients choose another corporation.
Multilevel optimization problems are important for decentralized organizations and sys-
tems, where each unit (or department) seeks its own interest. Carefully de�ned multilevel
mathematical programming problems can also serve as useful tools in modelling structured
economic units.
In the present work we focus our attention on a special case of multilevel optimization,

namely bilevel optimization. We discuss hierarchical problems of two decision makers,
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in which one - the so-called leader - has the �rst choice and the other one - the so-
called follower - reacts optimally on the leader's selection. It is important to note, that
each decision-maker maximizes his / her own bene�ts independently, but is a�ected by
actions of the other decision-maker (through externalities). The formulation of the bilevel
programming problem for crisp (i.e. with exactly known and �xed) data can be found e.g.
in the book of Dempe (2002).

1.2 Fuzziness as a concept

In crisp optimization problems it is assumed that the decision-maker has exact and full
information on the data entering the problem. Even when this is the case, the decision-
maker usually �nds it more convenient to express his / her knowledge in linguistic terms,
i.e. through conventional linguistic variables (see e.g. Zadeh (1975a,b,c)), rather than by
using high precision numerical data.
One commonly used approach to deal with these problems is to model them as fuzzy

optimization problems, see e.g. Zadeh (1965). This approach proved to be very useful
in many applied sciences, such as engineering, economics, applied mathematics, physics,
as well as in other disciplines: Buckley and Feuring (2000); Chanas and Kuchta (1996a);
Jiménez et al. (2006); Kasperski and Zieli«ski (2006); Peidro et al. (2010); Weber et al.
(1990); Wu and Xu (2008); Wu et al. (1997); Zimmermann (1978); Zhang et al. (2010);
Zimmermann (1976). Among linear programming problems, the so-called transportation
problem is very popular, see e.g. Chanas and Kuchta (1996a); Shih and Lee (1999). The
model which customarily has been referred to as transportation problem represents not
only delivery planning problem with given supplies and demands and with a criterion of
minimizing the total transportation cost. Many other decision-making problems, whose
motivation is quite di�erent from that of the delivery planning, have the same mathe-
matical structure. For example, this is the case for the periodical production planning
problem with given demands for the product in consecutive periods and with the criterion
of minimizing the total production and storage cost.
There exist e�ective algorithms solving the transportation problem in the case when all

coe�cients in the model, i.e. supply and demand values as well as the unit transportation
costs, are given in a crisp way. In practice, however, this condition may not be ful�lled.
For example, the unit transportation costs are rarely constant and predictable. Therefore,
the ability to de�ne and to determine the optimal solution of the transportation problem
with fuzzy costs coe�cients is important. This is exactly the topic of most examples
presented in the present work.
In the thesis the following (nonlinear) fuzzy optimization problem is investigated, where

the objective function has fuzzy values and the constraint function is a crisp one, i.e.:

f̃(x)→ min
g(x) ≤ 0.

(1.1)

Here g = (g1, . . . , gk) : Rn → Rk is a crisp function and f̃ : Rn → F is a fuzzy function,
where F is a set of fuzzy numbers over R and 1 ≤ k <∞, 1 ≤ n <∞. The investigated
problem can be transformed into a more general problem where the constraint function
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is fuzzy. The formulation of fuzzy optimization problems with crisp objective and fuzzy
constraints can be found in Delgado et al. (1989) and Tanaka et al. (1984).
An early approach for solving a fuzzy optimization problem is the extension principle of

Bellman and Zadeh (1970). Even nowadays many authors base their solution algorithms
on this approach (see e.g. Ekel et al. (1998)). In the present work fuzzy optimization
problem (1.1) is solved with modern solution algorithms based on the minimization of a
certain α-cut on the feasible set (see e.g. Chanas and Kuchta (1994, 1996b); Dempe and
Ruziyeva (2011); Rommelfanger et al. (1989); Zimmermann (1991)).
In this approach fuzzy optimization problem (1.1) is reformulated into an interval op-

timization problem
[fL(x, α), fR(x, α)]→ min

g(x) ≤ 0
(1.2)

for a certain level-cut α (0 ≤ α ≤ 1) of the fuzzy function f̃(x). Through the agency
of a special order for the intervals de�ned later, both of the left- and right-side functions
fL(x, α) and fR(x, α) have to be minimized simultaneously.
Thus, a crisp biobjective optimization problem arises

fL(x, α)→ min
fR(x, α)→ min

g(x) ≤ 0,
(1.3)

that is solved, in turn, with application of methods of the multiobjective optimization
problem's scalarization technique (see e.g.Ehrgott (2005)). Elements of the Pareto set
of each biobjective optimization problem are interpreted as solutions of the initial fuzzy
optimization problem on a certain level-cut. Thus, we re�ect incomparability (and vari-
ability) of the solutions of the fuzzy optimization problem. This discussion is presented
for the general case in Chapter 3.

The problems usually considered in optimization are mathematical models and, thus,
idealizations of real world problems. Therefore, the classical "achieve the best value of the
objective function" approach may be too restrictive. Often a set of alternative solutions
is more valuable to the decision-maker.
Many authors (see e.g. Jiménez et al. (2006); Verdegay (1982)) try to �nd a single best

solution of the fuzzy optimization problem in the linear case

c̃>x→ min
Ax ≤ b
x ≥ 0,

(1.4)

where the fuzzy vector c̃, the constraint matrix A ∈ Rm×n and the right-hand side vector
b ∈ Rm are given. These approaches are based on the extension principle of Bellman
and Zadeh (1970). We suggest to re�ect the uncertainty in fuzzy optimization problems
through (the existence of) a set of optimal solutions, i.e. a set of Pareto optimal solutions
of corresponding biobjective optimization problem. Under the assumption that this set
consists of more than one element, the decision-maker can improve the choice relying on
some criteria that are not a priory considered in the optimization problem.
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Therefore, it is natural to consider the solutions of a fuzzy optimization problem as
fuzzy. Hence, a criterion for comparing the elements of the fuzzy set of optimal solutions
is required. As soon as this fuzzy set has membership function, the possible criteria
for comparison the elements of the fuzzy solution can be the values of the membership
function. For this it is necessary to compute the values of the membership function exactly.
An approach to calculate such membership function values is suggested by Chanas and
Kuchta (1994, 1996a,b) and further developed by Dempe and Ruziyeva (2012).
The approach to determine the membership function values is based on calculating the

sum of lengths of certain intervals. One of the purposes of the present work is to realize
this idea based on modern solution algorithms (see e.g. Cadenas and Verdegay (2009);
Chanas (1983); Chanas and Kuchta (1994, 1996b); Jiménez et al. (2006); Rommelfanger
et al. (1989); Zimmermann (1978)). Our solution approach for fuzzy linear optimization
problem (1.4) is based on the reformulation of the well-known optimality conditions for
the crisp linear optimization problem (see e.g. Bertsimas and Tsitsiklis (1997)).
With this innovative approach, published in Dempe and Ruziyeva (2012), the decision-

maker obtains a collection of some basic solutions, each accompanied by a measure of the
extent to which it is the optimal solution of fuzzy optimization problem (1.4). It is up
to the decision-maker to make the �nal choice - the decision-maker can restrict himself
/ herself to the solutions which are equal to a degree greater than a �xed value, or the
solutions which have membership function values greater than a �xed value, or equal to
one, etc. In any case our fuzzy solution will constitute an important support and source
of information for the decision-maker.
In Chapter 4 we discuss the fuzzy linear optimization problem and derive explicit formu-

las for the calculation the membership function value of the elements of the fuzzy solution
in the case of triangular fuzzy numbers and show that only one certain interval needs to
be considered.

Generalizing our approach to nonlinear fuzzy optimization problem (1.1), the question
of optimality of a feasible solution arises, which is very important and essential in opti-
mization. In the nonlinear case of the fuzzy optimization problem, using basic methods
of convex multiobjective optimization, necessary and su�cient conditions for an optimal
solution of the di�erentiable fuzzy optimization problem are derived e.g. in a form of
Karush-Kuhn-Tucker optimality conditions.
Wu (2004) gave su�cient optimality conditions for a solution of fuzzy optimization

problem (1.1) under convexity assumptions. In Wu (2008) integrals in the Karush-Kuhn-
Tucker conditions were used for su�cient optimality conditions of fuzzy optimization
problem (1.1). This means, the author used a certain average value of the level sets of
the fuzzy objective function. In distinction, in Wu (2004) only one α-cut was used. Left-
and right-hand side functions were used by Wu (2004, 2008) to describe the level-cuts of
the fuzzy objective function which then appear in the Karush-Kuhn-Tucker optimality
conditions.
For the di�erentiable case of fuzzy optimization problem (1.1) we present su�cient

optimality conditions by using the Karush-Kuhn-Tucker conditions. It turns out that
these conditions are similar to the su�cient optimality conditions used in the works of
Wu (2004, 2008). The distinction is the use of weighting coe�cients in the objective.
Further, we derive necessary optimality conditions.
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In the di�erentiable fuzzy case necessary and su�cient optimality conditions are given
by Dempe and Ruziyeva (2011) and in the nondi�erentiable crisp case by Bomze et al.
(2010). If the fuzzy objective function f̃(x) is nondi�erentiable, it requires some modi�-
cations in the standard approach.
Adapting the notions of the tangent cone, the directional derivative and Hadamard

derivatives to the fuzzy case permits us to derive necessary and su�cient optimality con-
ditions for a (global / local) optimal solution of the nondi�erentiable fuzzy optimization
problem.
As soon as we de�ne a set of optimal solutions of fuzzy optimization problem (1.1) on

some �xed α-cut through the set of Pareto optimal solutions of biobjective optimization
problem (1.3), we can derive necessary and su�cient optimality conditions (for both dif-
ferentiable and nondi�erentiable fuzzy optimization problems) to guarantee that a feasible
point belongs to the fuzzy solution set. This result generalizes one obtained in Panigrahi
et al. (2008); Wu (2007) in four important aspects:

1. The derivative of the fuzzy function f̃(x) is de�ned as a pair of functions which need
not to be an interval as it was supposed in the paper of Panigrahi et al. (2008). This
assumption is unnecessary restrictive.

2. Not only su�cient but also necessary optimality conditions are derived.

3. An optimality condition which is valid for all level-cuts at the same time is derived.

4. Nondi�erentiable (and nonconvex) problems are discussed.

Optimality conditions of the nonlinear fuzzy optimization problem are examined in
Chapter 5 in detail.

The next interesting question is the generalization of the fuzzy optimization problem to
a fuzzy optimization problem with fuzzy constraints. An evolutionary algorithm based on
multi-objective approach was presented by Jiménez et al. (2006). A so-called interactive
approach is developed by Ammar (2000). A shortcoming of this approach is predetermined
level-cut.
A fuzzy optimization problem with fuzzy constraints have been examined for the linear

case e.g. by Chanas (1983); Ekel et al. (1998); Werners (1987) using the min-max approach
and Buckley (1995) using the possibilistic approach.
We present a solution algorithm for the linear case of fuzzy optimization problem de�ned

as
F (c̃, x) = d>c̃→ min

s.t. c̃ ∈ P,
(1.5)

where P is a fuzzy polytope, d is a known crisp vector and c̃ is a fuzzy variable.
Because of the vagueness, the decision-maker prefers to have not just one solution but

a set of them, so that the most suitable solution can be applied according to his / her
judgement.
Fuzzy optimization problem (1.5) is solved by taking level-cuts of the fuzzy polytope P

for all α ∈ [0, 1]. Each α-cut, in turn, provides two crisp optimization problems

F (cL(α)) = d>cL(α)→ min
s.t. cL(α) ∈ PL(α)

(1.6)
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and
F (cR(α)) = d>cR(α)→ min

s.t. cR(α) ∈ PR(α),
(1.7)

where [cL(α), cR(α)] denotes the α-cut of fuzzy variable c̃. Let us denote the solution sets
of problems (1.6) and (1.7) are c∗L(α) and c∗R(α), respectively. Then, an optimal solution
of the fuzzy optimization problem on the �xed α-cut is a convex hull of c∗L(α) and c∗R(α).
The fuzzy solution of initial problem (1.5) is the union of these convex hulls for all

level-cuts, i.e.

c̃∗ =
⋃

α∈[0,1]

(conv{c∗L(α), c∗(1)} ∪ conv{c∗R(α), c∗(1)}) , (1.8)

where c∗(1) is an optimal solution of problem

F (c1) = d>c1 → min
s.t. c1 ∈ P(1)

(1.9)

for α = 1 under assumption that we operate with triangular fuzzy numbers. Ideas are
investigated in Chapter 6.

1.3 Bilevel problems

Bilevel programming problems are challenging problems of mathematical optimization,
which are interesting from the theoretical point-of-view (as special case in nonsmooth
optimization) and have a variety of applications. Problems with a predominantly hierar-
chical structure are often found in government policy, economic systems, �nance and are
especially suitable for con�ict resolutions.
Since its �rst formulation by Heinrich von Stackelberg (1934) in market economy (in

the context of unbalanced economic markets), bilevel optimization has successfully been
applied to many real world problems: Bard et al. (1998); Bjørndal and Jørnsten (2005);
Camacho (2006); Candler et al. (1981); Cassidy et al. (1971); Dempe (2002); Fortuny-
Amat and McCarl (1981); Hobbs and Nelson (1992); Marcotte and Savard (2001); Parraga
(1981). For the past twenty years transportation problems have been bene�ting from the
formulation of advances in bilevel programming: Ben-Ayed (1988); Ben-Ayed et al. (1992);
Dempe et al. (2009); Kim and Suh (1988); Labbè et al. (1998); Migdalas (1995), which
cover issues like network design, revenue management and other tra�c control problems
(where the transportation problem is on the lower level, depending on the parameter
selected from the upper level).
Considering the inherently di�cult nature of bilevel problems due to their nonconvexity,

nonsmoothness and implicitly determined feasible set, it is di�cult to design convergent
algorithms, and the few algorithms that converge appear to be very slow most of the time.
Even in the simplest case, i.e. when the upper and lower level problems are crisp and
linear, the bilevel programming problem has been shown to be NP-hard (see Ben-Ayed
and Blair (1990); Blair (1992)).
One approach to solving bilevel optimization problems in the crisp case is based on

its transformation into a one-level optimization problem using e.g. Karush-Kuhn-Tucker
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optimality conditions. S. Dempe and co-workers investigated this problem as well as its
optimality conditions, see e.g. Bialas et al. (1980); Dempe (1987, 2000, 2002); Dempe et al.
(2006). However, this approach can not been shown to give a global optimal solution.
To solve crisp multilevel linear programming problems (bilevel programming problems

are a special case) Shih et al. (1996) presented the so-called fuzzy approach. The authors
allege that the solution of a multilevel linear optimization problem over a polytope is
not necessarily situated at a vertex. This approach is based on predetermined tolerance
limits as well as Bellman and Zadeh (1970) max-min approach. But this method has the
vice that for some arti�cially introduced membership function the hierarchical order can
become redundant, i.e. the inclusion of other levels into the system will not a�ect the
solution. Later Sinha (2003) showed that another technique based on fuzzy mathematical
programming gives better solutions than that proposed by Shih et al. (1996). In this
algorithm the author uses a payo� matrix consisting in ideal solutions and the same
tolerance limits as in Shih et al. (1996). However, the question of the existence of a
feasible solution that is located in such a strongly restricted interval is not addressed.
Recently, numerous algorithmic approaches have been proposed for the special case of

the linear bilevel optimization problem (also known as two-level linear sourse control prob-
lem) by Bard and Moore (1990); Bialas and Karwan (1984); Dempe (1987). Using duality
theory Shi et al. (2007) applied the k-th best algorithm to linear bilevel optimization
problem in the case of multiple followers.
Several works tried to establish a relationship between multilevel and multicriterion

programming problems (see e.g. Bard (1983); Wen and Hsu (1989)). Bialas and Karwan
(1978); Marcotte and Savard (1991) have shown that Pareto and bilevel optimality are
distinct concepts. Further evidence can be found in e.g. Candler (1988); Haurie et al.
(1990). It should be noted that bilevel and bicriterial problems are often confused in
literature (see e.g. Arora and Gupta (2009)).

All the aforesaid can be combined to the more complicated problem of fuzzy bilevel op-
timization (also called fuzzy bilevel decision making in the literature), if the data involved
in the bilevel optimization problem are only approximately known. While very important
for number of applications, this problem is poorly investigated. A number of fuzzy bilevel
programming problems can be found in Dempe et al. (2009); Dempe and Starostina (2006)
and references therein. While some convergent algorithms for crisp bilevel problems al-
ready exist in the literature (see e.g. Bard (1982); Bard and Moore (1990); Dempe (1987);
Ishizuka and Aiyoshi (1992); Önal (1993); Tuy and Ghannadan (1998); Wen and Huang
(1996); White and Anandalingam (1993); Wu et al. (1998)), solution strategies for fuzzy
bilevel programming problems are an emerging new �eld with a wide range of practical
applicability.
In the case of crisp bilevel optimization problems many authors consider that the opti-

mal solution is over polytope (see e.g. Calvete et al. (2011)), analogously we assume that
we have fuzzy bilevel optimization problem over fuzzy polytope. Thus, we suppose that
the optimal solution (and later we would be interested in best optimal solution) is located
in one of the extreme points of the corresponding polytope. Strict de�nitions are given
further in the work. At the moment the fuzzy bilevel optimization problem with fuzzy
objective function is formulated as follows.
The follower seeks to minimize his / her fuzzy objective function f(c̃, x) = c̃>x with
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respect to x over a crisp polytope X. The leader, in turn, minimizes his / her objective
function F (c̃, x) over the given fuzzy polytope C̃. We assume that the fuzzy function
F (c̃, x) is also bilinear. More formally, the fuzzy bilevel optimization problem can be
formulated as

F (c̃, x)→ min
c̃∈C̃

s.t. x ∈ arg min
x
{f(c̃, x) : x ∈ X}. (1.10)

Let us denote the set of optimal solutions of lower-level optimization problem through
Ψ(c̃); that is to say

Ψ(c̃) = arg min
x
{f(c̃, x) : x ∈ X}. (1.11)

In general, the problem of determining the best solution c̃∗ for the leader can be de-
scribed as that of �nding a vector of parameters for the fuzzy parametric optimization
problem, which together with the response of the follower x(c̃) ∈ Ψ(c̃) proves to give the
best possible function value for the upper level objective function F (c̃, x). That is

” min
c̃∈C̃

”{F (c̃, x) : x ∈ Ψ(c̃)}. (1.12)

Strictly speaking, this de�nition of the fuzzy bilevel programming problem is valid only in
the case of a uniquely determined lower level solution for each possible c̃. The quotation
marks in (1.12) have been used to express this uncertainty in case of non-uniquely set of
optimal solutions on the lower level. From now onwards those marks would be dropped.
As soon as we apply the approach presented in Chapter 4 to the lower level problem

f(c̃, x)→ min
x∈X

, (1.13)

more than one optimal solution can be obtained, i.e. in this case there can be multiple
optima. That means, that Ψ(c̃) not necessarily is a singleton for some permissible c̃. If the
upper level objective function is sensitive to di�erent values of x ∈ Ψ(c̃), it is necessary
to give a rule of selection of an optimal x∗ ∈ Ψ(c̃) in order to evaluate F (c̃, x).
Notice that there is no reason why both decision-makers should collaborate, i.e. it is

not certain that the upper level decision-maker can enforce a particular choice of the lower
level decision-maker.
There exist only few possibilities to deal with this problem of non-uniqueness. Namely,

1. Assume that the follower always selects the optimal decisions which give the worst
values of F (c̃, x). This is the pessimistic or strong approach (Lohse (2011)), which
is used when the leader is not able to in�uence the follower and is forced to choose
an approach bounding the damage resulting from an unfavourable selection by the
follower. The resulting problem is:

min
c̃∈C̃

φp(c̃),

where φp(c̃) = max
x∈Ψ(c̃)

F (c̃, x).

2. Assume that the leader is able to in�uence the follower, so that the last one always
selects the variables x to provide the best value of F (c̃, x). This results in the
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so-called optimistic or weak approach (Dempe and Starostina (2007)), where the
resulting problem is stated as

min
c̃∈C̃

φo(c̃),

where φo(c̃) = min
x∈Ψ(c̃)

F (c̃, x).

3. In the case when none of the assumptions described earlier can be conceded, selection
function approach (Dempe and Starostina (2006)) can be applied to the initial fuzzy
bilevel optimization problem.

The selection approach 3. is quite new and it seems to be more appropriate for our
needs. The aim of this approach is to compute a selection function x(c̃) ∈ Ψ(c̃).
In the present work two di�erent algorithms for the solution of fuzzy bilevel optimization

problem (1.10) are presented in Chapter 7. Those algorithms are based on the selection
function approach and a switch between upper- and lower-level problems.
One possibility to compute a selection function x(c̃) ∈ Ψ(c̃) is to use Yager ranking

indices to avoid the incomparability of the fuzzy vectors. As shown by Liu and Kao
(2004), the Yager ranking indices approach can be very useful in solving (single level)
fuzzy optimization problems. Then, the fuzzy bilevel optimization problem can easily be
reformulated into a crisp bilevel optimization problem (see Yager (1981)). According to
Liu and Kao (2004), an optimal solution for �xed parameter is then taken as an optimal
solution of the initial follower's fuzzy optimization problem. This approach can easily be
extended to nonlinear convex fuzzy optimization problems.
Another approach is based on the calculation of membership functions values of the

elements of the fuzzy solution on the lower level. The preferable optimal solution is
supposed to have a maximal membership function value, i.e. according to Chanas and
Kuchta (1994), the solution has the highest potential being realized by the follower. An
algorithm for computation of a value of the membership function of the elements of the
fuzzy solution is presented in Dempe and Ruziyeva (2012).
Using of stability regions and a switch between two problems it is possible to �nd an

optimal vector of coe�cients at the upper level of the fuzzy bilevel optimization problem
such that the chosen solution on the lower level stays optimal in the fuzzy bilevel pro-
gramming problem. By examining all possible regions of stability, we obtain the global
optimal solution.

The fuzzy bilevel optimization problem with fuzzy objectives and fuzzy constraints leads
to further increase in complexity. The aim is to investigate this problem for the linear
case. The optimization problem is formulated as follows.
On the lower level the follower attempts to solve a fuzzy optimization problem

f(c̃, x) = p>1 c̃+ p>2 x→ min
x

(1.14)

subject to (c̃, x) ∈ P := P×P for the �xed fuzzy vector c̃. Here P is a fuzzy polytope in
the space of fuzzy vectors Fn and P is a polytope in the space of real vectors Rm. Crisp
coe�cients p1 and p2 are supposed to be known. Here the set of optimal solutions of fuzzy
optimization problem (1.14) is

Ψ(c̃) = arg min
x
{f(c̃, x) : (c̃, x) ∈ P}. (1.15)
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In turn, the leader minimizes his / her own linear objective function

F (c̃, x) = d>1 c̃+ d>2 x→ min
c̃

(1.16)

subject to (c̃, x) ∈ P with known coe�cients d1 and d2. Then, a fuzzy bilevel optimizaiton
problem is formulated as

F (c̃, x) = d>1 c̃+ d>2 x→ min
c̃

s.t. (c̃, x) ∈ P
x ∈ Ψ(c̃).

