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Abstract

This research developed the foundation, theory, and framework for a set of
analysis techniques to assist decision makers in analyzing questions regarding the
synthesis, interdiction, and protection of infrastructure networks. This includes ex-
tension of traditional network interdiction to directly model nodal interdiction; new
techniques to identify potential targets in social networks based on extensions of
shortest path network interdiction; extension of traditional network interdiction to
include layered network formulations; and develops models/techniques to design ro-

bust layered networks while considering trade-offs with cost.

These approaches identify the maximum protection/disruption possible across
layered networks with limited resources, find the most robust layered network design
possible given the budget limitations while ensuring that the demands are met,
include traditional social network analysis, and incorporate new techniques to model
the interdiction of nodes and edges throughout the formulations. In addition, the
importance and effects of multiple optimal solutions for these (and similar) models
is investigated. All the models developed are demonstrated on notional examples

and were tested on a range of sample problem sets.
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Synthesis, Interdiction, and Protection of Layered Networks

I. Introduction

1.1 Background

Network models provide a foundation for analysis in many diverse areas. For
example, they are used to study and analyze graphs, supply chains, national infras-
tructures, social interactions and organizations, to name a few areas. Accordingly,
these networks are studied by a variety of interdisciplinary fields including, but not
limited to, mathematics, sociology, and operations research. Graph theory, a subset
of mathematics, and sociology have developed descriptive measures and techniques

to analyze and understand the structure of networks.

Operations researchers have also developed descriptive measures, as well as
extending techniques to prescriptive methods to optimize and forecast network per-
formance. As a result, operations research techniques can be used to make net-
works highly efficient and cost effective. Unfortunately, using only standard syn-
thesis techniques (such as minimum cost synthesis/flow) at the exclusion of others
(more robust objective functions) have made many networks increasingly vulnerable
to disruptions. [I13, p. 235] In addition, networks are often modeled as individual,
self-contained units with little regard for interdependencies. However, real world
networks are often complex systems of interconnected networks with competing ob-
jectives and competitively shared resources. While nature may appear to create
random attacks due to weather, earthquakes, and so forth; as the events of Septem-
ber 11th demonstrate, networks are subject to attack from intelligent adversaries
who seek to maximize damage. This damage may not be isolated to the specific

network attacked.



A great deal of the efforts to identify vulnerabilities in interdependent /layered
networks comes from system engineering. This discipline has developed conceptual
tools to begin to understand the consequences and effects of actions applied to these

layered networks.

1.1.1 System Perspective

The systems engineering method recognizes each system as an integrated
whole even though composed of diverse, specialized structures and sub-
functions. It further recognizes that any system has a number of ob-
jectives and that the balance between to optimize the overall system
functions according to the weighted objectives and to achieve maximum
compatibility of its parts. [37, p. 3]

A systems engineering approach allows a broad qualitative understanding of
the operational environment in which decisions are made. It promotes “a holistic
view of the operational environment that focuses on those key nodes that could
influence the outcomes of an operation.” [35, p. 1I-4] A systems view of a military

operational environment contains all the elements which are relevant to the current

operation under consideration.

The Joint Warfighting Center described the environment in which the military
operates as a system of layered networks. [35] p. II-2] Specifically, “system nodes are
the tangible elements within a system that can be ‘targeted’ for action ...” Links
are “the behavioral or functional relationships between nodes.” [35, p. II-3] For
example, nodes may include people, material, or facilities, while links “establish the
interconnectivity between nodes that allows them to function as a system.” [35, p.
I1-3] Figure is a notional example of the operational environment developed with

systems engineering techniques.

With this framework, military decision makers decide on a course of action
which aims to “destroy, interrupt, or otherwise affect the relationship” between the

nodes. Originally these decisions considered actions in isolation, but decision makers
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Figure 1.1:  Systems Perspective of the Operational Environment [35] p. TI-2]

now realize these actions “ultimately influence the system as a whole.” [35] p. TI-
3] This perspective forces decision makers to consider the effects of their decisions

across all impacted layers.

System engineering provides a foundation/framework in which to make deci-
sions. In many cases, a quantitative approach may also be beneficial. For example, if
quantitative information is available for the networks, then tools from graph theory
and operations research can be extended to the system engineering context to provide
a rigorous theoretical and mathematical framework from which to make decisions.
This framework would need to incorporate the multiobjective (whether competing,
symbiotic, integrated, etc.) nature of these networks to allow analysis to be done on

these layered networks.

1.2 Research Outline

Researchers have demonstrated that the environment in which the military
operates can be viewed as layered networks. Some steps to extend existing traditional

network models to layered networks have been taken by Wallace [122] and Kennedy



[72]; however, work remained. As a result, the following additional advancements

have been made and are described.

To understand the vulnerabilities of layered networks, network interdiction
techniques were extended to multiple layers. This identifies the components whose
destruction, disruption, or influence would have the greatest intended impact on
the layered networks. With these vulnerabilities identified, steps can be taken to
minimize the impact of potential attacks across all layers of interdependent networks.
Therefore, analysis techniques were further extended to identify either additions to
the network or components whose fortification would reduce these vulnerabilities. Of
course, in addition to analysis of vulnerabilities and protection of existing networks,

these techniques can also be used to develop/design new networks.

Simultaneous network interdiction and protection relies on multilevel program-
ming. Solutions from multilevel programs are generally not Pareto optimal. [10] p.
304] This, combined with the fact that network programs often have multiple opti-
mal solutions, leads to circumstances where coalitions may form in order to improve
individual solutions. This potential for cooperation is studied in the context of mul-
tilevel programming to determine its impact on layered network vulnerability and

protection.

1.2.1 Research Objectives

This research has the following contributions:

Formulation/Theory

e Extends network interdiction to direct nodal interdiction; specifically maxi-
mum flow nodal interdiction.

e Extends social network analysis methods to determine optimal human inter-
diction determination.
— Individual closeness interdiction.

— All-pairs shortest path interdiction for group closeness interdiction.



e Extends network interdiction to layered networks. This identified the maxi-
mum protection/disruption of layered networks with limited resources.

e Extends network synthesis techniques to layered networks considering both cost
and risks. This approach allows decision makers to balance robustness, cost,
and risk in designing or expanding networks (and in the process identifying
edges which make the network vulnerable).

e Determines the impact of coalitions and multiple optimal follower solutions on
vulnerabilities and protection decisions.

Methodology /Application

e Provided a methodology to solve above formulations.
e Implemented in General Algebraic Modeling System (GAMS)).

e Tested against a developed/notional test problem set.

1.2.2  General Assumptions and Scope

The methods developed in this research are deterministic. Therefore, it is
assumed all necessary data is available and not time dependent. For many networks,
such as infrastructure networks, this is a reasonable assumption. These networks
tend to be fixed assets whose locations are publicly known. In addition, in analyzing
one’s own network to determine vulnerabilities, it is reasonable to assume all network

information is available (i.e. one is not hiding networked components from oneself).

In order to solve multilevel programs, several assumptions are typically made.
First, the decision makers on all levels must be rational and can not cooperate with
each other. In addition, it is generally assumed (whether true or not), that all lower

level programs have unique solutions at all possible values of upper level decisions.

Unfortunately, data for networks of interest may be unavailable and/or re-
stricted. Therefore, notional examples are used for demonstration purposes in un-
restricted portions of this research. The methods developed, however, apply to any
given network. Therefore, those with access to “real” data can use these methods.
For example, infrastructure data for several locations has been obtained by this

author, but is generally restricted to “for official use only.”



It is also understood that some networks under consideration (especially social
networks) change over time. However, this study considered these networks as a
snapshot in time (i.e. at the time the decision will be made). Dynamic network
research is an evolving field, especially in social network analysis. As measures and
techniques are developed to analyze evolving networks, the methods developed in
this research can be extended. In other words, the methods developed here serves

as a foundation of static networks that can be extended to dynamic networks.

1.3 Document Overview

This document is organized as illustrated in Figure Chapter 2 provides the
foundational material from the literature review (which is colored green in the Figure
. This includes multiobjective programming, network optimization, and multi-
level programming. Two areas which build on this foundation are also provided
in the literature: multilevel network optimization which builds on single network
optimization, and network interdiction which combines portions of network opti-
mization and multilevel programming. With this foundation, the following chapters
develop new formulations with the end goal of contributing to a unified formulation
for the analysis of synthesis, interdiction, and protection of layered networks. One of
these developments is a new formulation for the synthesis of robust networks. This
includes two blocks from Figure [I.2} multiobjective network optimization is built
on multiobjective optimization and network optimization; and multiobjective mul-
tilayer network optimization which is built on multiobjective network optimization

and multilayer network optimization.

Another formulation development is multilayer interdiction which is based on
multilayer network optimization and network interdiction. This is followed by a new
formulation for human network interdiction which is based on combining network
interdiction with traditional social network analysis metrics. Two additional devel-

opments are nodal interdiction and coalition/multiple optimal solution formulations.



These are extensions to traditional network interdiction and build on multilevel op-

timization.

Synthesis, Interdiction, and Protection of
Layered Networks
Multiobjective Human

Multilayer Network Multll_ay_er Network
Interdiction

Optimization A A Interdiction

Multiobjective Multilayer Network Interdiction
Network Network Nodal Multiple Optimal
Optimization A Optimization A Interdiction Solutions
Multiobjective

Optimization Network Optimization Multilevel Optimization

Foundational Formulation
- Concepts - Development

Figure 1.2:  Research Blueprint

Figure presents a blueprint which is followed in this document. Along
the way, these developments are demonstrated using illustrative examples. This
research concludes by showing how these techniques could be used to model layered

infrastructure networks for synthesis, vulnerabilities, and protection.



II. Literature Review

This chapter reviews relevant literature in network research including formulation
and solution techniques. This provides the foundation for extensions which will be
developed in the next chapters. This includes multiobjective programming, network
optimization, and multilevel programming. Two areas which build on this foundation
are also developed in the literature: multilevel network optimization which builds on
single network optimization, and network interdiction which combines portions of
network optimization and multilevel programming. As demonstrated in Figure [2.1

this literature review provides the foundation for formulation developments discussed

in the next chapter.

Multilayer Network Interdiction
Network
A Optimization A

Multiobjective

S b Network Optimization Multilevel Optimization

- Foundational
Concepts

Figure 2.1:  Literature Review Roadmap

2.1 Multiobjective Programming

In this section, a portion of multiobjective programming is discussed. Specif-
ically, techniques which focus on formulations to analyze the relationship between
robustness (maintaining near optimal solutions despite disruptions) and costs ar ex-
plored. As shown in Figure [2.1] this block provides the foundation for multiobjective

network optimization.



Ehrgott and Ryan [53] developed a formulation/technique which finds all non-
dominated solutions to the tradeoff between cost and robustness. Specifically, they
sought to minimize the cost of crew schedules while maximizing robustness. In their
formulation, instead of maximizing robustness, they minimized the potential delays
resulting from a lack of robustness. Their formulation of the bicriteria problem is as

follows: [53], p. 142]

Min z. = 'z

Min z, = riz

st. Az =e (2.1)
AQ(L’ =b
z e {0,1}
where ¢ = (1,1,...,1)7. The first objective function minimizes cost, the second

objective function minimizes effects of lack of robustness, and the constraints define
the feasible region. Specifically, the first set of constraints ensure each flight had
exactly 1 crew assigned to it, and the second set of constraints are the model’s base

constraints. [53, p. 142]

The authors first discuss solving this formulation with the popular weighted
secularization method. However, they point out that since this problem is a discrete
optimization problem, it is well known that a class of efficient solutions known as
“unsupported solutions” can never be found. [53, p. 142] For example, consider the

following formulation:

Min z,, = 0c’z + (1 — 0)r'x

st. Ajx=e
2.2
Azl’ =b ( )
z e {0,1}

where 6 is a parameter, limited to the range 0 < # < 1, which is varied to find

efficient solutions. All solutions of this formulation will be efficient. [52, p. 97]



However, since this is a discrete formulation (due to the binary variable), there may

exist some solutions that this formulation would be unable to find. [52, p. 98]

Therefore, this bicriteria problem was converted into both an e-constraint prob-
lem and an elastic constraint problem. [53] p. 142,144] The concept underlying the
e-constraint is to keep one objective function, and transform all other objective func-
tions into constraints. The e value places an upper bound on these newly formed
constraints. For example, the transformed formulation of Ehrgott and Ryan’s for-
mulation in becomes [53, p. 142]

Min z, =’z

st. <e

Az =e (2.3)
AQ.T =b
z € {0,1}

where the cost objective function is now a constraint bounded by . The e-constraint
method was developed and proven to be able to find all efficient solutions (even for

non-convex problems) to models of the form as (2.3). [36, p. 122-123]

The advantages of this formulation are clear:

Besides being able to generate all efficient solutions by varying the upper
bounds on the objective constraints, ... management could simply spec-
ify the additional cost they are willing to concede in order to improve
robustness. [53, p. 142]

In other words, the effect of various budget levels can be determined simply by

varying the ¢ value accordingly.

Similarly, the research in this dissertation develops a bicriteria model for lay-
ered infrastructures. The first objective minimizes costs, while the second objective
function maximizes robustness. As done with the Ehrgott and Ryan example, the

cost objective function is moved to the constraints using the e-constraint method.
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Therefore, this model is automatically parameterized to consider varying budget

levels against robustness.

However, as Ehrgott and Ryan demonstrate, such problems are generally “un-
suitable from a computational point of view.” [53, p. 144] To overcome this com-
putational burden, they convert their e-constraint problem into an elastic constraint
problem. [53], p. 144] The elastic constraint method relaxes these difficult constraints
by allowing them to be violated and penalizing any violation in the objective func-

tion. An example of this is demonstrated as follows:

Min z, = rfz + DSy,

st. Ajx=e
Asx =b (2.4)
r+ S — Sy =€
z € {0,1}

As shown by the transformed formulation, the cost constraint is converted to
an equality constraint with slack variables added. Any slack, s,, is then penalized in
the objective function. Ehrgott and Ryan proved that this formulation will also find
all efficient solutions (by varying p), but is much less computationally burdensome.
Again, following their example, the formulation of the bicriteria layered infrastruc-

ture problem was transformed into an elastic constraint problem.

2.2 Networks

Networks are studied in a variety of fields. For example, mathematicians de-
veloped graph theory, in part, to understand the structure of networks. Sociologists
have borrowed many of these techniques to describe and explore social networks.
[124] In addition, the field of operations research has incorporated many of these
techniques and developed the foundation for others. In other words, mathemati-

cians study graphs (which is a mathematical construct consisting of vertices and
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edges); whereas, operations researchers study networks (which are graphs plus some

data). [4, p. 4]

Network flow modeling is a subset of mathematical programming that exploits
special structures within the problem which allow larger problems to be solved in less
time than more general mathematical programming would typically require. Since
many real world systems can be modeled as networks, a large number of techniques

exist for analyzing single layer networks.

As shown in Figure 2.1 network optimization provides the foundation for three
direct formulation developments: multiobjective network optimization, multilayer

network optimization, and network interdiction.

To provide this broad foundation, a variety of network models are discussed.
Specifically, shortest path, maximum flow, minimum cost network flow, minimum
cost cut-sets, network centric operations, social networks, network design, and net-
work interdiction are discussed. This review begins with the classic single layer

models from Ahuja et al. [2]

2.2.1 Notation

We begin with a directed graph G = (N, A) defined by a set N of n nodes
and a set A of m directed arcs. Each arc (i,j) € A has an associated cost per unit
flow ¢;;. In addition, each arc (7, ) has a maximum amount that can flow through
it called its capacity u;; and a lower bound on the minimum amount that must flow
l;;. Finally, each node has an associated integer b(); if b(¢) > 0 then the node is a
supply node, if b(i) < 0 then the node is a demand node, and if b(i) = 0 then the

node is a transshipment node. [2, p. 5]
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2.2.2 Shortest Path

Shortest path calculations are used both directly and in the calculations of
more complex network flow techniques and social network measures. The idea is
simple: suppose we wish to find the shortest path from s to ¢t. Ahuja et al. [2, p. 94]
provides a linear programming formulation to find the shortest path between any
two nodes. Let ¢;; be the length of arc ¢, j, and let z;; be 1 if arc ¢, j is chosen
for the path, and zero otherwise. In addition, A is an adjacency matrix where each

entry a;; is one if there exists an edge from vertex ¢ to vertex j, and zero otherwise.

min E CijTij

(ij)eA
1, fori=s;
’ ! 2.
S owy— Y a={ 0, 0Vie N\{s,t}; (2:5)
j:(ij)eA j:(ji)eA —1, for i =t.

xy; >0 V(i,j) € A

Numerous specialized techniques have been developed to exploit the structure
of the network in solving the shortest path problem. For example, Dijkstra’s algo-

rithm solves the shortest path problem in O(n?) time. [2, p. 111]

2.2.8 Mazimum Flow

The maximum flow problem is stated as follows: “In a capacitated network,
we wish to send as much flow as possible between two special nodes, a source node

s and a sink node ¢, without exceeding the capacity of any arc.” [2, p. 166]

Maximize v

v, fori=-s;

s.t. Z Tij — Z xj; = 0, forallie N —{sandt}; (2.6)
{5:(i,5)€ A} {j:(j)) €A} —v, fori=1t.

lij S Lij S Uy V(Z,j) c A
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where v is the maximum flow.

There are two basic types of algorithms generally used to solve maximum flow
problems: augmenting path algorithms that incrementally augment flow along paths
from the source to the sink; and preflow-push algorithms that flood the network and
incrementally relieve flow from nodes with excess by sending them forward toward

the sink or backward toward the source. [2 p. 167]

2.2.4  Minimum Cost Network Flow

The minimum cost flow problem is simply stated as: “We wish to determine a
least cost shipment of a commodity through a network in order to satisfy demands
at certain nodes from available supplies at other nodes.” [2, p. 4] Mathematically,

this is modeled as follows:

min E CijTij

(i,j)€A
{5:(0.5)eA} {5:(4,)eA}

lij < Ty < Wjj V(Z,j) cA

where, as before, b(i) is 0 for transshipment nodes, greater than zero for supply

nodes, and less than zero for demand nodes.

The model in (2.7) can also be written in matrix form as follows:

Minimize cx
st. Nx=b (2.8)
I<x<u

where NV is an n x m matrix, called the node-arc incidence matrix of the minimum
cost flow variable. Each column N;; represents the variable z;; with the value +1 in

the ith row and the value —1 in the jth row. [2 p. 5]
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Algorithms for solving the minimum cost network flow problem usually “com-

I

bine ingredients of both shortest path and maximum flow algorithms,” again demon-

strating the importance of these formulations and solution techniques. [2 p. 295]

2.2.5 Minimum Cost Cut-set

A network cut is a set of arcs whose deletions disconnects the network into two
separate components. A minimum s—t cut is the network cut that has the minimum
capacity and disconnects the source from the sink. [2, p. 167] Consider 7;, the dual
variable associated with the conservation of flow equation for node 2. In addition,

let v;; be the dual variable associated with the capacity constraint of arc (4, j).

min E CijVij

(if)eA
st —mj—vy; >0V (i,5) € A
0<m<1Vi €N
0<w; <IV(ij) €A

m=1,7m,=0

(2.9)

where ¢;; is the flow capacity along arc (7, j). It follows that the objective function,

> civij, is the relative cost of cutting the flow of goods.

There is a direct correspondence between maximum flow problems and mini-
mum cut problems. This is stated in the Max-Flow Min-Cut Theorem: “the max-
imum value of the flow from a source node s to a sink node ¢ in a capacitated
network equals the minimum capacity among all s — ¢ cuts.” [2, p. 185] Therefore,
the theory and algorithms developed for maximum flow problems are also applicable

to minimum s — ¢ cut problems.
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2.2.6 Network Centric Operations

Networks are increasingly being analyzed in military warfare. Network Centric
Warfare is the combination of “strategies, emerging tactics, techniques, and proce-
dures, and organizations that a fully or even partially networked force can employ
to create a decisive warfighting advantage.” [34, p. 3] In other words, network cen-
tric warfare will allow the United States to use its dominance in technology
and information to develop a warfighting advantage by “information sharing, shared

situational awareness, and knowledge of commander’s intent.” [34, p. 4]

To provide a foundation of this theory of warfare, the Office of Transformation

published four tenets, nine governing principles, and a conceptual framework.

2.2.6.1 Tenets

The four basic tenets of network centric warfare are the following: [34], p. 7]

e A robustly networked force improves information sharing.

e Information sharing enhances the quality of information and shared situational
awareness.

e Shared situational awareness enables collaboration and self-synchronization,
and enhances sustainability and speed of command.

e These, in turn, increase mission effectiveness.

These tenets were developed to help understand the enhanced power of net-
worked forces. [34, p. 7] However, as discussed later, network centric warfare (includ-
ing these tenets) implies a symmetric opponent in a conventional conflict. Although
the tenets may still be valid against an asymmetric opponent, they focus on the
technology to speed the spread of situational awareness, not on how to gather situa-
tional awareness from a local population. In addition, there are potential asymmetric
advantages to an attacking enemy who is not dependent on these systems. For ex-
ample, while some enemies use paper maps, the Air Force typically uses FaconView
to plan missions. If this system is disabled, it could potentially cause disruptions to

planning cycles.
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2.2.6.2  Principles

To augment traditional principles of war, the governing principles of a network

centric force have also been developed: [34, p. §]

e Fight first for information superiority

e Access to information: shared awareness

e Speed of command and decision making

e Self-synchronization, dispersed forces: non-contiguous operations
e Demassification

e Deep sensor reach

e Alter initial conditions at higher rates of change

e Compressed operations and levels of war

It is noted that these principles were not designed to replace the “principles
of war,” but to “provide added direction for executing military operations in the

Information Age.” [34, p. §]

2.2.6.3 Conceptual Framework

To provide a foundation for understanding network centric warfare and how its
elements fit together, the Office of Transformation developed the conceptual frame-
work depicted in Figure . [61, p. 4] This framework is a “top-level” representation
of network centric concepts and their relations. For example, the foundation of
each area is color coded according to its associated domain: physical, information,

cognitive, or social.

In addition, with this broad representation, the concept can be decomposed
so individual attributes and metrics can be identified for each concept. [61], p. 4]
“Each concept in the top-level is described by a set of attributes and metrics at the
second level.” [61, p. 5] These metrics (combined with other metrics and examples
from other sources) allows one to measure the impact of network centric warfare

systems, or lack thereof.
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Figure 2.2:  Top Level Conceptual Framework

2.2.6.4 Measures

As stated previously, the conceptual framework provides a broad picture of
network centric warfare. In addition, the Office of Transformation decomposed this
framework and provided second tier metrics. These metrics, along with others, can

be found in [34].

Wong-Jiru et al. extended these metrics using a multi-layered model. This
model breaks Network Centric Warfare into processes, people, applications,
systems, and the physical network. Each of these are modeled as individual layers,
and interactions between layers are modeled as well. [I36, p. 2] The (inter-) layer
metrics were borrowed from social network analysis theory: shortest distance,
maximum flow, point connectivity, in/out degree centrality, closeness centrality, flow
betweenness centrality, reachability, density, node betweeness centrality, and edge
betweenness. [130, p. 40] For each layer, these metrics were plotted on a composite
radar chart. A composite layer score was calculated by finding the area under this
curve. Finally, a network centrality score was calculated by summing these across
all the layers. With these measures, a comparison could be made before and after

an (potential) action is taken.
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2.2.7 Social Networks

Although often ignored in analyzing other networks, social networks usually
play a key role in the operation and development of other types of networks. For
example, in infrastructure networks, humans interact with these networks as man-
agers, operators, and users. While humans play an important role in the efficiency
and security of infrastructure networks, they are also “the most susceptible to failure
and the most adaptable in the management of recovery.” [5, p. 73] Therefore, “we
will not be able to attack the technical and human portions of the network sepa-
rately ... destroying terrorists networks requires combinations of physical and social
approaches.” [116, p. 2-3] The effectiveness and response of a network during and
after an attack are determined by humans. For example, “the effectiveness of at-
tacking a power grid may depend on how the operators respond to limit the damage

or redirect power.” [116] p. 15]

To study social networks, sociologists have borrowed many techniques from
graph theory. However, as Clark points out, {SNA| measures were designed to help
describe the network and its topology ...” and while SNA| measures fall short on
prescriptive results, many Operations Research techniques were designed with ac-
tionable results in mind.” To help demonstrate how operations research techniques
could be used to make predictions on social networks, Clark developed the “Holistic
Interpersonal Influence Measure (HIIM))” (discussed in Section [2.2.7.4). 41} p. 1-8]
Renfro developed a measure of flow that he defined as “social closeness” which he
proved satisfied all the requirements for flow modeling in linear programming. [99]
p. 89] This measure is a capacity bound on potential influence. [99, p. 92] Nesbitt
showed that given a measure of flow (in a social network), network interdiction tech-
niques could be used to determine the optimal members to “interdict.” [00] Similar

work has also been done by Hamill [66], Renfro [99], Clark [41], and Herbranson [6§].
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In addition, research has been done to demonstrate how social networks can
be modeled and analyzed as traditional network flows. For example, in a minimum

cost network flow context, cost can take several meanings.

For instance, 1) a low cost can imply a relationship between actors who
have a high level of trust in each other with regard to network operations,
2) a low cost can indicate that analysts have a high level of confidence
in the data collected about that relationship, 3) a low cost can imply a
relationship that has a low risk of exposure, or 4) costs can represent the
monetary expense incurred in commodity exchanges between individuals.
In addition, commodities include not only intuitive examples like funds
or equipment, but may also include goods with less tangible values such
as training or information. [90] p. §]

A mapping from other social closeness terms to network flow was developed by Renfro

and depicted in Figure 2.3 [99, p. 95] or [100]

Social Closeness Terms

Flow Model Properties

People or groups

Nodes (sinks, sources, or
transshipment)

Connectivity or affinity

Capacitated arcs (or edges)
between nodes

Social Closeness

Capacity

Influence

Commodity

Potential Influence

Magnitude of flow

People or groups initiating | Source(s)
influence in the network
Target people or groups to | Sink(s)

be influenced

People or groups involved
in influencing

Transshipment node(s)

Multi-Criteria within a
shared context

Multi-Commodity, where
contexts share capacity

Multi-Context or Multi-
Criteria in different
contexts

Multiple independent
single-commodity models
for each context or criteria

Figure 2.3:  Mapping from Social Networks to Network Flows [99] p. 95]

In this research, it is assumed that all actors and links of a social network are
known. Therefore, the theory and techniques developed here identify the optimal
actor /relationship to target given the information available. Of course, this is the un-

derlying assumption of most [SNA| measures, as they were not, in general, developed
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for use with missing information in mind. Unfortunately, this is often unrealistic for
clandestine networks which need to be secretive in order to minimize detection and
survive. In addition, Carley noted that “any isolation is better than none, assuming
our goal is to degrade the performance and that we don’t need perfect information

to be quite effective.” [32 p. 10]

Incompleteness of the data is not likely to be random. It may reflect the secu-
rity discipline of the group being targeted or it may reflect biases in data-collection
as a result of “lead-following” investigation techniques. [115, p. 262] Therefore, the
determination of centrality will depend on “who you know most about, rather than
who is central or pivotal in any structural sense.” [I15 p. 256] In addition, Sterling
found that even a small amount of missing information (less than 10%) can decrease

the confidence in some measures (subgroup detection in her case). [117, p. 146]

For analysis of covert networks, Borgatti et al. showed that centrality mea-
sures are robust to missing information in random graphs. [24] In random networks,
he showed that errors in centrality measures increased linearly with the amount of
missing information. However, Borgatti noted the degradation in estimation appears
faster for cellular networks (as opposed to random networks) and may not be linear.
This is a critical issue: in random networks all destabilization tactics (such as iso-
lation of the individual that is highest in centrality) have approximately the same
effect; but for networks arranged into cells, this may not be true. Further study
is required to determine the impact of missing information on cellular structured

networks. In addition, as stated previously, missing data is not likely to be random.

Although complete data is assumed, the techniques developed in this research
are deterministic and enable post optimality analysis. This allows an examination

of the impact of incomplete or incorrect data.

An important, but little studied (in open sources), topic is the disruption
and/or protection of social networks. For hierarchical networks, it has been sug-

gested that this analysis is relatively easy: since groups cannot continue operations
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without leadership (or often operate less effectively as autonomous units), an effec-
tive strategy is to target the leadership. [68, p. 2-23] However, leadership can be
replaced and if a mechanism for succession exists, the disruption may be minimal,
depending on the closeness and dependencies of the group. Carley et al. suggest
destabilization occurs when resources, communications, and workload are impacted.
[32, p. 4] Geffre develops a criticality measure which combines location, skill /resource

connections, and social connections to identify members to target. [62, p. 3-1]

In addition, several traditional [SNA| measures have been developed to help
determine who is important in a social network; some of these are potentially useful

in developing plans to disrupt a social network.

In seeking to incapacitate criminal organizations one obvious approach is
to identify those players who are somehow central, vital, key, or pivotal,
and target them for removal or surveillance. A central member may play
a key role in a network by acting as a leader or serving as a gatekeeper
ensuring information flow. [I15, p. 264]

Therefore, centrality is “an important ingredient in considering the identification of
network vulnerabilities.” [115, p. 264] Specifically, several centrality measures have
been considered, including: degree centrality, closeness centrality, and betweenness
centrality. These are discussed, along with Borgatti’s “key player” metric. The idea
behind the “key player” concept is to break the group into smaller fragmented, less

effective groups.

2.2.7.1 Degree Centrality

Degree centrality, Cp(n;), measures the number of direct connections a node
has to other nodes. It has been used as a proxy measure of influence under the as-
sumption that the most connected individual has the most influence. It is calculated

as follows: [124, p. 17§]
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Cp(ni) = Z Tij = Z Tji (2.10)

2.2.7.2 Closeness Centrality

One measure of how “key” a member is in a social network is closeness central-
ity, C(n;). Closeness centrality is defined in terms of the distance from an individual
to all other nodes. For example, a node who “has the shortest possible paths to all
the other actors . . . has maximum closeness. [124, p. 184] Therefore, closeness
centrality gives a measure of a person’s proximity, either virtually or physically, to

communicate and/or reach other members of the network.

Mathematically, closeness centrality is calculated as the inverse of the sum of

the shortest paths to all other nodes in the network.

C(n;) = [Z d(ni,nj)] (2.11)

where n; is the node for which centrality is being calculated, d(n;,n;) is the distance
from node i to node j, and ¢ is the total number of nodes. [57] This measure sums the
length of the shortest path from a node to all other nodes and takes the inverse. If no
weighting is given to each relation, the distance between a pair of connected nodes
is assumed to be one. Unfortunately, closeness centrality becomes “quite arbitrary if
the network has arbitrary or fuzzy boundaries.” [115, p. 265] It also requires finding

all shortest paths from all nodes.

2.2.7.3 Betweenness Centrality

Another suggested measure of how “key” a person is in a network is between-
ness centrality, Cp(v). Betweenness centrality is a measure of the proportion of

times a node is on the shortest path between other pairs of nodes. Therefore, it is a
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measure for information control, and/or a person’s role as an intermediary such as

a broker or gatekeeper. [50]

Freeman [50] developed the following definition:

Cplv)= Y. 75 (v) (2.12)

g
sFVALEV st

where o is the number of shortest paths from s to ¢, and o4 (v) is the number of
shortest paths from s to ¢ that pass though a node v. “Removing a node of high
‘betweenness’ will by definition, lengthen the paths connecting several other nodes,
rendering communication or transactions between them less efficient.” [I15] p. 264]
This assumes the next shortest path is indeed longer. This assumption, in turn,

depends on the network density and arc weighting.