(1.17)

For the linear case of the fuzzy bilevel optimization problems solution procedures have
been proposed by Zhang et al. (2006) and Zhang and Lu (2010). The authors assumed
that we are dealing with the fuzzy variables and fuzzy constants that have trapezoidal
membership functions. The authors reformulate fuzzy bilevel optimization into a crisp
optimization problem for the �xed level-cut using the proposition that the weights of all
the left- and right-hand side functions are given. This con�icts with idea of bicriteria
optimization. The same is done with the constraints on the both levels. After all branch
and bound and k-th best algorithms are applied to the crisp bilevel optimization problem.
Dempe and Starostina (2007) considered the fuzzy bilevel optimization problem with

linear constraints. The authors followed Zimmermann (1978) and reformulated the fuzzy
bilevel optimization problem into a crisp bilevel optimization problem, where the opti-
mization task of both decision-makers is replaced by maximizing the minimum value of
all the membership functions in the respective problems, i.e. the max-min approach was
used.
Zhang et al. (2008) reformulated the fuzzy linear bilevel optimization problem into a

linear bilevel biobjective optimization problem and then applied the Karush-Kuhn-Tucker
approach to this crisp bilevel optimization problem.
In the thesis the selection function approach is applied to solve linear fuzzy bilevel opti-

mization problem (1.17). The adopted k-th best algorithm is based on taking α-cuts of the
fuzzy polytope P and applying methods described in Chapter 6. It is proved that with
the solution algorithm the global optimal solution is obtained. Moreover, membership
function values are calculated. Thus, it is possible to provide the leader with quantita-
tive information concerning the superiority of one optimal solution over others. These
derivations can be found in Chapter 8.
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2 Preliminaries

In this Chapter we give de�nitions of fundamental concepts such as fuzzy set and its level-
cut, fuzzy number and its level-cut, the space of fuzzy numbers and fuzzy vectors. This
is presented in Section 2.1. Further we de�ne operations with fuzzy (and crisp) numbers
in Section 2.2. We introduce a fuzzy order in Section 2.3, respectively. De�nition of a
fuzzy function is given in Section 2.4. These are the prerequisites required to discuss fuzzy
(bilevel) optimization problems.

2.1 Fuzzy sets and fuzzy numbers

Let us begin with a general de�nition of a fuzzy set. Fuzzy sets are sets whose elements
have degrees of membership. The concept was introduced by Lot� A. Zadeh (1965) as an
extension of the classical notion of a set. In classical set theory, the membership of elements
in a set is assessed in binary terms according to a bivalent condition � an element either
belongs or does not belong to the set. By contrast, fuzzy set theory permits the gradual
assessment of the membership of elements in a set. This is described with the aid of a
membership function valued in the real unit interval [0, 1]. Fuzzy sets generalize classical
sets, since the indicator functions of classical sets are special cases of the membership
functions of fuzzy sets, which only take values 0 or 1. In fuzzy set theory classical bivalent
sets are usually called crisp sets.

De�nition 2.1. A fuzzy set C̃ is de�ned as a pair (C, µC̃), where C is a crisp set (C ⊂ Rn)

and µC̃ : C → [0, 1] is the membership function of the fuzzy set C̃. For each element x ∈ C,
the value of µC̃(x) is called the grade of membership of x in C̃.

Corollary 2.1. The empty fuzzy set D̃ is de�ned with its membership function µD̃(x) ≡ 0
for all x ∈ D, i.e. is the same as a crisp empty set.

De�nition 2.2. The α-level set C̃α of the fuzzy set C̃ is de�ned for a �xed α ∈ [0, 1] as
the crisp set for which the degree of membership function exceeds or is equal to the level
α:

C̃α = {x | µC̃(x) ≥ α}.

Corollary 2.2. It is obvious that for α, α′ ∈ [0, 1] such that α ≤ α′, an inclusion C̃α ⊇ C̃α′
holds true.

De�nition 2.3. A fuzzy set C̃ is convex if and only if (i�) for all x, y ∈ C and for all
λ ∈ [0, 1] the following inequality holds true:

µC̃ (λx+ (1− λy)) ≥ min{µC̃(x), µC̃(y)}.
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Fig. 2.1: A membership function of fuzzy number ñ.

A fuzzy number is an extension of a regular number in the sense that it does not
represent one single value but rather a connected set of possible values, where each possible
value has its own "weight" between 0 and 1. This "weight" is called the membership
function. A fuzzy number is thus a special case of a convex fuzzy set. A fuzzy number c̃ is
an element of the nonempty fuzzy set C̃ enriched with the nontrivial membership function
µc̃. In other words, a real fuzzy number is a convex continuous fuzzy subset of a real line.
More precisely, a fuzzy number was de�ned by Dubois and Prade (1978) as follows:

De�nition 2.4. A real fuzzy number ñ is a convex continuous fuzzy subset of the real
line, whose membership function µñ is

• a continuous mapping from R to the closed interval [0, 1];

• constant on (−∞, c] : µñ(x) = 0 ∀x ∈ (−∞, c];
• strictly increasing on [c, a];

• constant on [a, b]: µñ(x) = 1 ∀x ∈ [a, b];

• strictly decreasing on [b, d];

• constant on [d,+∞): µñ(x) = 0 ∀x ∈ [d,+∞).

Here a, b, c and d are real numbers.

Within this De�nition we say that µñ(x) is the so-called truth value of the assertion
"the value of ñ is x". The membership function µñ(x) can be seen in Fig. 2.1.

Remark 2.1. In general we can have c = −∞, or a = b, or c = a, or b = d, or d = +∞.

Remark 2.2. If a = c = b = d, it is a crisp real number. If a = c and b = d, it is a
representation of the tolerance interval [a, b] of the measurement of a quantity. If a = b,
it is a representation of a fuzzy number, the value of which is "approximately a".

Example 2.1. A linguistic variable can be described as a fuzzy number. For instance,
we say "about 3". That means, that the number is not well-de�ned. Thus, it can be
represented as a fuzzy number 3̃ with a membership function equal to

µ3̃(x) =
1

(x− 3)2 + 1
. (2.1)

This membership function is illustrated in Fig. 2.2.
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Fig. 2.2: A possible membership function of fuzzy number 3̃.

µ
ñ
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Fig. 2.3: A membership function of triangular fuzzy number ñ.

The simplest way to de�ne a fuzzy number ñ is presented by e.g. Buckley (1995) as
follows.

De�nition 2.5. A continuous triangular fuzzy number ñ is represented with a triple
(nL, nT , nR), where nL < nT < nR and the membership function µñ is piecewise-linear.

A possible membership function of triangular fuzzy number ñ can be seen in Fig. 2.3.

Example 2.2. The fuzzy number 2̃ can be represented as a triple (0, 2, 6), i.e. its mem-
bership function is equal to

µ2̃(x) =

{
1
2
x, x ∈ [0, 2];

−1
4
x+ 3

2
, x ∈ [2, 6].

(2.2)

In the majority of examples presented in the present work we use triangular fuzzy
numbers. The main reason is the straight forward interpretation of the triple (nL, nT , nR):
nT is the best estimate, nL is the minimum possible and nR is the maximum possible
values. There exist a generalization to De�nition 2.5. It was shown by Dubois and Prade
(1978), that a convenient representation for a fuzzy number m̃ is another triple (m,β, γ)
of parameters of its membership function µm̃.

De�nition 2.6. A fuzzy number m̃ of LR type is de�ned with the following membership
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µ
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1

m

Fig. 2.4: A membership function of the fuzzy LR-number m̃.

function

µ(x) =


L
(
m−x
β

)
, if x ≤ m;

R
(
x−m
γ

)
, if x ≥ m.

Here L and R are symmetric bell-shaped functions such that

L(0) = R(0) = 1.

m is called the mean value; β and γ are respectively named left and right spreads.

The example for a membership function of the fuzzy LR-number m̃ can be seen in
Fig. 2.4.

De�nition 2.7. A normalized fuzzy number c̃ is a fuzzy number with a membership func-
tion, that reaches value equal to 1:

maxµc̃(x) = 1 ∀x ∈ R.

In the present work it is assumed that all fuzzy numbers are normalized.

De�nition 2.8 (Sakawa and Yano (1989)). The α-cut of a fuzzy number ã is de�ned
as the ordinary set ãα for which its degree of membership function exceeds the level α
(α ∈ [0, 1]):

ãα = {a | µã(a) ≥ α}. (2.3)

An alternative de�nition is the following.

De�nition 2.9. A level-cut (also called α-cut, α-level) of a fuzzy number c̃ is a special
threshold described as an interval [cL(α), cR(α)] ⊂ R for some �xed α ∈ [0, 1] (see Fig. 2.5).
Here cL(α) and cR(α) represent left- and right-hand side bounds of the fuzzy number c̃ on
this certain α-cut.

Assumption 2.1. Without loss of generality, from now on we assume that 0̃ = 0, i.e.

µ0̃(x) =

{
1, x = 0;

0, x 6= 0.
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Fig. 2.5: α-cut of fuzzy number c̃.

Let us extend the concept of a fuzzy set to a space of fuzzy numbers and a fuzzy number
to a fuzzy vector.

De�nition 2.10. A space of fuzzy vectors Fn is de�ned as a pair (Rn, µFn), where µFn :
Rn → [0, 1] is a membership function of the elements of the fuzzy space Fn.

Remark 2.3. In the thesis we denote a space of fuzzy numbers through F, where µF :
R→ [0, 1].

De�nition 2.11. A fuzzy vector c̃ is an element of the fuzzy space Fn enriched with a
nontrivial membership function µc̃.

2.2 Operations

Now we give some propositions concerning operations on fuzzy vectors. Operations on
fuzzy numbers obviously are corollaries.

Proposition 2.1. Two fuzzy vectors are equal i� they have the same membership func-
tions, i.e. for ã, b̃ ∈ Fn

ã = b̃ i� µã(x) = µb̃(x) ∀x ∈ Rn.

Corollary 2.3. A fuzzy vector ã ∈ Fn is equal to a crisp vector a ∈ Rn i� ã has the
following membership function:

µã(x) =

{
1, x = a;

0, x 6= a.

De�nition 2.12. Let ã, b̃ ∈ Fn. Then the sum of two fuzzy vectors ã + b̃ is de�ned as a
fuzzy vector d̃ ∈ Fn with the following property

dL(α) = aL(α) + bL(α) and dR(α) = aR(α) + bR(α) for all α ∈ [0, 1].

Here aL(α) and aR(α) are left- and right-side values of the fuzzy vector ã on a certain

α-cut. The same notation is used for the fuzzy vectors b̃ and d̃.
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Let A and B be two compact and convex subsets of Rn. If there exists a compact and
convex subset C of Rn, such that A = B + C = {b + c : b ∈ B and c ∈ C}, then C is
called the Hakuhara di�erence of A and B. According to Banks and Jacobs (1970) we
also write C = A�H B. Inspired by this concept, Wu (2008, 2009) de�ned the Hakuhara
di�erence between two fuzzy vectors as following.

De�nition 2.13. Let ã and b̃ be two fuzzy vectors in Fn. If there exists a fuzzy vector
c̃ ∈ Fn, such that c̃ + b̃ = ã (note that fuzzy addition is commutative) and c̃ is unique,

then c̃ is called the Hakuhara di�erence of ã and b̃ and is denoted by ã�H b̃.

The following proposition follows from De�nition 2.12 immediately, and is very useful
for the future considerations of the di�erentiation of fuzzy-valued functions.

Proposition 2.2. Let ã, b̃ ∈ Fn. If the Hakuhara di�erence c̃ = ã�H b̃ ∈ Fn exists, then

cL(α) = aL(α)− bL(α) and cR(α) = aR(α)− bR(α) for all α ∈ [0, 1].

Here [cL(α), cR(α)] is an α-cut of the fuzzy number c̃.

A sum and a di�erence of a fuzzy vector and a crisp vector are corollaries of De�ni-
tion 2.12 and Proposition 2.2.

Corollary 2.4. Let ã ∈ Fn and b ∈ Rn. Then the sum ã + b (= b + ã) is de�ned as a

fuzzy vector d̃ ∈ Fn

dL(α) = aL(α) + b and dR(α) = aR(α) + b for all α ∈ [0, 1].

Corollary 2.5. Let ã ∈ Fn and b ∈ Rn. If the Hakuhara di�erence c̃ = ã �H b ∈ Fn

exists, then

cL(α) = aL(α)− b and cR(α) = aR(α)− b for all α ∈ [0, 1].

If there exist vector d̃ ∈ Fn with the following property

dL(α) = b− aL(α) and dR(α) = b− aR(α) for all α ∈ [0, 1],

the we say that d̃ is the Hakuhara di�erence d̃ = b�H ã.

2.3 Fuzzy order

With aforesaid notions we are ready to talk about an order on fuzzy sets. An order for
fuzzy numbers can not be properly de�ned, if we talk about full order (that exist for
real numbers). Thus, we suggest to use the following order relations between two fuzzy
numbers ã and b̃:

Proposition 2.3. A fuzzy number ã is smaller than a fuzzy number b̃ i� for all α ∈ [0, 1]

the α-levels of ã are smaller than the α-levels of b̃, i.e.

ã ≺ b̃⇔ [aL(α), aR(α)] ≺ [bL(α), bR(α)] ∀α ∈ [0, 1].
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For the comparison of two intervals [a, b] and [c, d] in R the de�nition of Chanas and
Kuchta (1996b) is adopted:

De�nition 2.14. An interval [a, b] is smaller than an interval [c, d], i.e. [a, b] ≺ [c, d], if
a ≤ c and b ≤ d (with at least one strong inequality) for a, b, c, d ∈ R.

For two fuzzy numbers ã and b̃ and two crisp numbers a and b the following two
corollaries hold true.

Corollary 2.6. ã ≺ b⇔ aR(0) < b.

Proof. When at the right side of the fuzzy relation is a crisp number b we obviously have
that

ã ≺ b⇔ aL(α) < b and aR(α) < b ∀α ∈ [0, 1].

Thus, as soon as aL(α) < aR(α) for all α ∈ [0, 1], it is enough to write only one inequality
at the right side

ã ≺ b⇔ aR(α) < b ∀α ∈ [0, 1].

According to De�nition 2.4, a maximum of aR(α) is obtained for α = 0. Thus, the
corollary is proved.

Corollary 2.7. a ≺ b̃⇔ a < bL(0).

Proof. The case when at the left side of the fuzzy relation is a crisp number a is proved
analogously.

Analogously, for the non-strong relations we obtain the following.

Proposition 2.4. A fuzzy number ã is not greater than a fuzzy number b̃ i� for all
α ∈ [0, 1] the α-levels of ã do not exceed the α-levels of b̃, i.e.

ã � b̃⇔ [aL(α), aR(α)] � [bL(α), bR(α)] ∀α ∈ [0, 1].

De�nition 2.15. The relation [a, b] � [c, d] holds true if a ≤ c and b ≤ d for a, b, c, d ∈ R.

For fuzzy numbers ã and b̃ and crisp numbers a and b the Corollaries 2.6 and 2.7 are
transformed into

Corollary 2.8. ã � b⇔ aR(0) ≤ b.

Corollary 2.9. a � b̃⇔ a ≤ bL(0).

2.4 Fuzzy functions

To investigate fuzzy nonlinear problems we have to de�ne the notions of a fuzzy function
and its α-cut.

De�nition 2.16. A fuzzy function f̃ is an image, such that for every real number / vector

x0 from its domain D(f̃) it sets to conformity a fuzzy number / vector f̃(x0) ∈ F / Fn.
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De�nition 2.17. An α-cut of a fuzzy function f̃(x) is de�ned as an interval f̃(x)[α] :=
[fL(x, α), fR(x, α)].

Thus, the fuzzy function f̃(x) is fully described using the functions fL(x, α) and fR(x, α),
which are called the left- and right-hand side functions for the certain α-level of the fuzzy
function f̃(x). Following Panigrahi et al. (2008) it is assumed that fL(x, α) is a bounded
increasing and fR(x, α) is a bounded decreasing function of α. Moreover, it is obvious
that fL(x0, α) ≤ fR(x0, α) for all α ∈ [0, 1] and �xed x0 ∈ D(f̃).

De�nition 2.18 (Wu (2007)). The fuzzy function f̃(x) is called convex i� for all α ∈ [0, 1]
the functions fL(·, α) and fR(·, α) are convex.

Recall that

De�nition 2.19. A crisp function ϕ : Rn → R is called convex on Rn if for all x, y ∈ Rn

and all γ ∈ [0, 1] we have

ϕ(γx+ (1− γ)y) ≤ γϕ(x) + (1− γ)ϕ(y).

Continuity and di�erentiability of the fuzzy function f̃(x) can also be de�ned through
continuity and di�erentiability of the left- and right-hand side functions for �xed aspiration
level α.
In the whole dissertation we assume that the fuzzy function is continuous and its mem-

bership function is properly de�ned.
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3 Optimization problem with fuzzy
objective

In the dissertation the optimization problem with fuzzy objective function is solved by
its reformulation into the biobjective optimization problem and application of methods
of the scalarization technique, where minimization of the α-cut on the feasible set is used
Dempe and Ruziyeva (2011). Elements of the Pareto set of each biobjective optimization
problem are interpreted as optimal solutions of the fuzzy optimization problem on certain
level-cuts. The solution algorithm and the problem itself are well-described for the linear
case e.g. in Chanas (1983); Chanas and Kuchta (1996b); Rommelfanger et al. (1989);
Zimmermann (1978). For nonlinear fuzzy optimization problems the interested reader is
referred to Panigrahi et al. (2008); Wu (2004, 2007, 2008). The problem itself is stated in
Section 3.1.
In Section 3.2 using some convexity assumptions it is obtained that an optimal solution

of the fuzzy optimization problem is an optimal solution of some nonlinear optimiza-
tion problem obtained via scalarization of the objective functions of the corresponding
bicriterial optimization problem.
Section 3.3 is devoted to a question of local optimality of the optimal solution of fuzzy

optimization problem.
In Section 3.4 a question of existence of an optimal solution is considered.

3.1 Formulation

In many situations optimization problems with unknown or only approximately known
data need to be solved, e.g. the fuzzy �ow problem (compute optimal �ows in a tra�c
network with fuzzy costs for passing streets, see e.g. Dempe et al. (2009)) or problems
of optimal planning, see e.g. Orlovski (1985). It seems reasonable to approach these
problems within the framework of fuzzy set theory because, according to Zadeh (1965),
continuous fuzzy numbers are particularly suited for describing such kind of ambiguities.
In this Chapter we investigate the nonlinear fuzzy optimization problem

f̃(x)→ min
g(x) ≤ 0.

(3.1)

Here

• f̃ : Rn → F is a fuzzy function,

• g = (g1, . . . , gk) : Rn → Rk is a crisp vector-valued function and

• F is a set of fuzzy numbers over R.
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It is assumed that the functions f̃(x) and g(x) are always convex and continuous.
Let us denote through

X := {x : g(x) ≤ 0} (3.2)

the feasible set of fuzzy optimization problem (3.1). Let us assume henceforth that the
set X is convex and closed.
Fuzzy optimization problem (3.1) is solved, according to Dempe and Ruziyeva (2011):

The α-cuts are used to describe the objective function and it is assumed that its left- and
right-hand sides values are given by functions fL(x, α) and fR(x, α) for α ∈ [0, 1]. Using
a suitable ordering of the intervals f̃(x)[α] = [fL(x, α), fR(x, α)] for the �xed α the task
of the fuzzy function minimization over a feasible set X is transformed into a bicriterial
optimization problem. Application of methods of the scalarization technique allows to
solve such a problem with con�icting objectives (see e.g. Ehrgott (2005)). This solution
approach is described in the present Chapter.
If more than one α is used at the same time as e.g. in Rommelfanger et al. (1989) this

would lead to a multiobjective optimization problem. The generalization to this case is
straightforward.

3.2 Solution method

In this Section fuzzy convex optimization problem

f̃(x)→ min
x ∈ X (3.3)

is considered. Here X is the feasible set de�ned by (3.2) and f̃ : Rn → F is a fuzzy
function.
This problem (3.3) is replaced with the minimization of its α-cut (for some �xed α ∈

[0, 1]) f̃(x)[α] = [fL(x, α), fR(x, α)] on the feasible set X as it was done for the linear case
(see e.g. Chanas and Kuchta (1996b); Rommelfanger et al. (1989); Zimmermann (1991)).
The interval optimization problem

f̃(x)[α] = [fL(x, α), fR(x, α)]→ min
x ∈ X (3.4)

is obtained. Assume that fL(x, α) and fR(x, α) are continuous convex functions with �nite
values. To �nd an optimal solution of problem (3.4) it is necessary to compare intervals
in the objective for di�erent values of x for �xed α ∈ (0, 1).
Applying De�nition 2.14 to interval optimization problem (3.4) with the �xed α it is

easy to see that f̃(x1)[α] ≺ f̃(x2)[α], i.e.

[fL(x1, α), fR(x1, α)] ≺ [fL(x2, α), fR(x2, α)]

i� fL(x1, α) ≤ fL(x2, α) and fR(x1, α) ≤ fR(x2, α) (with at least one strong inequality)
for x1, x2 ∈ X. Then, a value of the fuzzy function f̃(x) at this α-level at the point x1 is
smaller than at x2.
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Using this ordering of intervals, the task of �nding an optimal solution of interval
optimization problem (3.4) reduces to �nding a solution of the following biobjective opti-
mization problem with the �xed α-cut:

fL(x, α)→ min
fR(x, α)→ min

x ∈ X.
(3.5)

It is well-known that in multiobjective optimization problems objective functions often
con�ict with each other. In general, no single solution will simultaneously minimize all
scalar objective functions. Therefore, solutions of problem (3.5) are de�ned by means of
the Pareto optimality concept (Ehrgott (2005)).

De�nition 3.1. A feasible point x̂ ∈ X is called Pareto optimal for biobjective optimiza-
tion problem (3.5) for some α ∈ [0, 1] if there does not exist another feasible point x̌ ∈ X
such that fL(x̌, α) ≤ fL(x̂, α) and fR(x̌, α) ≤ fR(x̂, α) with at least one strong inequality.

De�nition 3.2. A feasible point x̂ ∈ X is called weakly Pareto optimal if there is no
x̌ ∈ X such that fL(x̌, α) < fL(x̂, α) and fR(x̌, α) < fR(x̂, α).

Let us denote the set of weakly Pareto optimal solutions of problem (3.5) through
Ψw(α).
To tie fuzzy optimization problem (3.3) and biobjective optimization problem (3.5)

together, we use the following de�nition.

De�nition 3.3 (Dempe and Ruziyeva (2011)). A feasible solution x̂ is optimal for fuzzy
optimization problem (3.3) if there exist some α-cut such that x̂ is a Pareto optimal solu-
tion for corresponding biobjective optimization problem (3.5).

Let Ψ(α) denote the set of Pareto optimal solutions (for short, the Pareto set) of
problem (3.5) for a �xed α-cut. Now it is possible to rewrite De�nition 3.3 as

De�nition 3.4. A point x̂ ∈ X is called an optimal solution of fuzzy optimization prob-
lem (3.3) provided that for some α-cut x̂ ∈ Ψ(α).

Note that, in general, using this approach an optimal solution of the fuzzy optimization
problem turns out ambiguity since the Pareto optimal solutions of biobjective optimization
problem (3.5) form a certain set Ψ(α) in Rn. This is related to the idea of Chanas
and Kuchta (1994, 1996b). One general approach to compute the set of Pareto optimal
solutions of biobjective optimization problem (3.5) is to replace this problem with the
following scalarized optimization problem (Ehrgott (2005); Zadeh (1963))

f(x, λ)[α] := λfL(x, α) + (1− λ)fR(x, α)→ min
x ∈ X (3.6)

and to compute optimal solutions for this problem for 0 ≤ λ ≤ 1, where λ is the so-called
coe�cient of scalarization.
Optimal points of this problem for the �xed α ∈ [0, 1] form the sets of optimal solutions

Ψα(λ). Observe that a point x ∈ Ψα(0) (or x ∈ Ψα(1)) is a Pareto optimal solution



22 3 Optimization problem with fuzzy objective

provided that this set reduces to a singleton (see e.g. Ehrgott (2005)). In general, it can
only be shown that this set contains at least one Pareto optimal solution if it is bounded.
Ideas to compute the set of Pareto optimal solutions of the biobjective optimization

problem can also be found e.g. in Audet et al. (2008); Fliege (2004); Li et al. (2003).
The following two theorems, connecting sets of optimal solutions of biobjective op-

timization problem (3.5) and its scalarized problem (3.6), are well-known (see Ehrgott
(2005)).

Theorem 3.1. Let X be a convex set and fL(·, α) and fR(·, α) are convex functions. Then
the following statements hold.

1. For each x ∈ Ψ(α) there exists 0 ≤ λ ≤ 1 such that x ∈ Ψα(λ).

2. For each x ∈ Ψw(α) there exists 0 ≤ λ ≤ 1 such that x ∈ Ψα(λ).

This Theorem says that for the �xed α ∈ [0, 1] every optimal solution of biobjective
optimization problem (3.5) is obligatorily an optimal solution of scalarized optimization
problem (3.6) for the same α and some λ ∈ [0, 1]. For the weakly Pareto optimal solution
λ can be chosen from closed interval [0, 1].
For the next Remark we recall

De�nition 3.5 (Libor et al. (2003)). A real function h de�ned on Rn (or, more generally,
on a convex subset of Rn) is called a d.c.-function if it is a di�erence of two convex
functions.

In the literature such functions are sometimes labeled as δ-convex, ∆-convex (or delta-
convex) functions.

Remark 3.1. Some authors use other ordering (see e.g. Ishibuchi and Tanaka (1990);
Sengupta and Pal (2000, 2006); Wu (2007)) distinct from ours (see De�nition 2.14). The
mid-point and half-width ordering is not necessarily convex (in this case mid-point function
is convex, however half-width is a d.c.-function). Therefore, in general, Theorem 3.1 does
not hold true. Then we recommend using Benson's approach or the parametric approach
(Ehrgott (2005)) to derive an optimization problem for computing all Pareto optimal so-
lutions of biobjective optimization problem (3.5).

Converse of Theorem 3.1 is formulated for the �xed α-cut as

Theorem 3.2. Let x ∈ Ψα(λ). The following statements hold.

1. If 0 < λ < 1 then x ∈ Ψ(α).

2. If 0 ≤ λ ≤ 1 then x ∈ Ψw(α).

That means, that for λ ∈ (0, 1) every solution of scalarized optimization problem (3.6)
is necessarily an optimal solution of corresponding biobjective optimization problem (3.5).
And for λ ∈ [0, 1] an optimal solution of problem (3.6) is only weakly Pareto optimal of
corresponding biobjective optimization problem.

Remark 3.2. Note that Theorem 3.2 holds true without convexity assumption and the
solution x is a global optimal solution.
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fL

fR

Fig. 3.1: Solutions are weak Pareto.

Remark 3.3. Note that problem (3.6) was used by several authors to compute solutions of
the fuzzy optimization problem, see e.g. Chanas and Kuchta (1996b) for fuzzy linear opti-
mization problems. This approach is also called determination of a compromise solution by
means of a compromise objective function. However, other authors as e.g. Rommelfanger
et al. (1989) consider also the following problem

max{fL(x, α), fR(x, α)} → min
x ∈ X. (3.7)

This approach is called determination of a compromise solution by progressive reduction.
Using this approach just a weak Pareto optimal solution of problem (3.5) could be com-
puted.

It is clear, that according to the min-max approach, one function has unreasonable
preference over other. Fig. 3.1 demonstrates this: If maximum between left- and right-
hand side functions is fR, then left-hand side function fL is irrelevant. Thus, in min-max
approach the decision-maker loses his availability to choose, because the choice is already
done. Moreover, in general case if one function is more valuable for the decision-maker,
the min-max approach cannot re�ect the importance of one function over the other.

Example 3.1. Let us consider following fuzzy optimization problem

f̃(x) = (x+ 1̃)2 → min
x∈[−4,0]

, (3.8)

where 1̃ = (0, 1, 2). Taking an α-cut for α = 0.5, after all derivations, we obtain this
biobjective optimization problem

fL(x, α) = (x+ 1/2)2 → min
fR(x, α) = (x+ 3/2)2 → min .

(3.9)

With scalarization approach the set of Pareto optimal solutions

Ψ(α) = [−3/2,−1/2]

is obtained. However the min-max approach provides us with a single solution x0 = −1
and thus, the fuzzy nature in formulation of problem (3.8) cannot be re�ected.
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3.3 Local optimality

In this section we introduce de�nitions of local optimality for future consideration. A
local optimum of an optimization problem is a solution that is optimal (either maximal
or minimal) within a neighbouring set of solutions. Let S be a subset of Rn.

De�nition 3.6. x̂ is a local minimizer of a crisp function f(x) : S → R, if there exist
δ > 0 such that Bδ(x̂) ⊂ S,

f(x̂) ≤ f(x) ∀x ∈ Bδ(x̂), (3.10)

where Bδ(x̂) = {x | | x− x̂ |≤ δ}.
If

f(x̂) < f(x) ∀x ∈ Bδ(x̂), x 6= x̂, (3.11)

then x̂ is a strict local minimizer of function f .

This is in contrast to a global optimum, which is the optimal solution among all possible
solutions.

De�nition 3.7. If (3.10) holds for all x ∈ S, then x̂ is a global minimizer of function f
on S.
If (3.11) holds for all x ∈ S, x 6= x̂, then x̂ is a strict global minimizer of function f

on S.

We adopt this concept for fuzzy optimization problem (3.3) in following de�nitions.

De�nition 3.8. x̂ is a local minimizer of a fuzzy function f̃ : S → F, if there exist δ > 0
such that and there does not exist x ∈ Bδ(x̂) ∩ S:

f̃(x) ≺ f̃(x̂), (3.12)

where Bδ(x̂) = {x | | x− x̂ |≤ δ}.

Global optimal solution of the fuzzy optimization problem is de�ned earlier in De�ni-
tion 3.3.
For biobjective optimization problem (3.5) we formulate following

De�nition 3.9. A feasible point x̂ is called a local Pareto optimal solution for prob-
lem (3.5) for some �xed α ∈ [0, 1] if there exist δ > 0 such that there does not exist
x ∈ Bδ(x̂) ∩ S:

fL(x, α) ≤ fL(x̂, α) and fR(x, α) ≤ fR(x̂, α) (3.13)

with at least one strong inequality.

With the use of Section 2.3, De�nition 3.8 can be equivalently rewritten:

Corollary 3.1. x̂ is local minimizer of fuzzy optimization problem (3.3) i� there exist
α ∈ [0, 1] such that x̂ is a local Pareto optimal solution for problem (3.5).

Let us formulate a relationship between sets of local optimal solutions of problems (3.5)
and (3.6) for the some �xed α-cut.
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Theorem 3.3. Let S be a convex set and fL(·, α) and fR(·, α) are convex functions. Then
for each local Pareto optimal solution x̂ of problem (3.5) there exists 0 ≤ λ ≤ 1 such that
x̂ is a local optimal solution of problem (3.6).

The converse of Theorem 3.3 is formulated for the �xed α-cut as follows.

Theorem 3.4. Let x̂ be a local optimal solution of problem (3.6) for some 0 < λ < 1.
Then x̂ is a local optimal solution of problem (3.5).

Proofs of the last two Theorems are based on Separation Theorem (see Ehrgott (2005)).

3.4 Existence of an optimal solution

Let us consider fuzzy optimization problem

f̃(x)→ min
x ∈ X (3.14)

De�nition 3.10. A fuzzy function f̃(x) has �nite value, if functions | fL(x, α) |<∞ and
| fR(x, α) |<∞ simultaneously for all α ∈ [0, 1].

Theorem 3.5. An optimal solution of problem (3.14) exists if X 6= ∅, X is a compact

and f̃(x) is continuous fuzzy function with �nite values.

Proof. Existence of an optimal solution of problem (3.14) means, that for some α ∈ [0, 1]
there exist Pareto optimal solution x̂ ∈ X of problem (3.5) (see De�nition 3.3). Let us take
λ ∈ (0, 1) and solve scalarized problem (3.6). Due to continuity of fL(·, α) and fR(·, α),
this is the problem of minimizing continuous function over a compact set. Weierstrass
Theorem guaranties the existence of the optimal solution x̂ of problem (3.6). Due to
Theorem 3.2 x̂ is Pareto optimal solution of problem (3.5). According to De�nition 3.3,
x̂ is an optimal solution of fuzzy optimization problem (3.14).
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4 Linear optimization with fuzzy
objective

In Chapter 3 we have considered a solution of the fuzzy optimization problem as an element
of the Pareto set of the corresponding biobjective optimization problem. However, when
the fuzzy optimization problem is solved it is natural to consider its solutions to be fuzzy.
The fuzzy solution consist of all solutions, given in De�nition 3.3.
Hence, a criterion for comparison the elements of the fuzzy optimal solution is required.

As soon as the fuzzy solution has a membership function, a possible opportunity to choose
an appropriate for the decision-maker element of the fuzzy solution - the so-called best
solution - is to compare values of the membership function of these elements. The cri-
teria allows to see a correlation among all the solutions and quantitatively measure the
advantage of one choice over others.
The main aim of this Chapter is to �nd the best realization of this idea based on

modern solution algorithms Cadenas and Verdegay (2009); Chanas and Kuchta (1994,
1996b); Dempe and Ruziyeva (2012); Jiménez et al. (2006).
Let us consider the fuzzy linear optimization problem, where a fuzzy objective function

is f̃(x) = c̃x and a feasible set is X. It is assumed that left- and right-hand side values
of the objective function coe�cients are given by continuous functions cL(α) and cR(α)
for all α ∈ [0, 1]. (Remember that cL(α) is increasing and cR(α) is decreasing functions
on α). Using a suitable ordering of the intervals [cL(α)x, cR(α)x] for �xed level-cut, the
task of the fuzzy function minimization over the set X is transformed into a bicriterial
optimization problem, which is solved by means of the scalarization technique. This is
described in Section 4.1.
As soon as a solution of the scalarized problem (with a �xed α-cut) depends on a

parameter λ, a variation of λ ∈ [0, 1] gives the optimal solution points. The set of those
points then represents a subset of a Pareto set. This is explained with the illustrative
example, given in Section 4.2.
Clearly, the approach of partial ordering the intervals may lead to situations of inde-

cisiveness (Sengupta and Pal (2000)). This re�ects the incomparability of the elements
of the set of Pareto optimal solutions of the biobjective optimization problem. The com-
putation of all such solutions is the basis of our approach to compute the membership
function values of the solutions of the initial fuzzy optimization problem. For this, we
have to compute the membership function values for all feasible points with the presented
in this Chapter method.
As soon as our method is based on optimality conditions for the fuzzy linear optimization

problem, we derive them in Section 4.3.
A procedure of computation the membership function value of each element of the

fuzzy solution is based on these optimality conditions and is described in Section 4.4. For
brevity, the discussions are limited to one element of the set of fuzzy optimal solutions,
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but can easily be extended.
The procedure is numerically solved for the wide class of triangular fuzzy numbers (that

can be extended to the class of LR-numbers) in Subsection 4.4.1.
This Chapter is concluded with a numerical example where the crucial elements of the

fuzzy optimal solution are compared with respect to the membership function values and to
objective function value, as well. Of course, the method provides the decision-maker with
important quantitative information. These discussions are presented in Subsection 4.4.2.

4.1 Main approach

The linear case of fuzzy optimization problem (3.3) is represented by the following pro-
gramming problem with fuzzy coe�cients in the objective function:

c̃>x→ min
Ax ≤ b
x ≥ 0

(4.1)

with an n-dimensional vector of decision variables x.
Here

• c̃ ∈ Fn is a vector of fuzzy numbers;

• A ∈ Rm×n is the constraint matrix;

• b ∈ Rm is the right-hand side vector.

For simplicity instead of problem (4.1) we investigate the fuzzy linear optimization
problem

c̃>x→ min
Ax = b
x ≥ 0.

(4.2)

Adding slack variables, the investigation of this special problem is of no loss of generality.
This problem is replaced with the minimization of the α-cut on the feasible set (see

e.g. Chanas and Kuchta (1994, 1996b); Rommelfanger et al. (1989); Zimmermann (1991)).
Thereby, the interval optimization problem is obtained:

[c>L(α)x, c>R(α)x]→ min
Ax = b
x ≥ 0.

(4.3)

Using De�nition 2.14, the task of �nding an optimal solution of interval optimization
problem (4.3) reduces to the search of a solution of the following biobjective optimization
problem with a �xed α-cut:

c>L(α)x→ min
c>R(α)x→ min

Ax = b
x ≥ 0.

(4.4)

Optimal solutions of problem (4.4) are de�ned by means of the Pareto optimality con-
cept:
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De�nition 4.1. A feasible point x̂ ∈ X := {x : Ax = b, x ≥ 0} is called Pareto optimal
for linear biobjective optimization problem (4.4) if there does not exist another feasible
point x̌ ∈ X such that c>L(α)x̌ ≤ c>L(α)x̂ and c>R(α)x̌ ≤ c>R(α)x̂ with at least one strong
inequality.

Let Ψ(α) denote the set of Pareto optimal solutions of biobjective optimization prob-
lem (4.4) for a certain α-cut.
Such an approach gives no unique optimal solution of the fuzzy optimization problem,

since the Pareto optimal solutions of problem (4.4) form a certain set in Rn. According
to Ehrgott (2005) and Zadeh (1963), to compute all Pareto optimal solutions of linear
biobjective optimization problem (4.4) it is su�cient to compute all optimal points of the
linear scalarized problem

λc>L(α)x+ (1− λ)c>R(α)x→ min
Ax = b
x ≥ 0

(4.5)

with 0 < λ < 1. For a �xed α-cut the optimal points of problem (4.5) form the sets of
optimal solutions Ψα(λ).
This λ can be explained referring to the decision rule of Hurwicz. The optimism / pes-

simism parameter λ re�ects the attitude of the decision-maker. Because of this restriction
for λ, the weighted sum λc>L(α)x + (1 − λ)c>R(α)x is a convex combination of the objec-
tive functions c>L(α)x and c>R(α)x. Therefore, the weighting factor λ can be interpreted
as the relative importance between two objective functions of biobjective optimization
problem (4.4).
In general, each single optimization problem (4.5) for some �xed α and λ determines

an optimal solution set. The weighted sum method changes weights among the objective
functions c>L(α)x and c>R(α)x systematically (e.g. by a predetermined step size in the
hyper-ellipse approximation of Fadel and Li (2002); Li et al. (2003).) The weight on each
single objective function may be adaptively determined (see, for instance, the adaptive
weighted sum method of Kim and Weck (2005)). Benson's approach is shown to be
e�ective in constructing approximation to the set of Pareto optimal solutions (Löhne
(2011)). It is based on idea, that it is su�cient to know the upper and lower images
(in the objective space), which are fully determined by �nitely generated solutions. The
algorithm can be understood as primal-dual method. However, a dual variant of Benson's
algorithm also exist. With the use of geometric duality, the result would be the same, as
obtained with Benson's algorithm.
Here we assume that Pareto optimal solutions are already determined.
As stated in Theorem 3.2: Any optimal solution of scalarized optimization problem

(4.5) for 0 < λ < 1 is Pareto optimal for biobjective optimization problem (4.4). Hence,
solutions of problem (4.5) for di�erent weight combinations produce a subset of the Pareto
solutions. Vice-versa, for each Pareto optimal solution x̂ of problem (4.4), there exists
0 < λ < 1 such that x̂ ∈ Ψα(λ), i.e.

Ψ(α) =
⋃

λ∈(0,1)

Ψα(λ). (4.6)

Note that if a vertex x1 is a Pareto optimal solution of biobjective optimization prob-
lem (4.4) for α ∈ [α1, α1] and an adjacent vertex x2 is also optimal for problem (4.4) for
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α ∈ [α2, α2], then each point x on the face in between these two optimal solutions is also
Pareto optimal for this problem (4.4) for α ∈ [α1, α1]

⋂
[α2, α2].

It is essential to understand, that if for some α there exists λ such that x1 is optimal for
scalarized optimization problem (4.5) and there exist no λ for x2, then the face in between
these two vertices would not be a subset of Pareto optimal points.
Thereby it can be assumed from now onwards that we have accurate results of the set

of Pareto optimal solutions for our future discussion.

4.2 Example

To show illustratively the Rule of Hurwicz let us consider the tra�c problem with fuzzy
cost coe�cients.
Consider a road system as a tra�c network G = (V,E) consisting of a node set V for

junctions and an edge set E containing all streets connecting the junctions. These streets
may have di�erent capacities.
Assume that v units of a certain good should be transported with minimal overall costs

from the origin s ∈ V to the destination d ∈ V through the tra�c network G. The problem
is to compute optimal amounts of transported goods on the streets of the network. The
travel costs for traversing a street usually are not known exactly, that motivates us to
assume that all travel costs have fuzzy values.
Let xkl denote the amount of transported units over the edge (k, l) ∈ E, that connects

two vertices k, l ∈ V . Let Ok (Ik) denote the set of all edges leaving (entering) the node
k, i.e. such designations are connected to the words out and in.
Assume that the �ow xkl on the edge (k, l) is bounded by the capacity ukl. This is

expressed in inequality (4.8) given below. Constraint (4.9) is used to guarantee that the
total incoming �ow is equal to the total outgoing �ow. Moreover, the outgoing �ow in the
origin equals to v (see equation (4.10)).

f̃(x) =
∑
k,l∈V

c̃klxkl → min (4.7)

xkl ≤ ukl ∀k, l ∈ V, (4.8)∑
k∈Il

xkl −
∑
i∈Ol

xli = 0, ∀ l ∈ V \ {s, d}, (4.9)∑
k∈Is

xks −
∑
i∈Os

xsi = −v, (4.10)

xkl ≥ 0 (4.11)

This problem is a special case of fuzzy linear optimization problem (4.2), where the ob-
jective function in (4.7) re�ects the total fuzzy cost and Ax = b is an abbreviation of
constraints (4.8) - (4.10). Inequality (4.11) insures non-negativity of the �ow.
Description of a numerical example is following.
Let f̃(x) be the total fuzzy �ow that we have to minimize:

f̃(x) = 3̃x12 + 8̃x13 + 6̃x14 + 7̃x23 + 7̃x25 + 3̃x35 + 4̃x45 → min
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with given demands

xs1 + xs2 = 90
x4d + x5d = 90

xs1 = x12 + x13 + x14

xs2 + x12 = x23 + x25

x13 + x23 = x35

x14 = x45 + x4d

x25 + x35 + x45 = x5d

and capacities

0 ≤ xs1 ≤ 90
0 ≤ xs2 ≤ 90
0 ≤ x12 ≤ 90
0 ≤ x13 ≤ 55
0 ≤ x14 ≤ 35
0 ≤ x23 ≤ 60
0 ≤ x25 ≤ 30
0 ≤ x35 ≤ 90
0 ≤ x45 ≤ 35
0 ≤ x4d ≤ 35
0 ≤ x5d ≤ 90

The numerical example of the fuzzy optimization problem is illustrated in Fig. 4.1.
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Fig. 4.1: The example of the tra�c network.

Suppose that fuzzy numbers c̃ are de�ned according to De�nition 2.5 as continuous
triangular fuzzy numbers (cL, cT , cR). Let take an α-cut for α = 0.5 and write the left-
and right-side bounds of the fuzzy numbers as intervals [cL, cR]0.5:

c̃ = (cL, cT , cR) [cL, cR]0.5
3̃ = (1, 3, 5) [2, 4]
4̃ = (2, 4, 6) [3, 5]
6̃ = (0, 6, 22) [3, 14]
7̃ = (5, 7, 9) [6, 8]
8̃ = (0, 8, 16) [4, 12]

For α = 0.5 the interval optimization problem could be analogously to problem (4.3)
written as

f̃(x)[0.5] = [2, 4]x12 + [4, 12]x13 + [3, 14]x14 + [6, 8]x23+

+ [6, 8]x25 + [2, 4]x35 + [3, 5]x45 → min

with the same capacities and demands.
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Fig. 4.2: The Pareto front.

Then it is possible to reformulate this problem to the biobjective optimization problem
on the level-cut α = 0.5:

f 0.5
L (x) = 2x12 + 4x13 + 3x14 + 6x23 + 6x25 + 2x35 + 3x45 → min

f 0.5
R (x) = 4x12 + 12x13 + 14x14 + 8x23 + 8x25 + 4x35 + 5x45 → min

with above de�ned capacities and demands.
Now it is possible to use some of mathematical programming software tools to approx-

imate the Pareto set of optimal solutions of the scalarized optimization problem. Our
choice is MATLAB, by means of that a plot of the Pareto front - the so-called image of
the set of all Pareto optimal solutions in the objective space - is also built. For the com-
putation the step size equal to 0.01 for steps with respect to the coe�cient of scalarization
λ is chosen.
For weighting factor λ = 1, when the estimation of decision-maker is relatively opti-

mistic that all costs for traversing tra�c network G are minimal, the optimal solution is
xL = (0, 25, 35, 0, 30, 25, 0) and the total function value is fL = 435.
On the contrary, the pessimistic estimation, which is represented by λ = 0, has the

optimal solution xR = (0, 0, 0, 60, 30, 60, 0) and the total function value is fR = 960.
For the illustrative point it is important to focus on Fig. 4.2.
It is obvious that any attempt for decreasing one value of the functions fL(x) and fR(x)

has as a consequence increasing the value of the other. As a �nal decision the decision-
maker has to select one of the Pareto optimal solutions (i.e. one of the optimal solutions
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of the initial fuzzy optimization problem) according to an additional rule. This rule can
be based e.g. on the graphical interpretation.

4.3 Optimality conditions

In this Section a fuzzy linear optimization problem

c̃>x→ min
x ∈ X (4.12)

and its optimality conditions are discussed. The idea resembles the approach to optimality
conditions for a crisp linear optimization problem

c>x→ min
x ∈ X (4.13)

Here

• x is an n-dimensional vector of decision variables,

• c̃ is a vector in the space of fuzzy numbers Fn

• c is a vector of crisp numbers in Rn.

The feasible set in a decision space X = {x : Ax = b, x ≥ 0} is de�ned by the m × n
constraint matrix A and the right-hand side vector b ∈ Rm. Assume that rank(A) = m
and b ≥ 0.

De�nition 4.2 (Bertsimas and Tsitsiklis (1997)). A nonsingular m × m submatrix AB
of A is called basic matrix, where B is a set of the columns of the matrix A de�ning AB.
The set B is called a basis. Let N := {1, ...n}\B be a set of nonbasic column indices. A
variable xi and an index i are called basic if i ∈ B, nonbasic otherwise.

With the notion of a basis it is possible to split A, x, c and c̃ into basis and nonbasis parts,
using B and N as index sets. Let us write A = (AB, AN), x = (xB, xN), c> = (c>B, c

>
N)

and c̃> = (c̃>B, c̃
>
N).