2.2.7.4 Holistic Interpersonal Influence Measure

Clark developed [HITM] as a proxy measure of interpersonal influence based on
both personal characteristics and social structural characteristics. [41], p. 3-1] Figure
provides an outline of how this measure is calculated. An analyst begins with
demographic and social network data. Individual characteristics and centrality
measures are input into a discriminant function where the post posterior probabilities
serve as a proxy of individual influence. Interpersonal influence is calculated based on
the network topology. The individual measure and interpersonal influence measures

are combined to produce the measure of interpersonal influence, [HIIM]

2.2.7.5 Key Player Problem 1

Traditional centrality measures help determine structural properties of an open
network and a person’s role in it. However, these measures do not identify those
whose removal would result in a residual network with less cohesion. To show this,

Borgatti begins with the seemingly well-suited measure of betweenness centrality.
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Figure 2.4:  Holistic Interpersonal Influence Measure Methodology [41], p. 3-3]

However, he shows that removing nodes with the highest betweenness centrality
does not (necessarily) maximally fragment the network and does not measure the
size of any remaining components that do occur. [23] Therefore, Borgatti develops
a measure of degree of “fragmentation;’ﬂ expressed mathematically as [23, p. 28]

22%

i>j

Dp=1- "1
F n(n —1)

(2.13)

where d;; is the distance from node 7 to node j. Note that the reciprocal of the
distance must be taken to account for components that are not connected. In other
words, if two actors are not connected, then the distance from one to the other is
infinite. Since we can not (meaningfully) sum over infinite distance, if the reciprocal
is taken, then this measure is zero at the limit. Essentially, this uses the shortest
distance as a proxy measure of disruption. In other words, destabilization of the
network is based on disrupting the shortest paths in the network which can represent

“communication, influence, resources, and so forth.” [68], p. 1-3]

'Borgatti’s definition of fragmentation differs from the definition used by other researchers where
it calculates the number of components and diameter of the largest component
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This is a key insight to disruption of social networks. If the goal of disruption
is to disconnect /isolate portions of the network, calculation of traditional mea-
sures such as centrality and reachability becomes problematic as they are designed

for connected graphs/networks.

Borgatti suggested finding the maximum of the measure Dp through complete
enumeration. However, Herbranson showed through modeling and analyzing the key
player problem as an operations research problem that complete enumeration can

be very computationally inefficient. [68, p. 4-5]

Herbranson instead enhanced this model by parameterizing the solution space
using the size of the set to be removed, included an objective function to represent
the ease or difficulty of removing an actor, and the use of arc distance other than
one. To do this, he modified the fragmentation measure slightly to

2% -

i>j

F=1-
S

(2.14)

where d;; is the shortest distance between nodes ¢ and j, and S is ) | % [68, p. 4-9]
i>j

In addition, instead of solving this via complete enumeration, Herbranson provided

two methods to solve this problem: a dynamic programming approach and an integer

programming approach. [68] p. 4-18]

Finally, Herbranson developed an additional model: [68, p. 4-23]

> max{%jh’ €T}
max DTle—JgT

TCN 2.15
- (2.15)

where 7" is the target subset determined a priori, and d;; is the minimum shortest
path distance from any node i € T to any other node j in the network. PTF is the
summation of the shortest distances from the set 7" to all other nodes in the network.

Similar to Borgatti’s measure, if ¢ and j are not connected, the distance is assumed
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to be infinite, so the reciprocal is zero. Herbranson developed a heuristic to solve

this model.

Regardless of which key player measure and algorithm is used, there is an im-
plicit assumption that targeted actors are accessible. This may not be the case in
real-world networks. However, with defined flows, a network fortification/interdiction

technique would create a target set which considers these factors.

2.2.8 Infrastructure Networks

The definition of infrastructure networks has evolved considerably, especially
since the attacks of September 11, 2001. A comprehensive reference of this evolution
is given by Moteff and Parfomak. [88] The definition used here are that given by
the USA PATRIOT Act for two reasons. One, it is public law and not as influ-
enced by adminstration policy changes and interpretations (without congressional
action) as other definitions. Second, it forms the core for all subsequent definitions
of infrastructure and critical infrastructure. The USA PATRIOT Act defines critical
infrastructure as

systems and assets, whether physical or virtual, so vital to the United

States that the incapacity or destruction of such systems and assets would

have a debilitating impact on security, national economic security, na-

tional public health or safety, or any combination of those matters (Sec.

1016(e)). [88, p. 10]

Policy decisions have expanded on this definition and provide explicit illus-
trations. For example, HSPD 7 defines the following 13 networks as critical infras-
tructures: agriculture, food, water, public health, emergency services, government,
defense industrial base, information and telecommunications, energy, transportation,

banking and finance, chemical industry, postal and shipping. [88, p. 11]

These infrastructure networks can be modeled as network flow models. To this
end, definitions from Dudenhoeffer et al. is used. An infrastructure node is defined

as “an entity that acts as a source, produces, consumes, or transforms a resource.”
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Similarly, an edge is “a physical or virtual entity that acts as a conduit for flow for
a physical quantity, information or influence.” [51, p. 479] With these definitions,
infrastructure networks can be modeled with maximum flow, minimum cost flow,

and so forth.

Objective functions are similarly constructed.

Prescriptive problems, such as budget allocation, network planning and
design, risk management and emergency response problems, aim to opti-
mize the overall network performance based on system-level criteria such
as cost minimization, social surplus maximization, risk minimization, or
recovery time minimization after network failure. [139, p. 154]

Each of these criteria becomes a candidate to maximize or minimize in an objective

function.

2.2.8.1 Interdependencies

The consideration of interdependencies has been used to varying degrees of
success; however, almost all research on infrastructure networks considers each net-
work separately, in isolated analysis. This is because these networks are “complex
even at an individual level leading to a significant degree of difficulty if the scope
is broadened to include multiple systems.” [I39, p. 149] However, although each
infrastructure is defined and enumerated individually, “each system is composed of
numerous interconnected and interdependent cyber, physical, social, and organiza-
tional infrastructures, whose relationships are dynamic, nonlinear, probabilistic, and
spatially distributed.” [65, p. 33] Therefore, any analysis of infrastructures must

take these interdependencies into account.

The growing interdependence and associated vulnerabilities in networked sys-

tems has been highlighted in public law. The USA PATRIOT Act states

Private business, government, and the national security apparatus in-
creasingly depend on an interdependent network of critical physical and
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information infrastructures, including telecommunications, energy, finan-
cial services, water, and transportation sectors (Sec. 1016(b)(2)). [88, p.
10]

However, models that account for interdependencies are sparse. “In all cases,
the research addressed one infrastructure system and the service it provides and
did not consider interdependencies among infrastructure systems.” [80, p. 3] The
only exception they noted was done by Rinaldi et al. [101] who provided useful
definitions, but “stopped short of modeling the vulnerability of networks.” [80
p. 3] In August 2006, the Idaho National Laboratory published a survey of all
available infrastructure models to determine the current state-of-the-art in the field
of infrastructure interdependency analysis. They found 30 infrastructure models
which perform some level of interdependency modeling. [94] Most of these models are
either agent-based or monte carlo simulations; such models give valuable insight, but
do not provide deterministic vulnerability analysis. In addition, some of the models
are commercial products with limited published documentation, making it difficult
to determine what underlying algorithms/methodologies were used. Wallace et al.
[122] and Kennedy [72] independently developed methods to model layered networks
(which could include infrastructure networks). These are discussed in Section [2.4]

To highlight the importance of considering interdependent effects, consider the
following. In studying the vulnerability of the Saudi Arabian pipelines, Brown et al.
noted, “pipeline systems for crude oil and refined petroleum products are sparsely
connected because of the enormous expense required to acquire right-of-ways, lay
pipe, build pumping stations and maintain the system once it is complete.” [27] p.
126] They note that the network (especially pipelines) covers a huge area that cannot
be patrolled completely, but “pipelines can usually be repaired fairly quickly.” [27,
p. 129] Therefore, they state that operational effects of attacking pipelines would

“not last for long.” Of course, the environmental impact would linger.

However, considering the interdependencies of the pipeline and electrical in-

frastructures could result in a more robust attack. Even if the goal was only to
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disrupt the flow through the pipelines, a layered infrastructure analysis may suggest
attacking portions of the electric infrastructure. In other words, instead of attack-
ing the pipeline directly, one could attack the transformer that serves the pipeline
(along with the other vulnerable targets within the pipeline infrastructure). Brown
et al. even noted that transformers “pose special difficulties because they are big,
heavy, and expensive; few spares exist; and a replacement might have to be ordered
from, built by, and shipped from an overseas manufacturer.” [27, p. 124] Therefore,
a layered analysis would indicate that attacking the transformer would potentially

have a significantly longer impact than attacking the pipeline itself.

2.2.8.2  Strategy for Protection

Because of the heavy reliance on infrastructures as part of our way of life,
their protection is vital. Strategic guidance/objectives for critical infrastructure
protection are provided in a series of National Strategy documents, congressional

acts, presidential directives, and DoD directives.

In 1996, President Clinton issued Executive Order 13010 [43] which estab-
lished the Presidents Commission on Critical Infrastructure Protection (PCCIP)
to assess the national dependency on information infrastructures. The commission
was charged with developing a comprehensive national policy and implementation
strategy for protecting critical infrastructures from physical and cyber threats and
assuring their continued operation. In October 1997, this commission published a
report that identified eight critical industries susceptible to disruption (through phys-
ical and/or cyber attacks). To deal with these vulnerabilities, they recommended a
partnership between the public and private sectors to address new vulnerabilities,

shared threats, and shared responsibilities.

In 1998, President Clinton issued Presidential Decision Directive (PDD)) 63 (ti-
tled “Critical Infrastructure Protection”) [44] which established the national policy

on necessary measures to identify and eliminate significant vulnerabilities to phys-

30



ical and cyber attacks on U.S. critical infrastructures. This [PDD] has since been

superseded by HSPD-7 (to follow).

In 2002, President Bush released the “National Strategy for Homeland Secu-
rity.” The National Strategy focused homeland security functions into six critical
mission areas; one of which is protecting critical infrastructure. [129, p. vii] The
strategy identifies six critical mission areas. The critical mission area which is rel-
evant to this research is “protecting critical infrastructures and key assets [129, p.
29].” The strategy suggests we “view our vulnerabilities from the perspective of
terrorists, and to provide objective data on which to base infrastructure protection
standards and performance measures.” [129, p. 33| This is the strategy that was fol-
lowed in this research. The role of a terrorist is assumed to identify those assets/links

that could potentially cause the most damage to our nation.

Later that year, the Homeland Security Act created the Department of Home-
land Security [45]. The act gave DHS responsibility for conducting vulnera-
bility assessments of critical infrastructures and developing a comprehensive plan to
secure them. In addition, they were charged with recommending measures necessary

to protect critical infrastructures.

In February of 2003, two complimenting strategy documents were released
which implement National Strategy for Homeland Security in the critical infras-
tructure protection area: “National Strategy for the Physical Protection of Critical
Infrastructure and Key Assets,” [130] and the “National Strategy to Secure Cy-
berspace” [131].

The “National Strategy for the Physical Protection of Critical Infrastructures
and Key Assets” focuses on reducing the Nation’s vulnerability by protecting our
critical infrastructures from physical attack. To do this, it defines several end state
strategic objectives. Two objectives relevant to this research are: “identify and as-
sure the protection of those infrastructures and assets that we deem most critical”

[130, p. 2]; and “pursue collaborative measures and initiatives to assure the pro-
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tection of other potential targets that may become attractive over time.” [130, p.
3].” To meet these objectives, the federal government must “identify the critical
nodes upon which assets depend; assess associated vulnerabilities; and implement
appropriate steps to mitigate those vulnerabilities and protect the infrastructures
and assets under its control.” [I30] For example, this includes “comparing the ro-
bustness of different infrastructures at points where key centers or critical nodes are
in close proximity to one another and can have cascading effects if attacked.” [130],

p. 34]

The focus of the “National Strategy to Secure Cyberspace” is on the identi-
fication, assessment and protection of interconnected information systems and net-
works. To achieve this goal it outlines three strategic objectives: “prevent cyber
attacks against America’s critical infrastructures; reduce national vulnerability to
cyber attacks; and minimize damage and recovery time from cyber attacks that do

occur.” [131], p. viii]

In addition, this strategy outlines initiatives to reduce threats and related
vulnerabilities. Two of these initiatives are to develop a methodology to conduct
“vulnerability assessments to understand the potential consequences of threats and
vulnerabilities; and understand infrastructure interdependencies and improve the
physical security of cyber systems and telecommunications.” [I31], p. 33] One of the
goals of this research is to provide one such methodology to identify vulnerabilities

across multiple infrastructures.

Later in 2003, President Bush issued “HSPD 7: Critical Infrastructure Identifi-
cation, Prioritization, and Protection.” This directs the identification and prioritiza-
tion of United States critical infrastructure and key resources and directs protection

of them from terrorist attacks. [69]

Finally, in August 2005, the National Infrastructure Protection Plan (NIPP)

was released which defines infrastructure protection roles and responsibilities for
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government and industry. It builds on all previously released Strategies, and it

fulfills requirements in HSPD 7 and HSA of 2002.

2.2.8.8  Vulnerability

Unfortunately, infrastructures have many characteristics which make them vul-

nerable. These characteristics include:

openness and accessibility (designed for efficiency and convenience); ex-
tent and ubiquity (vast physical infrastructure); diversity of owners, op-
erators, users, and overseers (controlled by thousands of state and local
governments, along with some private business and individual owner-
ship); entwinement with society and the global economy (science and
technology, arts, culture, products, and commodities move across inter-
national boundaries). [65, p. 34]

To analyze infrastructures and determine vulnerability, system reliability anal-
ysis of infrastructure networks generally “pronounce the system robust if there is
no single point of failure.” [28, p. 530] In addition, fault tree analysis is also used.
This method identifies cut-sets that are most likely to disrupt a network, and this
technique “pronounces the system robust if the combined probability of occurrence
is low.” [28, p. 530] “These results must be classified as a guess.” [27, p. 105] In
addition, these techniques are insufficient for vulnerability analysis due to terror-
ism. It has been found that a “lone attacker with a high-powered rifle could gravely
damage an entire electric power grid by targeting highly reliable components at just
a few substations.” [27, p. 105] Therefore, Brown et al. [27] argue that network-
interdiction techniques are more appropriate to determine the criticality of a group

of system components.

To further complicate matters, infrastructure networks are “planned, designed
and operated by different public, private and/or public-private sectors without ex-
plicit coordination.” [139, p. 149] As a result, this leads to “wasted resources,
operational inefficiencies, and at times cripples some subnetworks completely.” [139]

p. 150] An additional source of complexity results from the difficulty in enabling
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coordinated investment decisions due to the disparate nature of the ownership of
the different infrastructure network layers. [I39, p. 155] Further, these “entities can

have different goals, strategies, and financial capabilities.” [I39] p. 155]

2.2.9 Network Design

In addition to modeling current networks, operations research techniques can
also be used to assist in the design and improvement of networks. Frank and Frisch
discuss a number of algorithms for special cases of network design. For minimum
cost network design, they point out that this can be done “by resorting to linear

programming formulations.” [55, p. 255]

The minimum cost synthesis problem is simply stated. Given a set of demands,

find a network of feasible flows such that the cost, ¢;;, is minimal. Specifically,

Minimize Z CijZij

(i,j)€A
s.t. Yoo xy— >, w=0b() VieN
{5:(1.5)€A} {5:(G)€A} (2.16)
lijzij < 2ij < wijzi V(i,j) € A
zi; € {0,1}

where, again, b(7) is zero for transshipment nodes, greater than zero for supply nodes,
and less than zero for demand nodes. [63 p. 348-349] In addition, z;; = 1 if arc (ij)

is constructed, and zero otherwise.

This network design problem considers a set of nodes and potential arcs which
can be constructed at a fixed cost. The problem then becomes to find the minimum-
cost set of arcs to add to the network such that a feasible flow exits. However, as
LeBlanc and Boyce pointed out, in reality, network design is usually characterized by
multiple levels of decision making. For example, at one level “government or industry
officials make one set of decisions, which seek to improve the network’s performance.”
[79, p. 259] At another level, users of the network wish to minimize their costs, and

while their decisions “can be predicted, their decisions can not be dictated.” [79]
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p. 259] Therefore, LeBlanc and Boyce develop a bilevel formulation of the network
design problem with user-optimal flows. The specific formulation is transportation
specific and is not repeated here. However, it is an important realization that network

designers and users often have different objective functions!T]

2.2.9.1 Vulnerability & Survivability

Today’s interconnected, continent-wide power grids are much better than
their local and regional predecessors at providing cheap and reliable
power, and they are significantly less prone to local breakdowns. But
when they do crash, the consequences are far greater than those of the
more frequent and more localized failures of past decades . . . Thus, mod-
ern societies have made an unintentional Faustian bargain that brings
increases in operational efficiency and capability at the cost of greater
susceptibility to widespread catastrophic failures. [85] p. 2]

In addition to simply constructing networks to satisfy demand at the least
cost, in most networks it is also important to consider the vulnerability and sur-
vivability of the network under failures and/or attacks. The terms “vulnerability”
and “survivability” are defined differently in different contexts. This research uses
the definitions provided by Clarke and Anandalingam: “Survivability is the ability
of a network to perform according to a specification after it has been damaged ...

Vulnerability is concerned with the difficulty of destroying the network.” [42, p. 921]

Both terms are associated with the potential destruction of a network. Unfor-
tunately, Clark and Anandalingam do not define what it means to destroy a network,

so the following discussion from Frank and Frisch is provided:

A system modeled by a graph may be considered destroyed if, when
vertices or branches are removed, the resulting graph G satisfies one or
more of the following conditions:

e (7 contains at least two components.

!LeBlanc and Boyce use Bard’s original technique to solve the bilevel program which has since
been shown does not guarantee optimal solutions.
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e There are no direct s; — t; paths for specified sets of vertices {v, }
and {v, }.

e The number of vertices in the largest component of G is less than
some specified number.

e The shortest s; — t; path is longer than some specified number. [55]
p. 300-301]

Bullet two is perhaps the most studied due to the importance of connectivity
in many networks. For example, “one of the major functions of a communication
network is to provide connectivity between users.” [64, p. 5] It is also important to
note that in most formulations “cost represents the cost of setting up the topology”
of the network. While user and other costs are important, “it is usually the case that
a topology is designed first and then these other costs are considered in a second

stage of optimization.” [64] p. §]

The goal in such a case is to build a minimum-cost network that satisfies
the required edge and/or node survivability conditions. Let rg represent the edge
survivability requirement that there are at least 4 edge disjoint (s, ¢) paths. In other
words, at least ry edges must be removed to disconnect the graph. In addition, let
ks and dg represent node survivability as follows: the removal of at most kg nodes

leaves at least dg edge disjoint (s,t) paths. With this, the formulation is as follows:

min Z Cij T4
ijeEE
st D, D x>y Vs, t) e Vs #t, VW CV,se Wt ¢ W

€W jeEV\W

Z Z vy > dy, (2.17)
iEW jeV\(ZUW)

x;; integer Vije E

where (s,t) is the path from s to ¢; and Vz C V\{s,t} and |Z| = kg.

The objective function is the sum of costs of all edges used in the design.
The first constraint states that for each possible subset of nodes, there must be at

least ry edges with one endpoint in the subset and the other endpoint outside the
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subset (in its complement). In addition, the second set of constraints should have
the following declaration (but was not included above due to space limitations):

V(s,t) e V,s £t YW CV\Z,s € W,t ¢ W.

Grotschel et al. note that the classical network synthesis problem for multi-
terminal flows is obtained from this formulation by dropping the second and forth

constraints. [64, p. 10|

It should be noted that this formulation is for undirected networks. For directed
networks, “we simply replace the notion of an undirected path by a directed one.”

[64, p. 66]

2.3 Multilevel Programming

Multilevel programs can be viewed as n-person, nonzero-sum games with per-
fect information. In addition, there is a specified order of play, and non-disjoint con-
trol sets. [R6 p. 7] Decisions made by higher level players affect the decision space
available to lower level players through their objective functions. “Each player’s con-
trol instruments may allow him to influence but not dictate the policies of another
and thereby improve his own performance through the resultant externalities.” [86],
p. 9]

As shown in Figure 2.1] this area of mathematical programming provides the
foundation for network interdiction formulations to be discussed in Section 2.3.7.3
Because different aspects of this foundation are explored, various subsets are dis-
cussed including multiojective multilevel programming, multiple followers, multiple
optimal solutions, coalitions, solution techniques, reformulation techniques, and spe-

cial cases.

Mathematically, multilevel programming can be written as a nested optimiza-
tion problem. Unfortunately, although this formulation represents a variety of prac-

tical problems, these problems are very difficult to solve. Even in the simplest case of
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two levels, where both objective functions and all constraints are linear, this problem
is strongly N'P-hard. [67, p. 1197] The principal difficulty results from nonconvexity.
[86, p. 11] This is true even under the simplifying assumptions (which are usually

required for a solution to even exist) of rational players who act noncooperatively.

Bard suggests there are 5 definitions specific to bilevel programming problems

(BLPPs) [10, p. 196] (which are a subset of multilevel programming):

e Constraint region of the bilevel programming problem (BLPP)):
SE{(x,y):xz€ X,y €Y, Ajx+ By < by, Ayx + Boy < by}. This constraint
region represents all possible choices that can be made by the leader and fol-
lower. Savard proved that at least one optimal (global) solution is attained at
an extreme point of this set. [104] (as used by [121} p. 6]) This leads to vertex
enumeration methods [which are discussed later| to find optimal solutions.

e Feasible set for the follower for each fixed z € X:
S(z) = {y €Y : Byy < by — Ayz}. The follower’s feasible region is affected by
the leader’s choice of z.

e Projection of S onto the leader’s decision space:
S(X)&{r e X :IycY,Aix+ By < by, Ayx + Boy < by}. The leader moves
first by minimizing x subject to leader’s and follower’s constraints.

e Follower’s rational reaction set for x € S(X):
P(z) 2 {y €Y :y € argmin[f(z,7) : § € S(x)]}. The follower will observe the
leader’s action, and (assuming he is rational) he will select y from his feasible
set that minimizes his objective function.

e Inducible Region:
IR = {(z,y) : (v,y) € S,y € P(x)}. This region is the set over which the
leader optimizes his objective function.

The most studied case of the multilevel program is the bilevel case. For x €
XCcRLyeYCR™ F: XxY —RY and f: X xY — R!, the BLPP|is written

as follows:

7;161)7(1 F(z,y) = iz + dry

s.t. All’ -+ Bly S b1

) 2.18
min f(z,y) = cox + day ( )
yey

s.t. AQZL‘ + Bgy § bg
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where C1,Co € Rn, dl,dg € Rm, b1 € Rp, b2 € Rq, Al € Rpxn’ Bl € Rpxm’ A2 € qun’
By € RT™™,

2.3.1 Multiobjective Multilevel Programming

Wang et al. developed a method to generate all nondominated solutions to a
multiobjective multilevel program. In this problem, the leader has a multiobjective
problem, while the followers all have single objective problems. Let P™ denote

n=1) is constructed by combining the first and second level

the original problem. P!
problems in problem P™ excluding the objective function of the lower level problems.
[140, p. 179] For example, for a bilevel problem, the follower’s objective function
is removed (while the constraints remain). In addition, LP®™~V is formulated by
combining the second level through the nth level problems excluding the objective
functions at the third through the nth level problems. [140, p. 179] For example,

in a bilevel problem, this simply refers to the followers problem (i.e. the follower’s

objective function and constraints).

As Wang et al. point out, these definitions give the set of bases (extreme points)
with respect to x corresponding to a given vector y; to the first level problem. In
other words, the first level constructs the set of feasible extreme points by combining
the set of feasible extreme points with respect to y; and the set of bases with respect
to « provided from the second level problem. [140, p. 180] Nondominated extreme
points are found by searching the set of feasible extreme points to this problem.
Wang et al. show that these nondominated extreme points are also feasbile extreme

points in the original problem.

2.3.2  Multiple Followers

Anandalingam noted that most organizations are actually characterized by one

higher-level decision maker and k lower-level decision-makers (on an equal level).
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He extended the typical bilevel formulation to accommodate this in the following

formulation: [6, p. 1025]

n

E /
1
j=1
n

max » _ cj;; i=2...,k (2.19)

j=1

k
s.t. ZA]'Z’]' S b
7=1

2 >0 i=1,....k

where the ¢ are vectors. [0, p. 1023] Using the Karush-Kuhn-Tucker (KKT)) refor-
mulation techniques on problem (2.19)), the model can be expressed using the

conditions of all followers as:

n

E /

{$1,4..,l’k},w

j=1
wi A = ¢y 1=2,...,k
k
w() A —b) =0 (2.20)
i=1
k
> A <b
i=1
wz,xZZO Z:]_,,k'
where w = (wq,...,w;) and the constraints are optimality conditions for all the

divisional problems. This formulation was extended to allow nonlinear objective

functions and constraints as follows:

40



max fi(z)

{z1,....x1 }
st. Vifo(r) —w;Vig(z) =0 i=2,...,k
wg(z) =0 (2.21)
g(x) <0
where w = (wy, ..., wy), and V; is the gradient with respect to ;.

Wang et al. independently developed this formulation and made some addi-
tional observations. First, they prove (similar to traditional bilevel programs) that
at least one optimal solution is a vertex of the constraint region. [123] p. 272]
Therefore, vertex enumeration methods would work for this formulation as well. For
example, the kth best method could be used where the main difference in its use is
in the feasibility test. To check for feasibility, n linear programming problems would

be required to be analyzed. [123, p. 275]

In addition, Wang et al. show that the branch and bound algorithm developed
by Moore and Bard also works for these problems with minor modifications. [123],

p. 273] They demonstrate this with several simple examples.

2.3.8  Multiple Optimal Solutions

The may not have a solution. “If P(z) is not single-valued for all
permissible z, the leader may not achieve his minimum payoff over IR.” [0, p.
196] “In this case, the follower would be indifferent to any point on that hyperplane;
however, the leader might have a specific preference . ..but there may be no way to

induce the follower to select that point.” [10, p. 302]

Bard suggests there are three possibilities to deal with this problem. “The
first would require replacing the ‘min’ with ‘inf’ and define e-optimal solutions.”

[0, p. 303] The second approach “argues for a conservative strategy that redefines
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the problem ...” with a min max formulation. [I0, p. 303] This is known as a
“pessimistic strategy.” The final option Bard discussed for dealing with multivalued
P(zx) is “to assume some level of cooperation among the players and rewrite the
leaders problem.” [10, p. 304] This is known as an “optimistic strategy.” Of course,
this violates the basic assumption of noncooperation. Bard argues that if players

cooperate, then multiobjective programming might be a better alternative. This is

discussed in Section

Bialas and Karwan suggest using an incentive scheme which would provide a
“kick back” of level one’s earnings to encourage level two to choose its most desirable
solution. For example, f3(x) = fo(z) + efi(x). [I7, p. 1008] This may not lead to a
unique solution since the leader’s solution may also have the same value for multiple
values of the follower’s solution. However, any of these solutions would satisfy both
the leader and follower. In some algorithms, single valued follower solutions are “only
needed for an optimal choice for” the leader. [127, p. 184] Here, this assumption is

only needed to “get the exact penalty result.” [128, p. 399]

Multiple optimal solutions, however, have generally not been a concern in the
case of interdiction problems, (where the leader’s and follower’s decision variables are
the same, and the objective functions are negatives of each other). This is because
P(x) is always a singleton in this case, as the objective function has the same value
for all y € Y(z). [70, p. 113] However, as is discussed later, network interdiction
problems are generally solved by replacing inner optimization problems with their
dual formulation. Unfortunately, this introduces an often ignored computational

difficulty. These dual formulations themselves can have multiple optimal solutions.

As Smith noted, “the existence of alternative optimal dual solutions in this
case implies that several cuts can be generated from each dual solution passed to
the subproblem.” [109, p. 4] To combat the problem of potentially exponential cuts,
Smith developed a cutting plane technique through a reformulation of the problem.

[109, p. 5] These methods are, unfortunately, specific to “product placement” for-
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mulations of the problem. While not considered here, it should be noted that there

is an opportunity to extend these methods to more general formulations.

2.83.4  Coalitions

“[I]t has been shown that Pareto and bilevel optimality are distinct concepts.
Even in the case of linear bilevel programming, no simple relationship exists, however
close the objectives of the two levels.” [84] p. 358] In other words, optimal solutions
to multilevel programs are usually not Pareto optimal. Therefore, there are often
solutions to the multilevel program in which at least one of the decision makers
can achieve a better solution than the optimal multilevel solution (with no change
in other decision maker solutions). However, these solutions are not achievable in
the multilevel formulation because players can not cooperate to achieve them. The

following example taken from Moore demonstrates this: [86, p. 37]

max F(z,y) = -y

max f(z,y) = bx+y

y=>0

s.t. —r— 5 <=2
—T+ty<2
T+ % <8
r—2y<4

The optimal solution to this problem is (%, %) with an objective function value

of —%8. However, “the point (2,0) provides better outcomes for both players but is
not in the inducible region.” [86l p. 43] The leader’s solution improves from —%8 to
-2, and the follower’s solution improves from % to 10. (Note: as Moore points out,
if the variables are restricted to integer, the optimal solution is (1,2) with F' = —3,

and the leader and follower do better than the relaxed problem. [86, p. 41])

A natural question arises as to why these points are not the optimal solution.
The reason is because of the underlying assumption that players are rational and
make decisions sequentially and independently. Therefore, if the leader in the above

problem chose x = 2, then the follower would maximize his objective function and
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choose y = 3 (thus reducing the leader’s objective function value i.e. F = —5).
Therefore, the leader (also a rational decision maker) will not choose z = 2 on the
hope that the follower will choose y = 0. In order to achieve the improved solution,

the non-cooperative restriction/assumption must be relaxed.

However, as Bard points out, “if the players are allowed to cooperate, then
the preferable strategy would be to seek a Pareto-optimal solution.” [I0, p. 304]
This leads to strategies for coalition formation. In effect, the multilevel solution
becomes the “fall-back” solution if the decision makers fail to cooperate. Two types
of coalitions are discussed. First, the decision makers may elect to act for the benefit
of the group as a whole. This type is discussed next. In the second, and perhaps more
realistic case, the decision makers seek to maximize their benefit from cooperating
relative to the multilevel solution. This type of coalition and solution methodology

is discussed in the next subsection.

If the restriction against cooperation is dropped, coalitions may form where
members of each coalition act to increase their own benefit and/or for the benefit
of the coalition as a whole. As Bialas noted, “a formation of a coalition among
subsets of the players could provide a means to achieve Pareto-optimality.” [I8, p.
2440] Chew studied this problem and provided a methodology for prediction coalition
formulation. Specifically, Chew defined a “strong contract region” which are points
where all objective function levels are increased; and a “weak contract region” where
some levels do better, but others remain the same or do worse. The problem of
multiple optimal solutions of the follower’s problem discussed in the previous section
can be viewed as a special case of a weak contract region, and coalitions may form

there as well. [3§]

The following definitions from Bialas are used to develop the theory of coalition
formation: [19, p. 3]. Let G = {1,2,...,n} be the set of n players where 2¢
denotes the set of all possible coalitions of G. Let P = {Ry, Ry,..., Ry} be the

coalition structure or partition of G into non-empty coalitions. As a result of coalition
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formation, the objective function of each player in R; becomes ff (z) = >_ fi(z).
1ER;

[18, p. 2440] Let R(i) be the unique coalition R; € P such that player i € R;.