Using those notations, consider the feasible set in the decision space

X = {x : Ax = b, x ≥ 0} = {x : ABxB + ANxN = b, x ≥ 0} =

= {x = (xB, xN)> : xB = A−1
B b− A−1

B ANxN ≥ 0, xN ≥ 0} (4.14)

under invertibility assumption of the matrix AB.
Setting xN = 0 (and, therefore, xB = A−1

B b), a basic solution can be obtained as
x = (A−1

B b, 0). If in addition xB ≥ 0, it is called a basic feasible solution. Then, the basis
B is also called feasible.
Each single basic feasible solution, i.e. each vertex of the convex polytopeX, determines

a corresponding matrix AB, with AB being nonsingular.
Please note, that the above-stated reasoning are not dependent on the objective func-

tion. So, result (4.14) can be used also in the case when the objective function is fuzzy.
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The well-known optimality condition for crisp linear optimization problem (4.13) reads
as follows [Bertsimas and Tsitsiklis (1997)]:

c>BA
−1
B A− c> ≤ 0. (4.15)

Adaptation of the optimality condition for fuzzy linear optimization problem (4.12) is
the following

c̃>BA
−1
B A− c̃> ≤ 0. (4.16)

Optimality condition (4.16) can be reformulated as optimality condition for interval
optimization problem (4.3) with a �xed level-cut α ∈ [0, 1]

c̃>B[α]A−1
B A− c̃>[α] ≤ 0. (4.17)

Then, taking into account all derivations from Section 4.1 of the reduction of inter-
val optimization problem (4.3) to scalarized optimization problem (4.5), the optimality
condition for problem (4.5) can be de�ned using the auxiliary function

h(α, λ) = (λcL(α) + (1− λ)cR(α))>BA
−1
B A− (λcL(α) + (1− λ)cR(α))> (4.18)

as
h(α, λ) ≤ 0. (4.19)

It is easy to see that the vector function h(α, λ) := (h1(α, λ), . . . , hn(α, λ))> is linear with
respect to the weighting factor λ.

Remark 4.1. In the crisp case the following fact is well-known. If we have a linear
minimization problem with the upper bounds and the solution x̂ for some nonbasic index
i obtains the upper bound, i.e. x̂ has a saturated variable [x̂]i, the optimality condition
reads as [

c>BA
−1
B A− c>

]
i
≥ 0.

See Dempe and Schreier (2006) for details.
Let us adopt this optimality condition for the fuzzy case of linear optimization problem

with the upper bounds. If we assume, that some of the solutions of such fuzzy optimization
problem x̂ has a saturated variable [x̂]i for some nonbasic index i, optimality condition for
this index is

hi(α, λ) ≥ 0, (4.20)

where h(α, λ) is de�ned in formula (4.18).

4.4 Membership function value

Consider a fuzzy linear programming problem with fuzzy coe�cients in the objective
function

c̃>x→ min
x ∈ X = {x : Ax = b, x ≥ 0} (4.21)

where c̃ ∈ Fn, A ∈ Rm×n and b ∈ Rm.
As soon as a solution of some problem cannot have better degree of exactness, we assume

that the solution x̄ of a fuzzy optimization problem is also fuzzy, i.e. x̄ = (χ, µx̄). We
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have already obtained for each level cut α ∈ [0, 1] the crisp set χ = Ψ(α). The rest is to
compute the membership function µx̄. The shape of this function can be very complicated.
And actually, to compare the elements of the set χ, we do not need the whole function,
but only its degree.
Knowledge of the membership function values of the elements of the fuzzy optimal

solution enables the decision-maker to make an educated choice between these solutions.
Moreover, using our approach, a decision-maker can see a correlation among solutions and
quantitatively measure the advantage of his / her choice over other solutions.
An optimal solution of fuzzy optimization problem (4.21) is de�ned by Chanas and

Kuchta (1994) as a fuzzy set in the set of feasible solutions with the membership function
equal to the geometric measure of the set of all α ∈ [0, 1] such that this solution is optimal
of interval optimization problem (4.3).
In a view of the fact that interval optimization problem (4.3) transforms into bicriterial

parametric optimization problem (4.4) it is possible to determine for each basic solution,
which is e�cient for at least one value of α, the whole set of the α-cuts, for which it remains
e�cient. This set can be composed of a certain number of subintervals [αs−1, αs] ⊆ [0, 1]
for s = 1, . . . , k (where k is �xed) for a �xed solution x̄. Then, according to Chanas and

Kuchta (1994), the membership function value can be obtained as µ(x̄) =
k∑
s=1

[αs − αs−1].

Or more precisely:

De�nition 4.3 (Chanas and Kuchta (1994)). The solution x̄ of fuzzy linear programming
problem (4.12) (with fuzzy coe�cients in the objective function) is a fuzzy set in the set
of feasible solutions with the following membership function

µx̄(x) = |{α | x ∈ Ψα, α ∈ (0, 1]}|, (4.22)

where Ψα is the set of optimal solutions of interval optimization problem (4.3) and | . |
stands for the geometric measure of the set.

The main approach, described in Section 4.1 provides us the following. Using described
above order relation, we obtain that the set of optimal solutions of interval optimization
problem (4.3) are equal to the set of Pareto optimal solutions of problem (4.4) for the
same α-cut.
Now, using the linearization method, described e.g. in Ehrgott (2005), the determina-

tion of the set of all α such that x̂ ∈ Ψ(α) involves determining the set of all α such that
there exists λ = λ(α) ∈ [0, 1] : x̂ is an optimal solution for scalarized optimization prob-
lem (4.5). As soon as among the vertices of the polytope of the feasible set X are the basic
solutions, let us compute them using the Simplex-method or other appropriate method
(see e.g. Avis and Fukuda (1992); Dyer and Proll (1977)). For the future discussions, let
us assume, that x̂ is a nondegenerate solution.
For all i = 1, . . . , n let us solve equation hi(α, λ) = 0 for a �xed α-cut. This means

that for the basic solutions there are n equations instead of the same number of inequali-
ties (4.19), i.e.

hi(α, λ) = [(λcL(α) + (1− λ)cR(α))>BA
−1
B A− (λcL(α) + (1− λ)cR(α))>]i = 0. (4.23)
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For de�ning signs of hi(α, λ) for all i = 1, . . . , n, let us reorder the functions hi such
that h1, . . . , ht are decreasing and ht+1, . . . , hn are increasing functions with respect to λ.
For this it is enough to calculate the signs of the derivatives

h′i(α, ·) = [(cL(α)− cR(α))>BA
−1
B A− (cL(α)− cR(α))>]i (4.24)

for all i = 1, . . . , n.
For the �xed α let us denote by λi the root of the function hi(α, λ). Knowing all roots

λ1 . . . , λn, it is easy to compute important for the future discussion

l.h.s.(α) := max{λ1, . . . , λt} and r.h.s.(α) := min{λt+1, . . . , λn}

and, thus, to de�ne an interval I(α) := [l.h.s.(α), r.h.s.(α)] for which inequality (4.19)
holds. This interval is moving on the λ-axe when α is changing. The interval I(α) is
presented in Fig. 4.3 for a �xed α so that the feasible solution x̂ is Pareto optimal. In
Fig. 4.3, k (1 ≤ k ≤ t) is an index of a decreasing function hk(α, λ) such that l.h.s.(α) = λk
and p (t+1 ≤ p ≤ n) is an index of an increasing function hp(α, λ) such that r.h.s.(α) = λp.
Note, that emptiness of the interval I(α) means that the chosen solution x̂ is nonoptimal

for scalarized problem (4.5), i.e. there is no λ ∈ [0, 1] such that x̄ ∈ Ψα(λ). Therefore, for
this α the set of Pareto optimal solutions for biobjective optimization problem (4.4) Ψ(α)
does not include x̂. This means, that in this certain α-cut the set of optimal solutions of
fuzzy optimization problem (4.21) does not contain x̂.
With this notation it is possible to rewrite optimality condition (4.19) as

| I(α) |> 0 (4.25)

and to compute a membership function value of the solution x̂:

µx̄(x̂) =| {α : x̄ ∈ Ψ(α)} |=| {α :| I(α) |> 0} |=| {α : r.h.s.(α)−l.h.s.(α) > 0} | . (4.26)

Remark 4.2. In the case, when for some solution x0 r.h.s.(α) ≤ l.h.s.(α) for all α ∈ [0, 1],
the value µx̄(x0) is equal to zero.

This provides the decision-maker with all the basic solutions of initial problem (4.21)
of which it can reasonably be said that to a positive extent they are optimal solutions of
the problem. A value expressing this extension (between 0 and 1) is also supposed to be
given each time. Thus, it is up to the decision-maker to eliminate those basic solutions
for which, up to him / her, the measure of optimality is too small and to choose the �nal
solution from among the others.
For the future discussions let us make following

De�nition 4.4. A solution of the fuzzy optimization problem x̂ is the best solution pro-
vided that µ(x̂) ≥ µ(xi) for all other fuzzy solutions xi (i ∈ B).

4.4.1 Special case of triangular fuzzy numbers

Consider now a subclass of LR-numbers - the continuous triangular fuzzy numbers that
are represented according to De�nition 2.5 as a triple (cL, cT , cR). In this case it is possible
to write

cL(α) = (cT − cL)α + cL and cR(α) = (cT − cR)α + cR. (4.27)
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λ0

h1(α, λ)

hk(α, λ)
hp(α, λ)hn(α, λ)

...

· · ·
l.h.s(α) r.h.s(α)

I(α)

Fig. 4.3: Interval of satis�ed optimality conditions (α is �xed).

Assume that the solution x̄ is optimal for fuzzy linear optimization problem (4.21). Let
us compute its membership function value.
Consider optimality condition (4.19) for fuzzy numbers de�ned as (4.27). Note that in

this case function h(α, λ) is linear with respect to α. According to equation (4.23), as
soon as all components of the vector function h(α, λ) = (h1(α, λ), . . . , hn(α, λ))> are equal
to zero for basic indices i ∈ B, it makes sense to check optimality condition (4.19) only
for nonbasic indices i ∈ N . Let us rewrite condition (4.23) in terms of α componentwise.

hi(α, λ) = [(λ[(cT − cL)α + cL] + (1− λ)[(cT − cR)α + cR])>B A
−1
B A−

− (λ[(cT − cL)α + cL] + (1− λ)[(cT − cR)α + cR])>]i = 0. (4.28)

Let us denote c(λ) := λcL + (1 − λ)cR. Now equation (4.28) can equivalently be
reformulated as

hi(α, λ) = [α(cT − c(λ))>BA
−1
B A+ c>B(λ)A−1

B A− α(cT − c(λ))> − c>(λ)]i = 0. (4.29)

Denoting a numerator through

Numi(λ) := [c>(λ)]i − [c>B(λ)A−1
B A]i (4.30)

and a denominator through

Deni(λ) := [(c>T − c>(λ))BA
−1
B A]i − [c>T ]i + [c>(λ)]i, (4.31)

optimality condition (4.19) results in

z−i (λ) :=
Numi(λ)

Deni(λ)
≤ α for Deni(λ) < 0 and i ∈ N (4.32)

and

z+
i (λ) :=

Numi(λ)

Deni(λ)
≥ α for Deni(λ) > 0 and i ∈ N. (4.33)
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Since 0 ≤ α ≤ 1, it is obvious that it only makes sense to compute z−i (λ) and z+
i (λ) if

Deni(λ) and Numi(λ) have the same signs, i.e.

Deni(λ)Numi(λ) > 0.

Let us start the computation of the interval I(α) with the lower bound. We solve a
following optimization problem for each i ∈ N :

z−i (λ)→ min
λ ∈ {λ : Deni(λ) < 0} (4.34)

and denote an optimal function value through z∗−i .
This means that the solution x̄ belongs to the set Ψα(λ) of the optimal solutions of

scalarized optimization problem (4.5) if there exists λ ∈ (0, 1) : Deni(λ) < 0 and some
0 ≤ α ≤ 1 such that the inequality α ≥ z∗−i holds true for all i ∈ N .
The inverse problem for computing the upper bound of the interval for α is given by

analogy as
z+
i (λ)→ max

λ ∈ {λ : Deni(λ) > 0}. (4.35)

Let the optimal function value of this problem be z∗+i for each i ∈ N .
Using similar discussions, x̄ is an optimal solution of scalarized optimization prob-

lem (4.5) if there exists λ ∈ (0, 1) such that Deni(λ) > 0 and α ∈ [0, 1] such that the
inequality α ≤ z∗+i holds true for all i ∈ N .
Recalling equation (4.6), x̄ has to be an optimal solution of biobjective optimization

problem (4.4).
Using (4.26) and combining z∗−i ≤ α and z∗+i ≥ α it is easy to derive the following result,

that guarantees that x̄ is an optimal solution of biobjective optimization problem (4.4)
for some 0 ≤ α ≤ 1:

x̄ ∈ Ψ(α)⇔ max
i∈N
{0, z∗−i } ≤ α ≤ min

i∈N
{z∗+i , 1}. (4.36)

Thus, the membership function value of the element of the fuzzy solution x̄ can be
obtained as a set of all α, such that (4.36) holds true, i.e.

µ(x̄) = min
i∈N
{z∗+i , 1} −max

i∈N
{0, z∗−i }. (4.37)

Thus, we have obtained a very important formula and shown that the membership
function value can exactly be computed with the use of optimality conditions. The for-
mula (4.37) is also used for future discussions and algorithms.

Remark 4.3. Applying the same discussions to the problem mentioned in Remark 4.1,
for nonbasic index i x̂ has a saturated variable [x̂]i, optimality condition (4.20) results in

z−i (λ) ≤ α for Deni(λ) > 0 and i ∈ N (4.38)

and
z+
i (λ) ≥ α for Deni(λ) < 0 and i ∈ N. (4.39)

Note, that the rest of discussions (including formula (4.37)) stays unchanged.
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There is a special case of the solution, when its membership function value achieves the
maximal value equal to 1, as in the normalized case (see De�nition 2.7).

De�nition 4.5. A solution x̄ is called a strongest solution if µ(x̄) = 1.

Foregoing reasoning can be extended to a more complicated problem statement, i.e. on
fuzzy numbers of LR-type.
It is clear that for the known type of the fuzzy numbers it is possible to compute

a membership function value of the optimal solution and thus, de�ne how much this
optimal solution is better than others.
This we demonstrate with the following example.

4.4.2 Example

Let us consider the tra�c problem with fuzzy cost coe�cients.
In the following a numerical example is considered. Let f̃(x) be the total fuzzy cost

that we have to minimize:

f̃(x) = 3̃x12 + 8̃x13 + 7̃x23 + 7̃x24 + 3̃x34 → min

with demand

x12 + x13 = 90
x24 + x34 = 90

x12 = x23 + x24

x13 + x23 = x34

and capacity

0 ≤ x12 ≤ 90
0 ≤ x13 ≤ 90
0 ≤ x23 ≤ 60
0 ≤ x24 ≤ 30
0 ≤ x34 ≤ 90
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Fig. 4.4: The example of the tra�c network.

Suppose that continuous triangular fuzzy numbers (cL, cT , cR) are used:

3̃ = (1, 3, 5), 7̃ = (5, 7, 9) and 8̃ = (0, 8, 16).

A schematic illustration for the tra�c network is given in Fig. 4.4.
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Let us now compose the constraint matrix

x12 x13 x23 x24 x34

A =

 −1 −1 0 0 0
1 0 −1 −1 0
0 1 1 0 −1

 .
Note that one super�uous row is dropped to make rank of matrix A be equal to amount
of demand-equations minus one.
This optimization problem with fuzzy cost coe�cients in the objective has three di�erent

basic solutions: x1 = (30, 60, 0, 30, 60), x2 = (0, 90, 0, 0, 90) and x3 = (90, 0, 60, 30, 60). Let
us now compute the membership function value for each basic solution with the method
described in Section 4.4.1.
First of all we compose two vectors

c>T = (3, 8, 7, 7, 3)

and
c>(λ) = (5− 4λ, 16− 16λ, 9− 4λ, 9− 4λ, 5− 4λ).

Consider now the solution x1. The path is given on Fig. 4.5 as a �rm line. A dotted line
here shows unused path. The amount of the transporting goods is indicated in brackets.
The basis B = {1, 2, 5}, then the basic matrix is

x12 x13 x34

AB =

 −1 −1 0
1 0 0
0 1 −1


and N = {3, 4}. An inverse matrix can easily be computed:

x12 x13 x34

A−1
B =

 0 1 0
−1 −1 0
−1 −1 −1


Using derived formulas (4.30) and (4.31), let us perform the computations for nonbasic

indices i = 3, 4:
Den3(λ) = 8λ− 4 and Num3(λ) = 8λ− 2;

Den4(λ) = 12λ− 6 and Num4(λ) = 12λ− 7.

Further, Den3 > 0 for λ > 1/2 and Num3 > 0 for λ ≥ 1/4. According to (4.33),

z+
3 (λ) =

8λ− 2

8λ− 4
has to be considered for λ ∈ (1/2, 1]. So, the optimization problem,

obtained due to (4.35),
z+

3 (λ)→ max
λ ∈ (1/2, 1]

(4.40)

has to be solved. The optimal function value of this problem is z∗+3 =∞.
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Fig. 4.5: The path corresponding to the solution x1.

The lower bound can be calculated with the help of function z−3 (λ) =
8λ− 2

8λ− 4
. According

to (4.34) we have to solve the following optimization problem

z−3 (λ)→ min
λ ∈ [0, 1/4].

(4.41)

The optimal function value of this problem is z∗−3 = 0.
For the next nonbasic index i = 4 it is easy to see that solution x1 has a saturated

variable. Thus, according to Remark 4.3 we make the following calculations.
Using formula (4.39) we compute the upper bound with the use of function z+

4 (λ) =
12λ− 7

12λ− 6
for Den4 < 0 and Num4 ≤ 0:

z+
4 (λ)→ max
λ ∈ [0, 1/2).

(4.42)

The optimal function value of this problem is z∗+4 =∞.
For the lower bound, according to formula (4.38), we solve the following problem

z−4 (λ)→ min
λ ∈ [7/12, 1],

(4.43)

where z−4 (λ) =
12λ− 7

12λ− 6
. The optimal function value of this problem is z∗−4 = 0.

Let z∗+ := min
{
z∗+3 , z∗+4 , 1

}
= min{∞,∞, 1} = 1 and z∗− := max

{
z∗−3 , z∗−4 , 0

}
=

max {0, 0, 0} = 0.
According to (4.37) the membership function value of the optimal solution x1 = (30, 60, 0, 30, 60)

is equal to
µ(x1) = z∗+ − z∗− = 1− 0 = 1.

For all level-cuts this solution is an optimal one. Moreover, its membership function value
achieves the maximal value equal to 1, i.e. x1 is a strongest solution (see De�nition 4.5).
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Let us analyse other solutions to see which of them make a competitiveness to this solution.

For the second solution x2 = (0, 90, 0, 0, 90) let us pay our attention on Fig. 4.6. The
basis of x2 is B = {2, 4, 5}, i.e.

x13 x23 x24

AB =

 −1 0 0
0 −1 0
1 0 −1


and N = {1, 3}. Thus, above-stated method gives the following result:

Den1(λ) = 12λ− 6 and Num1(λ) = 12λ− 7;

Den3(λ) = 2− 4λ and Num3(λ) = 5− 4λ.
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Fig. 4.6: The path corresponding to the solution x2.

The denominator Den1 > 0 for λ > 1/2 and the nominator Num1 ≥ 0 when λ ≥ 7/12.

Thus, according to (4.33), z+
1 (λ) =

12λ− 7

12λ− 6
and we consider it for λ ∈ [7/12, 1]. Due

to (4.35) the following problem is obtained

z+
1 (λ)→ max
λ ∈ [7/12, 1].

(4.44)

The optimal function value of this problem is z∗+1 = 5/6.
According to (4.34) the lower bound we start to compute with solving problem

z−1 (λ)→ min
λ ∈ [0, 1/2),

(4.45)

where z−1 (λ) =
8λ− 2

8λ− 4
. The optimal function value here is z∗−1 = −∞.
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Most interesting reasoning of computations are connected with i = 5. Here it can easily
be noted that Num5 ≥ 0 for all λ ∈ [0, 1] and Den1 > 0 is only for λ < 1/2. Thus,

according to (4.33), z+
3 (λ) =

5− 4λ

2− 4λ
. Due to (4.35) the following problem is obtained

z+
3 (λ)→ max
λ ∈ [0, 1/2).

(4.46)

The optimal function value of this problem is z∗+3 =∞ and z∗−3 := 0.
There we compute a membership function value of the second solution according to (4.37)

as

µ(x2) = min
{
z∗+1 , z∗+5 , 1

}
−max

{
z∗−1 , z∗−5 , 0

}
= min{5/6,∞, 1}−max {0,−∞, 0} = 5/6.

The membership function value of this solution has value "almost one". Thus, this so-
lution is a good alternative to solution x1 examined earlier. Solution x3 can also have
membership function value equal to one. Then solution x3 can be even better alternative
to solution x1 than x2. Let us calculate membership function value of x3 properly.

For the third solution x3 = (90, 0, 60, 30, 60) the basic indices are B = {1, 3, 5}, i.e.

x12 x23 x34

AB =

 −1 0 0
1 −1 0
0 1 −1

 .
The pass, corresponding to x3 can be seen on Fig. 4.7.
Using formulas (4.30) and (4.31), let us perform the computations of denominator and

numerator for nonbasic indices N = {2, 4}:

Den2(λ) = 8λ− 4 and Num2(λ) = 8λ− 2;

Den4(λ) = 4λ− 2 and Num4(λ) = 4λ− 5.

Further, Den2 > 0 for λ > 1/2 and Num2 ≥ 0 for λ ≥ 1/4. According to (4.33),

z+
2 (λ) =

8λ− 2

8λ− 4
has to be considered for λ ∈ (1/2, 1]. So, the optimization problem,

obtained due to (4.35)
z+

2 (λ)→ max
λ ∈ (1/2, 1]

(4.47)

has to be solved. The optimal function value of this problem is z∗+2 =∞.

The lower bound can be calculated with the help of function z−2 (λ) =
8λ− 2

8λ− 4
. According

to (4.34) we have to solve the following optimization problem

z−2 (λ)→ min
λ ∈ [0, 1/4].

(4.48)

The optimal function value of this problem is z∗−2 = 1/2.
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Fig. 4.7: The path corresponding to the solution x3.

For the next nonbasic index i = 4 x3 has a saturated variable. Thus, according to
Remark 4.5 the calculations are the following.
It is easy to see that Num4 < 0 for all λ ∈ [0, 1], but Den4 < 0 is only for λ < 1/2.

Thus, we compute only upper bound and z∗−4 := 0. According to (4.39) we have the
following problem to solve:

z+
4 (λ)→ max
λ ∈ [0, 1/2),

(4.49)

where z+
4 (λ) =

4λ− 5

4λ− 2
. The optimal function value of this problem is z∗+4 =∞.

According to (4.37) the membership function for the optimal solution x3 is equal to

µ(x3) = min
{
z∗+2 , z∗+4 , 1

}
−max

{
z∗−2 , z∗−4 , 0

}
= min{∞,∞, 1} −max {1/2, 0, 0} = 1/2.

Clear, that for some α-cuts (to be exact, for α ∈ [1/2, 1]) this solution is not optimal.

Thus, we can reason, that solution x1 is more realizable (as soon as it has maximal
membership function value equal to 1 and thus, is the best solution). The second pref-
erence has solution x2 with membership function value equal to 5/6. The least solution
that the decision-maker can choose is x3. However, in the case when decision-maker looks
for all solutions that have membership function value greater than 0.4, x3 can be also
alternative solution.
On the other hand, let us consider initial fuzzy optimization problem for α = 1

f(1)(x) = 3x12 + 8x13 + 7x23 + 7x24 + 3x34 → min

with the same demand and capacity as in the initial fuzzy optimization problem. This
function obtains minimal value at x1. Namely, f(1)(x1) = 960. Objective function f(1)(x)
in x2 is equal to 990. Finally, in x3 the objective function is equal to 1080.
Thus, it makes solution x1 more attractive to the decision-maker with respect to the

both membership and objective functions values.
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Evaluated solution x3 by two parameters (membership function value and objective
function value), is least preferred one.
A �nal decision meets the decision-maker on the basis of aforesaid. It is up to his /

her choice to attach a particular importance to the value of either the membership or the
objective function.
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5 Optimality conditions

In this Chapter we investigate the following nonlinear fuzzy optimization problem

f̃(x)→ min
g(x) ≤ 0

(5.1)

and derive its optimality conditions.
Here g = (g1, . . . , gk) : Rn → Rk is a crisp vector-valued function and f̃ : Rn → F is a

fuzzy function.
As above, the α-cuts are used to describe the fuzzy objective function. The approach

is based on results from Chapter 3: it is assumed that the left- and right-hand side
values of fuzzy function f̃(x) are given by functions fL(x, α) and fR(x, α) for α ∈ [0, 1],
respectively. Then, using a suitable ordering of the intervals f̃(x)[α] := [fL(x, α), fR(x, α)]
with the �xed α, the task minimization of the fuzzy function over a convex feasible set

X := {x : g(x) ≤ 0}

can be transformed into a bicriterial optimization problem:

fL(x, α)→ min
fR(x, α)→ min

x ∈ X.
(5.2)

If more than one α is used at the same time as e.g. in Rommelfanger et al. (1989),
this leads to a multiobjective optimization problem. This generalization does not mar the
structure and the method of solution stay the same as we have proposed in Chapter 3 for
the single α-cut, i.e. the solutions of the fuzzy optimization problem are still de�ned as
Pareto optimal solutions of the corresponding multiobjective optimization problem.
Applying scalarization technique to biobjective optimization problem (5.2), the follow-

ing problem is obtained:

f(x, λ)[α] := λfL(x, α) + (1− λ)fR(x, α)→ min
x ∈ X. (5.3)

This enables us to derive (necessary and su�cient) conditions to guarantee that a feasible
point is an optimal solution. These conditions have e.g. the form of Karush-Kuhn-Tucker
optimality conditions.
This result generalizes one obtained by Panigrahi et al. (2008) in four important direc-

tions:
Firstly, we de�ne the derivative of a fuzzy function as a pair of functions which need not
to be an interval as Panigrahi et al. supposed.
Secondly, we derive also necessary and not only su�cient conditions.
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Thirdly, we �nd conditions for all elements of the fuzzy solution.
Finally, nondi�erentiable and nonconvex problems are discussed.
When in fuzzy optimization problem (5.1) both the objective function f̃(x) and the

constraint function g(x) are di�erentiable, the whole problem we call di�erentiable. In
the di�erentiable fuzzy case necessary and su�cient optimality conditions are presented
in Section 5.1.
When in fuzzy optimization problem (5.1) one of the functions either in the objective

f̃(x) or in the constraint g(x) is nondi�erentiable, we call problem (5.1) nondi�eren-
tiable. We consider here that nondi�erentiability appears in the objective. Necessary
and su�cient optimality conditions for the feasible solution of the nondi�erentiable fuzzy
optimization problem are investigated in Section 5.2.

5.1 Di�erentiable fuzzy optimization problem

Necessary optimality conditions for fuzzy di�erentiable optimization problem (5.1) are
given by using the Karush-Kuhn-Tucker conditions. This is explained in Subsection 5.1.2.
Su�cient optimality conditions which endow this Section with originality are investi-

gated in Subsection 5.1.3.

5.1.1 Basic notions

De�nition 5.1. Let f̃(x) : R→ F be a convex fuzzy function with �nite values and assume
that partial derivatives of the left- and right-hand side functions fL(·, α) and fR(·, α) for
�xed α ∈ [0, 1] exist and are denoted by f ′L(x, α) and f ′R(x, α), respectively. Then the

derivative of the fuzzy function f̃(x) in x0 ∈ R for the �xed α ∈ [0, 1] is a pair

f̃ ′(x0)[α] = (f ′L(x0, α), f ′R(x0, α)).

Please note that it is not assumed that f ′L(x0, α) ≤ f ′R(x0, α) (this unfounded assump-
tion was done by Panigrahi et al. (2008); Wu (2007)).

De�nition 5.2. The fuzzy convex function f̃(x) on R with �nite values is di�erentiable

in x0, if its derivative f̃ ′(x0)[α] exist and is �nite for all α ∈ [0, 1].

De�nition 5.3. The fuzzy convex function f̃(x) with �nite values is di�erentiable on R,
if it is di�erentiable for all points x ∈ R.

Remember that

De�nition 5.4. A di�erentiable crisp function is a function whose derivative exists and
is �nite at each point in its domain.

Similarly, for the real-valued convex fuzzy function f̃(·) mapping Rn to the space of
fuzzy numbers F, its gradient is de�ned through the gradients of the left- and right-hand
functions on the certain α-cut.



5.1 Di�erentiable fuzzy optimization problem 49

De�nition 5.5. Let f̃(x) : Rn → F be a convex fuzzy function with �nite values and
assume that all partial derivatives of the functions fL(x, α) and fR(x, α) in x0 ∈ Rn exist

for a given α. Then the gradient of f̃(x) in x0 on this α-cut is the matrix of the pairs of
the gradients

∇f̃(x0)[α] = (∇fL(x0, α),∇fR(x0, α)) =


∂fL(x0, α)

∂x1

,
∂fR(x0, α)

∂x1

. . .
∂fL(x0, α)

∂xn
,
∂fR(x0, α)

∂xn

 .

De�nition 5.6. The fuzzy convex function f̃(x) : Rn → F with �nite values is di�eren-

tiable in x0, if its gradient ∇f̃(x0)[α] exist and is �nite for all α ∈ [0, 1].

De�nition 5.7. The fuzzy convex function f̃(x) is di�erentiable on Rn, if it is di�eren-
tiable for all x ∈ Rn.

5.1.2 Necessary optimality conditions

Theorem 5.1. Let x̂ be an optimal solution of fuzzy optimization problem (5.1) and

assume that all the functions f̃(x) and gi(x), i = 1, . . . , k are convex and di�erentiable.
Suppose also that Slater's constraint quali�cation is satis�ed:

∃ x0 ∈ X : gi(x
0) < 0 ∀i = 1, . . . , k.

Then there exist α ∈ [0, 1], λ ∈ [0, 1] and µ ∈ Rn, µ ≥ 0 such that Karush-Kuhn-Tucker
optimality conditions for problem (5.3)

λ∇fL(x̂, α) + (1− λ)∇fR(x̂, α) + µ>∇g(x̂) = 0
µ>g(x̂) = 0
g(x̂) ≤ 0

(5.4)

are satis�ed.

Proof. If x̂ is an optimal solution of fuzzy optimization problem (5.1) then, according to
De�nition 3.3, there exists an α-cut, such that it is a Pareto optimal solution of biobjective
optimization problem (5.2). Then, using Theorem 3.1, it is possible to �nd 0 ≤ λ ≤ 1
such that x̂ is an optimal solution of scalarized optimization problem (5.3).
Now the result follows from the theory of necessary optimality conditions for di�eren-

tiable convex optimization problems, see e.g. Ruszczy«ski (2006).

5.1.3 Su�cient optimality conditions

Theorem 5.2. Consider fuzzy optimization problem (5.1) and assume that the functions

f̃(x) and gi(x), i = 1, . . . , k are convex and di�erentiable. Let x̂ be a feasible solution
of problem (5.1) and assume that there exist α ∈ [0, 1], λ ∈ (0, 1) and µ ≥ 0 such
that Karush-Kuhn-Tucker optimality conditions (5.4) are satis�ed. Then x̂ is an optimal
solution of initial fuzzy optimization problem (5.1).
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Proof. According to Ruszczy«ski (2006), if the assumptions of the theorem are satis�ed,
the point x̂ is an optimal solution of problem (5.3). Then Theorem 3.2 implies that
the point x̂ is Pareto optimal for biobjective optimization problem (5.2) and, hence, by
De�nition 3.3, is optimal for fuzzy optimization problem (5.1).
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5.2 Nondi�erentiable fuzzy optimization problem

In the present Section nondi�erentiable and nonconvex problems are discussed.
If the fuzzy function f̃(x) is nondi�erentiable, it requires some modi�cations in the

standard approach. This we explain in this Section, which is structured as follows.
In Subsection 5.2.1 basic de�nitions of nondi�erentiable fuzzy functions are given.
Subsection 5.2.4 contains an illustrative example.

5.2.1 Basic notions

For the future discussions we have to make the following basic de�nitions.

De�nition 5.8. Let X ⊂ Rn and x0 ∈ X. The tangent cone of X at x0 is de�ned as

TX(x0) :=

{
h ∈ Rn | ∃{τk} ↓ 0, {xk} ⊂ X s.t. {xk} → x0 ⇒ h = lim

k→∞

1

τk
(xk − x0)

}
.

Let f̃(x) be a convex nondi�erentiable fuzzy function. Further, let α ∈ [0, 1], x0 ∈ Rn

and h ∈ Rn be �xed.

De�nition 5.9. The (one-sided) directional α-derivative of the fuzzy function f̃(x) in x0

for some α-cut in a direction h is de�ned through the directional α-derivatives of the left-
and right-hand functions fL(x0, α) and fR(x, α) in x0 in the direction h as

f̃ ′(x0, h)[α] := lim
τ↓0

f̃(x0 + τh)[α]− f̃(x0)[α]

τ
=

=

(
lim
τ↓0

fL(x0 + τh, α)− fL(x0, α)

τ
, lim
τ↓0

fR(x0 + τh, α)− fR(x0, α)

τ

)
=

=: (f ′L(x0, h)[α], f ′R(x0, h)[α]) .

De�nition 5.10. If f̃ ′(x0, h)[α] exists for all α-cuts then f̃(x) is said to be di�erentiable
in x0 in the direction h.

Suppose that for each direction h in x0 the fuzzy function f̃(x) admits for some α in x0

the directional α-derivative f̃ ′(x0, h)[α].

De�nition 5.11. The generalized gradient of this convex nondi�erentiable fuzzy function
f̃(x) on the α-cut is de�ned through its subdi�erential as a pair of subdi�erentials of left-
and right-hand side functions on this α-cut:

∂f̃(x0)[α] = (∂fL(x0, α), ∂fR(x0, α)) ,

where ∂f·(x0, α) = {v : vTh ≤ f ′· (x0, h)[α] ∀h}.

The Hadamard upper (lower) directional derivative of the fuzzy function f̃(x) can be
also de�ned as a pair of Hadamard upper (lower) directional derivatives of the left- and
right-hand functions.
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De�nition 5.12. Formally f̃ ↑H(x0, h)[α] is called the Hadamard upper directional α-derivative

of the fuzzy function f̃(x) on the α-cut in x0 in the direction h and de�ned as

f̃ ↑H(x0, h)[α] := lim sup
τ↓0, h′→h

f̃(x0 + τh′)[α]− f̃(x0)[α]

τ
=

=

(
lim sup
τ↓0, h′→h

fL(x0 + τh′, α)− fL(x0, α)

τ
, lim sup
τ↓0, h′→h

fR(x0 + τh′, α)− fR(x0, α)

τ

)
=:

=:
(
f ↑αHL(x0, h), f ↑αHR(x0, h)

)
.

De�nition 5.13. The Hadamard lower directional α-derivative of the fuzzy function f̃(x)
on the certain α-cut in x0 in the direction h is analogously de�ned as

f̃ ↓H(x0, h)[α] := lim inf
τ↓0, h′→h

f̃(x0 + τh′)[α]− f̃(x0)[α]

τ
=

=

(
lim inf
τ↓0, h′→h

fL(x0 + τh′, α)− fL(x0, α)

τ
, lim inf
τ↓0, h′→h

fR(x0 + τh′, α)− fR(x0, α)

τ

)
=:

=:
(
f ↓αHL(x0, h), f ↓αHR(x0, h)

)
.

Proposition 5.1. If the fuzzy function f̃(x) is continuous and convex in a point x0 from
interior of the feasible set X, i.e. x0 ∈ int(X), then

f̃ ′(x0, h)[α] = f̃ ↑H(x0, h)[α] = f̃ ↓H(x0, h)[α] ∀α ∈ [0, 1]

in the direction h.

Proof. Continuity and convexity of the fuzzy function f̃(x) in x0 ∈ int(X) on some �xed
α-cut is de�ned through continuity and convexity of the left- and right-hand side functions
fL(x, α) and fR(x, α) in x0 ∈ int(X) (see Section 2.4). The rest follows from the classical
convex analysis (see Rockafellar (1970)).

5.2.2 Necessary optimality conditions

Theorem 5.3. Let x̂ solve nondi�erentiable optimization problem (5.1). Assume that

functions f̃(x) and gi(x), i = 1, . . . , k are convex on Rn.
Then there exist α ∈ [0, 1], η, µ ∈ Rn, η, µ ≥ 0 such that

0 ∈ ∂x
(
η>[λfL(x̂, α) + (1− λ)fR(x̂, α)] + µ>g(x̂)

)
µ>g(x̂) = 0.

(5.5)

Proof. The result follows from the theory of necessary optimality conditions for nondi�er-
entiable convex optimization problem (see Lagrange Multiplier Rule in Clarke (1983)).

The necessary optimality conditions of Theorem 5.3 can be viewed as being degenerate
when the multiplier η vanishes, since then the function f(x, λ)[α] is not involved. Various
supplementary conditions have been proposed under which it is possible to assert that
Lagrange Multiplier Rule holds in normal form with η = 1. We formulate the next
theorem under one of possible constraint quali�cations.
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Theorem 5.4. Let x̂ ∈ X be an optimal solution of nondi�erentiable fuzzy optimization
problem (5.1) and assume that all the functions f̃(x) and gi(x), i = 1, . . . , k are convex
on Rn. Suppose also that Slater's constraint quali�cation is satis�ed:

∃ x0 ∈ X : gi(x
0) < 0 ∀i = 1, . . . , k.

Then there exist α ∈ [0, 1], λ ∈ [0, 1] and µ ∈ Rn, µ ≥ 0 such that

0 ∈ ∂xLα(x̂, λ, µ)
µ>g(x̂) = 0,

(5.6)

where Lα(x̂, λ, µ) = λfL(x̂, α) + (1− λ)fR(x̂, α) + µ>g(x̂).

Proof. If x̂ is an optimal solution of fuzzy optimization problem (5.1) then, according
to De�nition 3.3, there exist some α-cut such that x̂ is Pareto optimal for biobjective
optimization problem (5.2). Then, from Theorem 3.1, it follows, that there exists 0 ≤ λ ≤
1 such that x̂ is an optimal solution of problem (5.3). The rest follows from Theorem 5.3.

Proposition 5.2. For the further reasoning let us denote for some �xed α-cut di�erent
derivatives of the function f(x, λ)[α] in x0 in the direction h

• the Hadamard upper directional derivative as f ↑Hλ(x0, h)[α];

• the Hadamard lower directional derivative as f ↓Hλ(x0, h)[α];

• the directional derivative as f ′λ(x0, h)[α].

Remember that

De�nition 5.14. The Hadamard upper directional derivative of the crisp function f(x)
in x0 is de�ned as

f ↑H(x0, h) = lim sup
τ↓0, h′→h

f(x0 + τh′)[α]− f(x0)[α]

τ
.

The Hadamard lower directional derivative of the crisp function f(x) in x̂ is de�ned as

f ↓H(x0, h) = lim inf
τ↓0, h′→h

f(x0 + τh′)[α]− f(x0)[α]

τ
.

Theorem 5.5. Let x̂ ∈ X be a local optimal solution of nondi�erentiable optimization
problem (5.1). Then there exist α ∈ (0, 1) and λ ∈ [0, 1] such that the Hadamard upper
directional derivative of the function f(x, λ)[α] in x̂ is nonnegative for all directions h of
the tangent cone TX(x̂):

f ↑Hλ(x̂, h)[α] ≥ 0 ∀h ∈ TX(x̂).
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Proof. Assume the opposite, i.e. that f ↑Hλ(x̂, h)[α] < 0. If h ∈ TX(x̂), then there exists a
sequence {hk} such that for k →∞ {hk} → h and {τk} ↓ 0 with xk := x̂+ τkhk ∈ X ∀k.
Thus, we have the following

0 > f ↑Hλ(x̂, h)[α] =

= lim sup
τk↓0, hk→h

[
λ
fL(x̂+ τkhk, α)− fL(x̂, α)

τk
+ (1− λ)

fR(x̂+ τkhk, α)− fR(x̂, α)

τk

]
≥

≥ lim
k→∞

[
λ
fL(xk, α)− fL(x̂, α)

τk
+ (1− λ)

fR(xk, α)− fR(x̂, α)

τk

]
=

= lim
k→∞

f(xk, λ)[α]− f(x̂, λ)[α]

τk
≥ 0,

since x̂ is a local minimum. This is a contradiction.

Corollary 5.1. Assume that x̂ ∈ X is an optimal solution of nondi�erentiable fuzzy
optimization problem (5.1) and functions f̃(x), gi(x), i = 1, . . . , k are convex. Then there
exist α ∈ (0, 1) and λ ∈ [0, 1] such that the directional derivative of the function f(x, λ)[α]
in x̂ is nonnegative for all directions h from tangent cone TX(x̂):

f ′λ(x̂, h)[α] ≥ 0 ∀h ∈ TX(x̂).

Proof. Convexity assumptions, De�nition 3.3 and Theorem 3.1 provide an existence of
α ∈ (0, 1) and λ ∈ (0, 1) such that x̂ is an optimal solution of problem (5.3). According
to Theorem 5.5, with f ↑Hλ(x̂, h)[α] replaced by f ′λ(x̂, h)[α] (see e.g. Rockafellar (1970)),
the Corollary is proved.

5.2.3 Su�cient optimality conditions

Theorem 5.6. Consider nondi�erentiable fuzzy optimization problem (5.1) and assume

that the functions f̃(x) and gi(x), i = 1, . . . , k are convex. Let x̂ ∈ X be feasible and
assume that there exist α ∈ [0, 1], λ ∈ (0, 1) and µ ∈ Rn, µ ≥ 0 such that conditions (5.6)
are satis�ed for the �xed α ∈ [0, 1]. Then x̂ is an optimal solution of problem (5.1).

Proof. If the assumptions of the theorem are satis�ed, according to De�nition 3.3 the
point x̂ is an optimal solution of problem (5.3) for some �xed α. From Theorem 3.2 it
follows that the point x̂ is Pareto optimal for biobjective optimization problem (5.2) for
this α. De�nition 3.3 implies that x̂ is optimal for nondi�erentiable fuzzy optimization
problem (5.1) on the �xed α-cut.

Theorem 5.7. Assume that the Hadamard lower directional α-derivative of the fuzzy
function f̃(x) in x̂ for some �xed α ∈ (0, 1) exists and is positive for all directions h in
tangent cone TX(x̂) (h 6= 0), i.e. there exists λ ∈ (0, 1) such that

f ↓Hλ(x̂, h)[α] > 0 ∀h ∈ TX(x̂).

Then x̂ ∈ X is a local minimum of nondi�erentiable fuzzy optimization problem (5.1).
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Proof. Let us show that x̂ is a local minimum of problem (5.3) for some �xed α. Assume
the opposite, i.e. that the point x̂ is not a strict local minimizer. Under this assumption
there exists a sequence {xk} : xk ∈ X for all k such that for k → ∞ {xk} → x̂ and
f(xk, λ)[α] ≤ f(x̂, λ)[α].
Let

τk :=‖ xk − x̂ ‖ and hk :=
xk − x̂
‖ xk − x̂ ‖ .

Then hk = 1
τk

(xk − x̂) and thus, xk = x̂ + τkhk. Since ‖ hk ‖= 1 ∀k there exists an
accumulation point h of the sequence {hk}. Then h ∈ TX(x̂) and h 6= 0.
This yields a following contradiction

0 < f ↓Hλ(x̂, h)[α] =

= lim inf
τk↓0, hk→h

[
λ
fL(x̂+ τkhk, α)− fL(x̂, α)

τk
+ (1− λ)

fR(x̂+ τkhk, α)− fR(x̂, α)

τk

]
≤

≤ lim
k→∞

[
λ
fL(xk, α)− fL(x̂, α)

τk
+ (1− λ)

fR(xk, α)− fR(x̂, α)

τk

]
=

= lim
k→∞

f(xk, λ)[α]− f(x̂, λ)[α]

τk
≤ 0.

Hence, x̂ is a local minimum of problem (5.3), that means due to Theorem 3.4 that
x̂ is a local optimal solution of biobjective optimization problem (5.2). In turn with
Corollary 3.1 that means that there exist an α-cut such that x̂ is a local optimal solution
for initial fuzzy optimization problem (5.1).

5.2.4 Example

To complete our discussion it is interesting to explain the results by giving an example
with all required calculations. Assume that we have the following nondi�erentiable convex
fuzzy optimization problem:

f̃(x) = max{f̃1(x), f̃2(x)} → min
x∈R

. (5.7)

Here

f̃1(x) := −4̃x�H 8̃ and f̃2(x) := 2̃x+ 1.

De�nitions of the fuzzy sum and the Hakuhara di�erence can be found as De�nition 2.12
and Proposition 2.2 in Chapter 1.
The continuous triangular fuzzy numbers are de�ned as triples:

2̃ = (0, 2, 4), 4̃ = (1, 4, 8) and 8̃ = (2, 8, 12).

Let α = 0.5, for this level-cut the left- and right-hand side bounds of the fuzzy numbers
are

2̃0.5 = [1, 3], 4̃0.5 = [2.5, 6] and 8̃0.5 = [5, 10].
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Now we obtain that the left- and right-hand side functions of fuzzy functions f̃1(x) and
f̃2(x) respectively are

f 1
L(x, 0.5) = −2.5x− 5,

f 1
R(x, 0.5) = −6x− 10

and

f 2
L(x, 0.5) = x+ 1,

f 2
R(x, 0.5) = 3x+ 1.

Then the left- and right-hand side functions of the fuzzy function f̃(x) are

fL(x, 0.5) = max
{
f 1
L(x, 0.5), f 2

L(x, 0.5)
}

= max{−2.5x− 5, x+ 1},
fR(x, 0.5) = max

{
f 1
R(x, 0.5), f 2

R(x, 0.5)
}

= max{−6x− 10, 3x+ 1}.