Therefore, instead of maximizing f;(z), player ¢ will now maximize [y (z). The

value of coalition R; € P is given by: [I8] p. 2440]
v(R;,P) =) fil2(P)) (2.22)

where Z(P) is the solution to the n-level optimization problem resulting from the

new objective functions.

The core is made up of undominated solution configurations which are the pairs
(r,P) where r is an n-dimensional vector whose elements r; represent the payoff to
each player ¢ under coalition structure P. “Once players have negotiated an outcome
within the core, no further negotiations or outcomes are possible.” [19, p. 3] If no
core exists, Willick provides a linear program to determine optimal coalition payoffs
to individuals. [134, p. 21] “A solution is an element of the core if it divides the
money available from the game in a manner in which every coalition receives at least

what it can obtain from playing the game.” [135, p. 7] In other words,

each coalition earns the combined proceeds that each individual coali-
tion member would have received under the original Stackelberg game.
Therefore, a player’s rational decision may now be altered because he
may also be acting for the joint benefit of the members of his coalition.
[18, p. 2441]

Willick states that it seems to be reasonable to search for solutions in the
core. However, there does not exist an efficient method to find solutions in the core.
Willick also points out that sometimes the core is empty and sometimes there are
multiple solutions in the core, from which one must choose. “No general existence
theorem has been given for the distribution of wealth among the individuals in an
n-person game in characteristic function form such that the distribution is always

stable.” [135 p. §]
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Therefore, the literature does not seem to suggest an efficient method to de-
termine /predict coalition formation. However, it is known that with a mathematical
model, modifications to the organizational structure can be made to encourage or

dissuade levels from forming coalitions. [38, p. 2]

2.3.4.1 Cooperation via Post-Optimization Analysis

Instead of looking at the “core,” Wen and Hsu define a “feasible contraction
set, S”.” These are the set of points which satisfy the following system of inequalities:

[176] p. 356]

Ar+ By <r
F(z,y) > F(z*,y") (2.23)
fl,y) > fla*y7)

These are points which improve at least one level’s solution without decreasing the
other. Wen and Hsu prove that the interior of this set is empty if and only if (z*, y*)

is Pareto-optimal.

After a non-Pareto-optimal solution is found from multilevel programming,
decision makers may realize that they might benefit by moving to solutions in the
feasible contraction set. However, there are usually multiple efficient solutions, all of
which would give both decision makers at least as much as the non-Pareto-optimal
solution. One method to chose such a point (or at least provide various points from
which to choose) is provided by Soismaa using “asymmetric Nash bargaining.” [114],

p. 429]

For example, let (z*,y*) be the optimal solution to a bilevel programming

problem. The asymmetric Nash bargaining solution is provided by

max 7(z,y) =[F(z,y) — F(a*,y")]* x [f(z,y) — f(=", y")]"*

s.t. (z,y) €S (2.24)
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where a € [0, 1] represents the bargaining power of the upper level decision-maker.
[114, p. 429] By using various values of «, the threat-point, ideal-point, and ideal-
threat-point solutions defined/developed by Wen can be obtained. [126] In addition,
by varying this value “it is possible to trace the whole relevant part of the efficient
frontier.” [I14] p. 430] This allows the decision makers to see all efficient solutions
and compromise to choose one among them. [I14, p. 431] Wen also provides a
numerical example, and points out that if a single point is desired, “it is not obvious”
how one would determine the numerical value of the bargaining power parameter.

[126]

2.8.5  Solution Techniques for linear[BLPDPs

Several algorithms have been developed to solve linear BLPPg. Unfortunately,
few of these algorithms can be applied to general linear bilevel formulations of modest
size or larger. The most widely studied and used algorithms are the following: branch
and bound, penalty methods, kth best, and hybrid methods. Because of their wide
acceptance and use, these are discussed in turn, along with their respective potential

applicability in interdiction type problems.

A classification system was developed by Israeli to match algorithms to for-
mulations that they are best suited to solve. Israeli classified bilevel programs as
either “positive” or “negative” according to the relationship between the leader’s
and follower’s objective functions. “Positive” formulations are those where there is a
positive correlation between the objective functions of the leader and follower. Israeli
continues by pointing out that most existing algorithms for bilevel problems work
best for positive formulations. Of course, interdiction problems (where the objective
functions are diametrically opposed) are non-positive as there is a strong negative
correlation between the objective functions. Unfortunately, “positive algorithms are

likely to have poor performance when applied to” interdiction problems. [70] p. 116]
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No studies were found that determine which algorithms work well for negatively

correlated objective functions.

2.3.6  Reformulation

To facilitate solution methods, multilevel programs are often reformulated to
programs with fewer levels. These single level formulations have nonlinear con-
straints. Therefore, they can be solved via traditional nonlinear techniques. How-
ever, due to the difficulties that can arise from solving nonlinear problems with gen-
eral approaches, specialized algorithms have also been developed which exploit the

structure of the single level programs to facilitate solving them with linear programs.

Bard and Moore developed a method to do this using conditions. [T}
p. 282] The idea is that the follower’s problem is replaced with its conditions
which are then appended to the leader’s problem. For example, let u € R? be the

dual variables associated with the follower’s constraints, and let v € R™ be the dual

variables associated with y > 0. Then, formulation (2.18) becomes

min ¢ x + dyy
s.t. Ayx+ By < by
Aoz + Boy < by
uBs — v = —ds
u(by — Asx — Boy) +vy =0
r>0,y>0,u>0,v>0

(2.25)

where ¢; € R", d; € R™, by € RP, by € RY, A} € RP*" By € RP*™ Ay € R?™*™, and
By € R¥*™,
Hansen et al. revised this formulation to explicitly allow constraints to remain

with the leader. [67, p. 1195] These are constraints which are only binding on

the leader, but can depend on the decisions of the follower. In other words, the
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constraints are binding on the leader, but include some of the follower’s decision

variables.

min cx + diy
s.t. Ajx + By < by
Asx + Boy < by
uB1 +vBy —w = —ds

u(by — A1z — Bry) + v(by — Asx — Boy) +wy =0

z>20,y>0u>0v>0w>0

(2.26)

where u € RP are the dual variables associated with the leader’s constraints, v € R4

are the dual variables associated with the follower’s constraints, and w € R™ are the

dual variables associated with the y > 0 constraint.

Anandalingam used a similar method to transform a trilevel problem into a

single level problem. However, Sinha pointed out some errors in the development,

and published a corrected formulation. To do this, Sinha started with the following

trilevel formulation: [108, p. 594]

max f1(x) = c1121 + c12%2 + 1373
max fo(x) = o111 + Co0a + Cozr3

miax f5(x) = c3121 + 3019 + 3373
3

s.t. Ailxl + AZ‘QZL‘Q + Aigl'g S bz 1= 1, 2, C

71 2 0520 2 0;23 2 0

and transformed ([2.27)) into the following equivalent problem:
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H;?X fi(z) = c11m1 + 1022 + 1373
s.t. — Co2(j) + Z(,uz + /\iwi)Ai2(j) >0, 3=1,2,...,n9
i=1
n2

Z —C23(5 ZH1+)\ZWZ z()]zo
-1

j=1

— C23(5) + )\/(—ng(j) + szAzg(j)) + Z(Ml + )\Zwl)Alg(J) > 0, ] = 1, 2, ..., N3
i =1
n3

Z[_C23( —C33(j) + sz 30 Z i + Aiw:) Aig sy = 0

J=1

— C33(5) T Z%’Am(j) >0, J=12,...n3
i=1

n3 m
Z 15[ —caa5) + Z wiAizn] =0 (2.28)
j=1 i=1

n3

D [=essg + Y widisgglas; =0
=1

J=1

n3
- Z(M; — Nusj) Ay + Ni(Ainzr + Apxg + Ajgrs — ;) > 0, 1=1,2,....m

Jj=1
m ns

Z[_ Z(M; — Nwgj) Aia(j) + Ni(Aar + Ay + Ay — bi)]w; = 0

=1 j=1

Apxy + Apze + Ajzxs < by i1=1,2,...,m
wi(Apzy + Az + Aszs —b;) =0 1=1,2,...,m
wi(Apnxy + Apry + Ajzrs — b;) = 0, i=1,2,....,m
T1, Lo, T3,w, f, (> 0;

AN urs

Bard also used the [KKT] method to transform a trilevel model into a single
level model. First, he replaces the lowest level problem with its [KKT]| conditions.
Before repeating the process, the complicating complementary slackness condition is
dealt with by assigning a large penalty to it and moving it to the objective function.

This results in the following formulation: [9, p. 714]
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max atr! + a®2? + a2
xT

max b?x? + b%0® — ku(A'z! + A%2? + A32® — d)

2 23 u

s.t. Alot + A%2? + A%2® > d (2.29)
uA® = —¢*

u>0

where k is a sufficiently large finite constant, a, b, and ¢ are constant row vectors
of appropriate length; d € R™; A’ is an m x n; matrix, ¢ = 1,2,3, and u is an m-
dimensional row vector of dual variables. Bard then replaces this new inner problem
with its [KKT] condition to develop the following:
max a'z' + a*2* + o*2?
st Azt + A% + A3x® > d

uA® = —c

alA?, A% = — [0, 0] (2.30)

ku—v+u=0

u(Alz' + A% + A%2° —d) =0

v(Alzt + A%2? + A%2° —d) =0

u>0v>0

However, Bard points out that this formulation is necessary for optimal so-

lutions to the original formulation, but not sufficient. Therefore, he develops a

simplex-cutting plane algorithm to apply to this formulation to find the optimal

solution. This algorithm is discussed later.

White looked at this formulation from Bard, and reformulated it. He shows
that the following formulation is equivalent to the original trilevel formulation: [127,

p. 186]
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max fl — fllilfl —|—f121'2 +f13373
st Alat + A% 4+ A3 < b
(v —Au)(b— Alz') — f222% — f22° =0

_ (U o )\’LL)AQ < _f22 (231>
—UA3+)\f33 < _f23
—uA® < — 33

where 2F € RI*, 1 <k <3,v € RY, uwe R \N€ Ry, Ak e R™*m k= 1,2,3,

fkl E R’I’Ll

White further reformulates this problem, and proves that solutions to the fol-

lowing formulation are also solutions to ([2.31)).

max flz
st Azt + A%22 + A3 < b
(v — w)(b— Alzl) — f24% — B3 = 0
_(,U_w)AQS_fZQ
AR S <
—wA+ AfP < —f33

(2.32)

where ¥ € R, 1 <k <3,v€ R, we RT, and A\ € R,.

White continues by developing an algorithm that solves this formulation through

a penalty formulation. White’s approach is discussed in the next section.

2.8.6.1 Branch and Bound

In many of the reformulations of the multilevel problems, the difficulty in
solving the reformulations is in the complementary slackness (or related) conditions.
These constraints make the formulations nonlinear which (as the previous section
pointed out) can be solved as nonlinear programs. In addition, there are two primary
methods to deal with these complementary slackness equations to transform the

nonlinear program into one that can be solved as a linear program. One is to attach

52



a penalty to the these functions and move them to the objective function. This
method is discussed in the next subsection. The other method is to use a branch-

and-bound approach.

Moore and Bard reformulated the bilevel problem to the form shown in ([2.25))
and developed the branch-and-bound method. The basic idea of their algorithm is

to

suppress the complementarity term and solve the resulting linear pro-
gram. At each iteration, a check is made to see if [the complementarity
term] is satisfied. If so, the corresponding point is in the inducible region,
and hence, is a potential solution to ([2.25)); if not, a branch and bound
scheme is used to implicitly examine all combinations of complementary
slackness. [I1], p. 283]

Shi et al. showed how this technique could be easily modified for those problems
where the leader’s constraints were explicitly kept separate (i.e. formulation (2.26))).

[107, p. 534]

Hansen et al. extended this approach by noting that at optimum at least one
of the follower’s constraints is tight. [67, p. 1196] Therefore, they associate a new
boolean variable a; with each constraint in the follower’s problem. This variable is 1
if the constraint is tight and 0 otherwise. With this, they prove that for any rational
solution, the tightness of the constraints in the follower’s subproblem is such that:

[67, p. 1198]

Y a1 if d2 > 0 (2.33)
i|BF;>0
> it gy > 1 if d2 <0

i|BF;<0

Branching is done by fixing some binary variables, o; at 0 or at 1. If a; = 1,
the ¢th constraint in the follower’s subproblem becomes an equality. If a; = 0, the

ith constraint becomes a strict inequality (>) and the ith variable in the dual of
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the follower’s subproblem must be 0. Because of the difficulty of dealing with strict
inequalities, the authors develop their branch and bound using the dual variable.
With this, they develop the algorithm which is shown to outperform (on a set of test
problems) the original branch-and-bound algorithm developed by Bard and Moore.
[11, p. 1212]

As with many algorithms, a first step in these approaches is to solve a relaxed
version. Specifically, the leader’s problem is solved while ignoring the follower’s
objective function (but including the follower’s constraints). This has important
implications in the case of multiple optimal follower solutions. Since this approach
starts with only the objective function of the leader, if the solution is found to be
rational, it is the best from the leader’s point of view among all rational solutions.
[67, p. 1203] Therefore, this method chooses the solution among the follower’s alter-
nate optimal solutions that best suits the leader (i.e. the optimistic case). Hansen
et al. note that it is easy to adapt this method to solve the pessimistic case. To do
this, they suggest adding a secondary objective function to the follower’s subproblem
equal to —d'y which is only activated in cases of ties for the objective function d?y.

[67, p. 1203]

2.3.6.2 Penalty Method

As discussed in the previous section, another way to overcome the difficulty
in complementary slackness equations is to move them to the objective function via
a penalty term. For example, in , the complicating constraint is the equality
constraint, so White used a penalty function to move this constraint to the objective

function with the following resulting formulation:
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max flz — K[(v—w)(b— Ala') — f22* — 27
st Alat + A% 4+ A% < b
— (v—w)A% < —f* (2.34)
AP A< g
—wAP AP < 133

where v € R', v € R', w € R', A € R, AF e R |k =1,2.3, fHM e R™

Note, if A = 0 is the only solution to the formulation in , then w =0 in
. White develops an algorithm that finds a solution by increasing values of K
until a solution is found which also satisfies the following equation: (v—w)(b—A'z!)—
f222% — 2323 = 0. [127, p. 192] However, these solutions are only necessary, not
sufficient to solve this original formulation. Therefore, White recommends following
the simplex-search developed by Bard and discussed in the hybrid methods below.
Essentially, White is replacing step one of Bard’s formulation with the formulation
. White points out that the advantage of this method is that it does not require

the calculation of an exact penalty parameter as Bard’s method does. [127], p. 196]

A simple example of this formulation and algorithm is provided in [83].

2.3.6.3 Penalty on Duality Gap

Anandalingam and White made the following observation, “For a given value
of x, the leader’s decision vector, the follower is at his rational reaction set when
the duality gap of the second-level problem becomes zero.” [8, p. 1170] This leads
to another method to transform a bilevel problem into a single level model. The
problem is transformed by adding a term to the leader’s objective function that
minimizes the duality gap of the follower’s problem. For example, using Israeli’s
notation, a [BLPP] can be transformed into the following formulation by penalizing

the follower’s duality gap: [70, p. 120]
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min ¢z +ciy — k(ciy —w' (b — Bx))
x,y,w

s.t. Dx <d
Ay+ Bx <b (2.35)
wlA > ey

x>0,y >20,w=>0

where ¢, y, u € R*", b € R™, A € R™" and ¢’ is the transpose of the column
vector c¢. For k sufficiently large, the duality gap must be zero. Israeli mentions
two algorithms that have been developed to solve this formulation [see [8, p. 120].
Anandalingam also provides a short algorithm to solve this formulation. [7, p. 240]
Notably, instead of finding the exact penalty, k, he suggests starting with a low value

and increasing k in discrete steps.

In addition, White and Anandalingam noted that if b and d are almost nega-
tively correlated (as they are in interdiction problems—see Israeli below) then the
following steps for the initial value of w may be helpful. First, select (Z,7) €
argmax, min,laz—dy: (z,y) € Z]. Second, select w'(K) € arg max[F(Z, 7, w, K) :
w € W, [128, p. 406-407]

White and Anandalingam compared this method to the other penalty method
(of penalizing complementary slackness of conditions) as used by Bard in [9].
They show that the duality gap method provides a lower upper bound on the optimal
solution used by the algorithm, so it is likely to converge more rapidly. [128] p. 413]

2.3.6.4 k'™ Best

The k' best algorithm repeatedly finds the “next best” solution to the leader’s
problem, until a solution is found in the inducible region. [16, p. 213] This is clearly
a positive algorithm, as the follower’s objective function is ignored while the leader’s
objective function is solved repeatedly until a solution would also be optimal for the

follower’s problem.
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The k™ best algorithm has been proven to find the optimal solution by Wen
and Bialas. They did this by considering the rational reaction set of each level. For
example, let ST be the feasible set for the first level, S? be the rational reaction set
for the second level, and S® be the rational reaction set for the third level. Wen and
Bialas showed that “if z is an extreme point of S, the x is an extreme point of S?
as well as S*.” [125, p. 369] Therefore, since the optimal point must occur at an
extreme point, they show one can examine the extreme points of S to find these

solutions.

A related algorithm is vertex enumeration. This is based on the observation
that if the set of rational solutions is nonempty, “at least one optimal solution of
[the linear bilevel program] is obtained at an extreme point of the polytope defined

by” the combined set of leader’s and follower’s constraints. [67, p. 1195]

2.3.6.5 Hybrid Methods

In addition to solving bilevel programs, many of these techniques have been
combined to solve more difficult trilevel problems. For example, Anandalingam
and Apprey suggested combining the k' best method with the penalty function
approach to solve a trilevel formulation. Specifically, the leader’s problem is solved
(without regard to follower’s problems). Next, the follower’s (bilevel) problem is
solved using a penalty method. If the two solutions match, then the optimal solution
has been found. If not, the next best solution to the leader’s problem is found and
the algorithm is repeated. [7, p. 241] Wen and Bialas use a very similar method;
however, instead of using a penalty method to solve the bilevel follower’s problem,

they use a complementary pivot algorithm. [125, p. 370-371]

Bard proposed a simplex-cutting plane algorithm to solve a trilevel program.
The first step, instead of solving the leader’s problem, solves the formulation in
(2.30). The second step is to fix the leader’s variables, and solve the remaining bilevel

(13

problem. If the solutions match, then the optimal solution is found. Otherwise, “a
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simplex-type search is conducted” to arrive at a local optimum. A cut is then added
which makes the incumbent solution infeasible (i.e. f! = f! +¢). Finally, the last
step is designed to find a point of intersection between the cut and the level one

inducible region. [9, p. 715]

2.3.6.6 Other Methods for BLPPs

Other methods have been developed, but are not discussed here for various
reasons. For example, Bard developed a “grid search” algorithm, but it “only works
for whose solutions are known to be Pareto-optimal.” [I1 p. 289] The
“parametric complementary pivot” approach is not guaranteed to converge and the
leader’s objective function coefficients associated with the follower’s variables must
be nonnegative. [I1], p. 289] Ben-ayed and Blair present simple examples where both

of these methods fail to find optimal solutions. [13]

2.3.7 Special Cases

A special case/simplification of multilevel programs occurs with interdiction
problems. Interdiction problems occur when decision makers are assumed to have
diametrically opposed objective functions. For example, if the follower’s problem is

a linear program, then the formulation would be a linear system interdiction.
2.3.7.1 Linear System Interdiction

z* = min max c’y
z€X yeY(z)

X = {x € {0,1}"|Rx < r} (2.36)
Y(z) ={yl[Ay <b,0<y < U1 -x)}

where c,y,u € R", ¢,b € R, A € R™*",
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Brown et al. showed how a formulation of this type can be solved in [26].
The basic idea is to transform the problem into a “cost attack” in which y’s use of

resources that x attacks is penalized in the objective function by a coefficient of P.

maxmin cy + x? PFy

zeX y
st. Ay>b (v)
Fy<u (w) (2.37)
Cr<d
y=>0

The dual of the inner problem can be taken to form a single maximization.

max bl v+ uw
zeX,v,w

st. A"+ FTw > c+ F'Px (2.38)
Cx <d
v>0,w<0

As a single level problem with no complementary slackness conditions, this
formulation is clearly easier to solve. A similar technique can be used on more
difficult problems as well. The next section discusses formulations in which the

followers problem is a mixed-integer formulation.

2.3.7.2  Mixed-Integer Linear System-Interdiction

If the follower’s system can be modeled with a Mixed Integer Program (MIP)),
then the mixed-integer linear system-interdiction problem can be written as: [70, p.

46]
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2* = min max c’y
zeX yeY(x)

X ={xe{0,1}"Rx <r} (2.39)

where ¢c,y,u € R", ¢c,b € R™, A € R™*" and Y;yr represents integer (or binary)
restrictions on none, some, or all of the variables y. It is clear from the formulation
that when activity j is interdicted (x; = 1) then the upper bound on y; is changed

from wu; to 0.

As Israeli noted, to use Benders’ partitioning, a reformulation is necessary.

In Benders’ decomposition the feasible region of the subproblem is fixed,
independent of the first level variables (x in our case) while the objective
function changes at every iteration. To obtain this situation in our case,
we force the interdiction through a penalty term in the objective function,
which will ensure that the use of an interdicted activity is not cost-
effective. Then we can leave interdicted activities free in the subproblem
(their upper bounds are not affected by x), knowing for sure that these
activities will not be used in an optimal solution. [70, p. 47]

The following formulation accomplishes this:

k% : T., T
@7 =mipmaxcy —x Vy
X ={xe{0,1}"Rx <r} (2.40)

Y = {y|Ay <b,0<y < U,y € Yinr}

With this, Israeli shows Benders’ partitioning can be used and the master

problem becomes [70] p. 49]

min z
zeX,z

st. z>cly —xIVy yeY (2.41)

where the subproblem is the inner maximization problem in formulation (2.41]). Ts-

raeli also proves convergence and discusses methods to tighten the penalty term, V',
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[70, p. 50], or the master problem can be replaced with a set-covering problem [70],

p. 51]

2.3.7.8 Network Disruption and Interdiction

A subset of linear programming interdiction is network interdiction. In this
case, the follower’s problem can be solved as a network problem (maximum flow,
minimum cost flow, and so forth) Examinations of this special case are extensive;
therefore, the entire next section is devoted to it. Just as different algorithms have
been developed to exploit the structure of different network problems, interdiction al-
gorithms have been developed which exploit the special structure as well. Therefore,
the network interdiction section is broken into sections according to the underlying

network type.

2.4 Layered/Interdependent networks

As discussed in Section [2.2.8] interdependencies are generally ignored when
analyzing large networks such as infrastructure networks. These interdependencies
can be especially critical in vulnerability analysis because they can potentially allow
cascading effects across multiple networks. Therefore, it is vital that these interde-
pendencies be considered in vulnerability identification and protection/fortification
strategies. To do this, there is a need “to develop broad-based resource allocation
procedures that capture these interactions vis-a-vis investment decision making.”

[139, p. 151]

As shown in Figure , multilayer network optimization is based on (single
layer) network optimization. To discuss developments in this area, definitions of
interdependencies are presented first. This is followed by two independent efforts

from the literature that account for these interdependencies.
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2.4.0.4 Interdependencies

An infrastructure dependency is defined as “a linkage or connection between
two infrastructures, through which the state of one infrastructure influences or is
correlated to the state of the other.” [I0I], p. 14] Similarly, an interdependency is
defined as “a bidirectional relationship between two infrastructures through which
the state of each infrastructure influences or is correlated to the state of the other.”

[101), p. 14]

Rinaldi et al. suggest there are four types of interdependencies: physical,
cyber, geographic, and logical. An infrastructure is physically dependent on another
infrastructure if it requires material produced by another. Cyber dependency occurs
when the state of an infrastructure is dependent on information sent through the
information infrastructure. For example, energy and water infrastructures depend
heavily on the use of Supervisory Control and Data Acquisition systems
to conrol their functions. This type of interdependency is discussed extensively in

National Strategy to Secure Cyberspace which was reviewed in Section [2.2.8.2]

Infrastructures are geographically interdependent if they are in close spacial
proximity. For instance, if energy and telecommunications lines are attached to a
bridge, both would be affected if the bridge is destroyed to affect transportation.
Finally, logical dependencies are those relationships between infrastructures not in-

cluded in the other categories [101], p. 14-16]

Wallace et al. independently developed a list of five types of interdependencies
between differing networks: input, shared, exclusive-or, mutually dependent, and
co-located. [122 p. 8] Input dependence results when one network requires input
from another network. This is the same as physical interdependency defined by
Rinaldi. Shared dependence occurs when some physical components are active in
multiple networks. Exclusive-or dependence means that only one network (of a
group of networks) can provision one service/resource at a time. A set of networks

is said to be mutually dependent if the operation of one of the networks requires
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the other networks in the set. This is related to, but more broad than, the cyber
dependency discussed by Rinaldi. Finally, physical components are said to be co-
located if they are within a prescribed geographic region or area. Again, this is the

same as geographic dependency defined by Rinaldi.

Therefore, based on Rinaldi and Wallace et al., research has defined the follow-
ing types of dependencies: physical/input, mutually dependent /cyber, geographic/co-
located, shared, exclusive-or, and logical. With these types of dependencies defined,
it may be possible to estimate the impact of targeted effects across all network layers.
The level and reach of effects will depend on the degree of coupling, type of coupling,
and adaptability to change between the layers. For example, tightly coupled systems
have little slack in their connecting links, whereas loosely coupled systems can often

accommodate failures by adapting. [101), p. 19]

While the focus of this research is on infrastructure interdependence, it is rec-
ognized that interdependencies do not just occur in infrastructure networks. Another
interdependency which is examined in this research is that between social networks
and infrastructure networks. For example, social networks require a stable, complete

communication network to maximize efficiency and unity. [68, p. 1-2]

2.4.0.5 Restoration Model

Under normal operating conditions, Wallace et al. assumed infrastructure net-
works operate independently as a minimum cost network flow problems. However,
disruptions to one or more of these networks create unmet demand which requires
consideration of interdependencies. [122, p. 32] To model this, Wallace et al. devel-
oped a “restoration” model which models these interdependencies to help prioritize

different demands for the same service.

Instead of a minimum cost objective function, the objective function in the
restoration model is changed to minimize unmet demand. The constraints for those

nodes who are not dependent on another network are largely unchanged in the
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conversion from a minimum cost formulation to a restoration formulation. The
main exception is that a slack variable is added to demand constraints to capture

any unmet demand.

For interdependent nodes/arcs, a new set of constraints (which mirror the inde-
pendent nodes) is added. These new constraints have an additional binary variable,
y, that enables modeling of the interdependency. Interdependencies are modeled as
follows: if an interdependent node does not receive its demand from one (another
infrastructure) network, it is not available for supply or transshipment in other net-
works. In other words, “constraints are included in this restoration model to shift
the connector variable from 1 (operating) to 0 (failed) when the required demand
isn’t met at a dependent node.” [122 p. 20] For example, if a telephone switching
station does not receive its demand from the power network, it will not be able to

function as a transshipment node for telephone calls.

This restoration model (modified to be consistent with previous notation) is

as follows:
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Minimize > sp + > b(1 — y)
k k

s.t. Yoo owiy— >, oz <b V (independent) Supply Node
{i:(i.5)eA} {5:G)eA}
sk+( > xy;— Y, w;)=-—b V (independent) Demand Node
{5:(6.5)eA} {5:(0)eA}
rij— >, x5=0 V (independent) Transshipment Node
{4:(i.5)eA} {i:(G)eA}
lz‘j S Tij S Uyj V(Z,j) S A
i — >, Ty < by V (interdependent) Supply Node
{5:(4.5)eA} {5:(,1)eA}
ss+( >, xy— Y, wj)=—byy V (interdependent) Demand Node
{4:(i.5)e A} {4:(3.i)eA}
Tij— >, x5=0 V (interdependent) Transshipment Node
{4:(i.5)€A} {5:(G:))eA}
Tij < UjYg
st < (1—y)b
Tij < ug
Lij Z 0
y € {0,1}
Sij Z 0

(2.42)

The objective function minimizes the total shortfall (slack) plus unmet interde-
pendent demand. Note, there is no consideration for partial slack at interdependent
nodes because they control the operation of nodes in other subsystems. [122 p. 34]

The constraints are as described in the previous two paragraphs.

2.4.0.6 Kennedy Model

Instead of only considering interdependencies after a disruption, Kennedy et
al. took a different approach. [73] They started with single layer networks and
modified the formulation slightly to allow for multiple layered modeling. This is
done with two sets of variables. The first set contains the original (individual)
network variables which model the infrastructure characteristics. The second set

of variables captures interdependent elements. One advantage of this formulation
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is that it may be decomposed by variable type and solved to optimality using a

Benders’ partitioning based solution approach.

For example, each network £ from the set of layered networks is modeled as a
directed graph Gy = [Ny, Ax] where Ny is the set of nodes and Ay is the set of arcs

creating the network topology for the k* network.

Further, each arc (7, ) € Ay has an associated cost per unit flow ¢;jj, a maxi-

mum capacity u;j;, and a minimum flow requirement /;;y,.

lijk < Tige Suggre ¥ (4,7) € Ak =1,... K. (2.44)

Finally, each node has an associated integer by (7); if bi(7) > 0 then the node
is a supply node, if by (i) < 0 then the node is a demand node, and if bg(i) = 0 then

the node is a transshipment node.

To model the interdependencies of the network, some new notation is intro-
duced. As discussed previously, Wallace et al. developed a restoration model which
used a binary variable y to capture the current state of interdependent nodes. To
increase the flexibility of this model, the notation used in the Kennedy model al-
lows some layers involving an interdependent edge to be available, while some are
not—something that could not be captured in Wallace’s model. Therefore, instead
of assuming that an impacted edge affects all layers, Kennedy et al.’s notation in-
troduces a variable, w € W which identifies a common effect option that impacts a

subset of the interdependent edges (and/or nodes). [72]

For example, consider an arc that appears in three levels of a multilayered
network: 231,29 132, and Za4233. One effect option, wy, may affect all three levels

(ZE2’37171’9,13’2, and 1'24,23,3), while Wo Mmay affect Ol’lly edges X2.31,79,13,2- A variable
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which captures the effect that effect options have on an edge is also required. The

variable d(; j 1) is also introduced.

0, if w has an effect on interdependent edge (i, j);
0.k 7 P ge (. 7) (2.45)
=0, otherwise.

For a given scenario, an additional variable type was introduced which indicates
which of the w options is selected/occured or so forth. For a given w € W define

the decision to employ effect option w as

1, if option w is selected/occurs;
Y = (2.46)
0, otherwise..
The impact of a common effect option has been represented by §,. The cost

or benefit of this option and all other common effect options are defined by the

following vector of costs (or benefits):

C" = [Cy,Cy,...,Cwy] - (2.47)

Costs or benefits associated with the individual networks are defined by

C" =[c],c},....c]. (2.48)

The actual elements of C* and C* may be positive, negative or zero, as dictated
by the situation being modeled. While the objective function has been expressed as
a minimization, it may be stated as a maximization (with any necessary variations)
as the particulars of the problem under consideration require. For example, if C*
were the benefits from flow in a given arc and C” were the benefits of some upgrade
option y;, the model would select the best upgrade packages for the entire layered

system.
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Minimum Cost Network Flow

Given the definitions from the previous sections, the minimum cost network flow

formulation across multiple layers is:

min C'x +Cly

s.t. ) )
Ay
]1 i 0 i i bl i
Ay 51 241
0 b, 54
I x—Dy+ | S2 | =] Heo (2.49)
.« 0. | SK i L IJ’K i
I
y € {0,1}

where x represents a column vector formed by the x;, vectors, D represents the matrix
formed by the columns, é,,, associated with the effects options, and y represents a
column vector formed by the previously defined decision variables y,,. This includes

flow-balance and bounding constraints for each single-layer problem.