Thus, analogous to the form of problem (5.2) we have a following biobjective optimiza-
tion problem:

max{−2.5x− 5, x+ 1} → min
max{−6x− 10, 3x+ 1} → min

x ∈ R.
(5.8)

This problem has two optimal solutions x̂1 = −12

7
and x̂2 = −11

9
(see Fig. 5.1). Now

let us check necessary and su�cient optimality conditions for both solutions.
According to De�nition 5.11 we calculate the subdi�erential of the fuzzy function f̃(x̂)

in x̂1 and x̂2 at α = 0.5:

∂f̃(x̂1)[0.5] = (∂fL(x̂1, 0.5), ∂fR(x̂1, 0.5)) = ([−2.5, 1],−6) (5.9)

and
∂f̃(x̂2)[0.5] = (∂fL(x̂2, 0.5), ∂fR(x̂2, 0.5)) = (1, [−6, 3]). (5.10)

For Theorem 5.4 it is necessary to show that there exist 0 ≤ λ ≤ 1 such that

0 ∈ ∂xL0.5(x̂i, λ) = λ∂fL(x̂i, 0.5) + (1− λ)∂fR(x̂i, 0.5), (5.11)

where i = 1, 2. As soon as ∂fL(x̂i, 0.5) and ∂fR(x̂i, 0.5) are known from (5.9) and (5.10),
it is easy to see, that

0 ∈ ∂xL0.5(x̂1, λ) = λ[−2.5, 1] + (1− λ)(−6) for all λ ∈ [6/7, 1]

and
0 ∈ ∂xL0.5(x̂2, λ) = λ+ (1− λ)[−6, 3] for all λ ∈ [0, 6/7].

Thus, x̂1 and x̂2 are optimal solutions of problem

λmax{−2.5x− 5, x+ 1}+ (1− λ) max{−6x− 10, 3x+ 1} → min
x ∈ R. (5.12)
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f(x)

x0

x1 x2

fL(x, 0.5)

fR(x, 0.5)

Fig. 5.1: The minimum of the function is obtained in x̂ = −1.

Then Theorem 3.2 implies that these points are Pareto optimal for biobjective optimiza-
tion problem (5.8) and, hence, according to De�nition 3.3 are optimal for fuzzy optimiza-
tion problem (5.7). This is in accordance with Theorem 5.6.
For Theorem 5.5, i.e. due to convexity assumption for Corollary 5.1, it is enough to

demonstrate that there exists λ ∈ (0, 1) such that

f ′λ(x̂i, h)[0.5] ≥ 0 ∀h ∈ TX(x̂i) = R

as soon as

f ′L(x̂1, h)[0.5] = max{−2.5h, h}, f ′R(x̂1, h)[0.5] = −6h,

f ′L(x̂2, h)[0.5] = h, f ′R(x̂1, h)[0.5] = max{−6h, 3h}

for all h ∈ R, it holds true.
It is not complicated procedure to compute directional derivatives of function fλ(x̂i, h)[0.5]

for solutions x1 and x2 and to see that

f ′λ(x̂1, h)[0.5] = λmax{−2.5h, h}+ (1− λ)(−6h) ≥ 0 ∀h ∈ R

for all λ ∈ [6/7, 1] and

f ′λ(x̂2, h)[0.5] = λh+ (1− λ) max{−6h, 3h} ≥ 0 ∀h ∈ R
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for all λ ∈ [0, 6/7].
That is in accordance with Theorem 5.7, i.e. x̂i is a local minimum of nondi�erentiable

fuzzy optimization problem (5.7).
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6 Fuzzy linear optimization problem
over fuzzy polytope

In the previous discussions we have considered optimization problems only with fuzzy
objective functions. In many cases, however, the constraints can also be fuzzy. The main
target of this Chapter is to present an idea of solution for fuzzy optimization problem
with fuzzy objectives and fuzzy constraints in a linear case.

A main di�culty in formulation of this problem consist in de�nition of fuzzy polytope.
This problem is similar to a parametric optimization problem (where parameters are
involved in the constraints).

As soon as we consider fuzzy linear optimization problem, we suppose, that a solution
can be found in one of the vertices of the fuzzy polytope. However, the membership
function value of the polytope in a certain vertex can di�er from the membership function
value of the solution.

This Chapter is organized as follows. To clarify a notion about fuzzy polytope, sig-
ni�cant de�nitions as respects to fuzzy line and intersections of fuzzy lines are given in
Section 6.1.

The solution method of the fuzzy optimization problem is based on taking level-cuts of
the fuzzy polytope. Thus, for a �xed α-cut a pair of crisp polytopes is obtained and the
fuzzy optimization problem can be splitted into two crisp optimization problems.

In previous discussions we have already derived that a solution of the problem, that has
amount of uncertainty, cannot be exact. Thus, a solution of the fuzzy optimization prob-
lem considered to be fuzzy. Thus, we take into account the inherently uncertain nature of
the fuzzy optimization problem and consider all the solutions of the corresponding crisp
problems simultaneously. Finally, we describe a fuzzy solution as a union of each crisp
optimization problem for all level-cuts. Of course, a fuzzy solution has to be enriched with
its membership function. Again, we are not interested in computation of the membership
function itself, but only its values on some crucial points are a matter of interest. Taking
into consideration fuzzy nature of the feasible set, they can easily be computed. When
the membership function values of the elements of the set of fuzzy optimal solutions are
known, it enables the decision-maker to make an educated choice. Our approach equips
the decision-maker with a correlation among all signi�cant solutions and quantitatively
measure the advantage of his / her choice over other.

The solution method is presented in Section 6.3.

In Section 6.4 an illustrative example is given.
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6.1 Basic notions

To identify points that belong to the same object (e.g. fuzzy line), it is also necessary to
de�ne the concept of fuzzy connectedness.

De�nition 6.1 (Rosenfeld (1984)). Given a fuzzy set of points F2 (over R2). The degree
of fuzzy connectedness of two points p and q within F2 is de�ned as

CF2(p, q) = max[minµF2(r)],

where the maximum is taken over all paths connecting these points and the minimum is
taken over all points r on each path.

De�nition 6.2 (Pham (2001)). Two points p and q are said to be fuzzily connected in F2

if
CF2(p, q) ≥ min[µF2(p), µF2(q)].

In other words, two points are connected in a fuzzy set of points if there exists a path
between them which is composed of only points which also belong to this fuzzy set.

This de�nition is also consistent with the concept of connectedness of two points within
a crisp set whose membership values are all equal to 1.
Let us consider two fuzzy points p̃ and q̃ in F2 with membership functions µp̃(p) and

µq̃(q), respectively.

De�nition 6.3 (Pham (2001)). A fuzzy line p̃q which connects two points p̃ and q̃ is
de�ned as a fuzzy set each of whose members is a linear combination of a pair of points p
and q with a membership function de�ned as

µp̃q(p, q) = min {µp̃(p), µq̃(q)} (6.1)

A fuzzy line may be visualised as a centre line with a variable thickness (see Fig. 6.1).
This thin area of space (or thin volume of space in F3 (over R3)) bounds a family of crisp
lines which are formed by pairs of endpoints belonging to the two fuzzy sets of endpoints.
A fuzzy plane, which is an extension of a fuzzy line, is a thin planar shell with variable

thickness. This shell encloses a family of crisp planes which is an extension of the family of
crisp lines representing the fuzzy line. These concepts of fuzzy lines and planes encapsulate
exact lines and exact planes as special cases.

De�nition 6.4 (Pham (2001)). The intersection of two fuzzy lines p̃q and r̃s is a fuzzy
point t̃ which is represented by a fuzzy set t̃ = (t, µt̃(t)), where

µt̃(t) = min {µp̃q(t), µr̃s(t)} .
This De�nition is illustrated on Fig. 6.2.
We can extend all aforesaid concepts to cover the intersection of a fuzzy line and a crisp

plane, or of a fuzzy line and a fuzzy plane, or of two fuzzy planes, or of two fuzzy surfaces.
Thus, the intersection of these geometry entities can be performed as two separate tasks:

• The �rst task is to compute the intersection of pairs of crisp geometry entities (which
belongs to the two families of fuzzy entities) in the same way as in crisp geometry.

• The second task is to compute the membership value for each resulting entity.

Remark 6.1. There is no reason why all the de�nitions have to be formulated especially
in F2. Thus, we extend them to Fn.
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Fig. 6.1: The fuzzy line p̃q connects two points p̃ and q̃.
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Fig. 6.2: The intersection of two fuzzy lines p̃q and r̃s.
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6.2 The fuzzy polytope

A fuzzy traverse is composed of fuzzy vertices and fuzzy edges. Thus, it may be visualised
as having edges of variable thickness, as described for fuzzy lines.

De�nition 6.5. Given a �nite set of fuzzy points {p̃1, . . . , p̃n}. A fuzzy traverse is a closed

shape P̃ = conv{p̃1, . . . , p̃n} \ int(conv{p̃1, . . . , p̃n}) composed of a �nite sequence of fuzzy
line / hyperplane segments (faces).

An illustration of the fuzzy traverse is presented on Fig. 6.3(a).

Remark 6.2. Membership functions of fuzzy lines p̃1p2, p̃2p3, . . . , p̃n−1pn, p̃np1 can be
calculated using formula (6.1). In high dimensional space, membership functions of fuzzy
hyperplanes are composed using convex linear combinations of the vertices belonging to
this face.

Obviously, the fuzzy traverse can be given by a �nite number of linear equations.
This concept is readily extended to that of a fuzzy polytope. The di�erence between

the fuzzy traverse and the fuzzy polytope is that the fuzzy polytope includes its interior.
By analogy to Carathéodory's theorem we can state the following

De�nition 6.6. For any given �nite set of fuzzy points {p̃1, . . . , p̃n}, a fuzzy polytope is

de�ned as P = conv{p̃1, . . . , p̃n}. It can be composed into a fuzzy traverse P̃ = P\ int(P)
and its interior int(P). The membership function µint(P) of every point p of int(P) is
equal to

µint(P)(p) = sup

p=
n∑

i=1
ωipi

min{µp̃1(p1), . . . , µp̃n(pn)},

where ωi > 0 for i = 1, . . . , n,
n∑
i=1

ωi = 1 and n is a number of the vertices of the fuzzy

polytope.

The illustration is given on Fig. 6.3(b). The fuzzy polytope can be given by a �nite
number of linear inequalities.

De�nition 6.7. Extreme points of the fuzzy polytope are the fuzzy points on its boundary.

Since the fuzzy traverse P̃ can be considered as a fuzzy set, we can take its level-cut
P (α) for some �xed α ∈ [0, 1]. That means, that we take the same α-cut of all fuzzy
vertices p̃1, . . . , p̃n, namely, [p1

L(α), p1
R(α)], . . ., [pnL(α), pnR(α)].

Remark 6.3. The number of vertices in the level-cuts of P (α) can be di�erent for di�erent
α, i.e. we denote through pkL and pkR (k = 1, . . . , n) the sets of the vertices that belong to
one fuzzy vertex p̃k. This is illustrated in Section 6.4.

Thus, we obtain two crisp traverses PL(α) and PR(α). The left-hand side traverse PL(α)
is a closed �gure, composed with the use of left-hand side bounds of all fuzzy vertices in
the same order as fuzzy traverse P̃ :

PL(α) = conv{p1
L(α), . . . , pnL(α)} \ int(conv{p1

L(α), . . . , pnL(α)}). (6.2)

Analogously, the right-hand side traverse is also a closed �gure. It can be written as

PR(α) = conv{p1
R(α), . . . , pnR(α)} \ int(conv{p1

R(α), . . . , pnR(α)}). (6.3)
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Fig. 6.3: The fuzzy traverse and fuzzy polytope.
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De�nition 6.8. A level-cut of the fuzzy traverse P̃ for some �xed α ∈ [0, 1] is de�ned as

P (α) = conv{PR(α)} \ int (conv{PL(α)}) .

Unlike a fuzzy traverse, a fuzzy polytope includes its interior. Thus, under the assump-
tion that taking an α-cut we obtain a left- and a right-hand side polytope, denoted as
PL(α) and PR(α), respectively, we can write the following:

De�nition 6.9. A level-cut of the fuzzy polytope P for some �xed α ∈ [0, 1] is given by

P(α) = PR(α) \ int(PL(α)),

where, by analogy to formulas (6.2) and (6.3), PL(α) = conv{pkL} and PR(α) = conv{pkR}
(k = 1, . . . , n).

The α-cut of a fuzzy polytope is illustrated in Fig. 6.4 .

Remark 6.4. Under the assumption that all fuzzy vectors are de�ned by fuzzy components
with triangular (or at least bell-shaped) membership function, P(1) = PL(1) = PR(1) is
a crisp traverse.

Remark 6.5. PL(α) ⊂ PR(α) for all α ∈ [0, 1).

Proposition 6.1. Let 0 ≤ α1 < α2 ≤ 1. Then P(α2) ⊂ P(α1).

For further discussion let us make

Assumption 6.1. Assume that pkL(α)→ pk(1) and pkR(α)→ pk(1) for α ↑ 1 (see Fig. 6.5).

That means that we assume that all the vertices that belong to one fuzzy vertex p̃k

converge to pk(1).

6.3 Formulation and solution method

Let us consider the fuzzy optimization problem

F (c̃) = d>c̃→ min
s.t. c̃ ∈ P,

(6.4)

where

• P ⊂ Fn is a fuzzy polytope;

• d 6= 0 is a known crisp vector in Rn;

• c̃ is a fuzzy variable in Fn.
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The fuzzy polytope P is de�ned according to De�nition 6.6 by a given set of fuzzy
points {p̃1, . . . , p̃n}.
For the solution of linear optimization problems with fuzzy objective function and fuzzy

constraints we use the notions introduced in Section 6.2. Let us consider problem (6.4)
on some α ∈ [0, 1]:

F (cα) = d>cα → min
s.t. cα ∈ P(α)

(6.5)

Let us denote the set of optimal solutions of problem (6.5) through

Ψ(α) = argmin{d>c∗α : c∗α ∈ Pα}.

Ψ(α) is a point-to-set mapping which maps α ∈ [0, 1] to the set of global optimal solutions
of problem (6.5).
As we know, the level-cut of fuzzy polytope P(α) can be decomposed into two crisp

polytopes

PL(α) = conv{p1
L(α), . . . , pnL(α)} and PR(α) = conv{p1

R(α), . . . , pnR(α)}.

For these polytopes let us consider two optimization problems and then take the convex
hull to obtain all solutions of problem (6.5) on the α-cut.

F (cL(α)) = d>cL(α)→ min
s.t. cL(α) ∈ PL(α)

(6.6)

and
F (cR(α)) = d>cR(α)→ min

s.t. cR(α) ∈ PR(α),
(6.7)

where cL(α) and cR(α) denotes the left- and right-hand side bounds of the α-cut of the
fuzzy variable c̃.
These problems, in turn, are crisp linear optimization problems, which can be solved

using any of the standard methods (see e.g. Bertsimas and Tsitsiklis (1997); Unger and
Dempe (2010)). Let the sets of optimal solutions of problems (6.6) and (6.7) be denoted
as c∗L(α) and c∗R(α), respectively.
The fact that any optimal solution of these crisp optimization problems is necessarily a

vertex of the corresponding polytope is well-known (see e.g. Dyer and Proll (1977)). This
means, that optimal solutions of problems (6.6) and (6.7) c∗L(α) and c∗R(α) correspond to
elements of the vertices pkL(α) and pkR(α) for some k = 1, . . . , n.
Let us consider problem (6.5) for α = 1:

F (c1) = d>c1 → min
s.t. c1 ∈ P(1),

(6.8)

and let c∗(1) be its optimal solution.

Theorem 6.1. c∗L(α)→ c∗(1) and c∗R(α)→ c∗(1) for α ↑ 1 (see Fig. 6.6).

Proof. The convergence in the formulation of the theorem is caused by nothing but the
following fact: PL(α) −→ P(1) and PR(α) −→ P(1) for α ↑ 1 (see Fig. 6.7) and
Assumption 6.1.
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Fig. 6.7: The level-cuts of the fuzzy polytope for α and 1.
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Within De�nition 6.9 and Theorem 6.1 we obtain

De�nition 6.10. The set of optimal solutions of optimization problem (6.5) is

c∗α = conv{c∗L(α), c∗(1)} ∪ conv{c∗R(α), c∗(1)}. (6.9)

De�nition 6.11. A fuzzy optimal solution of problem (6.4) is a union of the optimal
solutions of problem (6.5) for all α-cuts:

c̃∗ =
⋃

α∈[0,1]

(conv{c∗L(α), c∗(1)} ∪ conv{c∗R(α), c∗(1)}) . (6.10)

By analogy to linear crisp optimization, solution c̃∗ of the fuzzy optimization prob-
lem (6.4) is a subset of a vertex of the fuzzy polytope or the subset of a segment of a fuzzy
hyperplane de�ned by its vertices.
Hence, we write

Theorem 6.2. A fuzzy optimal solution of fuzzy linear optimization problem (6.4) is a
subset of the set of extreme points of P. In general, c̃∗ ⊂ conv{p̃k} (k = 1, . . . , n) and
the number of p̃k can not exceed n − 1, where n is a number of the vertices of the fuzzy
polytope.

Proof. The proof is straightforward and follows directly from the convergence Theorem 6.1
and considerations for the crisp case.

The fuzzy polytopeP has its own membership function µP. Thus, for each component of
the fuzzy solution we obtain its membership function value by straight forward calculation
using

De�nition 6.12. The membership function value of an element c∗ of fuzzy optimal solu-
tion c̃∗ of problem (6.4) can be calculated as

µc̃∗(c
∗) =| {α | c∗ ∈ conv{c∗L(α), c∗R(α)}, α ∈ [0, 1]} | (6.11)

where | . | stands for the geometric measure of the set.

Then, the �nal choice can be such an element c∗ of the fuzzy solution that has a maximal
membership function value (or according to De�nition 4.4 - the best solution). However,
other solutions can exist. This we can better explain in the next Section.

6.4 Example

Let us consider the fuzzy optimization problem

F (c̃) = c̃1 + 2c̃2 → max

s.t. c̃1 + c̃2 � 7̃
0 � c̃1 � 3
0 � c̃2 � 5,

(6.12)
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where 7̃ = (6, 7, 9). These inequalities de�ne the fuzzy polytope P. The number of
vertices of the crisp polytopes PL(α) and PR(α) obtained for di�erent α-cuts depends on
the value of α.
To discuss this situation seriatim, let us consider problem (6.12) for two di�erent level-

cuts: for α = 0.3 and α = 0.7. Solutions for these case are visualized in Fig. 6.8.

F (cL(0.3)) = c1L(0.3) + 2c2L(0.3)→ max
s.t. c1L(0.3) + c2L(0.3) ≤ 6.3

0 ≤ c1L(0.3) ≤ 3
0 ≤ c2L(0.3) ≤ 5

(6.13)

and
F (cR(0.3)) = c1L(0.3) + 2c2L(0.3)→ max

s.t. c1R(0.3) + c2R(0.3) ≤ 8.4
0 ≤ c1R(0.3) ≤ 3
0 ≤ c2R(0.3) ≤ 5.

(6.14)

By analogy, for α = 0.7 we obtain

F (cL(0.7)) = c1L(0.7) + 2c2L(0.7)→ max
s.t. c1L(0.7) + c2L(0.7) ≤ 6.7

0 ≤ c1L(0.7) ≤ 3
0 ≤ c2L(0.7) ≤ 5

(6.15)

and
F (cR(0.7)) = c1L(0.7) + 2c2L(0.7)→ max

s.t. c1R(0.7) + c2R(0.7) ≤ 7.6
0 ≤ c1R(0.7) ≤ 3
0 ≤ c2R(0.7) ≤ 5.

(6.16)

To compute the fuzzy optimal solution c̃∗ of problem (6.12) we have to take a convex
hull for all α-cuts. And we obtain that c̃∗ = conv{(1, 5), (3, 5)}. And it is easy to see
that for di�erent α-cuts we have di�erent Pareto optimal solutions. It is easy to see that
solution c∗1 = (2, 5) (that is obtained for α = 1) does not change for all level-cuts and
solution c∗2 = (3, 5) stays optimal for all α ∈ [0, 0.5].

Remark 6.6. In this example it is easy to see that the maximal convex hull can be obtained
for α = 0. However, it is also clear that it is not su�cient to consider α = 0 only.
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Fig. 6.8: Di�erent solutions are obtained for di�erent α-cuts.
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7 Bilevel optimization with fuzzy
objectives

To deal with more complicated problem - the bilevel optimization problem with fuzzy
objectives and crisp constraints, we combine here the main results from the aforesaid.
The purpose of the present Chapter consists in describing an e�ective algorithm for the
bilevel bilinear optimization problem with fuzzy objective functions and crisp constraints.
The investigated fuzzy bilevel optimization problem is well-stated in Section 7.1 for a
general case.
There exist only few possibilities to deal with this problem of non-uniqueness. Namely,

• optimistic approach (Dempe and Starostina (2007));

• pessimistic approach (Lohse (2011));

• selection function approach (Dempe and Starostina (2006)).

These main approaches and their di�erence are presented in Section 7.2.
One opportunity to solve such a fuzzy bilevel optimization problem is to use Yager

ranking indices to avoid the incomparability of the fuzzy vectors involved in the problem
(Ruziyeva and Dempe (2012)). Then, the fuzzy bilevel optimization problem can easily
be reformulated into the crisp bilevel optimization problem. This idea is presented in
Section 7.3. Algorithm I is presented in Section 7.4 to demonstrate the solution technique
of our �rst approach to solve the fuzzy bilevel optimization problem.
However, there exist another opportunity to deal with the bilevel bilinear optimization

problem. In this Chapter is presented completely new idea, where for each selection of
the leader the optimal solution of the fuzzy optimization problem on the lower level is
considered to be fuzzy.
Then, the fuzzy optimal solution of the lower level problem is described as the set of

Pareto optimal solutions of a corresponding multiobjective optimization problem. Ac-
cording to Chanas and Kuchta (1994), the preferable optimal solution is supposed to have
a maximal membership function value, i.e. this solution has the highest potential being
realized by the follower. The idea of computation of a value of the membership function
of the optimal solution is based on optimality conditions and is presented in Chapter 4.
Then the solution with the maximal membership function value is chosen for future con-
siderations: For this best solution its region of stability is found. A stability region is a
fuzzy polyhedron. Thus, the fuzzy optimization problem on the upper level is solved with
respect to the solution method described in Chapter 6. That technique is described in
Section 7.5. This naturally results in Algorithm II presented in Section 7.6.
The Chapter concluded with an illustrative example (the fuzzy bilevel optimization

problem with fuzzy �ow problem on the lower level). Thus, two algorithms are compared
in Section 7.7.
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7.1 General formulation

As soon as bilevel programming has been proposed for modelling hierarchical decision
processes with two decision makers, let, �rst of all, the leader select a fuzzy solution
c̃ ∈ C̃. Then, the follower's task is to solve the problem

min
x
{f(c̃, x) : g(x) ≤ 0} , (7.1)

where

• f(c̃, x) : C̃ × Rn 7→ F is a fuzzy objective function;

• g(x) : Rn 7→ Rp is a crisp constraint vector-valued function;

• C̃ is a fuzzy set in Fn;

• X := {x : g(x) ≤ 0} is a crisp set.

Let Ψ(c̃) denote the set of optimal solutions of fuzzy optimization problem (7.1), i.e.

Ψ(c̃) = arg min
x∈X
{f(c̃, x) : g(x) ≤ 0} .

Then, the leader's aim is to minimize the fuzzy function F (c̃, x) subject to both c̃ ∈ C̃
and x ∈ Ψ(c̃).
If Ψ(c̃) consists of one element for each c̃ ∈ C̃, i.e. |Ψ(c̃)| = 1, then the fuzzy bilevel

programming problem can be formulated as

F (c̃, x)→ min
c̃∈C̃

s.t. f(c̃, x)→ min
x∈X

,
(7.2)

where the upper level objective function F (c̃, x) is a fuzzy function.

7.2 Solution approaches

The assumption that the set of optimal solutions Ψ(c̃) of problem (7.1) reduces to a
singleton is often not satis�ed even in the crisp case of bilevel optimization problems.
There exist few possibilities to deal with such a kind of problems under the assumption
that the follower would choose a certain solution. Namely:

• The optimistic approach can be used in the cooperative case under the assumption
that the follower takes the best solution for the leader. Then, the optimal value
function is

φo(c̃) = min
x∈Ψ(c̃)

{F (c̃, x)} → min
c̃∈C̃

• The pessimistic approach can be used in non-cooperative case when the leader has
to bound a damage of the follower's choice. Then, we obtain the following

φp(c̃) = max
x∈Ψ(c̃)

{F (c̃, x)} → min
c̃∈C̃
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• When a type of behaviour of the players is not known exactly, it is possible to assume
that the follower can select the solution according to a selection function. This quite
new approach we call the selection function approach and describe it in the present
work.

Let us denote some element of Ψ(c̃) by x(c̃) and assume, that this choice is a �xed
selection function for all possible c̃ ∈ C̃ (see Dempe and Starostina (2006)). The vector
of parameters c̃ describes the "environmental data" for fuzzy lower level problem (7.1).
The problem of determining optimal solution c̃∗ for the leader can be described as that

of �nding a vector of parameters for fuzzy parametric optimization problem (7.1), which
together with the response of the follower x(c̃) ∈ Ψ(c̃) to the leader's decision proves to
give the minimal possible function value for the upper level objective function F (c̃, x).
That means, that the aim of the fuzzy bilevel programming problem is then to select c̃
such that it is an optimal one in the following optimization problem:

F (c̃, x(c̃))→ min
c̃∈C̃

.

To compare these three approaches let us consider the following example:

Example 7.1. Consider the convex parametric optimization problem

Ψ(c̃) = argmin
x
{−c̃x : 0 ≤ x ≤ 1}

and the bilevel optimization problem

min
c̃
{F (c̃, x) = x2 + c̃2 : x ∈ Ψ(c̃),−1 � c̃ � 1}.

It is easy to compute that

Ψ(c̃) =


{0}, c̃ ≺ 0;

[0, 1], c̃ = 0;

{1}, c̃ � 0.

(7.3)

F (c̃, x(c̃)) =


c̃2, c̃ ≺ 0;

[0, 1], c̃ = 0;

c̃2 + 1, c̃ � 0.

(7.4)

Here it can be seen that the upper level function value is unclear unless the follower has
announced his / her selection to the leader.
The upper level problem is solvable only in case when the follower selects x(0) = 0 ∈

Ψ(c̃). Thus, the notion of an optimal value is not clear: There are choices for c̃ leading
to the upper level objective function values su�ciently close to zero, but it is not clear
whether the value zero can be attained.
As soon as the leader has to meet his / her choice �rst, it is very important to consider

all options.
In optimistic case we obtain the optimal function value as

φo(c̃) =

{
c̃2, c̃ � 0;

c̃2 + 1, c̃ � 0.
(7.5)
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Using optimistic approach, we have to minimize the function φo(c̃) with respect to c̃, i.e.

min
y
{φo(c̃),−1 � c̃ � 1}.

This solution c̃∗o = 0 is optimistic solution.
In pessimistic case we have

φp(c̃) =

{
c̃2, c̃ ≺ 0;

c̃2 + 1, c̃ � 0.
(7.6)

And solving the following problem

min
y
{φp(c̃),−1 � c̃ � 1}

we obtain the pessimistic solution c̃∗p = 1.
It is clear that using either optimistic or pessimistic approaches we exclude a whole

continuum of the possible decisions of the leader (0, 1).
Assume that follower's provides selection function

x(c̃) =


0, c̃ ≺ 0;

1/2, c̃ = 0;

1, c̃ � 0.

(7.7)

The leader can now choose either solution c̃∗ = 0 or solution near to c̃∗.

7.3 Yager index approach

In the present Section we suggest to compute the selection function x(c̃) using the Yager
ranking indices technique. The classical de�nition in area compensation is de�ned as
follows:

De�nition 7.1 (Liu and Kao (2004)). For a fuzzy number d̃ ∈ C̃ the Yager index is
computed as

I(d̃) =
1

2

∫ 1

0

[dL(α) + dR(α)]dα, (7.8)

where [dL(α), dR(α)] is an α-cut of the fuzzy number d̃.

Let us de�ne for a fuzzy vector c̃ = (c̃1 . . . , c̃n) the Yager index as a vector I(c̃) =
(I(c̃1), . . . , I(c̃n)). Hence, the function I(c̃) also possesses the properties of linearity and
additivity. Here we adopt this method for ranking the objective function values.
For realizing this idea we investigate fuzzy bilevel optimization problem

F (c̃, x)→ min
c̃∈C̃

s.t. x ∈ Ψ(c̃)
(7.9)

with an n-dimensional vector of decision variables x. Here
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• F (c̃, x) is a fuzzy function;

• C̃ = Fn;

• Ψ(c̃) = arg min
x
{c̃>x : x ∈ X} is the set of optimal solutions of the lower level

problem;

• X = {x : Ax = b, x ≥ 0};
� A ∈ Rm×n is the constraint matrix;

� b ∈ Rm is the right-hand side vector.

That means that for some �xed c̃× ∈ C̃ the lower level fuzzy optimization problem is
stated as

c̃×>x→ min
x ∈ X. (7.10)

According to De�nition 7.1 as a reformulation of follower's fuzzy optimization prob-
lem (7.10) we have the following optimization problem on the lower level:

I(c̃×)>x→ min
x ∈ X. (7.11)

Thus, ΨI(c̃
×) = arg min

x
{I(c̃×)x : x ∈ X}.

Suppose that fuzzy vectors are de�ned through (nomalized) continuous triangular fuzzy
numbers c̃ = (cL, cT , cR), where cL, cT , cR ∈ Rn. Then, it is easy to calculate

cL(α) = (cT − cL)α + cL and cR(α) = (cT − cR)α + cR.

Using De�nition 7.1, the Yager index for this particular case is de�ned as

I(c̃) =
1

2

(
cT +

1

2
[cL + cR]

)
. (7.12)

This simpli�es problem (7.11), that is already a crisp optimization problem. And now
initial fuzzy bilevel optimization problem (7.9) is transformed into

F (I(c̃), x)→ min
I(c̃)∈ Rn

s.t. I(c̃)>x→ min
x∈X

.
(7.13)

7.4 Algorithm I

To solve fuzzy optimization problem (7.9) we have to do the following.
For the �xed fuzzy vector c̃× compute the Yager index I(c̃×).

STEP 1 Find an optimal solution x∗(I(c̃×)) ∈ ΨI(c̃
×) of lower level problem (7.11).

If the optimal solution of lower level problem (7.11) is not unique, take the best one
with respect to the upper level function F (I(c̃×), x).
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STEP 2 Fix this solution x∗ := x∗(I(c̃×)) of the follower's problem (7.11) and solve the upper
level problem

F (I(c̃), x∗)→ min
I(c̃)∈ Rn

(7.14)

STEP 3 Fix the optimal solution I∗(c̃) of problem (7.14) and go to STEP 1. Repeat until
the solution stops changing.

Then the pair (I∗(c̃), x∗) is an optimal solution of bilevel programming problem (7.13)
in sense of Dempe (1987).

STEP 4 Now the inverse function to I∗(c̃) has to be found. For the case of triangular fuzzy
vectors, according to formula (7.12), we choose an optimal c̃∗ = (c∗L, c

∗
T , c
∗
R) such that

c∗T = I∗(c̃), c∗L + c∗R = 2I∗(c̃) and c∗L ≤ c∗T ≤ c∗R.

With such a triple (c∗L, c
∗
T , c
∗
R) the fuzzy vector c̃∗ can be de�ned by a symmetrical

membership function for which

c∗T − c∗L = c∗R − c∗T

holds true. This c̃∗ has the Yager index equal to I∗(c̃).

Then the pair (c̃∗, x∗) is an optimal solution of initial fuzzy bilevel optimization
problem (7.9).

The algorithm is demonstrated later in Section 7.7 on illustrative example.

7.5 Membership function approach

In this Section we investigate the fuzzy bilevel optimization problem

F (c̃, x)→ min
c̃∈C̃

s.t. c̃>x→ min
x∈X

(7.15)

with an n-dimensional vector of decision variables x under the assumption that

• The upper level objective function F (c̃, x) is bilinear;

• The leader's feasible set C̃ is properly de�ned fuzzy polytope;

• The follower's feasible set X = {x : Ax = b, x ≥ 0} is a crisp polytope, where

� A ∈ Rm×n is the constraint matrix,

� b ∈ Rm is the right-hand side vector.

Such strong restrictions we use for simplicity: Bilevel optimization problem is shown to
be NP-hard by Ben-Ayed and Blair (1990); Blair (1992) even in a crisp linear case.
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That means that the lower level fuzzy optimization problem is stated for the �xed vector
of coe�cients c̃× ∈ C̃ in a form of fuzzy linear optimization problem (4.1), namely

c̃×>x→ min
x ∈ X. (7.16)

This problem is solved with the approach based on minimization of the α-cut on the
feasible set. This is described in details in Section 4.1.
In this Section we describe a solution algorithm for fuzzy bilevel optimization prob-

lem (7.15) that supposes, that the membership function of the solution of lower level
fuzzy linear optimization problem (7.16) can be found (see Chapter 4) and as soon as the
feasible set is a polytope, a solution can be found on one of the vertices of this set.
The feasible set X can be presented as the Minkowski sum of a convex hull of all vertices

and a convex cone (see e.g. Minkowski's Theorem 4.8. in Nemhauser and Wolsey (1988)).
Henceforth, we assume that the membership functions for all vertices xi of this polytope

- feasible set X - can be computed (for non-optimal solutions the membership function is
zero.) As soon as the solution of problem (7.16) is a fuzzy set of feasible points, elements
of this set with the largest membership function values should be selected, since these
have the largest potential of being realized. Thus, we accept a best solution for further
analysis, (an element such that its membership function has maximal value).
On the basis of aforesaid we suppose that the optimal solution of fuzzy linear opti-

mization problem (7.16) x̂ := x̂(c̃×) ∈ Ψ(c̃×) for the �xed c̃× ∈ C̃ possess the maximal
membership function value µ(x̂).

De�nition 7.2. A region of stability of the fuzzy solution x̂ is

R(x̂) = {c̃ : c̃x̂ � c̃xi ∀i ∈ B, c̃ ∈ C̃}

where B is a set of basic indices of lower level fuzzy linear optimization problem (7.16).

Theorem 7.1. The region of stability is a fuzzy polytope.

Proof. In De�nition 7.2 region of stability is de�ned as an intersection of a �nite number
of inequalities. Under the additional assumption that the feasible set C̃ is a fuzzy polytope
the region of stability is also a fuzzy polytope.

We recall now

De�nition 7.3. A connected set is a topological set that cannot be represented as a union
of two or more disjoint nonempty open subsets.

Corollary 7.1. A region of stability is a convex connected set.

Remark 7.1. A region of stability is not a single point since the rows of the matrix A
are linear independent. If a region of stability of some solution x0 ∈ X is a point, then
the solution x0 is nonstable.
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Fig. 7.1: n regions of stability cover the feasible set of the leader.

7.6 Algorithm II

In this Section we describe a solution algorithm for fuzzy bilinear bilevel optimization
problem (7.15).
The idea of the algorithm is enumerative technique: we cover the feasible set of the

leader with the regions of stability for the best lower level solutions under assumption,
that regions of stability can be exactly calculated.
Algorithm.

Set k := 1. Fix a random fuzzy vector c̃k ∈ C̃ and a level-cut α ∈ (0, 1).

STEP 1 For the �xed c̃k and α compute a best solution x̂k := x̂(c̃k) of the fuzzy lower level
problem (7.16).

STEP 2 Find the region of stability R(x̂k) using De�nition 7.2.

STEP 3 Solve the upper level fuzzy optimization problem

F (c̃, x̂k)→ min
c̃ ∈ R(x̂k).

(7.17)

Denote an optimal solution of problem (7.17) through c̃∗k. Retain the pair (c̃∗k, x̂k).

STEP 4 R := C̃ \ R(x̂k). If R = ∅, then STOP. Else �x c̃k+1 ∈ int(R) and go to STEP 1
with k := k + 1 (see Fig. 7.1).

STEP 5 Compare the pairs (c̃∗1, x̂1), . . . , (c̃∗n, x̂n), where n is number of iterations, and choose
(c̃∗, x̂) - the best pair with respect to the upper level function F (c̃, x).

If there exist two di�erent pairs (c̃∗i , x̂i) and (c̃∗j , x̂j) such that (c̃∗i , x̂i) 6= (c̃∗j , x̂j) with
the same upper level function value F (c̃∗i , x̂i) = F (c̃∗j , x̂j), we suggest to choose such
a pair that has a best second component, i.e. if µ(x̂i) > µ(x̂j), then the pair (c̃∗i , x̂i)
is better (more preferable) than (c̃∗j , x̂j).
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Remark 7.2. As soon as the region of stability is a fuzzy polytope and the function
F (c̃, x̂k) with the �xed x̂k is linear on c̃, upper level optimization problem (7.17) can be
solved using the solution method as described in Section 6.3.

Theorem 7.2. The algorithm is convergent.

Proof. Consider lower level problem (7.16). The feasible set X has a �nite number of
vertices, and we are interested only in the basic solutions. Let the total number of basic
solutions be N . It is clear that N <∞. Thus, for each best solution on the lower level we
obtain its region of stability. The total number of the regions of stability cannot exceed
N . Taking into consideration Corollary 7.1 and Remark 7.1, the theorem is proved.

Theorem 7.3. The pair (c̃∗, x̂) is a global optimal solution of fuzzy bilevel programming
problem (7.15).

Proof. The proof of this fact is obvious with the rule of contraries. Suppose that there
exist other global optimum, e.g. the pair (c̃0, x0) such that F (c̃0, x0) < F (c̃∗, x̂). In
consideration of STEP 4 and its STOP criteria the region of stability R(x0) of the solution
x0 of the lower level problem is considered in one of the iterations. But the assumption of
the theorem is following. Since after all the comparisons at the STEP 5 of the algorithm
the best solution is (c̃∗, x̂), consequently F (c̃∗, x̂) < F (c̃0, x0). This is contradiction to the
assumption that (c̃0, x0) is a global optimal solution.

As soon as the fuzzy numbers are non-comparable, the way of the computation of the
region of stability according to De�nition 7.2 in some cases can be too complicated.
There exist few heuristic ways to overcome this problem, we suggest to compute the

region of stability using Yager index within the following formula:

RI(x̂) = {c̃ : I(c̃)x̂ ≤ I(c̃)xi ∀i ∈ B, c̃ ∈ C̃}. (7.18)

For the simplest case, that is presented in the next Section, we assume that the fuzzy
numbers are presented by their triangular membership functions.

7.7 Example

To accomplish the discussion it is interesting to explain the results by giving a special
example - the tra�c problem discussed in Section 4.4.2 with additional crisp tolls in some
paths and one more level for a new decision-maker (the leader).
Let the upper level objective function F (ctoll, x) = (ctoll)Tx measure the collected money

through a tra�c G = (V,E), where ctoll ∈ Ctoll is a vector of the crisp toll charges and
x ∈ X is the tra�c �ow. We de�ne Ctoll = {ctoll : ctoll ∈ Z|T |+ , ctoll ≤ c̄}, where c̄ is a given
upper bound and T ⊂ E is a set of all toll roads.
Let the lower level objective function f̃(ctoll, x) measure the quality of the �ow x, which

depends on the toll charges ctoll and the usual user's fuzzy costs c̃ such as e.g. fuel. A
possible realization could be f̃(ctoll, x) = (ctoll + c̃)Tx.
Computing the system optimum in the tra�c network means that we maximize the

collected money for the leader as the upper level objective function value F (ctoll, x) and
minimize the total costs for the travel of all users (that we describe as one follower) in
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the network as the lower level objective function value f̃(ctoll, x). Clearly these costs do
not only depend on the fuzzy costs c̃ for traversing the edges but also on the collected toll
charges

ctolle =

{
ctollp , if p ∈ T
0, if p 6∈ T ,

where T ⊂ E is a set of all toll roads. Assume that in the network G there exists at least
one toll-free path (i.e. Ctoll is bounded).
Using this problem a user equilibrium tra�c �ow can be computed provided that the

costs c̃e for traversing the edge e ∈ E are approximately known, i.e. have fuzzy values,
and depend on the �ow over this edge. Using fuzzy travel costs, the computation of the
tra�c �ow reduces to a fuzzy network �ow problem.
Let xe = xkl denote the amount of transported units over the edge e = (k, l) ∈ E, that

connects two vertices k and l (k, l ∈ V ). Let Ok (Ik) denote the set of all edges leaving
(entering) the node k.
Thus, we have a following bilevel fuzzy optimization problem:

F (ctoll, x) =
∑
e∈T

ctolle xe → max
ctolle ∈Ctoll

(7.19)

s.t. f̃(ctoll, x) =
∑
e∈E

∑
e∈T

ctolle xe + c̃exe → min
x

(7.20)

xe ≤ ue ∀e ∈ E (7.21)∑
k∈Il

xkl −
∑
i∈Ol

xli = 0, ∀ l ∈ V \ {s, d} (7.22)∑
k∈Is

xks −
∑
i∈Os

xsi = −v, (7.23)

xe ≥ 0 (7.24)

To pose (7.19)-(7.24) in a form of (7.16) and Ψ(c̃) is the optimal solution set of problem
(7.20)-(7.24).
Description of a numerical example is the following:

F (ctoll, x) = ctoll13 x13 + ctoll23 x23 + ctoll34 x34 → max
C=[0,5]3

s.t. f̃(ctoll, x) = 3̃x12 + (3̃ + ctoll13 )x13 + (3̃ + ctoll23 )x23 + 7̃x24 + (3̃ + ctoll34 )x34 → min
x

with demand

x12 + x13 = 90
x24 + x34 = 90

x12 = x23 + x24

x13 + x23 = x34

and capacity

0 ≤ x12 ≤ 90
0 ≤ x13 ≤ 90
0 ≤ x23 ≤ 60
0 ≤ x24 ≤ 30
0 ≤ x34 ≤ 90

The corresponding tra�c network is illustrated in Fig. 7.2.
Let here fuzzy numbers be de�ned as continuous triangular fuzzy numbers: 3̃ = (1, 3, 5)

and 7̃ = (5, 7, 9).



7.7 Example 83

[90]��
��
1
@
@
@
@
@R

3̃ + ctoll13

(90)

?

3̃ (90)

��
��
2
�
�
�
�
��

3̃ + ctoll23

(60)

��
��
3
@
@
@
@
@@R

3̃ + ctoll34

(90)

-7̃

(30) ��
��
4 [−90]

Fig. 7.2: The example of the tra�c network.

Now let us implement Algorithm I for this example.
STEP 1. Fix the vector of toll parameters c1 := (c1toll

13 , c1toll
23 , c1toll

34 ) = (5, 4, 0) and compute
an optimal solution of the lower level problem with the following objective function

f̃(c1, x) = 3̃x12 + 8̃x13 + 7̃x23 + 7̃x24 + 3̃x34, (7.25)

where 8̃ = (6, 8, 10).
Using De�nition 7.1 or property from Yager (1981) for normal symmetric fuzzy numbers

we compute Yager-indices: I(3̃) = 3, I(7̃) = 7 and I(8̃) = 8. Now the fuzzy lower level
problem (7.25) states as a crisp linear optimization problem

f̃(c1, x) = 3x12 + 8x13 + 7x23 + 7x24 + 3x34 (7.26)

with the same demands and constraints, that has as an optimal solution a vector x∗ =
(30, 60, 0, 30, 60).
STEP 2. Now with the �xed solution x∗ of the lower level problem (7.26) we solve the

following upper level problem:

F (ctoll, x∗) = ctoll13 60 + ctoll23 0 + ctoll34 60→ max
ctoll ∈ [0, 5]3,

(7.27)

where an optimal solution is c∗ = (5, 4, 5) (c∗13 := c1toll
13 ).

STEP 3. Now solving again for the lower level problem with �xed c∗

f̃(c∗, x) = 3x12 + 8x13 + 8x23 + 7x24 + 8x34.

It is easy to see that as soon as a solution x∗ remains to be optimal, the pair (c∗, x∗) is
an optimal solution of the initial fuzzy bilevel programming problem.

Let us solve this tra�c assignment problem according to the Algorithm II. As we
will see later, the investigated problem has on the lower level has three basic solutions,
namely, x̂1 = (30, 60, 0, 30, 60), x̂2 = (0, 90, 0, 0, 90) and x̂3 = (90, 0, 60, 30, 60).
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Fix some toll parameters ctoll1 = (ctoll13 , c
toll
23 , c

toll
34 ) := (5, 4, 0) ∈ Ctoll.

STEP 1 (Iteration 1). For this �xed parameter we compute an optimal solution of the
lower level problem with the following objective function

f̃(ctoll1 , x) = 3̃x12 + 8̃x13 + 7̃x23 + 7̃x24 + 3̃x34,

where 8̃ = (6, 8, 10). As soon as the solution x̂1 has a maximal membership function value,
we take it for the further consideration.
STEP 2. For this solution we compute its region of stability. The solution x̂1 is an

optimal one until

ctoll ∈ R(x̂1) = {ctoll : ctoll ∈ Ctoll, f̃(ctoll, x̂1) � f̃(ctoll, x̂2), f̃(ctoll, x̂1) � f̃(ctoll, x̂3)} =

= {ctoll : ctoll ∈ Ctoll, 3̃ · 30 + (3̃ + ctoll13 )60 + 7̃ · 30 + (3̃ + ctoll34 )60 � (3̃ + ctoll13 )90 + (3̃ + ctoll34 )90,

3̃ · 30 + (3̃ + ctoll13 )60 + 7̃ · 30 + (3̃ + ctoll34 )60 � 3̃ · 90 + (3̃ + ctoll23 )60 + 7̃ · 30 + (3̃ + ctoll34 )60} =

= {ctoll : ctoll ∈ Ctoll, 7̃− 3̃ � ctoll34 + ctoll13 , c
toll
13 � 3̃ + ctoll23 } =

= {ctoll : ctoll ∈ Ctoll, 4− ctoll34 ≤ ctoll13 ≤ 3̃ + ctoll23 }.