In [73, p. 15], Kennedy et al. show how this formulation can be solved via

Benders’ partitioning.

Minimum Cut — Maximum Flow Formulation

In this example, from Kennedy et al., given layered networks with interdepen-
dent arcs, the objective is to minimize the combined cost of cutting all networks

using individual and shared elements in the overall cut set. A cost is associated
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with each of these arcs, and the goal is to find the minimum cost set of arcs which

determines this partition. [2]

For example, suppose the desired objectives/effects are to prevent military
transportation, electricity flow, and land-based telecommunications to a specified
island. Further, assume that only one bridge connects to the island, and all power
and telecommunication lines are tied beneath and across the bridge. One obvious
solution is to bomb the bridge, severing the bridge itself as well as the power and
telecommunication lines. However, if the costs are too high (i.e. civilian casualties
resulting from an inability to exit the island), then another form of attack may
be more appropriate. Perhaps a less costly attack would be to target the bridge
with an electronic attack, disrupting power and telecommunications, and kinetically
bombing the military transportation hub on the island. While these objectives are

often considered in isolation, the Kennedy model incorporates such options.

Consider ;,, the dual variable associated with the conservation of flow equa-
tion for node ¢ of network k. In addition, let v;;, be the dual variable associated
with the capacity constraint of arc(i, j) of network k. A minimum cut formulation

for each of the k networks would be

min E CijkVijk

(i,7) €Ak
s.t.
Ti, — Tj, — Vigk > 0V (i,7) € Ay (2.50)
0<m <1Vi €N
0 <y <1V(i,j) €A

m,, = Ly, =0
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where ¢;;;, is the flow capacity along arc(i,j) of network k. It follows then that
the objective function, ) ¢;;xv4jk, is the relative cost of cutting the flow of goods in

network k. To incorporate the interdependencies previously described, let

Y — { 1, if w € Wx is chosen (2.51)

0, otherwise.
The “cost,” C,,, then represents the relative cost of cutting the interdependent
arcs associated with using option w. The commonality model then becomes
min Z Z CijkVijk + Z Cwyw
k€K (i,§)€Ag wew

s.t.
Tir — T + Vijk + O(ijkywlo = 0V (i, ) € Ap, k € K

(2.52)

Ty, — s, > 1V s, t € Np,ke K

k

> yu<1Vyerl

weW,

where

5 { 1, if arc(i,j) of network k is affected by option w € W
(Z'7j7k)7w =

0, otherwise (2.53)

Note, however, this formulation is not solved directly. Since valuable information
is gained from the dual variables of the Benders’ subproblem, when the y variables
have been fixed, the dual of Benders’ subproblem is solved instead. This dual is a

maximum flow formulation given as
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max Z Z Ti,.5, T chyw

kEK (i,§)€ Ay, wew
s.t.
> mk— ), au=0 VkeK (2.54)
](ZJ)EAk: j(]fb)eAk

Tijk < Cijk — Cijk0(ijk) 0w vV (i,j) € A ke K,we W
Tijr 2 0 V(i,j) € A,k € K
As with the minimum cost network flow formulation, Kennedy et al. demon-
strate this formulation can be effectively solved with Benders’ partitioning. As is
typical with Benders’ partitioning, information between the master problem and

subproblem is passed back and forth until some stopping criteria is reached.

2.5 Network Interdiction and Fortification

Network interdiction is a special case of bilevel programming. These types
of problems are also referred to as “attacker-defender” problems. In this case, the
defender is a network operator who seeks to protect and operate the network while
the attacker seeks to maximally disrupt this network. As shown in Figure [2.1]

network interdiction is based on network optimization and multilevel programming.

The specific formulation of network interdiction problems depends on the net-
work under consideration. As such, several specific interdiction formulations are
discussed: shortest path, maximum flow, minimum cost, multicommodity flow, sys-
tem flow, and facility location. First, some assumptions and introductory material

are discussed.
The key assumptions in attacker-defender problems are: |28 p. 532]

e The attacker’s and defender’s actions are sequential

e The attacker has a perfect model of how the defender will (or should) optimally
operate the system, even after an attack

e The attacker will manipulate that system to his best advantage.
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These assumptions mirror those for general multilevel programs discussed in
Section [2.3] Brown et al. state that the last two assumptions are “strong, but
prudent” because the defender can do no worse should the attacker have a less-than-
perfect model or fails to implement a perfect attack. [28, p. 532] In effect, this is a

conservative strategy to protect against worst-case attacks.

This research examines some of these assumptions to determine their impact
on the problems/solutions. Previous research has shown the importance of these
assumptions. For example, Brown et al. have found that “secrecy and deception are
valuable.” [27, p. 41] In addition, “[o|ne insight from these military and diplomatic
exercises is that the use of deception and secrecy can contribute significantly to
the successful defense of our critical infrastructure, or to successful attacks on our

adversary’s infrastructure.” [28, p. 542]

Some additional assumptions are also made to simplify the presentation and
provide a foundation. First, it is assumed that interdiction is binary. In other words,
if a node/arc is interdicted, it is completely destroyed. Similarly for fortification, if
a node/arc is fortified, it can not be destroyed. Extensions to allow partial interdic-

tion/fortification exist in the literature, but are not discussed here.

In addition, it is assumed that the interdictor /attacker has insufficient resources
to disconnect s from t. Otherwise, a simpler minimum cut algorithm can be used.
Finally, it is assumed that only the edges are interdicted and that edges are directed.
Again, this is not a limiting assumption as “extensions of our techniques to handle

undirected networks and/or node interdiction are also straightforward.” 70 p. 19]

“In this problem, the defender and attacker play a zero sum game, i.e., the
defender tries to minimize the same objective function that the attacker tries to
maximize.” [I38, p. 712] Since the inner problem can be solved as a network prob-
lem, this nested “max-min” structure has an exploitable structure. By taking the
dual of the inner minimization (network) problem, the problem is converted into a

maximization problem. This allows one to formulate a single model in which the
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leader’s decision variables and the follower’s (dual) decision variables are simulta-
neously optimized. [I38, p. 714] This technique was first developed and used by
Fulkerson in 1975. [5§]

Finally, some algorithms have also been developed which extend the network
interdiction problem to a protection problem. In this case, the network user (follower)
knows that an attack is pending and uses its (limited) resources to protect a portion
of his assets. Such a network protection problem is a trilevel problem (i.e. min-max-
min). In cases where algorithms have been developed to exploit the special structure

of the network, these trilevel algorithms are included in the discussion as well.

2.5.1 Shortest Path Interdiction & Fortification

This subsection begins with a mathematical formulation of the shortest path
problem. Ahuja et al. [2, p. 94] provides a linear programming algorithm to solve

any network for the shortest path between any two nodes. The general formulation

(discussed in Section [2.2.2)) is as follows:

min Ciiis 2.55
jij
(ij)eA

1, fori=s;
Z Tij — Z Xji = 0, 0Vie N {s,t};

iDeA - '
3:(8.4) 3:(3,%) 1, fori=t

Suppose someone wished to “attack” a given network in an effort to maximize

a shortest path between two nodes. If an attacker has sufficient resources, he/she

could find the minimum cost (or any other) cut set required to disconnect the two

nodes in a network. This would result in disjoint networks in which no path would
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exist from the pair of arbitrarily chosen nodes. However, in some cases, this may be
impractical because either the attacker does not possess sufficient resources, a target

is inaccessible, or completely “cutting” an arc may be impractical.

In these cases, a shortest path interdiction formulation can be used. The
following formulation maximizes the shortest s — ¢ path length in a directed network

by interdicting arcs. This approach is based on the work of Israeli and Wood [71].

o max min (UZ)G:A(% + 0idi; ) T4 (2.56)
1, fori=s;
Z Tij — Z rj; =4 0, 0Vie N{s,t};
HEEA  Giea 1 foriet.
z;; >0 Vke A

where A = {§ € {0,1}4|rT§ < D}; ¢;; is the nominal integer length of arc (i, j);
d;; is the added integer delay if arc ij is interdicted, z;; = 1 if arc (4, j) is traversed
in the shortest path (= 0 otherwise); d,; = 1 if arc (¢,7) is interdicted; r;; is the
resource required to interdict arc (i,7), and D is the total amount of interdiction

resource available.

Fulkerson was the first to show that this formulation can be written as a single
level [MIP| [58] 59] Israeli developed this idea and solution methodology. By first
fixing x, taking the dual of the inner minimization problem, making “a few simple

modifications” and releasing x, the following formulation results: [70, p. 19]
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s.t T 5 dzj(Sij S Cij (257)
s =
e A

This formulation could be solved directly as a mixed-integer program (using
branch-and-bound for example). However, Israeli found that “when possible delays
d;; are large, the linear program relaxation of the model is weak and this results
in excessive enumeration and unsatisfactory computation times.” [70, p. 20] Instead,

he developed a decomposition algorithm.

Solution Technique

Israeli and Wood [71] provided a means to solve the shortest-path network inter-
diction problem with Benders” decomposition. In their formulation, the subproblem

has fixed values of § resulting in a shortest path formulation.

min Z (Ci,j + (S;jdij)ﬂfi,j (258)
(3,7)€A

1, for i =s;
Z Tij — Z Tj = 0, 0Vie N {s,t};

i:(5,7) €A () €A
J:(4,9)€ J:(4,0)€ 1, fori=t

where ¢;; is the nominal integer length of arc (i, j), d;; is the added integer delay if
arc (i,7) is interdicted, = 1 if arc (i,7) is interdicted, and z;; = 1 if arc (i,7) is

traversed in the shortest path (= 0 otherwise). In the first iteration, § is set to zero.

In subsequent iterations, this value is passed from the master problem.
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The master problem uses the flow values (x;;) from the subproblem as fixed

values to determine interdiction strategies 9.

max z (2.59)
dEA

z < Cg:jl'}j + (5Z]DZL‘AZ] \V/ZEZ']' e X

where ¢;; is the nominal integer length of arc (i, 7), 6 = 1 if arc (¢, j) is interdicted,
and x;; = 1 if arc (¢, j) is traversed in the shortest path, 7; is fixed values transferred

from the subproblem, and D is the total amount of interdiction resource available.

This process is repeated until the objective values from the master problem

and subproblem are equal (within a user defined tolerance).

As noted previously, large delays (d values) can lead to weak convergence.
I[sraeli noted some supervalid inequality s that may speed convergence. [71]
p. 100-102] In addition, a modified covering decomposition algorithm was developed
which ignores the delay (particularly useful when interdiction completely destroys
arcs). This approach replaces the master problem in the above formulation with the

following: [71l, p. 103]

Find x € X

st. gz >1 VY (&9) e XY (2.60)

where § = (diag(1—2))g. The constraint §7 2 > 1 is the covering constraint such that
“if the interdictor wishes to force the follower to traverse a path other than ¢ then a
new interdiction plan Z’ must interdict some arc that is not interdicted by & but is

used by the follower in response to z.” [71], p. 103] Therefore, with this replacement,
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the algorithm generates new interdiction plans until the master problem becomes

infeasible. At this point, the best found solution is provably optimal. [71, p. 103]

Fortification

Suppose the follower knew an attack was pending and had a limited budget to fortify
some elements of his network. Let the set of feasible defense plans be given by
G = {g € {0,1}4|Hg < h} where g, = 1 means arc k can not be interdicted. With
this, the following formulation finds the optimal defense strategy for the network

user: [70, p. 61]

min max min ¢’y
9€G zeX(g) yeY(x)

where
G = {g € {0,1}Hg < h} (2.61)
X(g)={xec{0,1}MRx<r,0<x<1-g}
Y (z) = {y|y is an incidence vector s — ¢ path that is feasible with respect to x}

Israeli suggests a solution technique which involves a nested decomposition

algorithm where the master problem is given by [70, p. 62]

min 2z (2.62)
geG

st 2> cTy(x(8) — g"Vpx(8) V ged

This master problem suggests a new defense plan g and updates z,. The
subproblem (which is a maximimal shortest path) solves the system-interdiction
problem associated with g, adds the solution to G, updates Zp, and is given by [70]
p. 63]
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max min cTy
z€X(9) yeY (x)

where (2.63)
X(§) ={zrec{0, 1} Rx<r,0<x<1-§}

Y (z) = {yl|y is an incidence vector for an s — ¢ path that is feasible with respect to x}

where G is a subset of all possible defense plans. [70, p. 63] Israeli continues to

discuss methods for determining a small, but valid, penalty vector vp. [T0, p. 64]

2.5.2 Mazimum Flow Interdiction

As discussed in Section [2.2.3] the maximum flow problem can be formulated

as follows:

max s
S.t. szj — ijs — 24 =0
J J
=Y xi=0, V (i,j)€A (2.64)
J J
thj — Zxﬁ + x5 =0
J J

O S xij S uij; V (Z,j) c A
fL’tsZO

where x;, is an artificial arc from ¢ to s.

Interdiction of this maximum flow can be written as the following bilevel pro-

gram: [I137, p. 5]
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min max Ty
yel' =z

s.t. stj — ijs — x5 =0
J J
» wy— )z =0, V i€ N-{s,t} (2.65)
J J
thj - Z%‘t + x4 =0
J J
zij — uij(1 — i) <0, Vo (i,j) € A

s > 0, v(i,j) € AU{(t,5)}

where I' = {v;;|7vi; € {0,1}V(i, ) € A, > mij7vi; < R}.
(i,7)€A

Wood shows this can be transformed into the following (single level) integer
program:

min Z uijﬁij

(3,7)€A
s.t. a; —aj + 6,‘]‘ + Yi; = 0, V(l,]) €A
ap —ag > 1 (2.66)
Z rijYi; < R
(3,7)EA
a; € {0,1}, VieN
ﬁij/%j € {Oa ]-}7 V(Zh]) € A

where a; = 1 for ¢ on the t side of the cut and a; = 0 for 7 on the s side of the cut;
v 1s 1 if (4, j) is a forward arc across the cut which is to be broken; f;; is 1 if (4, j)
is a forward arc across the cut, but is not to be broken; and all other 3;; and ;; are

Zero.

This formulation could be solved directly, but as Uygun notes, the resource

constraint > r;;7; < R makes this problem difficult to solve. [120, p. 9] To
(i,5)€A

combat this difficulty, Uygun uses Lagrangian relaxation to move this constraint

to the objective function (building on work done the year before by Bingol [20]).

79



However, he discovered that “problematic” R values exist which leads to large gaps
from optimality, for which he had to resort to time consuming branch-and-bound
to solve. [120], p. 42] In addition, this procedure has difficulty finding the optimal

solution when many of the arcs have the same capacity. [50, p. 51]

To combat the problems with problematic Rs, Cormican uses a Benders’ par-

titioning technique to find an exact solution to the single objective case.

Solution Technique

Cormican took this formulation and developed a solution technique using Bender’s
partitioning. Cormican started with the following equivalent formulation of the

bilevel maximum flow interdiction problem: [46], p. 16]

min max Tts — E VijLij
yel' =z
(i,j)eA

s.t. szj — ijs — x4, =0
J J
ZZI’)Z’]’ - Zl’ji = 0, YV 1€ N—{S,t} (267)
J J
Zl’tj — Z.Tjt + T = 0
J J

0 < @y < wyy, V(i,j) €A

where I' = {v;;|7i; € {0,1}V(i,7) € A, > 17 < R}.

(i,5)€A

Using Bender’s partitioning, Cormican shows this can be broken into the fol-

lowing master and subproblem: [46, p. 17-18]
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Master Problem: MASTER(X)

min z
yel’
st. 2> af — Z xfj%j (2.68)
(3,7)€A
Vij S {07 1}7 V(Zy‘]) €A

Subproblem: SUB(vy)

ijxts— E %‘ﬂij
(i.4)€A

s.t. szj — ijs — x4 =0
J J
ZZEZ']‘ - ZZE]‘Z‘ = O, Vi€ N—{S,t} (269)
J J
Zl“tj — ijt‘f‘wts =0
J J

0 S xz’j S uij, \V/(Z,]) S A

Finally, Cormican provided the following algorithm which finds the optimal
solution: [46] p. 18-19]

Benders’ Decomposition Algorithm for Network Interdiction
Input: Network G' = (N, A), arc capacities u;;, arc interdiction costs 7;;, interdiction
budget R, special nodes s and t, convergence tolerance toler.
Output: Interdiction vector v*, which is the solution within (100 x toler)% of opti-
mality.

1. Solve maximum flow problem MF for flow values x'; Let X’ = {z'}; let k = 2;
Let UB = 2(MF)

2. Solve MASTER(X’) for 7; Let LB = 2(MASTER(X'))

3. Solve SUB(¥) for z*; Let X’ = X U {a*}; If 2(SUB) < UB then let UB =
2(SUB(%)) and v* = 4

4. f UB — LB < LP x toler then stop: Interdiction set +* is a solution to
the network interdiction problem with objective function value within (100 x
toler)% of the optimal objective value.
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5. Let k =k + 1; Go to step 2.

2.5.2.1 FExtension

An important extension to this formulation is given by Royset and Wood who
developed a bi-objective maximum flow network interdiction problem. Here, instead
of cost being a fixed constraint, a second objective was to minimize the cost. In
other words, they seek to find Pareto-optimal solutions with respect to minimizing
post-interdiction maximum flow and minimizing “total interdiction cost.” This is
an important consideration because often one must plan for various resource avail-
abilities. In addition, one may wish to consider tradeoffs between cost, risk, and
effectiveness. [102, p. 175] Royset and Wood note that the “the efficient frontier
can be identified by solving [Formulation (2.66)] over a sufficiently wide range of
R-values.” [102, p. 180] However, they use a weighted-sums scalarization of the
objectives using Lagrangian relaxation. Lagrangian relaxation was used to move the

resource constraint to the objective function and find the efficient frontier in [102].

Other extensions to the maximum flow interdiction model have also been de-
veloped. Wood extended the maximum flow interdiction problem to account for
cardinality constraints [I37, p. 8], partial arc interdiction [I37, p. 8|, multiple
sources and sinks [I37, p. 9], undirected networks [I37, p. 9], multiple resources
[137, p. 10], and multiple commodities [I37, p. 11]. Wood also discusses using valid
inequalities [137, p. 12], and a cutset based reformulation [I137, p. 14] to speed

solution times.

In another extension, Whiteman modified the maximum flow interdiction prob-
lem to solve multiple sets of objectives, each with their own flow capacity goals. Here
a simultaneous cut is required for each objective requiring that most variables and
constants pick up an additional index, k, to track each objective. He notes that

“v;; variables do not require the additional index, since if an arc is targeted for any
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objective, it is always targeted.” [I33] p. 3] This formulation is as follows: [I33] p.
4]

min Z Yij

arcs

s.t. aur — a4 Bijr + 7 > 0 V arcs, k
Zuzjﬁzjk < G, vV ok (2.70)
a =0 V sinks, k
o =1 V sources, k

ik, Bijis Vs € {0,1}

The objective function minimizes the number of arcs broken, the first constraint
requires any arcs spanning the cut under consideration (|o; — ;| = 1) be designated
as targeted (7;; = 1) or untargeted (;; = 1). It should be noted that a cost coefficient
¢ could be multiplied against v in the objective function to model the desirability of
targeting a facility . [132, p. 21] The second constraint requires that spanning arcs
which are not broken have a combined capacity of no more than the flow capacity
goal. The last set of constraints specify which nodes are designated as sources and
sinks which must always be on their respective sides of the cut. One way to specify
an arc as untargetable would be to add a set of constraints of the form: ~;; = 0
for all untargetable arcs. To determine an efficient frontier, these objectives may
be varied one objective at a time. For example, sometimes a “modest reduction in
interdiction level requirements can significantly reduce weapon requirements.” [133],
p. 8

Whiteman proposed additional extensions to his model. The first was risk
assessment. The model above assumes a targeted arc will be completely destroyed
with probability one. This first extension was to allow monte carlo simulations
where this probability can be between 0 and 1. After a set number of iterations, a

probability of interdiction at specified levels is obtained. [I33], p. 9]
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A second extension occurs when there is a fixed number of weapons to apply to
a given objective. This formulation exchanges the resource constraint and the objec-
tive function. Therefore, the flow capacity will be minimized with the given number
of weapons. For the multiobjective version, “a relative weight must be assigned”
to each objective. [I33, p. 10] A third extension allows for variable weapon re-
quirements by allowing non-unity coefficients on the v;; variables. Similarly, variable
target effects can be modeled. Partial interruptions can be modeled by modifying
the resource constraint as follows: ) (w;;5;; + v4j7i;) < G where v;; is the capacity

remaining when arc ij is targeted. [133], p. 11]

2.5.3 Minimum Cost Network Flow

As discussed in Section [2.2.4] a minimum cost network flow program seeks to
determine the least expensive way to route commodities through a network. [2, p.
357-397] Let ¢ be a vector of component operating costs (and/or penalties), and y
be the system operating decisions or activities, and y € Y be constraints on that

operation. The result is the following formulation: [28, p. 533]

iy o
st. Ay =Db (2.71)
Fy<u

where the first constraint corresponds to a general operating constraint, and the
second set of constraints correspond to capacity limitations for asset k € K. It is
assumed that an attacker would seek to maximize this minimum cost. Therefore,
if it is assumed an attack on asset k causes the loss of all its capacity wug, then the

following minimum cost network interdiction formulation results: |28 p. 533]
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maxmin cy
zeX y>0

st. Ay =Db (2.72)
Fy <U(1—-x)

where U = diag(u) and z is a vector of attack decisions.

As an alternate formulation, the use of “attacked” capacities can be penalized

to make them “uneconomical.” [28 p. 533] Let P = diag(p), then

: T
PF
e o

st. Ay=Db (AD1)
Fy <U(1-z)

With this new formulation, the dual of the inner minimization can be taken

which results in the following formulation: [28, p. 533]

max b’ +upj
$<0,0,z

st. ATO+ FT3— FTPx <c” (2.73)
xeX

where 6 is the dual variable associated with the first constraint and ( is the dual

variable associated with the second set of constraints.

Brown et al. note that this formulation can be solved directly, or via Benders’
partitioning. In fact, they point out that the first step of Benders’ would be to fix x
and take the dual which would result in the formulation above. |28 p. 533]

A more explicit formulation is given by Nesbitt in [00]. The primary difference
is that Nesbitt’s formulation included constructs for potential missing information.

Nesbitt’s technique for missing information is discussed in Section [2.5.7]
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Let N be a set of nodes, A be the set of arcs, (7, j) € A be the arc directed from
node i to node j, (i, 5') be commodity from source i’ bound for destination node j’,
¢;; be the cost per unit flow of commodity over arc (i, ), by ; be the net amount
of flow originating at ¢’ with destination j’, u;; be the upper bound on commodity
flow on arc (i,j) € A, and z;;; ; be the flow on arc (4,5) € A of commodity from

node i’ to node j’.

IleiH Z Cij Z Li5,4 5 (274)
(i,J)eV i'#j

by, n=1;

st D Tagog = D Timag =4 bpas 0= v oni,j €N #j
ji(n,j)eA i:(i,n)€A 0, otherwise.
0< D iy < iy v (i,j) €A
i£'
Tigirg = 0 v (i,j) €A

In this case, a network interdiction formulation seeks to maximize this min-
imum cost network flow. This formulation requires a couple of additional param-
eters/variables. Let d;; be the cost imposed per unit flow on arc (i,j) € A when
an arc is attacked, mazxattacks be the maximum number of components that the

attacker can target, and y; ; be 1 if the arc (i, j) € A is attacked and 0 otherwise.

max min E (ci,j+di,jyi,j)§ Ti gt j'

YeYT zw

(1.4)eV i'#j
bijr, n=1;
S.t. Z xn,j,i’,j’ — Z w’i,n,i’,j’ = bj’,i’7 n = j/7 V n, 'i,,j/ - N, i, 7é j/
ji(n,j)EA i:(i,;n)€A 0, otherwise.
0< Z Tijirgr < Uy j v (l,]) €A
i A5’
(2.75)
a”.i,j,i/,j/ 2 O v (Z,j) € A
(2.76)
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where

> vi; < mazxattacks,
T=q ey (2.77)

vi; € 10,1}, V(i,j) € A.

This inner objective calculates the cost of flowing commodities through the
network given that some arcs have been attacked (y;; = 1) and therefore have a
higher cost. The first constraint enforces flow balance while the second constraint

ensures flow is less than capacity.

By taking the dual of the inner minimization problem, the following equivalent

formulation can be found:

max Y big(ipy = apig) = D Ui
YET’CV”Y ‘/¢' b2 7 2 ) b2 2 b2
3

Vi (i.5)eA
s.t. ai,i’,j’ — Oéj,z",j’ — ’Ym' S Ci,j + dm‘Y;"j Y (Z,]) € V, i/,j/ < N (278)
where

> Y < maxattacks,
T ={ Giev (2.79)
va' < {07 1}7 V(l,]) €A

and «; ;s is the flow balance constraint dual variable, and «; ; is the flow capacity

constraint dual variable.

2.5.4  Multicommodity Network Interdiction

Two variants of multicommodity network flow are considered: multicommodity

maximum flow and multicommodity minimum cost flow.
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2.5.4.1 Multicommodity Maximum Flow

Akgun [3] developed a formulation in the context of maximizing flow among 3

or more groups of nodes. In other words, the flow from a given node (in one group)

to all nodes in other groups was maximized. Since this is being done for all nodes,

this can be modeled as a multicommodity problem.

This formulation is as follows: [3, p. 29]

2. 2.

k  (i,j)€AHEN], (i,J)EA:JEN,

min max (

g me Yijk + Yjik)

S.t. Z Yijk — Z Yjir = 0
(i,j)eAT (jyi)eAT
Z(yijk + yjie) < uig(1 — i)
k

Yijk>0, Yjik = 0

Yij =0
Yk =0
Yij =0
Yjik =0

where X = {z € {0, 1} :
(1,5)€A

Vk=1,....K,ie N =N, (i,j) e A

Vk=1,...,K,j€ NN =N/, (i,j) € A

V k=1,....K,j € N,(i,j) € A

V k=1,...,K,ie N/, (i,j) € A
(2.81)

> rijzi; < R}, 1,7 € N are nodes in an undirected

network, (i,j) € A are undirected arcs in the network, N, are the subset of “special

K
nodes,” N’ = |J N/, u;; is the nominal capacity of arc (7, 7), 75 is the interdiction

k=1

resource required to interdict arc (4, j), R is the total interdiction resource, y;j is the

amount of flow on arc (4, j) whose source is in Ny, z;; is 1 if arc (4, j) is interdicted

and 0 otherwise. The objective is to minimize the maximum flow between the subsets

NI

For x = 0, the inner maximization is simply the multi-commodity max-
imum flow model ... [which] models the enemy’s potential transfers of
material among the subsets N, using K single-commodity flow mod-

els linked by joint capacity constraints
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commodity maximum flow model in which the N} are treated as sources

and nodes in |J N, are treated as sinks. [3, p. 30]
k' #k

The “convexified” version of this formulation can be converted into a mixed-
integer formulation by fixing x temporarily, taking the dual of the inner maximization

and then releasing x which results in the following: [3| p. 33]

min E Uijﬁij
z,a,0
(i,)eA

st — aup + o+ Bij + 45 > ik Vk=1..K/j€A
—ozjk+aik+ﬁij+xij25jik A k:L,K,(Z,j)EA (282)

Z TijTij5 S R

(i,7)€A
z;; € {0,1},8; >0 vV (i,j) €A
o, unrestricted V k=1,....K,ie N

(2.83)

where 6;;, is 1 if ¢ € N} and 0 otherwise, x;; is 1 if arc (4,7) is interdicted and 0
otherwise, a;, are dual variables associated with flow-balance constraints, and (;;

are dual variables associated with the capacity constraints.

This formulation was solved directly and computation times were stated. [3]
p. 36] Using Benders’ partitioning and/or integer programming based cuts was left

for future work which has not yet been found in the literature.

2.5.4.2  Multicommodity Minimum Cost Flow

Similarly, Lim and Smith developed a model for multicommodity minimum cost
flow interdiction. [82), p. 20] Let K be the set of commodities where each commodity
k € K may have multiple supply nodes, S*, and demand nodes, D*. The maximum
supply at node [ for commodity k is denoted sF. Similarly, demand is denoted d.
Lim and Smith used h to index the arcs, such that flow costs are represented by

r¥ with flow y¥ being the flow assigned across arc h. Finally, z;, is 1 if arc h is
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interdicted, and 0 otherwise. With this notation, the following multicommoditiy

minimum cost flow interdiction problem is given by

minmaxg E T
xeX hyh

heA keK

doyb— D k=0 V ke K,V leN\(s*uD"
i€FS(I) JERS(1)

Sy - > b= VEkEKY lesk

Y; y] sy € K, €S (2.84)

icFS(l) JERS(I)

oy = > Y=—d V ke K,V le D"
1€FS(1) JjERS(I)

> yp < un(l - ) V heA
keK
Yn >0 V he AV ke K

where 2 € X; = {x: > byxy, < B,x, € {0,1} V h € A}, B is the interdiction
heA
budget, and b, is the cost of interdicting arc n.

Since the inner problem is a multicommodity flow problem, the dual can be
taken to form a mixed-integer bilinear formulation. Let mF be the dual variable
associated with the first three constraints, and ¢, be the dual associated with the

forth constraint. This leads to the following formulation: [82, p. 22]

manZslﬂl Zde —I—Zuhgbh—Zuhwh

keK 1eSk k€K leDF heA heA
st. x e Xy
(m,0) €0 (2.85)
wp — op <0 Vh e A
wp, — Gpn <0 Vhe A

where w = x,¢p, and 6 is the dual feasible region. The last two constraints result from
a linearization technique. An alternative (equivalent) formulation which incorporates

their new cutting plane techniques is given in [T10, p. 17-18].
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Alternatively, the original formulation could be reformulated as a penalty func-
tion. [82, p. 23] The only new variable is M} which is some large constant value.

This leads to the following formulation: [82] p. 25]

minz Z skal — Z Z dirf + Zuh¢h

keK Sk keK le Dk heA
st Ty — Wf(h) + ¢p + MExy, > 1y Vk e K,Vhe A
(2.86)
7F unrestricted Vk e K.Yl € N, ¢, > 0Vh € A
Tz € X

where the first constraint has the interpretation of “deactivating a dual constraint
corresponding to an arc h € A when h has been interdicted.” [82], p. 25] In addition,

no linearization techniques are needed.

2.5.5 System Flow Interdiction

“While maximum flow approaches seek to identify interdiction schemes that
reduce the capacity of a particular O-D [origin-destination| pair, system flow ap-
proaches focus on the interaction between all O-D pairs.” [89, p. 106] In other
words, instead of considering a single origin-destination pair, system flow interdic-
tion considers total flow between all origin-destination pairs. This is similar to the

multicommodity maximum flow interdiction problem discussed in Section [2.5.4.1

Let k& be the index of paths, ;7 be the index of facilities, o be the index of
origins, d be the index of destinations, N,q be the sets of paths enabling O-D flow,
foa be the flow observed between O-D, p be the number of facilities to remove, ¢, be
the set of facilities along path k, z; be 1 if facility j is interdicted and 0 otherwise,
yr be 1 if path k£ remains unaffected by interdiction and 0 otherwise, and 2,4 be 1
if no flow is possible between O-D and 0 otherwise. The formulation developed by

Murray is then given by
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max or min E E fodZod
o d

s.t. Zyk‘l—Zole V o,d
kENoq
Zod < 1 — yg V o,d,k € Nog, k
pe>1-> v ok

JE€DK
g < (1— ) Vokjeo  (287)
o=
j

xz; € {0,1} vV j
yr € {0, 1} vV k
Zoq € {0,1} vV oo,d

Clearly, this single level model relies on the variable f,; which is the observed
flow between O-D. This seems to require a steady state flow network to study. This
is borne out in their example: “flow observed in network routers was collected ...”
[89, p. 109] In addition, it requires the enumeration of all paths connecting an O-D
pair.

This concept can be extended using the bilevel approach explicitly model-
ing either maximum flow (without requiring an “observed” flow) or shortest paths.
Specifically, this extension is discussed in the methodology chapter in the context of

social networks.

2.5.6  Fuacility Location Interdiction and Fortification

The final network interdiction type problem that is discussed in this litera-
ture review is the facility location interdiction problem. For example, the p-median
problem selects the location of p facilities in such a manner that the total weighted
distance of supplying each demand from its closest facility is minimized. [40] p. 494]

The facility location interdiction problem is the antithesis of this problem which
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Church et al. define as follows: “Of the p different locations of supply, find the
subset of r facilities, which when removed, yields the highest level of weighted dis-
tance.” [40), p. 494] In some respects, this is similar to running the network synthesis

problem in reverse.

To formulate this problem, let ¢ be the index representing places of demand,
J be the index representing existing facility locations, s; be 1 if a facility located
at j is interdicted and 0 otherwise, F' be the set of existing facilities j, x;; be 1 if
demand ¢ is assigned to a facility at j and 0 otherwise, a; be a measure of demand
needed at demand 4, d;; be the shortest distance between the supply/service facility
at j and demand 7,  be the number of facilities to be interdicted, and T;; be the
set of existing sites that are as far or farther than j from i (= {k € F|k # j and
dir, > d;j}). The formulation is then: [40, p. 495]

max Z = Z Z aidija:ij

i jeF
sty m=1 Vi VjeF
jeF
Zsj =r (2.88)
JjeF
inkgsj VZ,VjEF
keTs;;
Ti; € {0, 1} Vi, VjeF
S; € {0,1} VjeF

where the objective seeks to maximize the weighted distance impact due to inter-
diction of r-facilities, the first constraint assigns a facility to each demand after
interdiction, the second constraint restricts the number of interdictions to r, the

third constraint assigns a demand ¢ to the closest remaining facility to <.

Scaparra and Church claim that “it is in principle a trilevel (defender-attacker-

user) problem reduced to a bilevel minmax problem” [106, p. 1906] This is done by
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making the following observation: “At least one optimal fortification of ¢ of the p
facilities includes at least one site of the interdiction set U” where U is the set of
optimal interdictions assuming no facilities have been fortified. [39 p. 133] With this
observation, the heuristic developed by Brown et al. (|28]) as discussed in Section
can be formalized, and used recursively to find optimal solutions using branch

and bound.
Fortification

Snyder et al. also reviewed methods to protect against worst-case losses for
network models. [113| p. 251-252] The three-level shortest path interdiction problem
with fortification is formulated as: [113, p. 251]

minmaxmin Y (dij + DijSij) Vi
z€F seD Y (’L j)EA

5.t > Y 2 yy=b; Y jEV
Giea " apea (2.89)
Sij < 1 — 2z vV o (i,j) € A
Yij > 0 vV (i,5) € A

where F' = {z € {0,1}"] > Z; = Q} and D = {s € {0,1}"| > s = R},
(1,j)EA (1,j)EA

bp =1, by = —1, b; = 0 for all other nodes j in V. The objective function computes

the minimum-cost path after the worst-case interdiction of R unprotected facilities

which includes penalties associated with interdicted arcs (protected arcs cannot be

interdicted).

Similarly, the maximum flow interdiction problem with fortification is formu-

lated as [113] p. 252]
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max minmax W
zeF seD y>0

s.t. Zyﬂ—ZyU:W jZO

(j)eA (i,5)€A
> yi— > =0 v j e V\{o,d}
(j)eA (i,7)€A
>oowi— Y oy =-W j=d (2.90)
(4,i)eA (i,j)EA
Yij < kig(1 —7ijsi) vV (i,j) € A
Sijgl—zi]‘ V(Z,])GA
Yij > 0 vV (i,j5) €A

where the objective function maximizes the total flow W after the worst-case inter-

diction of the capacities of R arcs.

Snyder et al. state that these trilevel problems can be reduced to bilevel
programs by taking the dual of the inner network flow problems. Citing a work by
Scaparra and Cappanera ([I05]), they state “the resulting bilevel problem can be
solved efficiently through an implicit enumeration scheme that incorporates network

optimization techniques.” [113] p. 252]

2.5.7 Protection and Trilevel Models
2.5.7.1 Trilevel

Although trilevel problems are complex and difficult to solve exactly, heuristics
have also proven problematic. As Yao et al. explained, “the presence of multiple
optima and e-optimal solutions render heuristic determination of high-quality defense

plans difficult and/or time consuming.” [138, p. 712]

To identify the optimal defense plan given a limited budget (for defense),
bilevel /network interdiction problems can be extended to trilevel problems. While

defender-attack methods defend against the single most damaging attack, the “trilevel
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model provides a robust defense strategy against the n most damaging attack plans.”

[138, p. 712]

To formulate this problem, let w be a binary vector of defensive decisions (e.g.
wy = 1 if asset k is protected and 0 otherwise, where w € W denotes the binary
restrictions on w together with budgetary constraints. The following formulation

results: [28, p. 536]

min maxmin cy
weW zeX yeY

st. Ay=Db (2.91)
0<y<U(l-(x—w)")

where it is assumed that if asset k is defended, then the asset is invulnerable. In
addition, A" = max{0, h} so that (x — w)™ is the “net attack plan” where plan x is
implemented against plan w.

As with bilevel problems, the dual of the inner minimization can be taken
resulting in: [28, p. 536]

i b" +pU(1 — (x —w)"

i b AU emw)T)

s.t. A+ (Gl <c (2.92)
<0
or
min z
weW,z
st. 2> abl + [U1 — (% —w)T) (2.93)
lel

where L enumerates all combinations of maximal attack plans X € X and extreme

N

points (&, §) from the first two constraint sets.

Brown et al. point out that this formulation could be solved with Benders’

partitioning where the subproblems will be instances of attacker-defender problems
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and the master problem will require constructs to handle the “+” operator. [28] p.
536] In addition, they have done research into using “super-valid inequalities” to help
find solutions. In fact, as they point out, one could use a master problem “whose
constraints consist only of super-valid inequalities, and with an objective function

that represents any of the lower bounding functions.” [28, p. 536]

Brown considered a slight variation of this formulation. Instead of only con-
sidering fortification, his formulation also allowed network synthesis (i.e. additional
arcs to increase maximum flow). [29) p. 22] This formulation was not solved exactly,

but by a heuristic approach through an indirect decomposition.

2.5.7.2 Defender-Attacker Models

Some defense problems lend themselves to bilevel, defender-attacker models.
In these formulations, “the defender becomes the leader in this new Stackelberg
game, so we essentially reverse the meanings of x and y, and make the following
definitions.” [28, p. 535] Let k£ be an asset the defender wishes to defend and the
attacker may wish to attack, ¢, be the value to the attacker of attacking undefended
asset k, pr be the reduction in value if that asset is defended, where zj is 1 if
the defender defends k£ and 0 otherwise, and y; is 1 if the defender’s kth asset is
attacked and 0 otherwise. Here, x € X are the resource constraints and binary
restrictions on the defender’s defense plan (X = {x € {0,1}"|Gx < f}). In addition,
y € Y are resource constraints and binary restrictions on the attacker’s attack plan

(Y ={y € {0,1}"|Ay = b}). Given these definitions, the formulation is

: T
P 2.94
MRy e Py (294

This technique works if evaluating the attackers objective does not require
solution of an optimization problem. Therefore, this model can not incorporate

a detailed operational model of the defender’s system. [28, p. 535] In addition, in
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general, these problems are difficult to solve because the inner maximization problem
is not a linear program. Brown et al. offer three cases to resolve this problem. First,
assume that a continuous attack represents a reasonable approximation of reality.
Second, if the linear programming relaxation yields binary solutions, then conversion
to a mixed-integer linear program is possible. This is the case when it corresponds
to a network-flow problem. Finally, if neither of the first cases permits, then the

restriction must be included. [28, p. 535]

This was done with border patrol [28, p. 537], the DC-metro system [27,
p. 129], Los Angeles airport security [27, p. 132], and supply chains [28, p. 541]
In addition, this technique was used on a variation of formulation as well.
Specifically, instead of the “defender” simply fortifying specific assets, the defender

also has the option to add additional links to increase maximum flow. [29] p. 14]

2.5.7.83 Heuristic

Brown suggests using the defender—attacker as a heuristic to find good solu-
tions to the trilevel protection problem. The idea is to find the optimal solution to
the attacker-defender problem to determine vulnerabilities. Using the limited forti-
fication budget, the next step is to protect some/all these vulnerabilities identified
in the defender—attacker routine. With these assets protected, the defender—attacker
problem is re-run. Iterations between the defender—attacker problem and the pro-
tection problem are continued until some stopping criteria is reached. This was done
with the Strategic Petroleum Reserve [28, p. 537], the electric grid |28 p. 539], and

oil pipelines in Saudi Arabia [27, p. 126]

As mentioned in Section [2.5.6, this method could be formalized and used to
find an optimal solution. Using branch-and-bound, subsets of protection assets could

be separately examined to find the optimal solution.
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2.6 Benders’ Partitioning

A final area included in this literature review is Benders’ Partitioning. Al-
though this is not included in the foundational research, Benders’ partitioning is

reviewed as a method to solve some of the formulations developed.

The networks considered for targeting in this research can be extremely large.
For example, infrastructure networks span entire continents, and contain tens of
thousands of nodes and links (or more). One method for dealing with “large” prob-
lems is to decompose them into smaller more manageable parts. These subproblems
are then managed by a “master problem” which combines the subproblem solutions
to find an optimal solution to the overall problem. Ideally, the large problem de-
composes into subproblems which have structure which can be exploited to quickly

generate solutions.

Specifically, Benders, in his 1962 paper, presented a procedure for solving prob-
lems involving models where the variables can be partitioned into two distinct sets.
[14] Benders’ partitioning takes a problem of the form max{c’ + f(y) < b;x € R,y €
S} (where S may be a polyhedron, a set with discrete variables, a set with nonlin-
earities, or so on); and partitions it into two mutually exclusive subsets which are
solved separately. One set consists only of the continuous variables with all the other
variables fixed at some value. Either this problem is solved directly, or the dual is
solved, and the dual variable values are passed to the “master” problem. This master

problem then solves for the new y’s which are again fixed for the other partition(s).

Visually, an original formulation for networks may be as presented in Figure
[2.5] Benders’ partitioning will result in a master problem and a subproblem similar

to that depicted in Figure [2.0]
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Figure 2.5:  Original Formulat

Figure 2.6:  Benders’ Partition
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2.7 Summary and Layout

This chapter reviewed the relevant current literature in network research. This
discussion of multiobjective programming, network optimization, and multilevel pro-
gramming provides the foundation for extensions which are developed in the next
chapter. Two areas which already build on this foundation (multilevel network opti-
mization and network interdiction) are also included in the review as they are further

developed and extended in the next chapter.

The overall goal of this research was to formulate and develop techniques to
analyze a new problem: the synthesis/vulnerability of layered networks. In addi-
tion, this is combined with multiobjective techniques to consider cost, and consider
the potential impact of coalitions/multiple optimal solutions. Based on historical

techniques, solution approaches will be developed for this new problem set.

This research follows the guidance and principles of the Committee on Algorithms
(COALJ)) concerning reporting results, claims, and conclusions. Two important rel-
evant principles are “the results presented must be sufficient to justify the claims”
and “there must be sufficient detail to allow reproducibility of the results.” [21 p.
414] To accomplish this, the claims are specifically stated. To facilitate progress
toward a unified analysis of layered networks, this research provides the following

theoretical contributions: a new formulation and initial solution methodology for

multilayer network interdiction

cost & robustness tradeoffs in layered networks

e human network interdiction

impact determination of coalitions/multiple optimal solutions in interdictions

To demonstrate the formulation and solution techniques developed as part of

this research, they are implemented in [GAMS]

As shown in Figure[1.2] several formulational developments were pursued lead-

ing to the goal of a unified formulation/technique to analyze the synthesis, interdic-
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tion, and protection of layered networks. First, a single layer multiobjective network
formulation was developed based on multiobjective optimization and network opti-
mization. This was then combined with multilayer network formulations to develop
a new formulation for robust network design so that layered networks with inter-
connected effects can be developed. This allows such items as holistic analysis of

infrastructure networks vice single infrastructure networks in isolation.

A second formulation development combines multilayered network program-
ming with network interdiction to form multilayer interdiction. Next, a new formu-
lation is developed to show how network interdiction techniques can be extended to
traditional social network analysis. Using measures developed by sociologists and
others, this piece shows how Operations Research techniques can be used to maxi-
mally disrupt a human network. Finally, two formulation extensions (which have not
yet been developed) are discussed: nodal interdiction and coalitions and/or multiple

optimal solutions.

The remainder of this dissertation is organized as follows: the next chapter,
Chapter 3, discusses the extension of network interdiction to directly include nodes.
Traditionally, network interdiction focuses on edges, and this extension allows direct
modeling of nodes. Chapter 4 discusses the extension of network interdiction to
social networks. This allows the use of social network measures to determine key
relationships for disrupting the social network. Chapter 5 extends network inter-
diction to allow for modeling of multiple layered networks (with interdependencies).
Chapter 6 discusses the cost versus robustness in designing/expanding networks.
This is further extended to include multiple layered networks, as well. Chapter 7
discusses the importance of considering multiple optimal solutions when studying
network vulnerabilities/attacks/etc. Finally, Chapter 8 shows how these tools can

be combined and applied to analyze infrastructures and allocation of resources.
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III. Nodal Interdiction

3.1 Overview

This chapter extends network interdiction to directly include node interdic-
tion. Current interdiction literature focuses primarily on arcs/edges. However, the
military often targets nodes. In addition, social networks revolve around people
as nodes connected by relationships. Conceptually, it is often easier to think of
targeting/influencing people as opposed to nodes. Traditional network interdiction
generally incorporates nodes by replacing each node with two artificial nodes and an
artificial link and then uses a links interdiction approach. However, this increases the
size of the network (in fact, it would double the the number of nodes in the network
if every node is targetable), and in some cases, may not be intuitive to the user.
To more transparently and directly represent nodes to target/protect, a formulation

that explicitly considers nodes is developed and discussed.

3.2 Background
Joint doctrine defines interdiction as follows:

Interdiction operations are actions to divert, disrupt, delay, or destroy an
enemy’s surface capabilities before they can be used effectively against
friendly forces, or to otherwise achieve objectives. [97, p. I-1]

Diversion is defined as making the enemy “consume resources or capabilities critical
to enemy operations in a way that is advantageous to friendly operations.” [97,
p. I-2] Disruption involves “upsetting the flow of information, operational tempo,
effective interaction, or cohesion of the enemy force or those systems.” [97, p. I-
1] Delay involves “alter the ability of the enemy or adversary to project forces or
capabilities” in a timely manner. [07, p. I-3] Finally, destroy refers to “damage

the structure, function, or condition of a target so that it can neither perform as
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intended nor be restored to a usable condition, rendering it ineffective or useless.”

[97, p. 1-4]

Since the term “interdiction” incorporates all these actions, some confusion
may result if the terms are not used carefully. For example, if a node is destroyed,
then all flow through arcs to and from the destroyed node are disrupted. Technically,
both the node and the arcs are “interdicted,” but using the specific terms such as
destroyed and /or disrupted clarifies how the interdiction has occurred (i.e. first-order
versus second-order effects). These distinctions are rarely made in the operations

research literature, which makes interpretation of results difficult.

Interdiction doctrine also recognizes that interdiction may be potentially used
for homeland security. “Interdiction also can be used to prevent an enemy from
achieving a variety of objectives affecting the US populace, economy, or national
interests.” [97, p. I-1] In addition, doctrine also recognizes that information opera-
tions may play a unique role in interdiction stating, “interdiction may support, be

supported by, or include aspects of information operations.” [97, p. I-1]

The nonlethal nature of many IO capabilities allows their use prior to and

after hostilities, extending contact across time, thereby giving the friendly

force greater opportunity to influence events and outcomes favorably. [97,

p. 11-13]

This chapter focuses on extensions to maximum flow interdiction to explic-
itly allow nodal interdiction. Other network flow formulation could also be used.
For example, social network analysis relies heavily on shortest paths, so a shortest-
path nodal interdiction is desired. Later chapters, Social Network Interdiction and
Multiple Layered Network Interdiction, demonstrate how nodal interdiction can be

modified and incorporated to extend these formulations. However, for ease of illus-

tration, the primary focus of this chapter is maximum flow nodal interdiction.

Sections 2.2.3] and Section 2.5.2] discussed maximum flow and maximum flow

arc-interdiction, respectively. The maximum flow problem can be written as
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max Ty

s.t. szj—ijs—xts:O
J J
inj—zxjizoa v (i,j)eA
J J
Z$tj—2$jt+$t320
J J

0<uzy<wuy, V (i,j)cA
1'1]20

(3.1)

where A is a set of directed arcs, z;; represents flow across arc (4, j), x4 is an artificial

arc from ¢ to s, and u;; is an upper bound on the flow across arc (i, 7).

An attacker on this maximum flow network would seek to minimize the amount
of flow from s to t. If the attacker has sufficient resources, then he may determine a
(node or mixed) cut-set (see Section and prevent all flow from s to t. However,
if the attacker has limited resources, then he or she must determine which subset
of elements to attack which would maximally limit the amount of flow. Wood has
shown that interdiction of this maximum flow can be expressed as the following

bilevel program: [137, p. 5]

min max oy,
yel' =z

s.t. szj — ijs — x4 =0
J J
Zl’ij - Zxﬁ = O, Vi€ N—{S,t} (32)
J J
Zl’t]‘ —Z.Tjt+l't5 =0
J J

Ty — (1 — i) <0, V (i,j) € A
x5 > 0, V(i,j) € AU{(t,s)}

where T' = {vi;]vi; € {0, 1}V(i,5) € A, > riyvi; < R}

(i,5)eA
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This formulation determines the set of arcs (identified by +;;) whose disruptions
will maximally reduces the amount of resulting flow through the network. When
7i; = 1 then the 4th constraint of forces the upper bound of flow through
that arc to 0; whereas when v;; = 0 then flow (and upper bounds) on an arc are

unaffected.

To facilitate solution algorithms, Wood proves the model given in can be
transformed into a single level integer program. He shows that for fixed ;;, the inner
(follower’s) problem is a traditional maximum flow problem. Since maximum flow
problems are unimodular, the integrality requirements are non-restrictive, allowing
the dual of this inner problem (with fixed ~;;) to be taken. Therefore, the inner prob-
lem can be replaced with its dual, and ~;; is “released.” With this transformation,
both objective functions are minimizations, but over differing sets of variables (the
leader’s primary variables, and the follower’s dual variables). The objective func-

tions can, therefore, be combined resulting in the following mixed-integer program:

137, p. 7]

min Z uijﬁij

(i.7)eA
s.t. a; —aj + 61‘]' +Yi; = 0, V(@f) €A
ap — g > 1 (3.3)
> <R
(3,7)€A
a; € {0,1}, Vie N
Bij»vii € {0, 1}, V(i,j) € A

where «; = 1 for 7 on the ¢ side of the cut and «; = 0 for ¢ on the s side of the cut;
v 1s 1 if (4,7) is a forward arc across the cut which is to be disrupted; 3;; is 1 if
(i,7) is a forward arc across the cut, but is not to be disrupted; and all other (3;; and

7Yij are Zero.
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As with formulation (3.2]), the solution of Wood’s model in (3.3]) indicates
which arcs (identified by 7;; = 1) should be denied to minimize the maximum flow

through the network.

3.3 Node Only Formulation

However, formulation does not allow for the direct interdiction of nodes.
Traditionally, this problem is solved via “node splitting.” Node splitting replaces
each candidate target node in the original network, i, with 2 artificial nodes, i’ and
i”, and a link from i’ to ¢”. With this transformation, interdiction of arc (i’,7"”) is
interpreted as an interdiction of node 7 in the original network. Unfortunately, this
approach, in a worst case, could double the number of nodes and adds an additional
n arcs if all n nodes are candidates. While allowing nodes to be interdicted allows
more realistic modeling, “computations can be hindered by the larger size of the
transformed network.” [46], p. 8] It should be noted that if an attacker’s resources are
not a limitation, then numerous cut-set identification methods exist in the literature
which include nodes/vertices: see [53], 93]. However, these approaches may not be

appropriate for interdiction where attacker resources are limited (making a full cut-

set impossible).

A node-only interdiction formulation was provided by Whiteman [132]. In
this article, he showed that Wood’s edge formulations could be converted to a node
interdiction formulation by simply using nodal subscripts instead of edge subscripts
in the dual formulation of the maximum flow problem. [132 p. 21] This formulation
is useful if only node information is available. However, it may be difficult to extend
this formulation to include edge information (and interdictions). Therefore, a more

general version of this formulation is developed.
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Similar to Whiteman’s approach, this development begins with Wood’s original
formulation and modifies it. A node-only interdiction formulation is developed as a

bilevel program.

min max T
yell =z

s.t. szj — Z.Tjs — 2 =0
J J
ZZ’Z’]’ — Z.l?ji = O, V i€ N—{S,t}
J J
thj — ijt + x4, =0 (3.4)
J J

Ty — uii(1 —7i5) <0, V (i,j) € A
Yij = Vi VieNandV (i,j) € A
Tis 2 07 V(Z,j) € A U {<t75)}

where «; is 1 if node i is interdicted (and 0 otherwise), r; is the cost of interdicting

node i, and I' = {v;|v; € {0,1}V(i) € N,> riv: < R}.

There are two differences between the formulation in and that of .
First, the follower’s problem has an additional constraint v;; = ;. This constraint
states that outgoing edges of a node are denied /disrupted if and only if the node itself
is interdicted. In other words, if a node is interdicted, all (outgoing) edges incident
to that node are denied/disrupted (have their upper bound capacities reduced to
zero). Of course, if a node is interdicted all incoming edges are denied /disrupted as
well, but this constraint is redundant so it is not included. The second difference
between and is that the attacker/leader is restricted to attacking nodes,

7, (instead of arcs) with associated interdiction costs, ;.

Similar to Wood’s development for traditional maximum flow interdiction, for-
mulation (3.4]) is transformed into a (single level) mixed-integer program. As with
Wood’s formulation, for fixed interdiction, ~;, the follower’s problem is a traditional

maximum flow problem. Therefore, interdiction variables (v; and therefore ~;;) are
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temporarily fixed, the dual of the follower’s problem is taken, and then interdiction

variables are released. This results in the following formulation:

min Z uijﬁij

(3,7)€A
st. a; —a; + ﬁij + 75 = 0, V(i,j) cA
o — o > 1

1EN

Yij = Vi Vie N
a; € {0,1}, Vie N
5ij7/7ij € {O’ 1}7 V(l,j) €A

where «; = 1 for 7 on the ¢ side of the cut and «; = 0 for ¢ on the s side of the cut;
7vij is 1 if (4, j) is a forward arc across the cut which is to be broken; f;; is 1 if (4, j)
is a forward arc across the cut, but arc (7, 7) is not to be broken; and all other 3;;

and ;; are zero.

As with formulation (3.4)), the solution of this program indicates which nodes
(identified by ~; = 1) should be interdicted to minimize the maximum flow through

the network.

3.4 Nodes and Edges Formulations

In addition to arc-only and node-only interdiction, some circumstances may
exist where both nodes and edges are targetable. Due to the differences between
targeting a node and targeting an edge, targeting edges and nodes, a mixed inter-
diction model, may require the use of different resources. Therefore, in these cases,
separate resource constraints could be used. Following this approach, Subsection
discusses mixed interdiction where the components do not share resources in
targeting. This is followed by Subsection where all resources are shared. Of

course, other variations are possible, such as having some resources shared and some
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not. The developments presented here allow for an exhaustive choice of combina-

tions.

3.4.1 Different Node and Edge Interdiction Resources

Continuing the development shown in the previous section, a bilevel formula-

tion of maximum flow interdiction for both targeted nodes and edges is developed.

min max T
yell' =z

s.t. Zx&j — ijs — x4, =0
J J
Zl'ij — Z[L’ji = O, V i€ N-{S,t}
J J
Z Ty — Z Tj+ X =0 (3.6)
J J

2y — uii(1 =) <0, vV (i,5) €A
Yij = Vi AR
Ts 2 07 V(Z,j) € A U {(t75>}

where ~; is 0 if node 7 is interdicted (and 0 otherwise), r; is the cost of interdicting
node 4, r;; is the cost of interdicting edge (4,7), and I' = {~;,v:; € {0,1},> v <
Ry, Y ryvii— > rivi < Rol

(3,7)€A (i,7)€A

The difference between the follower’s problem in (3.6) and is that the
constraint 7;; = <; is transformed into a “greater than or equal to” constraint.
This constraint still forces all outgoing arcs from an interdicted node to also be
disrupted, but it also allows for arcs to be interdicted which are not part of a nodal
interdiction. Therefore, care must be taken to account for interdiction resources
in the leader’s/attacker’s problem. For nodes selected for interdiction, the resource
constraint is the same as in (3.4). However, for edges selected for interdiction, only
those edges which are not part of nodes selected for interdiction have their costs

included. In other words, whenever a node is interdicted, its associated outgoing
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edges are also considered to be denied. However, this cost is already accounted for

in the node resource constraint; in order to prevent these costs from being counted

again in the edge resource constraint, the costs associated with edges disrupted due

to nodal interdiction are subtracted from the constraint. This is done with the

following constraint on the leader: > ryv; — >, 7% < Re. The first term
(i,5)€A (i.5)eA

is the direct arc interdiction cost. If a node is interdicted, all associated arcs are

automatically disrupted, but this cost is already included in the node interdiction,

so the cost of disrupting these arcs is subtracted from the direct arc interdiction cost.

Following the same approach developed by Wood, this formulation is trans-
formed into a single level mixed-integer formulation. This is done by fixing the
interdiction 7;; and ~;, replacing the follower’s problem with its dual, and releasing

the interdiction. This results in the following program:

min Z ui]ﬂij

(i,7)€A
st o —a; + ﬁij + Yij >0, V(Z,j) cA
ap — o > 1

Yij = Vi Vie N

Z rivi < Iy

iEN

Z TiiYij — Z T < R (3.7)

(3,7)€A (i,5)€eA
a; € {0,1}, Vie N
ﬁijvw/ij S {07 1}7 V(Z,]) €A

where all variables are as previously defined.

The solution of this program indicates which nodes (identified by ~; = 1)
and edges (identified by 7;;) should be interdicted to minimize the maximum flow
through the network. In this formulation, node and edge interdiction do not share

interdiction resources.
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3.4.2 Shared Node and FEdge Interdiction Resources

Finally, the case where both nodes and edges can be interdicted, and doing
so consumes the same resources, is considered. In the bilevel formulation of the
problem, the follower has the same problem as in . Only the leader’s resource
constraints are different. Therefore, the development of the single level mixed integer
program is the same and therefore is not repeated here. This results in the following

formulation:

min Z uijﬁij

(i,5)€A
s.t. a; —aj + Bij + i > 0, V(i,j) € A

o —oag > 1

Z TiiYij — Z TijYi + Zm% <R (3.8)

(i,5)€A (i,j)€eA iEN
Vi 2 i Vie N
o € {0,1}, Vie N
g i € 10,1}, V(i,j) € A

The difference between and is that the resource constraints are
combined. The solution of this program indicates which nodes (identified by ~; =
1) and edges (identified by +;;) should be interdicted to minimize the maximum
flow through the network. In this formulation, node and edge interdiction share

interdiction resources.

3.5 Notional Example

In this section, the formulations developed in (3.8)) are demonstrated on the

notional network in Figure [3.1]

Unless stated otherwise, the cost to interdict an edge or node (other than node

1 and node 6) is one unit (to simplify the illustration). Of course, in real world
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Figure 3.1:  Notional Network

networks, these costs will vary. In this example, it is assumed that neither the
source nor sink may be interdicted. Therefore, they are assigned an arbitrarily high

interdiction cost, M. The uninterdicted maximum flow of this network is 26.

3.5.1 Node Only Interdiction

Using formulation (3.8)), the following mathematical program results with a
resource constraint of one (i.e. since the cost of interdicting transhipment nodes is

also one, this means one node can be interdicted):
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min 58(1,2) + 158(1,3) + 66(1,4) + 5B2.4) + 5B(2,5) + 50(3,2)
+5063.4) + 55 35) T 75 3,6) T 985 + 15846) + 50(5.6)
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(3.9)

Myi+v+73+7+ 7+ My < 1

where all variables are binary.

Solving this model results in 3 = 1, indicating node 3 is interdicted, which

denies the use of edges (3,2), (3,4), (3,6), (3,5), and (1,3). This results in a re-
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maining maximum possible flow of 11. If the resource constraint is raised to 2, then

nodes 3 and 4 are interdicted, leaving a maximum possible flow of 5.

3.5.2  Nodes and Edges Formulations with Different Resources

In this extension of the example, nodes and edges can be interdicted, and
the interdiction consumes different resources. Again, for illustration/simplicity, it
is assumed that the node and edge interdiction is limited to a resource constraint
of 1 each. The formulation remains very similar to the previous section with minor
changes. The node to edge constraints are changed from equality constraints to
“greater than or equal to” constraints. In addition, the following constraint is added
to allow for edge interdiction: 712 + Y(1,3) + V(1,2 + Y2 + V25 + V62 T VE4) T
Y35 V6.6) T Vs T V@) TV66) — 3N — 2% —4ys =2 — 5 <1

This model results in an interdiction selection of node 3 and edge (4, 6), each in-
terdiction consuming one unit of their respective resources. This interdiction results

in a maximum possible flow of 5.

3.5.83 Nodes and FEdges Formulations with Shared Resources

Finally, we consider the case where both nodes and edges can be interdicted,
and the interdiction resources are shared. This formulation is the same as the previ-
ous section, except that the resource constraints are combined. In the first extension
of the case, a resource constraint of 1 unit is initially assigned. Since all edges and
transhipment nodes have a cost of 1, this will limit the interdiction to 1 node or
edge. This leads to an interdiction selection of edge (1,3) which results in a pos-
sible uninterdicted flow of 11. It should be noted that there are multiple optimal
solutions. The interdiction of node 3 would also result in the same flow. However, a

more extensive discussion of multiple optimal solutions is delayed until Chapter [VII]
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If the interdiction resource is increased to 2, then an optimal strategy is in-
terdicting edges (3,6) and (4,6); leaving a possible uninterdicted flow of 5. If the
cost to interdict edge (3,6) is increased to 2, and the resource constraint remains at
2, then an optimal solution is to interdict edge (4,6) and node 3; again leaving a

possible flow of 5.