STEP 3. Now we solve the following upper level problem:

F (ctoll, x̂1) = ctoll13 60 + ctoll23 0 + ctoll34 60→ max
ctoll ∈ R(x̂1),

where the optimal solution is ĉtoll1 = (5, 4, 5).
The pair (ĉtoll1 , x̂1) is a local optimal solution of the initial fuzzy bilevel programming

problem. That means, that this solution is optimal within a neighbouring set of solutions,
namely in R(x̂1)×X with the upper level function value equal to 600.
STEP 4. According to the algorithm, as soon as R := Ctoll \ R(x̂1) = {ctoll : ctoll ∈

Ctoll, 4− ctoll34 ≥ ctoll13 } ∪ {ctoll : ctoll ∈ Ctoll, ctoll13 � 3̃ + ctoll23 } 6= ∅, we select another vector in
R, e.g. ctoll2 := (1, 5, 2) and go to STEP 1.
STEP 1 (Iteration 2). For this ctoll2 we have a di�erent lower level problem with the

following objective function

f̃(ctoll2 , x) = 3̃x12 + 4̃x13 + 8̃x23 + 7̃x24 + 5̃x34,

where 4̃ = (2, 4, 6) and 5̃ = (3, 5, 7). A solution with a maximal membership function
value is x̂2 = (0, 90, 0, 0, 90).
STEP 2. A region of stability of this solution is

R(x̂2) = {ctoll : ctoll ∈ Ctoll, 4−ctoll34 ≥ ctoll13 }∩{ctoll : ctoll ∈ Ctoll, 3̃+7̃+2ctoll23 � 3ctoll13 +ctoll34 }.
STEP 3. Solve now the following upper level problem:

F (ctoll, x̂2) = ctoll13 90 + ctoll23 0 + ctoll34 90→ max
ctoll ∈ R(x̂2),

that has an optimal solution ĉtoll2 = (1, 5, 4).
The pair (ĉtoll2 , x̂2) is a local optimal solution of the initial fuzzy bilevel programming

problem with the upper level function value equal to 450.



7.7 Example 85

STEP 4. As soon as R := R \ R(x̂2) 6= ∅, we select another vector in R, e.g. ctoll3 :=
(5, 0, 3) and go to STEP 1.
STEP 1 (Iteration 3). Then the objective function on the lower level is

f̃(ctoll3 , x) = 3̃x12 + 8̃x13 + 3̃x23 + 7̃x24 + 6̃x34,

where 6̃ = (4, 6, 8). A solution x̂3 = (90, 0, 60, 30, 60) has a maximal membership function
value.
STEP 2. Analysing sensitivity of x̂3 we obtain that the region of stability for this

solution is
R(x̂3) = {ctoll : ctoll ∈ Ctoll, ctoll13 � 3̃+ctoll23 }∩{ctoll : ctoll ∈ Ctoll, 3̃+7̃+2ctoll23 � 3ctoll13 +ctoll34 }.
STEP 3. It is easy to obtain that the problem on the upper level

F (ctoll, x̂3) = ctoll13 0 + ctoll23 60 + ctoll34 60→ max
ctoll ∈ R(x̂3)

has an optimal solution ĉtoll3 = (5, 0, 5).
The pair (ĉtoll3 , x̂3) is a local optimal solution of the initial fuzzy bilevel programming

problem with the upper level function value equal to 300.
STEP 4. As soon as now we covered all the leader's feasible set with the regions of

stability, i.e. R := R \R(x̂3) = ∅, we STOP.
Now we have to compare the pairs (ĉtoll1 , x̂1), (ĉtoll2 , x̂2) and (ĉtoll3 , x̂3) with respect to

the upper level function F (ctoll, x). Thus, the pair (ĉtoll1 , x̂1) with the upper level function
value equal to 600 is a global optimal solution of the initial problem.

It is easy to see that optimal solution x∗, obtained using the Yager index approach,
matches with global optimal solution x1, obtained with the use of the membership function
approach and, of course, upper level function values coincide (i.e. F (c∗, x∗) = F (ĉtoll1 , x̂1)).
This is coincidence: If another �rst vector of toll parameters c1 is chosen, application of
Yager index approach may lead to any local optimal solution, e.g. (ĉtoll2 , x̂2) or (ĉtoll3 , x̂3).
Comparing two algorithms it is interesting to note, that Algorithm I is noncomlicated in

its implementation. However, it provides us with only local optimal solution. Algorithm II
has to run as many times, as many basic solutions has the lower-level problem. But at
the end a global optimal solution is obtained. To be more precise, all crucial solutions are
calculated and the global optimal solution is chosen to provide the leader with the best
solution.
There exist an opportunity to improve the Algorithm I with the same idea, used in

Algorithm II. On STEP 3, using formula (7.28), it is possible calculate the region of
stability of solution x∗ as

RI(x
∗) = {c̃ : I(c̃)x̂ ≤ I(c̃)xi ∀i, c̃ ∈ Fn}, (7.28)

and then repeat the Algorithm for some I(c̃) ∈ Fn \ RI(x
∗) and so on, until we cover all

the feasible set Fn.
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8 Linear fuzzy bilevel optimization
(with fuzzy objectives and
constraints)

The natural extension of a bilevel optimization problem with fuzzy objective functions
and crisp constraints is a bilevel optimization problem with fuzzy objective functions and
fuzzy constraints. In this Chapter we focus our attention on the last problem for the
linear case.
We use the selection function approach and a modi�ed version of k-th best algorithm

to solve the linear fuzzy bilevel optimization problem. The optimal solution is obtained
as a subset of a vertex of the decision space P (see below). For the auxiliary fuzzy linear
optimization problem the solution approach proposed in Chapter 6 can be applied. It is
easily seen that an optimal solution of this fuzzy linear optimization problem is also an
optimal solution of two linear optimization problems obtained via application of the α-cut
method.
This Chapter is organized as follows: In Section 8.1 we give a formulation of the fuzzy

bilevel optimization problem.
Section 8.2 deals with the solution approach for fuzzy linear optimization problem over

a fuzzy polytope.
The solution algorithm for the fuzzy bilevel optimization problem is described in Sec-

tion 8.3.
Finally, in Section 8.4 an example is given.

8.1 Formulation

Let Fn be a space of fuzzy vectors over Rn and P be a fuzzy polytope in Fn. Let us denote
through P a crisp polytope in Rm. And let P be a Cartesian product of these two fuzzy
and crisp polytopes P and P , respectively, in Fn × Rm. Thus, the decision space P can
be considered as a fuzzy polytope.
Bilevel programming involves two optimization problems where the constraint region of

the upper level problem is implicitly determined by another optimization problem on the
lower level.
Let the leader make a �rst choice - select a fuzzy solution c̃ ∈ P. The follower optimizes

his / her objective function based on the parameters prescribed by the leader, i.e. the
follower's task is to solve the problem

f(c̃, x) = p>1 c̃+ p>2 x→ min
x

s.t. (c̃, x) ∈ P (8.1)
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where x is an n-dimensional vector of decision variables, c̃ is a �xed fuzzy vector, p1 ∈ Rn

and p2 ∈ Rm are also �xed.
To make our reasoning clear, let us make the following

Assumption 8.1. Let us assume that

• The feasible region de�ned by P is bounded and each basis is nondegenerate.

• The polytope P has a �nite number of vertices.

De�nition 8.1. A set of optimal solutions of fuzzy optimization problem (8.1) is

Ψ(c̃) = arg min
x
{p>1 c̃+ p>2 x : (c̃, x) ∈ P}. (8.2)

Ψ(c̃) is also called the follower's rational set.

In turn, having complete information on the possible reactions of the follower, the leader
selects the parameters to optimize his / her own objective function. Thus, the linear fuzzy
bilevel programming problem can be stated as

F (c̃, x) = d>1 c̃+ d>2 x→ min
c̃∈P

s.t. x ∈ Ψ(c̃).
(8.3)

8.2 Solution approach

In this Section we describe a k-th best algorithm for fuzzy linear bilevel optimization
problem (8.3).

Proposition 8.1. An optimal solution to fuzzy bilevel optimization problem (8.3) (if one
exist) is a subset of the extreme point of the decision space P.

Proof. In Chapter 4 it is shown that only an extreme points of the crisp polytope P can
be optimal solutions of the lower level optimization problem.
As soon as the upper level optimization problem is linear, Theorem 6.2 can be applied.

Thus, an optimal solution of problem (8.3) can only be located in the extreme pointof the
decision space P.

Solution algorithm for fuzzy bilevel programming problem (8.3) is as follows.
Let us consider fuzzy single-level optimization problem

F (c̃, x)→ min
(c̃,x)

x ∈ P
c̃ ∈ P.

(8.4)

Note, that problem (8.4) is a fuzzy linear optimization problem with fuzzy objective
and fuzzy constraints. It can be solved with the technique described in Chapter 6 if only
we consider (c̃, x) as a fuzzy variable and P as a fuzzy polytope. Thus, its level-cut can
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be decomposed into two crisp polytopes PL(α)(= PL(α)× P ) and PR(α)(= PR(α)× P )
for α ∈ [0, 1].
As shown earlier, a fuzzy solution of problem (8.4) is a union of the convex hulls of

solutions of problems
F (cL(α), x)→ min

(cL(α),x)

(cL(α), x) ∈ PL(α)
(8.5)

and
F (cR(α), x)→ min

(cR(α),x)

(cR(α), x) ∈ PR(α)
(8.6)

for all α ∈ [0, 1]. It is clear, that for calculations we have to choose particular α-cuts.
Following Remark 6.6, we have to compute a maximum convex hull of problems (8.5)

and (8.6). Since the maximal convex hull is obtained for α = 0, this α-cut has to be
necessarily considered.
Note that, the strongest solution (see De�nition 4.5) can only be obtained, if we consider

the level-cut for α = 1.
For a set of level-cuts A = {α1, . . . , αT} (0 = α1 < . . . < αT = 1) we have to compute

the vertices of feasible sets of these problems: PL(α) and PR(α). All further discussions
are made for a �xed α := αt ∈ A.
We sort all vertices in ascending order with respect to the value of the fuzzy objective

function. The ordered set of all vertices of PL(α) and PR(α) is called Sα. Let us denote
the �rst vertex in the set Sα as (cα1 , x

α
1 ). Obviously, this is an optimal solution of either

of the problem (8.5) or problem (8.6).
Consider the lower level optimization problem for the �xed parameter cα1 :

f(cα1 , x)→ min
x

x ∈ P. (8.7)

This problem is a crisp linear optimization problem, which can be easily solved.
If its optimal solution is xα1 , STOP with optimal solution (cα1 , x

α
1 ). Else go to the next

vertex (cαk , x
α
k ) (here k = 2) in the ordered set Sα and solve the lower level problem again

for the new parameter cαk :
f(cαk , x)→ min

x

x ∈ P. (8.8)

Repeat the algorithm, until
arg min

x
{f(cαk , x)} = xαk , (8.9)

i.e. the optimal solution (cα, xα) is found.
Repeat the algorithm for all chosen α-cuts and compute a fuzzy optimal solution ac-

cording to formula (6.10) as a convex hull of all solutions found for all chosen α-cuts

(c̃∗, x∗) =
⋃

α∈[0,1]

conv{(cα, xα)}. (8.10)

As soon as we deal with a fuzzy bilevel optimization problem, we have to endow the
fuzzy solution with its membership function.
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As it is described in Section 4.4, in a vast majority of cases we do not need the member-
ship function itself, but only membership function values in certain points. They can be
calculated with De�nition 6.12. Membership function values provide enough information
to rank every point (c∗, x∗) ∈ (c̃∗, x∗). According to De�nition 4.4, we call the point with
a maximal membership function value is the best optimal solution.

8.3 Algorithm

Set t := 1.

STEP 1 Choose a set of α-cuts A = {α1, . . . , αT}. Initialize α := αt ∈ A. Consider fuzzy
linear (single-level) optimization problem (8.4).

STEP 2 For a �xed α split problem (8.4) into two crisp problems (8.5) and (8.6). Compute
the vertices of feasible sets of these problems.

STEP 3 Sort all the vertices of polytopes PL(α) and PR(α) in an ascending order with respect
to the value of the fuzzy objective function in an ordered set Sα = ∪k{(cαk , xαk )}.

STEP 4 Set k := 1.

STEP 5 Solve the lower level fuzzy linear optimization problem (8.8) for cαk .

STEP 6 If its solution xα 6= xαk , go to STEP 4 for k := k+ 1, i.e. repeat STEP 4 for the next
vertex in the set Sα.

STEP 7 Save the pair (cα, xα) := (cαk , x
α
k ). Set α := αt+1 and go to STEP 2.

STEP 8 The optimal solution of the initial fuzzy bilevel optimization problem (8.3) is com-
puted from formula (8.10) (c̃∗, x∗).

• If the aim is to provide the leader with some crisp solution c∗:

STEP 8a Find the membership function values of all crucial points of fuzzy solution c̃∗. Choose
the best solution c∗.

• If the task consist in computing the best optimal solution x∗ for the follower:

STEP 8b For the optimal c̃∗ solve the lower level problem

f(c̃∗, x)→ min
x

x ∈ P. (8.11)

and use the method described in Chapter 4.

Theorem 8.1. The algorithm �nds an optimal solution.

Proof. This follows immediately from Proposition 8.1.

Theorem 8.2. The algorithm is convergent.

Proof. Convergence is established by noting Assumption 8.1.
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8.4 Example

Let us consider a following simple linear fuzzy bilevel optimization problem

F (c̃, x) = c̃+ 5x→ min
c̃

0 � c̃ � 4̃
(8.12)

where x solves
f(c̃, x) = x+ 2→ max

x

s.t. − x+ 2c̃ � 4
2x+ c̃ � 16
x− c̃ � 6
x ≥ 0,

(8.13)

where 4̃ = (3, 4, 5). The aim is to �nd the best optimal solution c∗ for the leader. Let us
assume that the fuzzy variable c̃ is presented as a normalized fuzzy number.
Using the Algorithm we obtain the following:

STEP 1 (Iteration 1.1). We initialize the set A := {0, 1}. We consider the fuzzy linear
(single-level) optimization problem

F (c̃, x) = c̃+ 5x→ min

s.t. 0 � c̃ � 4̃
−x+ 2c̃ � 4
2x+ c̃ � 16
x− c̃ � 6
x ≥ 0.

(8.14)

STEP 2 (Iteration 1.1). Solving problem (8.14) for α = 0 we obtain the following two opti-
mization problems:

F (cL, x) = cL + 5x→ min
s.t. 0 ≤ cL ≤ 3
−x+ 2cL ≤ 4
2x+ cL ≤ 16
x− cL ≤ 6
x ≥ 0

(8.15)

and
F (cR, x) = cR + 5x→ min

s.t. 0 ≤ cR ≤ 5
−x+ 2cR ≤ 4
2x+ cR ≤ 16
x− cR ≤ 6
x ≥ 0.

(8.16)

STEP 3 (Iteration 1.1). Sorting all solutions in ascending order with respect to the value of
the fuzzy objective functions we obtain the ordered set

S0 = {(0, 0), (2, 0), (3, 2), (0, 6), (4.8, 5.6), (3, 6.5), (1.3, 7.3)}.

The �rst vertex in the set S0 is (c0
1, x

0
1) = (0, 0).
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STEP 4 (Iteration 1.1). We have to solve now the lower level fuzzy linear optimization
problem (8.13) for c0

1 = 0:

f(0, x) = x+ 2→ max
x∈[0,6]

. (8.17)

The optimal solution of (8.17) is x0 = 6. As soon as x0 6= x0
1, we have to go to the

neighbouring vertex in the set S0. Namely, to (c0
2, x

0
2) = (2, 0).

STEP 4 (Iteration 1.2). We have to solve lower level optimization problem (8.13) again for
c0

2 = 2:
f(2, x) = x+ 2→ max

x∈[0,7]
. (8.18)

The optimal solution of problem (8.18) is x0 = 7. Clear, that x0 6= x0
2 and we go to

an successive vertex in S0. Namely to (c0
3, x

0
3) = (3, 2).

STEP 4 (Iteration 1.3). For c0
3 = 3 we solve following optimization problem:

f(3, x) = x+ 2→ max
x∈[2,6.5]

. (8.19)

The optimal solution of (8.19) is x0 = 6.5. As soon as x0 6= x0
3, we have to consider

next vertex (c0
4, x

0
4) = (0, 6).

STEP 4 (Iteration 1.4). Now we have to solve problem (8.17) again. Its optimal solution, as
expected, is x0 = x0

4.

STEP 5 (Iteration 1.4). Optimal solution (c0, x0) = (0, 6). We go to STEP 2 with α = 1.

STEP 2 (Iteration 2.1). Problem (8.14) for α = 1 is formulated as

F (c, x) = c+ 5x→ min
s.t. 0 ≤ c ≤ 4
−x+ 2c ≤ 4
2x+ c ≤ 16
x− c ≤ 6
x ≥ 0.

(8.20)

STEP 3 (Iteration 2.1). Solving problem (8.20) and sorting its solutions in asserting order
we obtain the set

S1 = {(0, 0), (2, 0), (4, 4), (0, 6), (4, 6), (1.3, 7.3)}.

STEP 4 (Iteration 2.1). For the �rst vertex (c1
1, x

1
1) = (0, 0) we consider lower level fuzzy

linear optimization problem (8.17). As soon as its optimal solution x1 6= x1
1, we go

to the next vertex (c1
2, x

1
2) = (2, 0).

STEP 4 (Iteration 2.2). For c1
2 = 2 lower level problem states as (8.18). Its optimal solution

x1 6= x1
2 and we consider the next vertex (c1

3, x
1
3) = (4, 4).
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x

cR = 5

cL = 3

(0, 0) (0, 6)

(1.3, 7.3)

(2, 0)

(4.8, 5.6)

(3, 6.5)(3, 2)

(a) For α = 0.

c(
1
)

x(0, 0) (0, 6)

(1.3, 7.3)

(2, 0)

(4, 4) (4, 6)

(b) For α = 1.

Fig. 8.1: Di�erent feasible sets are obtained for di�erent α-cuts.

STEP 4 (Iteration 2.3). For c1
3 = 4 lower level optimization problem is

f(4, x) = x+ 2→ max
x∈[4,6]

. (8.21)

An optimal solution is c1 = 6. It is easy to see, that c1 6= c1
3. We consider now the

next in the set S1 vertex (c1
4, x

1
4) = (0, 6).

STEP 4 (Iteration 2.4). For c1
4 = 0 lower level problem states as (8.17). Its optimal solution

x1 = x1
4.

STEP 5 (Iteration 2.4). An optimal solution is (c1, x1) = (0, 6).

Now it is clear, that solution (c∗, x∗) = (0, 6) is valid for all α-cuts (for all α ∈ [0, 1])
and, thus, is a best optimal solution.
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9 Conclusions

In the dissertation the solution approaches for di�erent fuzzy optimization problems are
presented.
The single-level optimization problem with fuzzy objective function is solved by its

reformulation into a related biobjective optimization problem. This problem, in turn, is
solved by methods of the multiobjective optimization problem's scalarization technique.
Elements of the Pareto set of the corresponding biobjective optimization problem are
interpreted as optimal solutions of the initial optimization problem with fuzzy objective. It
is also discussed, that the set of the optimal solutions depends on scalarization parameters
as soon as each di�erent single objective optimization problem can determine a di�erent
solution set.
A special attention is given to the computation of the membership function of the

fuzzy solution of the fuzzy optimization problem in the linear case. Knowledge of the
membership function values of the elements of the set of fuzzy optimal solutions enables
the decision-maker to make an educated choice between these solutions. Moreover, using
our approach, a decision-maker can see a correlation among solutions and quantitatively
measure the advantage of his / her choice over other solutions.
The membership function value of such a solution equals to the geometric measure of all

α such that this solution is Pareto optimal for the corresponding biobjective optimization
problem. Explicit formulas for computing this membership function value are given.
The theory for continuous triangular fuzzy numbers could be extended to the general LR-
numbers. For this, formulas for computing left- and right-hand side functions cL(α), cR(α)
need to be used (see Chanas (1989); Chanas and Kuchta (1994)). But in general case these
functions are no longer linear with respect to α. Therefore, the computation of z+

i (λ) and
z−i (λ) is cumbersome. Moreover, under convexity assumptions the discussions could be
extended to nonlinear optimization problems with fuzzy objective function. This leads to
a more complicated formula for the membership function.
Further, it is also discussed that, necessary and su�cient conditions for the optimal

solution of the the convex nonlinear optimization problem with fuzzy objective function
can be explained through the necessary and su�cient conditions for the Pareto optimal
solution of the corresponding biobjective optimization problem (and for solutions of its
scalarized problem). Optimality conditions for di�erentiable fuzzy optimization problems
have a form of Karush-Kuhn-Tucker optimality conditions.
Moreover, using the Hadamard upper and lower directional α-derivatives, necessary

and su�cient conditions for local / global optimality of the nondi�erentiable nonconvex
optimization problem with fuzzy objective function are derived.
A fuzzy optimization problem (with both fuzzy objectives and constraints) is also in-

vestigated in the thesis in the linear case. A solution approach is based on the notion of
the fuzzy polytope. The approach is also based on taking level-cuts. Thus, for each α-cut
the initial fuzzy linear optimization problem is splitted into two crisp linear optimization
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problems. Then, considering all α-cuts a fuzzy optimal solution is found as a union of the
convex hulls of corresponding optimal solutions.
To simplify a crisp choice of the decision-maker, for all crucial points of the fuzzy

solution, corresponding membership function values can be found. This makes a choice
of the decision-maker well-grounded.
This approach is quite innovative one and we are trying to extend it to nonlinear fuzzy

optimization problems in our coming work.
Our solution approach can be applied to a class of more complicated problems, namely

fuzzy bilevel optimization problems. In the present work two main cases of fuzzy bilevel
optimization problem are discussed:

1. bilinear optimization problems with fuzzy objective functions;

2. linear optimization problems with fuzzy objective functions and fuzzy constraints.

In the case of bilevel optimization problem with fuzzy objective functions (see point 1.),
two algorithms are presented and compared using an illustrative example, that represents
a real-world problem.
The �rst algorithm we call Yager index approach. Its main ideas are stated in the

following. At the lower level the fuzzy optimization problem is solved by the index ranking
technique. This solution is then taken to �nd an optimal solution on the upper level.
It is clear that this algorithm can be extended to convex continuous problems without

any di�culty. The problem is stated as bilinear to make the comparison with the next
algorithm more transparent.
The second algorithm is based on the membership function approach. The lower level

fuzzy optimization problem is solved by methods of the scalarization technique. Elements
of the Pareto set of each biobjective optimization problem are interpreted as potential
optimal solutions of the lower level fuzzy optimization problem on certain level-cuts. The
optimal solution is selected due to the highest membership function value. Then, this
solution is used on the upper level such that, with response to its region of stability, the
optimal solution of the leader is found. Comparing all optimal solutions with respect
to the upper level function value, the optimal solution of the fuzzy bilevel optimization
problem is found. Moreover, this solution is shown to be a global optimal solution.
Both methods are illustrated using the example of the tra�c problem with given fuzzy

costs. In this particular example as the leader we can see a government agency that
can use tolls to motivate the users of the network (the drivers) to avoid certain regions,
such as UNESCO world heritage sites on the path (2 → 3). On the other hand, us-
ing the toll policy it is also possible to force the users to choose the certain path (e.g.
1→ 2→ 4, 1→ 3→ 4).

For the case of fuzzy linear bilevel optimization problem with both fuzzy objectives and
constraints (see point 2.) we adopt the k-th best algorithm. This algorithm is based on the
solution approach for the fuzzy linear optimization problem with fuzzy objective and fuzzy
constraints. The adopted k-th best algorithm provides us with an optimal solution. Mem-
bership function values can be calculated for the solutions and for solutions on both levels.

Following this line of thought, some suggestions can be made for future research:
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1. The extension of the procedure for calculating the membership function value to
nonlinear fuzzy optimization problems (including the case of fuzzy constraints).

2. The extension of the solution approach for problems with fuzzy objective and fuzzy
constraints for the nonlinear case.

3. The development of necessary and su�cient optimality conditions for the problem
in point 2. (in di�erentiable and nondi�erentiable cases).

4. The development of a solution algorithm for fuzzy bilevel optimization problem in
nonlinear case, that provides the decision-maker with the membership function values
of the possible solutions.
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