3.6 Computational Experiments

3.6.1 Comparison

There are no previous studies in the open literature which explicitly consider
nodal interdiction. Instead, authors generally use interdiction on edges, and point out
that nodes can be converted to edges if desired (using the node splitting technique
discussed in Section . In Wood’s seminal article on network interdiction, he
presents the example illustrated in Figure and Table 3.1} [137, p. 16]

Figure 3.2:  Notional Network [I37, p. 16]

To facilitate a nodal interdiction problem, cost to interdict nodes was assigned
to interdictable nodes. For this problem, Wood assumed the following nodes could
not be interdicted: 1 through 4, and 12 through 14 (as well as the artificial source

and sink nodes). The remaining nodes were assigned interdiction costs as shown in

Table B.2.
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Table 3.1:  Wood’s Arc Interdiction Resources [137, p. 16]

Arc | Capacity | Resource Arc Capacity | Resource
(1,5) 60 5 (6,9) 120 4
(1,6) 60 5 (6,10) 150 6
(1,8) 70 4 (7,10) 120 6
(2,5) 50 3 (7,11) 80 4
(2,6) 50 3 (8,12) 80 4
(2,7) 60 5 (8,13) 50 5
(3,6) 100 3 (9,12) 100 5
(3,7) 80 5 (9,13) 80 4
(4,6) 50 5 (10,13) | 180 6
(4,7) 100 5 (10,14) | 100 4
(4,11) | 80 4 (11,13) | 80 5
(5,8) 60 4 (11,14) | 100 6
(5,9) 60 7

Table 3.2:  Node Interdiction Costs

Node | Resource
5 8
6 16
7 15
8 8
9 11
10 12
11 8

The optimal node interdiction solution can be found directly using the for-
mulation in Section [B.3] However, to use the traditional edge-only formulation,

node-splitting must be used. This results in the network in Figure

With this modified example, the edges between the “split” nodes are assigned

the interdiction cost associated with the node as in Figure |3.3

The example in Figure |3.2] was solved with the node only formulation, and the
modified example in Figure [3.3| was solved using traditional edge-only interdiction

formulation. These formulations were solved using|GAMS|with the BARON/CPLEX
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solvers and on a Dell Precision M6300 with 2.50 gigahertz Intel Core2 Duo processor

Figure 3.3:

Wood Example with Node Splitting

and 4094 megabytes of RAM. The results are presented in Table |3.3

Table 3.3:  Node Interdiction Costs

Modified Edge Interdiction

Direct Node Interdiction

Rows
Columns
Non-zeros
Binaries
Solution Time

33

60

110

60
0.115 sec

26

46

96

46
0.113 sec

As this table shows, using the node interdiction formulation resulted in a
smaller problem size and a virtually indistinguishable run time. However, as problem
sizes grow, it is anticipated that the smaller formulation sizes would result in a more

significant solution time difference. To test this algorithm against larger problem

sizes, the next section considers progressively larger networks.

3.6.2  Larger Networks

To construct larger networks and to be consistent with traditional interdiction
literature, GRIDGEN was used to generate random grid networks. GRIDGEN was
developed by Dimitri Bertsekas and is available in his text Linear Network Opti-
mization. |15, p. 254-259]. Networks were generated by providing a specified length
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and width of the network to be generated. In this generator, all edges are directed
and all nodes are connected to their adjacent nodes. In addition, each node is also
connected to two randomly chosen additional nodes. Unless specified otherwise, all
networks generated in this section have the following properties: all edges have ca-
pacities and edge interdiction costs randomly (uniformly) assigned between 10 and
100, and node interdiction costs are randomly assigned uniformly between 10 and
100 (and rounded to the nearest integer). Initially, all nodes down the first column
of the grid are source nodes, and all nodes down the last column are demand nodes.
A “super-source” and “super-sink” are added to transform the network into a tra-
ditional maximum flow form. These super-nodes (and associated edges) can not be

interdicted.

To be consistent with previous network interdiction literature ([46], [71], [102]),
the following network grids were included: 10 nodes by 10 nodes, 30 nodes by 30
nodes, and 40 nodes by 80 nodes. In addition, one goal of this research is to provide
analysis techniques for large networks, such as infrastructure networks. Therefore,
an additional network was considered: 100 nodes by 150 nodes. This network has

15,000 (including 100 source and 100 sink) nodes and 90,000 edges.

In order to make a direct comparison, the same set of networks were used
across all the testing. For example, the same “10x10” network was used both within
each model type (i.e. various interdiction resources of 10, 50, and 100) and across

model types (i.e. node only, node and edges, and so forth).

As the results in Table demonstrate, these formulations can indeed be
applied to a range of networks, including larger sizes, with reasonable solution times.
In all cases, as the the size of the network grows, the number of iterations and time
required grows proportionately, as expected. In addition, as the amount of resources
available for interdiction grows, the number of iterations and time usually did as
well. Interestingly, the models with shared resources require the most iterations and

time of all three models. This is due to the increased flexibility of using resources
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Table 3.4:  Computational Results of Interdiction Formulations
Formulation Grid Interdiction | Iterations | Total Clock
Resources (H:MM:SS)
10 185 0:00:00.415
10x10 50 219 0:00:00.391
100 325 0:00:00.445
10 1265 0:00:01.242
30x30 50 1435 0:00:01.507
100 1479 0:00:01.650
Node Only 10 1269 0:00:04.409
40x80 50 5135 0:00:06.192
100 5334 0:00:07.253
10 17556 0:00:27.138
100x150 | 50 21007 0:00:31.114
100 21422 0:00:39.388
10 1265 0:00:00.753
10x10 50 1108 0:00:00.542
100 1080 0:00:01.056
10 10394 0:00:09.032
30x30 50 9996 0:00:08.128
. 100 9808 0:00:16.187
Nodes and Edges with Shared Resources 10 30349 0:02-07 300
40x80 50 39062 0:02:49.359
100 36239 0:01:52.462
10 123617 0:29:44.409
100x150 | 50 163617 0:35:07.158
100 173480 0:49:44.409
10 804 0:00:00.510
10x10 50 937 0:00:00.662
100 1193 0:00:00.728
10 3441 0:00:02.476
30x30 50 7095 0:00:07.770
. . 100 9611 0:00:11.729
Nodes and Edges with Different Resources 10 13371 0:00-47 728
40x80 50 22704 0:01:19.714
100 28705 0:02:07.437
10 67188 0:12:09.003
100x150 | 50 91899 0:22:21.841
100 107584 0:34:12.400
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for nodes or edges, so many more combinations are possible and these tradeoffs need

to be considered.

This table also shows some seemingly counterintuitive results. For example,
in some cases (i.e. 30x30 grid in shared resources model) some variations required
more computational time, but fewer iterations. In another example, in a few cases
the model solved faster with more resources available than with less interdiction
resources. These outcomes are a result of using the default settings of [GAMS] In
some cases, was able to create generalized upper bounding constraints and /or
cover constraints during preprocessing. In these cases, the number of iterations and
time required to converge to an optimal solution is skewed by the presence of these

additional constraints.

3.6.2.1 Comparison

For the prosposed technique to be useful, its effectiveness must be at least
equivalent to current methods, and preferably faster. The current algorithms for
node interdiction use the node splitting technique discussed in Section |3.3] To facili-
tate a comparison of the node interdiction developed here with the previous methods
of node-splitting, the grid networks from the previous section were used. Specifically,
the 40x80 grid was used directly in the node-only formulation. For the node-splitting
algorithm, the grid was modified as follows: the first and last columns remain unsplit
as they are the source and sinks, respectively; all remaining nodes were split using to
the node splitting technique. All interdictable arcs (i.e. those between split nodes)

were assigned an interdiction cost of one unit.

Both grid networks were used in the respective formulations in [GAMS]| with
the results in Table 3.5

As Table shows, the node splitting technique, as expected, increases the size
of the network. The 40x80 network is transformed into a 78x80 network. However, as

only edges can be interdicted between split nodes, the computational times between
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Table 3.5:  Direct Nodal versus Node Split Formulations
Formulation Network Interdiction | Iterations | Total Clock
Resources (H:MM:SS)
10 4269 0:00:04.409
Nodal Formulation 40x80 50 0135 0:00:06.192
100 5334 0:00:07.253
10 8209 0:00:06.066
Link (split nodes) Formulation | 40x80 \ 78x80 | 50 8572 0:00:06.344
100 13215 0:00:13.993

the two methods is comparable, with the direct nodal interdiction method requiring

slightly fewer iterations and less time in this illustration.

The remaining nodal interdiction methods developed (which include edge in-
terdiction) were not compared in this study. For node-split networks, all network
edges (those from nodes and the original edges) are indistinguishable to the tra-
ditional edge interdiction algorithm. Although extensions to the traditional inter-
diction method to allow a comparison (such as adding appropriate subscript to the
edges) are straightforward, the various potential methods would be arbitrary and/or
specific the the particular application. As any comparison would be dependent to

the method chosen, a general comparison of the two methods would be impossible.

3.7 Application

In order to demonstrate the potential of the models developed, they have been
applied to a realistic communications network. One such notional communications

network is depicted in Figure [3.4]

Edge capacities are given by Pinkstaff in Appendix C. [95, p. 182-208] In

addition, Pinkstaff also provided “node reconstruction costs.” For this example,
these costs are assigned to the nodes as node destruction costs. In addition, for the
formulations in which edges can be interdicted, these costs were assigned as one-

half of the average of the two nodes which that particular edge connects. To use
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Figure 3.4:  Notional Communications Network [95 p. 55]

this notional network as a maximum flow network, nodes marked “Headquarters”
are assigned as sources, and “Command Bunkers” are assigned demand nodes. To

simplify the formulation, a super-source and super-sink were also added.

—+—MNode Only

——Shared Resources

Remaining Flow

Different Resources

—_— - 1470.0 s Py 62050, 0
0 500 1000 1500 2000 2500 3000

Interdiction Resources

Figure 3.5:  Interdiction Results

The results of the three formulations when applied to this notional network
are depicted in Figure [3.5] As the graph shows, “node only” and “node and edges
with shared resources” follow a very similar path; with “node only” reaching zero
flow slightly faster due to its increased flexibility. In all cases, there is a dramatic

drop as resources are increased for interdiction, followed by a plateau.
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Table 3.6:  Interdiction Results
Node Only | Different Resources | Shared Resources

0 347.63 347.63 347.63
100 54.54 147.38 57.9
200 13.17 54.54 13.17
300 6.45 49.64 4.9
400 4.9 6.45 4.9
500 4.9 4.9 4.9
600 4.9 4.9 4.9
700 4.9 4.9 4.9
800 4.9 4.9 4.9
900 4.9 4.9 1.54
1000 4.9 4.9 1.54
1100 4.9 4.9 1.54
1200 4.9 1.54 1.54
1300 4.9 1.54 1.54
1400 3.09 1.54 1.54
1500 1.54 1.54 0
1600 1.54 1.54 0
1700 1.54 1.54 0
1800 1.54 1.54 0
1900 1.54 1.54 0
2000 1.54 1.54 0
2100 1.54 1.54 0
2200 1.54 1.54 0
2300 1.54 1.54 0
2400 1.54 0 0
2450 0 0 0

Specifically, the graph shows that with 80 units of interdiction resources, all
three methods decreased the total flow from 350 to 50. However, it would take an

additional 110 to 180 units of interdiction resources to decease the flow below 50.

3.8 Conclusion

This chapter extended network interdiction to include node interdiction. Three

different formulations have been developed and these algorithms were demonstrated
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on small notional examples, small/medium /larger grid networks, and a realistic no-
tional communications network. These tests show that these formulations allow for
a potentially more intuitive formulation (because nodes are directly represented and
do not require a split), a smaller formulation (than traditional node-splitting), and
formulations that can be used to solve larger networks (including the 15,000 node
network demonstrated). These approaches supplement the currently available ap-
proaches and give the analysts a wider set of options to directly model node and arc

interdiction.

In addition, this formulation can be more easily extended than previous formu-
lations. For example, in Chapters[[V]and [V] the developed formulations are extended
to nodal interdiction using the methods discussed in this chapter. In addition, this
method could potentially be advantageous for sensitivity analysis because the node

potentials are readily available in the given formulations.
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IV. Social Network Interdiction

4.1 Overview

As shown in Figure [4.1] social network interdiction builds on traditional net-
work interdiction. This is combined with traditional social network analysis tech-

niques/metrics.

Synthesis, Interdiction, and Protection of
Layered Networks
Multiobjective Human

Multilayer Network Multllgy_er Network
Interdiction

Optimization A A Interdiction

Multiobjective Multilayer Network Interdiction
Network Network Nodal Multiple Optimal
Optimization A Optimization A Interdiction Solutions
Multiobjective

Optimization Network Optimization Multilevel Optimization

Foundaticnal Formulation
- Concepts - Development

Figure 4.1:  Human Network Interdiction Formulation Development

This research developed a technique which combines network interdiction with
traditional social network measures such as centrality. Previous research into disrupt-
ing social networks has not taken full advantage of network interdiction techniques.
Herbranson [68] and Hamill [66] consider disruption of social networks, but they
do not explicitly account for limited resources that could prevent various isolation
strategies. Nesbitt [90] develops the idea of limited resources in network interdiction
of social networks, but his method relies on an abstract (undefined) “flow” through
the social network. One approach might be to combine this technique with flow mea-
sures developed by Renfro [99] or Hamill [66]; however, this research will combine
the network interdiction programming techniques with closeness centrality measures

currently used in of covert organizations.
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4.1.1  Assumptions

In this research, it is assumed that all actors and links of a social network are
known. Although this is an unrealistic assumption in a covert network, the theory
and technique developed here identify the optimal actor/relationship to target given
the information available. Of course, this is the underlying assumption of all [SNA]
measures, as they were not developed for use with missing information in mind. In
addition, Carley noted that “any isolation is better than none, assuming our goal is
to degrade the performance and that we don’t need perfect information to be quite

effective.” [32], p. 10]

Borgatti et al. showed that centrality measures are robust to missing informa-
tion in random graphs. [24] In random networks, he showed that errors in centrality
measures increased linearly with the amount of missing information. However, Bor-
gatti noted the degradation in estimation appears faster for cellular networks (which
have little/no hierarchial structure and little communications between clusters of
groups within the network) and may not be linear. Borgatti suggests that in ran-
dom networks, all destabilization tactics (such as isolation of the individual that is
highest in centrality) have approximately the same effect [25], p. 128]; but for cellu-
lar networks this may not be true. While outside the scope of this effort, additional
study needs to be done to determine the impact of missing information on cellular

structured networks.

In this chapter, it is assumed that resource constraints prevent complete iso-
lation/cuts across a social network. These resource constraints could be monetary,
political, ability to reach certain conduits, or any other constraint that would limit
the ability to disrupt a social relationship. If resource constraints are not an is-
sue, then methods discussed previously (such as isolation of key-players developed

in Bellmore et al. [12] and expanded by Herbranson [68]) could be used.

In other cases, either the attacker does not have sufficient resources, a target is

inaccessible, or completely “cutting” an arc may be impractical. For example, it may
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not be possible to break the ties between a parent and child or two life long friends.
In the case of social network analysis, one may disrupt an actor directly (i.e. kill or
detain the actor), or one may influence a relationship. For example, if one wished
to disrupt a relationship, he/she could provide information that would cause actors
not to trust each other. This would cause an increase in the centrality measures in a
social network. Finally, one could weaken/cut a relationship by denying, disrupting,

or degrading all means of communication between the actors.

4.2 Targeting

Some techniques in counter-terrorism involve identifying and isolating key
members of a social network. Given social network structural information, the mil-
itary and/or law enforcement can target those individuals and/or relationships to
isolate “key players” in the network in an attempt to fragment the network and
make the network less effective. [23, 68]. In addition, if a network “flow” measure is
defined (such as in Renfro’s work [99]) then a method developed by Nesbitt [90] can
be used which applies network interdiction techniques to reduce this flow as much as
possible in a covert network. However, there are no known studies in the open litera-
ture which examine the network interdiction techniques and social network measures

directly.

Tsvetovat suggests that targeting those actors with high betweenness central-
ity may temporarily separate a cellular network into disconnected cells; however,
the network uses latent resources to quickly recover. [I19] In addition, targeting
leadership in a cellular organization does not seem to disrupt the activities of the
organization itself. This is made clear by Carley who asserts that isolating a key
actor may not destabilize the network; in fact, this isolation “may have the same
effect as cutting off the Hydras head; many new key actors or leaders may emerge.”

133, p. 2]
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Since the leadership and gatekeepers do not always seem to be attractive tar-
gets to disrupt a cellular organization, an alternative is to disrupt individual cells.
Tsvetovat [119] suggests a search for highly central individuals is likely to turn up
members of a densely connected cell. To disrupt this cell the members of the cell need
to be forced to be less “connected.” However, thus far, connectedness has only been
defined in terms of individuals; therefore a measure for the overall connectedness of

the cell is needed.

4.2.1 Influence Operations

“Targeting is a comprehensive and involved process of matching a target within
the cognitive, information, or physical domain with kinetic weapons or nonkinetic
capabilities.” [I, p. 31] When dealing with people (as nodes), targeting can refer
to a physical attack, or it can refer to an influence operation. Influence operations
are focused on affecting the perceptions and behaviors of leaders, groups, or entire

populations. [I, p. 43]

“The military capabilities of influence operations are psychological operations

(PSYOP)), military deception (MILDEC)), operations security (OPSEC|), counter-
intelligence operations, counter-propaganda operations and public affairs (PA)

operations.” [II, p. 5] For example, to disrupt a relationship between two individuals

(the target), the military can employ [PSYOP} YPSYOP)|seeks to induce, influence,

or reinforce the perceptions, attitudes, reasoning, and behavior of foreign leaders,
groups, and organizations in a manner favorable to friendly national and military
objectives.” [I, p. 9] Additional information about can be found in Air
Force Doctrine Document 2-5.2, Psychological Operations; and Joint Publication

3-53, Doctrine for Joint Psychological Operations.

Another example technique to target a relationship is military deception. “Mil-
itary deception misleads or manages the perception of adversaries, causing them to

act in accordance with friendly objectives.” [I, p. 11] Additional information about
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[MILDEC] can be found in Joint Publication 3-13.4, Military Deception; and Joint

Publication 3-58, Joint Doctrine for Deception Operations.

There are a variety of ways to influence a person. At one extreme, an
individual may be killed. It is fair to say that the deceased will no longer
be opposed to our policy—but they will not help further it, either. At
the other end of the spectrum, that same individual can be persuaded to
accept, and hopefully embrace our policy—changing the individual’s at-
titudes, behavior, opinions, and ultimately actions ...In between killing
someone and convincing them there is a spectrum of options—coerce, de-
ter, compel, and persuade ... [111] p. 6]

The influence weapon used will determine the motivation of the target. Figure

[4.2] provides an example representation of the motivation spectrum.

Persuasion Impellence Coercion

TGO TS don't waht to do
“This Is a great the best choice | this, but have no
idea—let’s do jt!” have” other choicé’

Motivation
for

Compliance

Figure 4.2:  Spectrum of Motivation [I11], p. 57]

To develop a measurable definition of influence, Clark defined influence as
a function of prestige and connectivity. [41, p. I-14] Non-network prestige was
determined from a discriminate analysis, while network interpersonal influence was

calculated via information centrality. [41l p. 1-16] Section discusses Clark’s

analysis technique in detail.

Of course, the influence weapon used should be tailored to the target audi-
ence. Targets also comprise a spectrum from one key decision maker, a small group

(leadership coterie), or a direct appeal to the masses. [I11} p. 7]

As the population of the target audience increases, the requirement for
precision intelligence on individual hopes and fears decreases, but the
requirement for understanding the underlying social structure and val-
ues increases, along with the emotional inertia—and hence the time or
magnitude of event required to inculcate real change. [111l p. 61]
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This is shown in Figure 4.3 For example, in planning for influence operations,
targets must be accessed for susceptibility to influence and expected benefit from

influence. [I11), p. 67]

Surgical Influence recision Influence Weapon of Mass
Number of Weapon Weapon Influence
Targets A military; some or
1 leader A few cronies all of a population
Precision Emoftional Inertia &
Individiat Int=! Seq Societal Intel Req’t

Figure 4.3:  Number of Targets [I11], p. 61]

In determining how to influence individuals, Kimminau merged rational de-
cision making with prospect theory. According to Kimminau, most theories of
influence rely on adversaries making rational choices. In other words, they will
understand and weigh costs and benefits of alternatives, and they will chose the
value-maximizing alternative. [75, p. 10] Kimminau argues that prospect theory is a
more appropriate model for influence because it is based on individual decision mak-
ing under risk. [75, p. 12] Prospect theory suggests that people frame their decisions
based on their perception of their situation, and then evaluate alternatives differently
depending upon their frame. Therefore, to apply a decision model to influence, “the
alternatives must be defined in terms of costs, benefits, and uncertainty, and frame

of the decision maker must be identified.” [75] p. 29]

4.2.2 Cell Closeness

In this study, an approach for using network interdiction with measures
is developed using closeness centrality. Closeness centrality was discussed in Section
and was selected for several reasons. One, centrality is often used in [SNA]
to determine “who” is important. In the context of covert organizations, members
with high “closeness” measures are often found to be members of a terrorist cell

when analyzing terrorist data. [I19 p. 6] Therefore, although this measure may not
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identify overall core leadership of the organization, disrupting individual terrorist

“cells” will disrupt or delay a covert organizations objectives.

Second, like many [SNA] measures, closeness centrality is built from shortest-
path calculations. Closeness centrality is a measure of how close an individual is to
everyone else in a connected network. The shortest paths “linking the central nodes
to the other nodes must be as short as possible.” [124], p. 183] As another example,
betweenness centrality is a measure of how many times an actor appears on the
shortest-path of other actors. [124, p. 189] Therefore, with the theory developed for
closeness centrality, the approach developed here could be extended to other

measures that are based on shortest path calculations.

To disrupt a social network, one may wish to maximize the shortest distance
from a set of central nodes to other nodes. Any method used to disrupt a relationship
will incur a (not necessarily monetary) cost. Therefore, the goal is to identify the
links which, if disrupted, would maximize the distance from central actors to all other
actors subject to limited resources. If limited resources are not a (mathematical)
constraint, then one could identify cut-sets which would completely disconnect the

central nodes from other nodes. [12, [68].

Closeness centrality calculates the inverse of the sum of the shortest paths to
all other nodes in the network. It is a measure of how “key” members are to network
communication; reach; and reachibility. [57] Closeness centrality is defined in terms
of the distance from an individual to all other nodes. For example, a node who “has
the shortest possible paths to all the other actors ... has maximum closeness. [124],

p. 184] Mathematically, closeness centrality is given as:

C(n;) = [Z d(ni,nj)] (4.1)

where n; is the node for which centrality is being calculated, d(n;,n;) is the

distance from node ¢ to node j, and g is the total number of nodes. This measure
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sums the shortest path from a node to all other nodes and takes the inverse. If no
arc length is given to each relation, the distance between a pair of connected nodes

is assumed to be one.

A network attacker is interested in decreasing “closeness” between multiple
agents, not just a single agent. Therefore, this research extends the previously
discussed individual centrality to a measure of “group closeness.” A measure for
this developed in this research is to sum the individual closeness measure across all
members in the cell. In other words, define the members of the cell one wishes to

disrupt, [ € N.

G=>" [Z d(n;, nj)] (4.2)

leN Lj=1
where G is the “group closeness.”

It should be noted that the inner sum is a sum of shortest paths. Therefore,
to decrease closeness, the links to target to maximally increase the sum across the
shortest paths need to determined. Let g be the the sum of the all-pairs shortest
paths in the network. In order to minimize closeness, g needs to be maximized by

interdicting arcs subject to the resource constraints.

This measure is very similar to the measure PTF developed by Herbranson.
[68] However, this measure of group closeness does not use a predefined subset of
nodes to isolate, T'. In this study, the cell is degraded by disrupting closeness, not

isolation.

4.3 Human Network Interdiction Model

4.3.1 Individuals

As shown in Section 4.1} closeness centrality is defined in terms of shortest
paths. Recall from Section that the shortest path from one individual, s to

another individual ¢ can be found by
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min E CijTi 5

(4,5)€A

1, fori=s;

Z Tij — Z xj; = 0, 0Vie N {s,t};

:(4,5)€A J:(ji)eA —1, for i =t.

z;; >0 V(i,j)e A

where ¢;; be the length of arc (4, j) (i.e. the strength of the relationship), and let z;
be 1 if arc (4, j) is chosen, and zero otherwise. In addition, A is an adjacency matrix
where each entry a;; is one if there exists an edge from vertex i to vertex j, and zero

otherwise.

To target an individual’s closeness, an attacker would maximize the length of
that individual’s shortest path to all others in the network. This can be shown math-
ematically using the shortest path network interdiction formulation and algorithm
discussed in Section [2.5.1] The following formulation maximizes the shortest s — ¢
path length in a directed network by interdicting arcs. This approach is based on
the work of Israeli and Wood [71].

max min » (¢ + 6i5dij)xi; (4.4)
1, fori=-s¢;
Soap— Y wi={ 0, 0Vie N{st}
pened 2O 1, fori=t
z;; >0 Vke A

where A = {§ € {0, 1}/4|rT§ < D}; ¢;; is the nominal integer length of arc (4, 5); d;;
is the added integer delay if arc (7, 7) is interdicted, z;; = 1 if arc ¢j is traversed in

the shortest path (= 0 otherwise); 0 = 1 if arc (¢, j) is interdicted; ;5 is the resource
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required to interdict arc (7,j), and D is the total amount of interdiction resource

available.

By first fixing z, taking the dual of the inner minimization problem, making
“a few simple modifications” and releasing z, the following formulation results: [70,

p. 19]

max m; — T
9,7

s.t. Ty — Ty — dijéij S Cij (45)
7, =20
de A

This formulation gives the optimal attack against the shortest path between
two individuals subject to an interdictor’s resources. However, an individual’s close-
ness is defined in terms of shortest paths between an individual and all other members
of the network. Therefore, an attacker wishes to interdict all paths from an indi-
vidual to all other members. The formulation in (4.5) must be modified to sum
interdictions across these paths, subject to the interdictor’s resource constraints.
Since the source does not change in any of the shortest-paths, the constraints re-
main unchanged. It follows then that the objective functions can be modified to sum

across all sinks/members of the network. This is done as follows:

s.t. Ty — Ty — dij&j S Cij (46)

It is noted, however, that this formulation is for directed arcs, while social
networks are usually depicted with undirected arcs. To facilitate modeling, each

undirected arc in the social network is replaced with 2 directed arcs in opposing
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directions. If the distance/strength of relationship and cost to interdict is truly
symmetric (the same going both directions), then the following constraint can be
used:

0ij = 0ji (4.7)

)

This constraint forces an interdictor to interdict both directions of an interdicted
arc, or neither of them. Note: interdiction costs and resources should be matched
accordingly. In this special case, a modification of Dijkstra’s algorithm developed by
Khachiyan et al. could be used to solve this problem. The algorithm developed by
Khachiyan et al. maximizes the shortest path from all nodes to a particular node.
[74, p. 4] However, if the paths are not symmetric, then the paths from a node to
all others would be different than paths from all nodes to a particular node. In this
case (or in any other variation discussed in this chapter), the modified Dijkstra’s

algorithm could not be used.

If an interdictor has the option or desire (and ability) to interdict one direction
of a relationship, but not the other, then constraint can be dropped. The model
is flexible enough to handle either situation. In any case, the formulation determines
which relationships should be targeted to maximally disrupt an individuals closeness

centrality. To illustrate this, an example is provided in Section [4.4]

4.8.2  Cells

If an attacker wished to maximize the disruption to an entire cell /network,
then the goal would be to maximize G as defined in (4.2). This is done by maxi-
mizing the shortest distances between all pairs of nodes. Therefore, the formulation
developed in (4.6) will be modified. The formulation, , finds the interdiction
across all paths from a specified node to all other nodes. Since this formulation al-
ready sums across all paths from a specified node, the modification simply needs to
sum these paths/interdications across all nodes (as the specified node). Specifically,

the following formulation results:
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mgxx E E i

keEN ieN\s
s.t. Tkj — Thki — dz-jéij S Cij (48)
7'('1m'S = O

0 €A

Since G relies on an all-pairs shortest path, this interdiction formulation is
also an all-pairs shortest path formulation. In any case, this formulation provides
the relationships which should be targeted to maximally disrupt the group’s closeness

centrality, G. To illustrate this, an example is provided in Section [£.4]

4.3.8 Nodal Ezxtensions

The closeness interdiction models above determine the optimal relationships/edges
to influence/interdict to optimally disrupt the social networks (as measured by close-
ness centrality). As discussed in Chapter m, it may also be desired/necessary to
model nodal interdiction (which in this case would be individuals in the social net-

work), instead of / in addition to, edge interdiction (in this case the relationships).

Recall from Chapter [[T]] that a node-only max flow interdiction modifies a
traditional edge interdiction formulation by forcing interdiction of a node to disrupt
flow in (all/some) associated edges. In addition, the resource constraint must be
modified to allow node interdiction as well. If only nodal interdiction is allowed, then
the resource constraint is summed over all interdictable nodes. However, if nodes
and edges are allowed, then modifications must be made to ensure edge disruptions

associated with interdicted nodes are not double counted.

Although Chapter [[T]] focused on maximum flow nodal interdiction, the same
idea is applicable in shortest-path nodal interdiction. In this case, instead of a
nodal interdiction disrupting flow in associated arcs, it extends the length of the

path of associated relationships. In other words, if an individual is selected for
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targeting/influence, then all (or a selected subset of) connected relationships are
disrupted by having the relationship weakened (by being lengthened). Specifically,

for individual (node only) targeting, the model is as follows:

max g e
SeEA

1€N\s

s.t. Ty — TG — dijél-j S Cij (49)
5ij = 52
5]'1' = 51

52']‘ S {0, 1} V(Z,j) ek
0, € {0,1} Yie N

where all variables are as defined previously.

Formulation is a model in which only nodes can be targeted. This formu-
lation includes the additional constraints d,; = d; and d;; = d; which force all edges
associated with an interdicted node to also be disrupted. The resource constraint
is also appropriately modified. By modifing these constraints, one could also model
the case where only a subset of associated edges are disrupted when a node is dis-
rupted. Of course, additional variations are possible. As discussed in Chapter [[II]
this could include formulations where nodes and edges are targetable, with the same

or different resources.

Similarly, modifications can be made to the cell closeness interdiction formu-
lation to allow interdiction of nodes. With the same modifications, the (node only)

model for targeting the closeness of cellular social networks is as follows:
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max E E ;
dEA

kEN ieN\s

s.t. Ty — Ty — dij5ij S Cij (410)

5 = 6;

0ji = 0;

5; € {0,1} Y(i,j) € E
5, €{0,1} Vie N

where, again, all variables are as defined previously. In addition, straightforward
modifications can be made to make nodes and edges targetable (either with shared

or different resources).

4.8.4  Solution methodologies

Formulations such as (4.6) and (4.8) can be solved directly as mixed-integer
problems. However, because of their special structures, it may be beneficial to con-
sider decomposing or partitioning the formulations to take advantage of their struc-

tures. This section demonstrates how this could be done using Benders’ partitioning.

4.3.4.1 Individuals

For fixed interdictions, d;;, the linear relaxation of (4.6]) is a dual of a (sum
across) shortest path(s) which has an intrinsically integer solution. Therefore, the

dual can be taken which results in the following program:
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dEA
leN\s
1, fori=s;
Ziﬁlz’j — leji =< 0, 0Vie N{st};
-1, fori=t.

Llij Z 0 Vk e A
Yij € {0, 1} Vi

where [ is the set of all nodes, excluding the source node (i.e. the inner objective
function sums across all shortest paths from the source to all other nodes). This
inner formulation can be used to form the subproblem in a Benders’ partitioning.

~

For fixed interdictions, d;;, the subproblem is then

leN\s (i,j)€A

1, fori=-s;
Z Tiij — Z ;=14 0, 0Vie N{s,t};
j:(ij)eA J:(ji)EA -1, for¢=t.

T4 Z 0 Vke A
Y;; € binary

Therefore, the associated master problems becomes:

maxz
ISTAN

z < Z 0ijdij Tlij
IEN\s
Z 7ij0i; < R (4.13)
(1,5)€A
Yij = Yji
Yij € binary
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With this subproblem and master problem, Benders’ partitioning can be used

as follows:

Solve Benders’ subproblem as an LP with fixed interdiction (with solution z)
Set UB = max(UB, z)

Fix flow 2, and add cut to master problem

Solve master problem with solution z

Update LB = z

Check for convergence: (UB-LB) < ¢

N g W

If not converged, fix interdiction from master problem and resolve subproblem

4.3.4.2  Cells

In a similar manner, the formulation for all-pairs shortest path interdiction (as
used for group closeness interdiction) can be decomposed using Benders’ partitioning.
The primary addition is that each node is also a source. Therefore, the objective
function of the subproblem sums across all shortest paths from each node to all other

nodes. This is formulated as follows:

s€EN IEN\s
1, fori=s;
szlij — Zl’slﬂ = 0, 0Vie N{S,t};
—1, fori=t.

Tslij 2 0 VEe A
Y;; € binary

In addition, the master problem is similarly modified to include this summation

across all nodes as sources:
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max z
dEA

z < Z Z 0 i

n=sEN [eN\s

Z riby < R (4.15)

(4,5)€A
Yij = Yji
Yij € {O, 1}
With this modified subproblem and master problem, the Benders’ algorithm

described in the previous section can be used to find the optimal solution.

4.4 Notional Examples

In this section, the formulations developed in the chapter are demonstrated on
the notional network in Figure [£.4 which contains is an example of a very small social
network. The first number on each arc is ¢;;, the length of the path (i.e. the strength
of the relationship where lower numbers are closer/better); the second number is 7,
the cost to disrupt that relationship. These “costs” can be any resource required
to disrupt a relationship; for example, PSYOP)| messages. We assume the number
of these resources is limited (in this example to 4). The third number is d;;, the
anticipated amount the relationship is diminished (the amount the distance between

them increases) if it is disrupted.

Before any attacks are made against the relationships of this social network,
the individual closeness centrality measures are given in Table To illustrate how
these are calculated, consider Node 1. The shortest distance from Node 1 to Node
2 is 1 unit, from Node 1 to Node 3 is 2 units, from Node 1 to node 4 is 1 unit, and
from Node 1 to Node 5 is 2 units. Therefore, the sum across all shortest paths from
Node 1 to all other nodes is 6 units. Closeness centrality is the reciprocal of this

number or %.
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Figure 4.4:  Notional Network

Table 4.1:  Closeness Centrality

Node | Pre attack
Node 1 %
Node 2 %
Node 3 L
Node 4 i
Node 5 2

4.4.1 Individual Attacks

Suppose one wished to disrupt the social network in Figure [.4]such that Node
1’s closeness centrality is maximally disrupted. This is done by using the formulation

in (4.6). This results in the following formulation:
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max o + T3 + Ty + T
st. —m +pe—342<1
—m + Ty — 2014 <1
T — T — 3021 < 1
—Ty + T3 — 2093 < 1
Ty — Ty — 2039 < 1
—m3 + My — 2034 <1
—Tg + 5 — 2035 < 1
T — Ty — 2041 <1
Ty — Ty — 2043 < 1
Ty + 75 — 3045 < 1

73—71'5—2(5573 S 1

Ty — 75 — 3054 < 1 (4.16)
012 — 021 =10
014 —041 =0
—012+021 =0
023 — 032 =0
—023+ 032 =0
034 — 043 =0
035 — 053 =0
—014+041 =0
—034 + 043 =0
045 — 054 =0
—035+ 053 =10
—045 + 054 =0

251’2 -+ 251,4 -+ 2(5271 -+ 3(5273 + 353’2 + 36374 + 35375
+ 2041 + 3043 + 2045 + 3053 + 2054 < 8

7'('1:0

The optimal solution to this program results in d; 2 = ;4 = 1 (since relation-
ships were symmetric, the reverse relationships are also selected for disruption, but
for simplicity are not repeated here), which means relationships between node 1 and

node 2 should be disrupted (influenced), as well as the relationships between nodes
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1 and 4. With these disruptions, the sum of the shortest paths from Node 1 to all

other nodes increases to 15. This reduces Node 1’s closeness centrality to %

Repeating this analysis for each node in the network depicted in Figure [£.4 has
the results depicted in Table 4.2

Table 4.2:  Individual Closeness Centrality Disruption

Node | Pre attack | Relationships attacked | Post Attack
Node 1 % (152)7(174) %
Node 2 3 (1,2),(1,4) 3
Node 3 z (2,3) z

i i
Node 4 : (1,4), (4,5) ;
Node 5 R (174)a (475) 8

These formulations were solved directly as a mixed integer program, and also
with Benders’ partitioning (both are described in Section . The solutions using
both methods were the same, although solution times differed. For the small network,
the mixed integer program solved in 0.013 seconds, while the Benders’ partitioning
version took 19.569 seconds. It should be noted that the Benders’ version found
the optimal solution almost immediately; however, it took several cuts to establish
optimality. It is not uncommon for smaller problems to solve more quickly directly

than the decomposed approach. [I18], p. 810]

4.4.2  Group Attack

Suppose one wished to disrupt the social network in Figure such that
all closeness measures are maximally disrupted, subject to an attacker’s resource
constraints. This is done by using the formulation in (4.8)). This results in the

following formulation:
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Table 4.3:  Group Closeness Centrality Disruption

Node | Pre attack | Post Attack

T T

Node 1 ? ¥
Node 2 5 5
Node 3 % %
Node 4 % %
1

Node 5 g : 4§8 .

G 10 2520

It should be noted that the constraints are arranged in blocks according to
source node, and the coupling variables in the far right column. This is done to
illustrate the the underlying structure which is exploited when using decomposi-

tion/partitioning techniques.

Using this formulation results in an optimal solution with 6,9 = 614 = 1
meaning that disrupting the relationships (and their reciprocals) between node 1
and nodes 2 and 4 maximally disrupts the closeness centrality of the group (as

measured by their sum). This is displayed in Table

As Table shows, the sum of closeness centrality drops from 0.9 to less
than 0.6. Stated another way, the disruption increased the shortest paths across the

network by more than one-third.

This formulation was solved directly as a mixed integer program (see Section
4.3)) and with Benders’ partitioning (see Section . The solution using both
methods were identical, although the solution times was radically different. The
mixed integer program version solved in 0.016 seconds, while the Benders’ parti-
tioning version took 19.751 seconds. It should again be noted that the Benders’
version found the optimal solution almost immediately; however, it took several cuts
to establish optimality. This is partially a result of the particular implementation of
Benders’ in [GAMS| For example, in each iteration, the subproblems were created
from scratch instead of simply being modified based on the results of the master

problem.
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In addition, while in these examples the Benders’ method required more com-
putational effort than the mixed-integer versions, the Benders’ algorithm provides
information as it is being solved. In a very large network where solving the system
as a single [MIP] is impractical, the Benders’ algorithm could be used to provide
bounds to the optimal solution as it proceeds. In addition, the shadow prices of the
subproblem could be used as a proxy for reduced vulnerability obtained if additional

resources could be obtained.

4.4.3 Borgatti Network

Borgatti considered the problem of disrupting social networks by identifying
“key players” whose removal would maximally disrupt the network in [23]. To illus-
trate the problems with traditional centrality measures and promote his algorithm,

he provided the example network depicted in Figure [4.5]

6

12

Figure 4.5:  Borgatti Example [23, p. 23]

The method developed in this chapter compliments Borgatti’s methods. Bor-
gatti only considered the removal of nodes. Although the methods developed in this
chapter could be modified to consider node removal (see Chapter , the focus has
been on the “interdiction” of relationships. Relationships/links are not directly ex-

plored in Borgatti’s methods. To show how this method can complement Borgatti’s
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work, consider the example in Figure [4.5] For simplicity, assume that each relation-
ship can be degraded by one unit with one unit of interdiction resource. Assuming
one unit of interdiction resource, the relationship between 1 and 8 is found to be
key. Using the group attack formulation, the total closeness interdiction drops from
ﬁ to 5%6. Using the individual attack formulation, the closeness centrality of Node
1 drops from 2—11 to 2—16.

Using the node only interdiction formulations (and excluding node 1 from
susceptibility to influence), it is found that Node 8 is the optimal node/person to
influence (again, assuming only one unit of influence is available). In the individual

1

attack, this drops Node 1’s centrality from % to 5z. Using the group attack, the

total closeness drops from ﬁ to %.
This example illustrates a method to determine optimal disruptions using tra-
ditional social network measures such as centrality. This method addresses the lim-

itations discussed by Borgatti in [23]. Note that in both nodal formulations, Node 8

was chosen for influence contrary to the examples provided by Borgatti.

4.4.4 Krebs Network

Krebs compiled the social network of the 9-11 hijackers based on open source
data. [78] Krebs considered the resulting network and, in his expert opinion, ad-
ditional edges needed to be added for the network to make sense. To decrease the
average paths between the hijackers and increase collaboration among them, Krebs

added six additional arcs. The resulting network is depicted in Figure

Had this network been known before 9-11, the U.S. would have liked to max-
imally disrupt this network. With limited resources, the question becomes which
relationships are most vital to the group as measured by closeness centrality. As a
side note, finding the optimal relationships to interdict serves as a check to see how

vital the edges added by Krebs really are.
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Figure 4.6:  Krebs Example [7§]

Since the goal would be to disrupt the entire network, not just the relationship
of one individual with the rest of the network, the group interdiction formulation
is used. For simplicity, it is assumed that all relationships are candidates for influ-
ence/disruption and consume one unit of resource. To facilitate a comparison with
Krebs’ work, six units of influence resources are made available. Finally, it is assumed
that if an arc is interdicted (effected), the length of the relationship between two in-
dividuals increases by two units. With this, the optimal relationships to interdict
(represented by maximizing the shortest path) is found to be the following: Abdul
Aziz Al-Omari to Marwan Al-Shehhi, Abdul Aziz Al-Omari to Mohamed Atta, Ab-
dul Aziz Al-Omari to Waleed Alsheri, Ahmed Alghamdi to Hamza Alghamdi, Hani
Hanjour to Majed Moged, Mohamed Atta to Nawaf Alhazmi. These interdictions

reduce each individuals centrality as shown in Table |4.4)

As Table 4.4 shows, the individual closeness centrality dropped for every mem-
ber of the network, and the average closeness dropped by over 23%. Interestingly,

to maximally disrupt the network (as measured by closeness centrality), only one
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Table 4.4:  Krebs’ 9-11 Network Centralities

Individual Closeness Pre-Attack | Closeness Post-Attack
Abdul Aziz Al-Omari é 6_17
Ahmed Al Haznawai % 5i4

Ahmed Alghamdi = <
Ahmed Alnami ﬁ 6_10
Fayez Ahmed = i
Hamza Alghamdi = i
Hani Hanjour = +
Khalid Al-M ihdhar % %
Majed Moged = <
Marwan Al-Shehhi % 4_16
Mohamed Atta % 4_19
Mohand Alsheri % %
Nawaf Alhazmi % 4_19
Saeced Alghamdi = <
Salem Alhazmi ﬁ %
Satam Suqami = s
Wail Alsheri % 1_§9
Waleed Alsheri % <
Ziad Jarrah % 4_18
Average 0.022171 0.017066

of the relationships added by Krebs was selected for disruption: Mohamed Atta to
Nawaf Alhazmi.

Using the node only formulations, the optimal individuals to influence can be
determined. For example, using the group attack method of the node only model,
it is found that influencing Abdul Aziz Al-Omari is the optimal, followed by Nawaf
Alhazmi.

4.5 Computational Experiments

To demonstrate the potential of these algorithms on various sized networks,
random networks were generated using the Erdos-Renyi method using UCINET.
[22] Erdos and Renyi’s method creates random graphs by joining n nodes by random

chosen edges. One way to do this is to specify a desired average degree of nodes. [54],
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p. 290] This method was chosen for several reasons. First, this method is prevalent
in social network modeling; it is widely used and provided by UCINET. Second, this
model has the feature that as the number of nodes increases, the model is likely to
undergo a “phase transition” in which a “giant component” forms. [91], p. 2] This
is important because the formulations developed in this research assume the social
network is connected (i.e. no isolates). In fact, every network generated as a result

of this study (including the smaller 10 node networks) was connected.

These formulations were solved using|GAMS|with the BARON/CPLEX solvers
and on a Dell Precision M6300 with 2.50 gigahertz Intel Core2 Duo processor and
4094 megabytes of RAM.

To simplify the illustration, it is assumed in these examples that interdiction
of each edge consumes one unit of resource, and if interdicted, the length of an edge
increases by one unit. Of course, other numbers could be used, and this was done in

experimentation. However, this makes the illustration more difficult to follow.

4.5.1 Individual Attacks

In the randomly generated networks described in Table [4.5] it was assumed
that Node 1 was the person to be isolated. Therefore, the algorithms to minimize

his individual centrality were used. The network sizes and solution times are reported

in Table 4.5

Table 4.5:  Interdiction of an Individual’s Centrality/Relationships
# Nodes | # Edges | Interdiction Resources | MIP Time | # Benders’ Iterations
& Time (H:MM:SS)
10 15 1 0:00:00.410 3 - 0:00:01.487
50 408 10 0:00:00.773 23 - 0:08:54.440
250 1500 20 0:00:01.215 11 - 0:06:19.005
500 3000 20 0:00:10.889 13 - 0:35:10.192

As Table shows, moderately large social networks can potentially be solved

using either the [MIP| or Benders’ formulations. While it was somewhat surprising
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that the Benders’ solution times were significantly higher than the [MIP] times, a
closer examination of the output explains this. Almost all time reported for
the Benders’ solution times is a result of generating the large subproblems. Once the
problem was generated, the time to solve each iterated sub/master problem was less
than one second in all cases. Future research should be applied to this problem to
reduce subproblem size and therefore reduce solution times. Alternatively, a more

streamlined generation procedure might be considered.

4.5.2  Group Attack

In the randomly generated networks described in Table it was assumed
that the goal was to maximally increase the distance between all nodes. Therefore,
the algorithm to maximally interdict all-shortest paths was used. The network sizes

and solution times are reported in Table 4.5]

Table 4.6:  Interdiction of Group’s Centrality /Relationships

# Nodes | # Edges | Interdiction Resources | MIP Time | # Benders’ Iterations
& Time (H:MM:SS)

10 15 1 0:00:00.279 5 - 0:00:03.454
50 408 10 0:00:04.191 9 - 0:09:57.442
250 1500 20 0:04:19.844 14 - 0:39:57.442

As Table shows,moderately large social networks can potentially be solved
using either the [MIP| or Benders’ formulations. Again, as with individual attacks
discussed in Section [£.5.1] the Benders’ solution times were significantly greater than

respective [MIP] solution times.

Noticeably absent from Table [1.6] is a row for 500 nodes. [GAMS| was unable
to process social networks of this size because of hardware (memory/RAM) limi-
tations. The “break point” appears to be somewhere around 400 nodes with the
given hardware and network specifications. However, this may not be a significant
limitation. The terrorist social networks found/reported in open literature are less

than 400 nodes; and even with larger networks, the subgroups of networks could be
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modeled. The largest network in the literature was developed by Dr. Sageman as
a terrorist dataset. Therefore, to confirm this size constraint may not be an issue
for Sageman’s real-world dataset, that set was explored in the next section as an

application.

Finally, if a network is found/developed for which this limitation is indeed
significant, the formulation/algorithm could be implemented on a larger capacity
platform; up to and including high performance computers. It is noted that many
U.S. supercomputers already have installed. These larger formulations are

also precisely where the benefits for Benders’ partitioning should occur.

4.6 Application

4.6.1 Sageman

In response to the terrorist attacks on September 11, 2001, Sageman began col-
lecting data on Al Qaeda using open source literature. [103, p. vii]. However, this
database is based on Dr. Sagemans’s 2004 publication and may be dated. Therefore,
the analysis in this section is to demonstrate the potential of the methodology, and is
limited to the data available. After all the isolates are removed, the remaining con-
nected network from the Sageman database has 366 members and 2422 relationships.

This network is depicted in Figure

The Sageman database was selected because it is the largest terrorist social
network found in the open social networks literature. In addition, this is the type
of dataset this research’s formulations are designed to be run against; terrorists

networks are exactly the types of networks the U.S. would like to disrupt.

For this section, it was assumed that the length of each relationship was one
unit, and disruption of a relationship increased this distance by one unit. For demon-
stration purposes, 5 units of interdiction resource were assumed. In effect, this de-

termines the top 5 relationships to disrupt to maximally disrupt the network as
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Figure 4.7: Al Qaeda Network from Sageman Database

measured by closeness centrality. Although this is a large network, [GAMS solved
the group interdiction of this network (with the in 12 minutes and 18 seconds
(including problem generation which took approximately 10 minutes). The resulting
solution indicates that the following relationships should be considered for disrup-
tion based on network structure: Enaam Arnaout to Muhammad Jamal Khalifah,
Khader abu Hoshar to Saed Hijazi, Raed Hijazi to Saed Hijazi, Mohamed Mahjoub
to Mahmoud Jaballah, and Mohammad Rais to Sardona Siliwangi.
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Interestingly, none of these individuals is considered high profile, so interdiction
of these relationships to disrupt the network, as measured by closeness centrality, is
a unique result. If one wished to decrease the closeness of an individual high profile

person, the individual closeness interdiction formulation should be used.

4.6.2  Communications Network

Krebs showed how lessons and measures from social network analysis can be
applied to the infrastructure networks. [77] Specifically, he considered routers in a
computer network and showed that “maximizing closeness between all routers im-
proves updating and minimizes hop counts.” [T, p. 16] Therefore, to disrupt a
communications network, one approach would be to minimize the closeness between
all components in the network. This can be done using the all-pairs/group interdic-
tion approach. For example, this method can be applied against the communications

network taken from Pinkstaff (and used in Section [3.7)).

The graph in Figure shows the effect of increasing interdiction resources on
the sum of the closeness centrality of all communications equipment. As the graph
shows, there is a significant increase at about 20 units of resource. Again, interdic-
tion increases the shortest paths between the components, increasing centrality and
disrupting centrality as discussed by Krebs. However, some areas of the graph are
flat (for example, from 90 to 140) indicating that additional resources have no effect
on the shortest paths. In these cases, a large increase in resources is necessary even

to make minor changes in shortest paths.

4.7 Summary

The developed methodology extends network interdiction to social networks
using traditional measures to identify relationships whose influence would max-

imally disrupt the network. Along with the associated examples, this demonstrates
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Figure 4.8:  Interdiction Resources versus Closeness Centrality

that targeting specific relationships in a social network can reduce individual and
overall social closeness as measured by centrality. In addition, it was also shown how
these methods could be applied to infrastructure networks, such as a communica-
tions network. Depending on the specific mission objectives, and desired effects, this

can be an effective approach.

In order to achieve this, shortest-path network interdiction was extended to
both individual centrality interdiction and group centrality interdiction. Group cen-
trality interdiction involves formulating an all-pairs shortest path interdiction model,
which to date has not been done in the literature. For each of these models, both
[MIP] and Benders partitioning formulations were developed, and computational ex-

periments indicate the method is promising for large networks.
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V. Multilayered Network Interdiction

5.1 Introduction

Traditional network models of single functionality do not typically account for
the interdependent nature of layered networks. These networks are generally modeled
individually, as an isolated network or with minimal recognition of interactions.
This chapter develops a methodology to maximize disruptions over the individual

networks while explicitly considering their interconnected effects.

As shown in Figure 5.1 multilayer interdiction builds on the concepts of mul-
tilayer models and network interdiction. In addition, if nodal attacks are desired,
this formulation is further developed and combined with nodal interdiction. It is
also shown that this formulation can be decomposed by variable type using Ben-
ders’ Partitioning and solved to optimality using a Benders’ partitioning algorithm.
Finally, these new models and solution techniques are demonstrated using notional
examples and computational experiments.

Synthesis, Interdiction, and Protection of
Layered Networks

v v

Multiobjective Human

Multilayer Network Multll_ay_er Network
Interdiction

Optimization A A Interdiction

Multiobjective Multilayer Network Interdiction
Network Network Nodal Multiple Optimal
Optimization A Optimization A Interdiction Solutions
Multiobjective

Optimization Network Optimization Multilevel Optimization

Foundational Formulation
- Concepts - Development

Figure 5.1:  Multilayer Interdiction Formulation
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Wood developed techniques to model and solve maximum flow network in-
terdiction problems. [I37] This formulation (discussed in Section [2.5.2]) is shown

below:

min Z U,Z’jﬁij

B ea
st.a;—a; + B +7; >0V (i,j) € A

Z Tij’yij S R

(3,7)EA
a;, Bij,vij € {0,1}

where {N,, N;} is a cutset partition, «; = 1 indicates node i € Ny, a; = 0 indicates
node i € N,, v;; = 1 if arc ij is a forward arc of the cutset and is interdicted
(otherwise 7;; = 0), f;; = 1 if arc ij is a forward arc of the cutset but is not
interdicted (otherwise 3;; = 0), r;; is the resource required to interdict ij, and R is

the total resource available for interdiction.

This model is robust and has been extensively studied; however, the varia-
tions currently available in the literature only consider single layers of networks.
Real-world systems of networks, however, are often more complex. For example,
infrastructure networks can be viewed as interdependent layers of networks. There-
fore, in this effort, Wood’s model is extended to account for layered effects similar

to the network model developed by Kennedy (and discussed in Section .

5.2 Multilayered Network Model

Kennedy et al. developed a model to determine minimum cost cut-sets across
multiple layers of networks. [73] This model finds the minimum cost (or maximum

benefit) of a combined s, t-cut across all individual networks and shared elements by
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determining an overall cut set as driven by objective function. Before this formula-

tion is introduced and developed, some additional variable definitions are explained.

First, let I be a node or arc(s) with common interdependencies across k net-
works. That is to say, I has common elements in all layers of the k networks of
interest, or in some subset of the layers. In addition, let WW; be the set of all effects
options, w, which can be applied to the elements in /. The option w may affect all

the elements in I, or it may affect a subset of I.

Associated with each option against a particular interdependent element is
the actual effect. For a given I and w;, let d; be the change (effect) on node i of
network k given the selection of w;. Define §;;;, to be the change (effect) on arc (i, j)
of network k given the selection of w;. Of course, the effect may be zero in some or

all networks. In addition, affecting a node could also affect a number of arcs.

1, if arc(i, j) of network k is affected by option w; € W
Oijk)w = . (5.2)
0, otherwise

For a given I, it is assumed y,,, = 1 if option wj is selected and zero otherwise.

Yo, = { 1, it w; € Wz chosen (5.3)

0, otherwise.

In a targeting model, it can also be assumed that one would not wish to
double strike a target, or w could be the level of strike(s) required (at least in initial
planning). Therefore, at most, one of the common attack options w is selected,

leading to the constraint:

Y <1 VieC (5.4)

weWr
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where C' is the set of all commonalities I. Finally, C,,, represents the relative cost

of cutting the interdependent arcs associated with using option w. This leads to the

following model:

mlnz Z Cijkyijk+z Z Cwyw

keK (i,j)EAk IeC weWr
s.b. Ty, — Ty, + Vigk + Oijkwlw > 0

PIPBITES

I1eC weWy
T, v,y € {0,1}

where ¢;;;; is the flow capacity along arc (i, j) of network k, v;;;, is the dual variable
associated with the capacity constraint of arc (i,7) of network k, m;_ is the dual
variable associated with the conservation of flow for node 7 of network k, s, is the

source node for network k, ¢, is the sink node for network k.

In order to extend this minimum cost cut-set model to an interdiction model, it
is first necessary to convert the notation to be consistent with interdiction literature.

The variable names are therefore renamed as demonstrated in Table [5.11

Table 5.1:  Variable Naming Substitutions

Layered Notation | Interdiction Notation
Flow capacity Cijk Uijk;
Capacity constraint dual Vijk Bijk
Node dual i, Qi
Selection of interdependency Y Y
Interdependent cost Cu Tw

Making these variable naming substitutions, the following model results:

163



minz Z Wik Bijr + Z Z TwYw

kEK (ij)e Ay [€C wew;
s.b. i, — g, + Bijk + dijkwYw = 0
| (5.6)

D 2wl

1eC veWr
a? 57’}/ 6 {07 1}

7

where w;;;, is the flow capacity along arc (4, j) of network k, (3;;; is the dual variable
associated with the capacity constraint of arc (i,j) of network k, «;,_ is the dual
variable associated with the conservation of flow for node i of network k, s, is the

source node for network k, t;, is the sink node for network k.

5.3 Multilayered Network Interdiction

A quick comparison reveals that the traditional network interdiction model
(formulation (5.1])) and the layered network cut-set model (formulation are sim-
ilar. In order to facilitate the extension of interdiction to multiple layers, it is helpful
to have a conceptual understanding of how the maximum flow network interdiction
model (formulation works. This model sets nodes on either side of the cut, and
it sets v, ; = 1 or 3; ; = 1 for forward arcs across the cut, to satisfy the main ”dual”

equation.

In other words, the cuts are identified by setting the a; and o values. The
model evaluates the capacity of the cut with the 3;; variables. However, the at-
tacker /interdictor can avoid paying for some of the capacity (which would normally
allow flow through) by interdicting arc (4, j) via 7, ; = 1. That is, the ~; ; variables
behave like the (; ; variables, except that the v; ; do not have “costs” associated with
them. Unfortunately for the attacker/interdictor, only a limited supply of +’s are

available to be set to one (because of the attacker resource constraint).
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The layered network cut-set model (formulation works in a similar manner.
As a first step in converting this formulation to an interdiction model, an interdiction
variable is added to the dual constraints for each edge in the network. Of course,
these interdictions do not count against the capacity or “costs,” but are subject to
the resource constraint of the attacker. In addition, the “cost” of selection of an
effect v,, is moved from the objective function to the resource constraint. In network
interdiction, the primary objective is not to minimize (interdiction) cost. Instead,
interdiction cost is converted into a constraint which is limited by the availability
of the resource, R. In addition, in the layered network formulation ({5.6)), it was
assumed that a target would not be attacked multiple times. Since minimizing cost
is no longer a primary concern (so long as the resource constraint is not violated),
this restriction can be dropped, if desired. Of course, in circumstances where it is
important not to strike a target multiple times (for whatever reason), this restriction
should be retained. Otherwise, other constraints make the constraint limiting attacks

to single strikes redundant and unnecessary.

The commonality variables remain largely unchanged. Selection of a common
effect works much like the selection of an interdiction variable. In each case, selection
of the variable stops flow through the edge, and associated “costs” are limited by
the resource constraint, not the objective function. The commonality variable type
accounts for interdiction across multiple networks with a single cost. Therefore, the
model determines which elements across the layers of networks should be interdicted

to maximize disruption across the system of networks.

With the discussed modifications, the single level layered network interdiction

model is as follows:
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min E E WijkBijk

keK (i,j)€Ak
s.t. ay, —ay, + ﬁijk + vi; + Z 5ijkw’)/w >0

w

o — oy, > 1 (5.7)

Z Tij%ij + Z TwYw < R

(i,j)EA weWr
(077 € {07 1} Yw € {07 1} ﬁijk S {07 1}

When considering a system of layered networks as a holistic system, it is impor-
tant to use commensurate units. Traditionally, networks are considered in isolation,
partly because each network usually serves a specific purpose. For example, con-
sider infrastructure layers as an example. Water, energy, and telecommunications
all have different types of flows across their networks. Although these networks are
connected, the material that is flowing does not cross networks (water never uses
electrical lines for transport). Instead, interdependencies are created through other
means as discussed in Section [2.2.8.1] For example, the water infrastructure requires
electricity to power its pumps, [SCADA]| systems, and so forth. In addition, water

lines and electrical lines may cross the same bridge creating a geographic dependency.

Therefore, when considering the system of networks as a whole, the units must
be scaled and/or normalized. For example, in considering a multi-modal system of
transportation networks, a commensurate unit that could be used across all layers
would be tonnage moved per unit of time. Another common unit used across multiple
layers is cost/dollars. An additional option would be to use the approach by Wallace
et al. and use a binary variable to represent connectivity of a critical network system
without regard to units of physical flow. As discussed in , this allows the
networks to retain their non-commensurate units, but still captures their interdepen-

dencies. Either approach (using commensurate units or binary variables) could be
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used with the developments in the section; but for consistency, commensurate units

are assumed.

5.4 Benders’ Partitioning

As with formulations [5.1] and Benders’ partitioning is applied to develop

a master problem and subproblem (which is similar to the development in [46]).

For fixed interdictions, 7, and vy, the linear relaxation of (5.7)) is a dual of
a network flow problem which has an intrinsically integer solution. Therefore, the

dual can be taken which results in the following program:

min maxg Tisk
yel,weW

s.t. Z Tijk — Z Tjike = 0 (58>
J:(4,5) €A, J:(3,8) €A,
Tijre < Ui (1 — Vi) (1 = Yuwlijrw)
where v, 1 v € {0,1}, > njk'ywkjtz rwyw < R. If all extreme points of the inner
( J)E‘Ak

maximization are enumerated, and the solutlon with the minimum value subject to

v € I'and w € W is selected, then the model becomes

min maxz! E a o Vi — E E Tt ik
~ETWEW plex tsk igk 1) ijkJwYijkw (59)

(7.7 eAk w 7.7 eAk

Alternatively, this can now be written as the following subproblem:

max Z Ttsk
k
s.t. Z Lijk — Z Tjik = 0 (510)
J:(6,5) €Ak J:(G1) €Ak

Tijr < Ui (1 — Yije) (1 = Ywlijrw)
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and the following master problem:

min z
yerl

stz >al, — Z :Ci-jk%jk - Z Z xi’jkywdijkw (5.11)

(i.7) €Ak w o (i,])€AL
Yijks w € {0, 1}

The subproblem is just the summation across pure maximum flow problems,
with fixed interdiction and commonality selection. Therefore, the subproblems can
be solved as relaxed linear programs (but will still have integer solutions). The
solution to the subproblem provides a lower bound to the optimal solution to formu-
lation . The master problem is simply the attackers problem with “fixed” flows
through the network. Therefore, it provides an upper bound to the optimal solution
of formulation . As with the other cases discussed, a Benders’ partitioning al-
gorithm would iterate between these upper and lower bounds until they converged

to this optimal solution.

5.5 Nodal Extension

The single level layered network interdiction formulation is developed to de-
termine optimal edges (including interdependent edges) to interdict. As discussed in
Chapter it may also be desired/necessary to model nodal interdiction, instead

of / in addition to, edge interdiction.

Recall from Chapter that a node-only max flow interdiction modifies a
traditional edge interdiction formulation by forcing interdiction of a node to disrupt
flow in (all/some) associated edges. In addition, the resource constraint must be
modified to allow node interdiction as well. If only nodal interdiction is allowed, then
the resource constraint is summed over all interdictable nodes. However, if nodes
and edges are allowed, then modifications must be made to ensure edge disruptions

associated with interdicted nodes are not double counted.

168



min E E WijkBijk

keK (i,5)€A

s.t. ay, —ay, + ﬁijk + vi; + Z 5ijkw’)/w >0

w

d it Y rutw <R
% weWr
Yij = Vi

(079 S {07 1} Yw € {0, 1} 6z'jk c {0, 1}

Formulation ([5.12)) is a formulation in which nodes and interdependencies can
be targeted. This formulation includes the additional constraint v;; = «; which forces
all outgoing edges from an interdicted node to also be interdicted. The resource

constraint is also appropriately modified.

Of course, additional variations are possible. As discussed in Chapter [Tl this
could include formulations where nodes and edges are targetable, with the same or
different resources. In addition, modifications could be made to make a subset of

the nodes interdependent.

5.6 Notional Examples

5.6.1 Two Identical Layered Networks

Consider Network 1, depicted in Figure [5.2 If no arcs are interdicted, the
maximum flow of this network is 26. However, suppose there is an attacker who
wishes to minimize this maximum flow. For simplicity, assume each arc can be
destroyed with 1 unit of resource, with a resource availability of 2. Using the model
in (5.1)), the optimal arcs to interdict are found to be (4, 6) and (3,6) which reduces
the maximum flow to 5. Since Network 2 is identical to Network 1, if they are solved

independently, they have the same set of optimal solutions
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In other words, if there is no interdependence considered, each network could
be solved separately. Of course, this would lead to a combined maximum flow (after

interdiction) of 10 units (with 4 units of interdiction resource).

Network 1

Network 2

Figure 5.2:  Two Identical Layered Networks

Now suppose that the two networks are interdependent. Specifically, assume
edges (5,6) of both networks share a common corridor. That is, although the arcs
could be interdicted separately, they could also be interdicted together with a single

resource cost of 1 unit. Specifically, this means 0;jxw = 05611 = 05621 = 1.

To account for this interdependence, the formulation in is used. The op-
timal arcs to be interdicted are (4,6) from Network 1; (3,6) and (4,6) from Network
2; and interdependent arcs (5,6). Again, this consumes all 4 units of interdiction
resources, but drops the combined maximum flow to 7 (all from Network 1, as no
flow is possible in Network 2). Thus, for the same amount of resources, the flow can

be further reduced accounting for interdependencies.
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5.0.2  Multiple Different Layered Networks

Consider the networks depicted in Figure [5.3] If no arcs are interdicted, the
maximum flow of Network 1 is 16, Network 2 is 26, Network 3 is 33, and Network
4 is 24. Therefore, the combined maximum flow across all networks is 99 (assuming
commensurate units). From the max-flow min-cut theorem, it can be shown that

the cost to cut all of these networks is also 99.

If interdependencies are included, then the cost may be reduced. Assume the
colored edges in Figure [5.3| represent common corridors. Therefore, there are three
potential interdependencies. The first (represented by the blue edges) are edges
(3,2) in Network 2 and (1,2) in Network 3. The second (represented by orange
edges) are edges (2,3) in Network 1, (3,7) in Network 3, (4,3) in Network 4. The
third (represented by green edges) is (3,4) in Network 2, and (1,3) in Network 4.
Further, assume the costs associated with cutting these interdependencies is 5, 3,

and 5; respectively.

Incorporating these interdependencies, formulation can be used to deter-
mine the minimum cost cut, which is 91. However, suppose there is an attacker
who wishes to minimize this maximum flow, but did not have enough resources (91)
to completely stop the flow in all networks. This leads to the network interdiction
problem. To facilitate a comparison, assume the cost to interdict each arc is the

same as the upper capacity of each arc.

As a network interdiction problem with multiple interdependent layers, For-
mulation can be used. If a resource constraint of 91 is used, this formulation
confirms that all flow through the networks can be cut. However, when a resource
level less than 91 is used, it is possible to determine which arcs should be interdicted
to maximally disrupt the network flows. The graph in Figure [5.4] shows the residual

flow decreases as an interdictor’s resources increase from 0 to 91.
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Network 1
“e‘w%‘— Network 2

Figure 5.3:  Different Layered Networks
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Interdiction Resources

Figure 5.4:  Residual Flow versus Interdiction Resources

For example, at a interdiction resource level of 12 units, the optimal solution
is to select the first and third interdependent edges (represented by the blue and
green edges). This reduces the total flow through all 4 networks from 99 to 81.
However, if the interdiction resource is increased by one additional unit, then the
optimal solution changes to the first interdependent set and edge (1,4) in the fourth

network. This reduces the maximum flow (across all 4 networks) further to 79 units.

These examples demonstrate how network interdiction against layered net-
works provides alternatives and more information than traditional cut-sets and are

most beneficial when an interdictor’s/attacker’s resources are limited.
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This problem was also solved via the Benders’ partitioning method. However,
due to the small nature of the example, there was no discernable difference in com-

putation times between the different solution methods. (Both methods result in a

GAMS| reported 0.0 solution time.)

5.6.3 Nodal Interdiction FExample

In the build-up to Operation Iraqi Freedom, CENTAF was concerned calcu-
lating the maximum flow from its pre-positioning warehouses to locations within
Kuwait. There are several storage locations shown in Figure [5.5( and several meth-
ods of transportation available to move material from there storage locations to

Kuwait.

Figure 5.5:  War Reserve Material Prepositioned Locations

As shown in Figure [5.6] this scenario could be modeled and solved as a sin-
gle network. However, for demonstration purposes, these networks were modeled
separately (as an airlift network, a sealift network, and a ground/road based net-
work). To determine vulnerabilities associated with these networks, it is assumed
that a terrorist organization has the capabilities to stop flow from any one location,

or alternatively to stop all sealift through the Strait of Hormuz (i.e. no sealift to Al
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Udeid). Disruption of flow in one location could disrupt flow in all three transporta-

tion networks as the same nodes appear in multiple networks.

Thumrait

Bahrain
Masirah it
Al Udeid

Seeb

Road
Sea
Air

Figure 5.6:  Network Representation

The three network flow models were formulated as discusses in Section 5.5l Of
course, the nodes appearing in multiple networks create an independency, and an
additional effect was modeled which reduced sealift to Al Udeid to zero if the Straight
of Hormuz was disrupted. The optimal solution to disrupt the flow of material from
storage locations to Kuwait is stop flow from Al Udeid. The second best solution
is to stop sealift to Al Udeid; however, disruption of flow from Al Udeid also stops
flow from local warehouses in Al Udeid (which would not be affected in a Straights

of Hormuz disruption).

5.7 Computational Experiments

Random networks were generated using NETGEN. [76] In order to ensure
a feasible network is created, NETGEN first constructs a skeleton network which
allows the specified level of flow. NETGEN then adds additional random arcs until

the total number of arcs is equal to the number requested.

NETGEN has several input parameters: random number seed, number of
nodes, number of arcs, number of sources, number of sinks, amount of flow from

source to sinks, range on arc costs, and range on arc capacities. Klingman et al.
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included 40 example inputs which could be used to generate random networks. [76],
p. 818] The Center for Discrete Mathematics and Theoretical Computer Science
(DIMACS)) website (ftp://dimacs.rutgers.edu/pub/netflow/generators/) make the
source code for NETGEN (written in Fortran and C), and all 40 sample inputs
provided by Klingman et al. available on their website. In addition, eight represen-

tative examples from this sample were selected and provided for algorithm testing.

Seven of these eight inputs were used in this research to develop random net-
works for computational testing (the eighth was a pure assignment problem). How-
ever, some modifications were necessary. NETGEN was originally designed to create
random minimum cost network flow problems. Since this chapter is concerned with
maximum flow problems, the flow demand constraints were dropped. In addition,
the costs assigned to each arc are reinterpreted to mean cost to interdict an arc

(instead of cost per unit of flow on the arc).

To create layers (interconnections) between the networks, arcs were selected at
random to be interdependent across the networks under consideration. This random
selection was done via Excel VBA, with roughly 1% of the arcs randomly selected.
These layered networks were then analyzed in with the BARON/CPLEX
solvers; and on a Dell Precision M6300 with 2.50 gigahertz Intel Core2 Duo processor
and 4094 megabytes of RAM. The results are listed in Table

For example, in the first example, the two networks (which were created from
inputs 20 and 27 from Klingman’s original list) were created by NETGEN and con-
verted to a maximum flow problem with 1% of the arcs between the two networks
interdependent. These networks were then analyzed using both the [MIP] formula-
tion and the Benders’ partitioning formulation with solution times provided. This
process was repeated for various combinations of the seven networks presented in

the table.

As the table demonstrates, both solution approaches can solve moderately sized

networks (1000’s of nodes and 10,000’s of edges) relatively quickly. Therefore, there
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Table 5.2:  Computational Results of Layered Maximum Flow Interdiction Formu-

lations
Test | Network Nodes | Ares | MIP Time | Benders’ Iterations & Total Clock
# Iterations / (H:MM:SS)
Network 1 (20) | 400 1416 oy o
1 Network 2 (27) | 400 5676 0:00:01.702 11 / 0:00:10.750
Network 1 (28) | 1000 2900 . o
2 Network 2 (32) | 1500 | 4342 0:00:02.635 6 / 0:00:10.252
Network 1 (36) | 8000 15000 | . ;. o
3 Notwork 2 (38) 3000 35000 0:01:32.981 2 / 0:00:48.128
Network 1 (28) | 1000 2900
4 Network 2 (38) | 3000 15000 | 0:00:33.518 15 / 0:02:46.546
Network 3 (40) | 3000 23000

are indications that these modelling and solution approach can be applied to social

networks, infrastructure networks, and other potentially large networks.

5.8 Application

In order to demonstrate the potential of the model, it has been applied to a

realistic communications network. One such notional communications network is

depicted in Figure

Coaxial Cable 3 3

Fiber Optic Cable B9 Transitswitch @ AddDropRep @& c d Bunker
Satellite Link - il Satellite Facility @ Simple Repeater -

Microwavelink ~—~~- ) . Headquart
TroposcatterLink ~ =" =" A\ RadioFacility <% Terminal cadquarters

Figure 5.7:  Notional Communications Network [95] p. 55]
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To use this notional network, it is assumed that one goal of this network is to
maximize the amount of information flow from the ”headquarters” to the “Command
Bunkers.” Specifically, for this example, the goal was to maximize flow from the
headquarters at 61 to the command bunker at 7. In addition, because of their
unique capabilities, policies, ownership, and so forth; the ground based portions and

satellite based portions are modeled separately.

Even though the two networks are modeled separately, there is, of course, some
overlap. Specifically, ground based satellite facilities contribute to flow through both
networks. Therefore, disruption of a ground based facility would disrupt flow through

the satellite network and associated ground based network systems.

To make this scenario as realistic as possible, it is assumed that satellites and
intra-satellite communication can not be disrupted (not necessarily for technical,
but for policy/legal reasons). Therefore, disruption of the satellite network requires
disruption of the ground based transmitters/recievers. The resulting network model,
with two layered maximum flow networks, to determine optimal disruptions to the

layered system are modeled accordingly.

The maximum flow from the headquarters to the command bunker with no
interdictions/disruptions is 61.92. Given this model and scenario, as long as there
are sufficient resources to disrupt the ground based satellite facilities, the model
always does so. There are technical/geographic difficulties associated with jam-
ming/disrupting satellite down links, but those difficulties were not included here. If
resources are such that this is the only option selected, then the resulting maximum
flow drops from 61.92 to 54.816. Of course, as interdiction resources increase, the

resulting maximum flow decreases further.
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5.9 Conclusion

This chapter extended network interdiction techniques to apply to layered net-
works. It was shown how traditional network interdiction models can be developed
to account for the interdependent nature of layered networks. This allows the maxi-
mization of the disruption across all the individual networks and shared elements in
the overall cut set. This formulation is further developed and combined with nodal

interdiction.

Both a [MIP] formulation and a Benders’ formulation were developed and de-
scribed. These formulations were implemented in [GAMS| and computational exper-
iments indicate the potential for use against very large networks, such as infras-
tructure networks. This would allow a decision maker to consider the effects of
an (interdiction) attack across multiple layers of networks, vice the single network

effects traditionally considered.
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VI. Synthesis of Robust Networks

As discussed in the introduction, the formulation development discussed in this sec-
tion is the development and synthesis of robust networks. As shown in Figure [6.1],
this formulation combines two blocks: multiobjective network programming and mul-
tiobjective multilayer programming. First, a multiobjective optimization technique
is combined with network optimization to form a multiobjective network design.
This extended formulation is then combined with multilayer network programming
to form multiobjective multilayer network design.

Synthesis, Interdiction, and Protection of
Layered Networks

v v

Multiobjective Human

Multilayer Network Multll_ay_er Network
Interdiction

Optimization Interdiction

Multiobjective Multilayer Network Interdiction
Network Network Nodal Multiple Optimal
Optimization Optimization Interdiction Solutions
Multiobjective

Optimization Network Optimization Multilevel Optimization

Foundational Formulation
- Concepts - Development

Figure 6.1:  Robust Network Design

In Section[2.2.9.1] the vulnerability and survivability of networks was discussed.
As these subjects center on the concept of connectivity, an importation distinction
must be made. “Performance of a network, viewed in terms of either vulnerability or
survivability, ultimately centers on connectivity and whether flow can move between
origins and destinations.” [89] “Interdiction does not necessarily depend upon level
of connectivity, but rather flow between origins and destination.” [89, p. 112] Of
course, the two are closely related, as connectivity can be determined by sending one

unit of flow from a source-sink pair.
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6.1 Maximize Robustness in Network Design

This section begins with the network design formulation developed and dis-

cussed in Section 2.2.9}

min E CijZij

ijeE
st Y m =y V(s,t) eV,s AtL,YW CV,s e W,t¢ W  (6.1)

€W jeV\W

E E Zij > dg V(s,t)EV, st V2CV\{s8,t},|Z|=kst YW CV\ Z,sEW,t¢ W
€W jeV\(ZUW)

zi; €40,1} Vij e E

Initially, this formulation is simplified to only consider edge disjoint networks.
It is noted that this is not a restrictive constraint, but it simplifies the notation
and bookkeeping. In this formulation, the objective was to minimize cost subject
to a minimum level of robustness. Robustness is defined in terms of survivability
requirements. Specifically, that there be at least ry edge disjoint paths so that the
removal of at least ry edges is required to disconnect the graph. Often, however,
budgets are limited, and an organization seeks to maximize its robustness subject
to a budget constraint. Therefore, the objective function is modified to find the

maximum level of robustness subject to a budget constraint, (.

With this modification, the following formulation results:

Max «
st.> Y z;>a VSCNO#S#N
iEW jeV\W (6.2)
Z CijZij < 15}
Y(i,j)eE

—{0,1} Y(i,j) € E
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where the new variable « is the redundancy value to be maximized and [ is the
budget for the (construction of) edges. With this, there now exists a formulation to

maximize robustness of a single layer network subject to budget constraints.

This formulation is now modified to consider flows. As mentioned in the in-
troduction, formulations for survivable design usually consider connectivity, not the
amount of flow between nodes. However, in the design of some survivable networks,
such as infrastructure networks, it may be important to give at least minimal consid-
eration to flows to ensure demands are met. The following formulation includes the
flow balance constraints (including the demand node), and only allows flows across

edges that are built.

Max «
st. > Y zyza VSCNO#£S#N
iEW jeV\W
Z Cijzij < B
V(i,j)eE (6.3)

—d, fori=s;

k= my =3 0, 0V icN\{st}

d, fori=t.
Tij < Uij X 2
Rij = {07 1} V(Z,]) S

6.2 Maximize Robustness across Layered Networks

Given the interdependent nature of networks, this formulation is now combined
with the layered networks formulation discussed in Section 2.4 When moving from
a single layered network model in [6.2| to a multilayer model, it is recognized that two
different types of edges can be added: an edge that remains within a single layer and
edges that effect multiple layers (interdependent). In addition, the Ay matrices for
the individual layers take on a slightly different meaning. Instead of describing the

network edges of a fixed network, they now represent fully connected layers. Any of
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these links actually used will incur a cost which is subject to the budget limitation.

In addition, the cost values now assume a value of the cost of constructing an edge.

Max o
st. > Y zyza VSCNB#S#N
1EW jeV\W
Z Clij2lij — Z(Cliij(s(ijl),w) + Cuyw < B
V(i,j)EE w

—d, fori; =s;

Zﬂilik - Zl‘lkj =¢ 0, 0V ieN\{st}h (6.4)

d, fory =t
Ty < Wiz + Z Yy
weW
Zlij = Z YwO(ijl),w

weW
Rligs Yw = {O’ 1} V(Z,j) S
where d,, is the change in capacity associated with included edges of effect option w,

and all other variables are as previously defined.

The objective function and the first constraint together maximize the robust-
ness of the multilayered network by maximizing the number of edge-disjoint paths
(as discussed in Section [2.2.9). The second constraint ensures that the cost of edges
(both inter- and intra-layer) does not exceed the budget. Note: the selection of
interdependent edges automatically creates the associated individual network edges.
However, as this cost is incurred as part of the interdependent arc selection, the
cost of the automatically created edges is subtracted in this constraint. Finally, the
last constraint ensures that if an interdependent set of edges is selected for inclu-
sion, then the corresponding individual network components are also selected (but

as noted above, with no additional increase in cost).

The model as formulated finds the most robust layered network possible given
the budget limitation while ensuring that the demands are met. This budget param-

eter, (3, can be varied to determine the effect of changing budgets on the robustness
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of the system. As discussed in section [2.3.1] by varying this parameter, all efficient
solutions (Pareto optimal) can be found. However, eventually, if the budget pa-
rameter is dropped too low, the problem becomes infeasible, as demand can not be

met.

In addition, as discussed in Section [2.3.1], an alternative formulation may speed
computation: the elastic constraint formulation. In this formulation, instead of vary-
ing the budget directly, deviations from (above and below) the specified budget are
allowed (although positive deviations are penalized). Although likely to be compu-

tationally faster, this formulation is still N'P-complete.

This formulation can also be applied to existing networks to determine optimal
additions to the network to maximize robustness. All components in the existing
network are assigned a cost of zero in formulation . The optimal solution to this
model includes new components to be constructed and includes any used portions

of the already existing network.

6.3 Notional Examples

6.3.1 Maximum k-Connectedness with Feasible Flow

Consider the nodes pictured in Figure 6.2l Suppose one wishes to build a
survivable network with these nodes. A directed arc can be built between any two
nodes at a cost of one unit, and any built edge has an upper capacity of 5 units.
In addition, Node 1 can supply 25 units, and Node 6 demands 25 units. Finally,

assume there are 10 units of resource available to build edges.

With this information, formulation (6.3)) can be used. This results in a 2-edge
connected network (v = 2) as depicted in Figure [6.3] Note, all edges (except edge
(2,3)) carry 5 units of flow.

As mentioned previously, the amount of resources available can be varied to

determine the set of efficient solutions. To show this, the amount of resources is
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varied from 0 to 30 (which would result in a maximally connected network since the

cost of all edges is 1).

As shown in Figure [6.4] the problem is infeasible until 3 = 9. As resources

increase, the potential maximum robustness rises until the maximum possible level

of robustness is reached for this network (which is 10).
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Figure 6.4:  Efficient Solutions for Six Node Network
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6.3.2 Layered Survivable Network Synthesis

This example illustrates how the methodology has been extended to consider
multiple layers of networks when designing survivable networks with feasible flows.
To do this, consider the nodes in Figure [6.5] As in the previous example, the cost to
create an edge from one node to any other node in the network is one. However, to
facilitate the demonstration, only those edges in grey in the figure allow flow. Other
edges may be incorporated to increase connectivity (and maximize robustness), but
may not have flow in the optimal solution. For the edges in grey, if the arc is
selected for inclusion, the first number is the cost (per unit of flow) of flow across
the arc, and the second number is capacity of the edge. Note: the formulation
does not actually consider the cost of flows, but this information is still included
as the formulation could be easily modified to consider it. Finally, edges (4,5) in
both networks are interdependent. Either/both edges could be chosen separately
(through the individual networks) or combined with a cost of 1 unit. In addition,
this interdependency is modeled to include a change in capacity of both arcs to a

maximum of 10 units (from an initial 1 unit).

Demand
3

Figure 6.5:  Layered Synthesis Example
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With this information, formulation (6.4]) can be used to determine which edges
should be included to maximize robustness across both networks with the given

constraints. This results in the networks depicted in Figure

0y 3
Demand
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1
i 7z
Supply Derr11and
1

Figure 6.6:  Layered Synthesis Example Results

Both networks have o = 2. Although the interdependent effect was chosen
(which brought in both edges (4,5)) which modified the upper bound of both arcs,
the algorithm did not elect to send any/all flow through these arcs. This is because
the algorithm only considers achieving feasible flow, then maximizing robustness. If
flow costs were also included in the objective function, less expensive flow could have

been achieved by using these (interdependent) edges.

As done with the previous example, the amount of resources available can
be varied to determine the set of efficient solutions. To show this, the amount
of resources is varied from 0 to 39 (which would result in a maximally connected
network since the cost of all edges is 1). (Each node can connect to at most 4 other
nodes. As edges are directed, one edge can be connected in each direction to each

node. This leads to a maximum of 8 edges per node. Since there are 5 nodes, this
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leads to a maximum of 40 edges (per network) which could be selected. However,

since 2 edges can be selected with a single cost of 1, this maximum is reached at 39.)

As shown in Figure [6.7, the problem is infeasible until 3 = 7. As resources
increase, the potential maximum robustness rises until the maximum possible level

of robustness is reached for this network (which is 8).
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Figure 6.7:  Efficient Solutions for Layered Five Node Network

6.4 Computational Issues

Unfortunately, the “connectivity” constraints make direct application of these
formulations to large networks impractical. To ensure connectivity, these constraints
must be formed for every possible combination of subsets (known as a powerset) of
nodes. Therefore, if there are n nodes, then there are 2" possible separations of these
nodes into 2 groups. In the formulations discussed in this chapter, the 2 cases where
one of the subsets is empty can be ignored because there can be no connectivity to an
empty subset. Therefore, these formulations require 2" — 2 connectivity constraints.
In addition, numerous other constraints are required, such as capacity constraints

for every possible edge between these subsets.

However, even if only the connectivity constraints are considered, then a net-

work of 30 nodes would require over one billion constraints (2% = 1,073, 741, 824).
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Therefore, the formulations as stated should only be used for designing small net-
works (or aggregated large ones). Otherwise, as discussed previously, small changes
to an existing network could be modeled by assigning a zero cost to existing network
components. The model would then find the set of additional edges to add to the

network to maximally increase robustness/connectivity.

Fortunately, the formulations can also be useful for large network designs under
some circumstances. For example, instead of considering all possible subsets of nodes,
a decision maker could pre-define the subsets between nodes that are of concern in
the given network. In this case, the connectivity constraints would only be necessary
for these predefined subsets. Alternatively, these formulations could be useful when
only small changes to an existing network are being contemplated. The models as
currently formulated, examine every possible edge between nodes. However, if only
a small number are feasible candidates for consideration (for whatever reason), then

only these connections would need to be considered.

Finally, other possible techniques could be considered. There are many heuris-
tic techniques that have been developed to deal with formulations that have an
explosion in the number of constraints (such as this and the traveling salesman
problem). In addition, high performance computing has been successfully used to
solve (to optimality) large instances of problems of this type (such as the traveling
salesman problem). Therefore, with sufficient computational resources, even large

instances of this problem can be solved.

6.5 Summary

This chapter developed extended formulations for the synthesis of robust net-
works. This development combined many aspects of operations research such as
multiobjective programming, network design, and multilayer programming. These

new formulations allow the a decision maker to maximize robustness in network de-
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sign across single and layered networks. These models can be directly applied to
develop small networks or to specialized large networks. Otherwise, heuristics would

likely provide robust solutions in a reasonable amount of time.
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VII. Multiple Optimal Solutions

7.1 Overview

This chapter considers aspects of the impact of multiple optimal solutions on
network interdiction and related models. First, multiple optimal solutions are dis-
cussed in the context of “pure” interdiction problems (where the objective functions
are identical but diametrically opposed). This is followed by a discussion of the ben-
efits of multiple optimal solutions in an interdiction problem. Specifically, this allows
decision makers to consider non-quantifiable objectives in selecting from among the
optimal solutions. Finally, a discussion of the problems associated with multilevel
models is discussed, along with methods to explore these issues and determine a

range of options and expected reactions.

7.2 Network Interdiction

Traditionally, as discussed in Section [2.3.3] multiple optimal solutions are not
normally a consideration in “pure” network interdiction problems because the objec-
tive functions in network interdiction models are diametrically opposed. Therefore,
the rational reaction set consists of one possible solution for the follower. [10, p.
113] In other words, there are not multiple solutions for the follower which would
change the leader’s/attacker’s objective function, if one assumes all functions have

been captured in the objectives.

7.2.1 Follower Solutions

However, even in pure interdiction, there are circumstances where multiple op-
timal solutions of the follower impact the decision or effectiveness of the leader/attacker.

Consider the simple social network depicted in Figure and reproduced (with mi-
nor changes) in Figure
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Figure 7.1:  Notional Network

From Node 1 to Node 3, there are two (edge and node disjoint) independent
shortest-paths: 1-2-3 and 1-4-3. In addition, unless the interdictor has resources of
at least 4 units, there is insufficient resources to disrupt both paths. This is a case
where the multiple optimal solutions of the follower (the shortest path model) may
prevent the attacker (shortest path interdiction) from obtaining any impact until a

specific amount of interdiction resources is obtained.

With r» = 3, there are six optimal solutions to the shortest-path interdiction
from Node 1 to Node 3. Specifically, there is an optimal solution to interdict each
of the six arcs in the network. While any simple program will generate one of these
solutions, each of which is indeed (mathematically) optimal for the stated objective
function, the solution(s) miss the insight that none of these solutions actually impact
the shortest-path from 1 to 3. Therefore, while the multiple optimal solutions of the
follower do not change the value of the leader’s objective function, it is important to

determine their existence and impact on the leader’s solutions.

7.2.2 Attacker Solutions

In addition, the “attacker” in network interdiction problems often faces mul-

tiple optimal solutions. Unless these multiple optimal solutions are specifically re-

quested (i.e. from math programming software such as [GAMSY)), their existence
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and number will likely remain unknown. For example, in the previous chapters, an
optimal solution to example/notional problems was presented. While the solutions
provided are optimal, the existence and consideration of alternative optimal solutions

that may exist was ignored.

Therefore, to explore these problems for multiple optimal solutions, the proce-
dure outlined by Danna et al. for mixed integer programs was used. [48] Specifically,
the “one tree” algorithm developed and implemented in [GAMS]| was used to find all
multiple optimal solutions to [MIP]s developed in the previous chapters. The “one
tree” algorithm is a modification of the standard branch-and-bound algorithm. This
algorithm proceeds in two phases. In the first phase, an optimal solution is found
with a traditional branch-and-bound algorithm, but all nodes are kept for a second
phase where the tree is reused to explore for multiple optimal solutions. These solu-
tions are found through modifications to the way the branch-and-bound algorithm

stores integer solutions, fathoms nodes, branches, and (dual) tightens. [48, p. 283]

A sample of each respective model was modified with this procedure to deter-
mine the existence/number of multiple optimal solutions. Specifically, the models in
each chapter’s application to the notional communications network(s) was modified.
For example, in the node-only interdiction of the communications network (discussed
in Section with interdiction resources of 75 units, there are six multiple optimal
solutions. In the all-pairs shortest path network interdiction (used for calculating
closeness centrality in Section , this same network has three multiple optimal
solutions. Finally, the same network was modeled as layered networks in Section 5.8

where 20 multiple optimal solutions were found.

While mathematically all multiple optimal solutions have the same value for
there objective function, there may be subjective reasons why some of these solutions
may be preferable over others. Given a set of multiple optimal solutions, a decision
maker can consider aspects not explicitly modeled to determine the best course of

action.

192



Because of the differences between the mathematical model and the real
business problem, it is interesting to generate multiple optimal or near-
optimal solutions for the mathematical model so that the decision maker
can examine them, and in the end, choose the best solution overall, i.e.,
the one that also performs best for the criteria that could not be expressed

in the model. [48, p. 281]

For example, in traditional network interdiction modeling, the model’s solution de-
termines the optimal edges to disrupt to maximally disrupt the network. If there
are multiple optimal solutions, some of these solutions may require fewer munitions,
put pilots at less risk, relate to information that is not available to the analyst, or
risk fewer civilian causalities; none of which are directly discussed in the network
interdiction model. These concerns may be considered during an equity review. For-
tunately, if the decision makers are given a set of solutions to choose from during
this review, then the decision makers can consider a variety of factors and choose

the “best” optimal solution.

7.2.2.1 Diversion Example

For a more specific example, consider network diversion. The traditional net-
work diversion problem is to
identify a minimum cost set of directed edges to cut, so that any directed

path from a specified source node s to a specified sink node t must include
at least one directed edge from a specified subset of edges. [47, p. 35]

Unlike network interdiction, the goal of network diversion is not necessarily to reduce
the amount of flow from the source to sink, but to redirect it through a specified set
of edges through the removal of a minimum cost set of edges. However, a decision

maker may wish to combine these ideas (network interdiction and diversion).

For example, suppose the primary goal of an attacker is the traditional inter-
diction objective to minimize the maximum flows through the network subject to
resource constraints. In addition, the attacker would like to maximize the amount

of (post-attack) remaining/residual flow that flow through a predefined “diversion”
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set of edges. For example, suppose an attacker wishes to disrupt a communications
network. However, the attacker does not have sufficient resources to completely cut
the network. Therefore, the attacker would like the remaining communications after

an attack to be forced through channels/links that are less secure.

One approach to solve this problem would be first solve the network interdiction
problem for all optimal solutions. The second step would be to search these multiple
optimal solutions for those which have any (the most) flow across the diversion set of
edges. To illustrate this potential, consider the network in Figure [7.2] This example
(slightly modified from [47, p. 36]) has a flow capacity of one unit across all edges
and requires one unit of interdiction resource to interdict each edge. The maximum

flow across this network is 3 units.

Figure 7.2:  MOS Example

Suppose an interdictor wishes to disrupt this network and has two units of

interdiction resources. Using maximum flow network interdiction, this network can

be reduced to one unit of flow. When solved using formulation (2.66)) in [GAMS|

the optimal solution of interdicting edges (1,2) and (1,3) is returned. However,
using Danna’s one-tree algorithm, seven additional solutions are found: (1,2) &
(1,4); (1,3) & (1,4); (2,5) & (4,7); (2,5) & (6,7); (4,7) & (5,7); (4,7) & (6,7);
and (5,7) & (6,7). All these solutions have an objective function value of one.
However, suppose a secondary objective was to maximize the remaining flow in the
network through edges (3,6) and/or (4,6). With this secondary objective, then the
best optimal solution is to target edges (2,5) and (4,7). With this solution, all
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remaining flow must flow through one of the diversion arcs. In [47, p. 36], Curet
was only interested in the diversion set (and found the same solution); however,
this methodology ensured remaining flow was minimal and diverted. The variety of
solutions allows flexibility for the decision maker which would not have been found

without specifically looking for them (i.e. via the “one tree” algorithm).

7.2.2.2  Resources Example

Another discriminator among multiple optimal solutions is the amount of inter-
diction resources used. Consider the example in Figure[7.3] and assume an interdictor

has 11 units of interdiction resources available to attack this network.

Arc # are capacities
Node # are interdiction costs

Figure 7.3:  Notional Network for Resources Example

When this example is modeled and solved via [GAMS]| with the CPLEX solver,
the optimal solution returned is to disrupt node 3 (using 6 units of resource); which
reduces potential maximum flow to 10. However, on further examination, there are
two additional optimal solutions: disrupt node 2, and disrupt both nodes 2 and 3.
All three of these solutions reduce maximum flow to 10 units. However, all three of
them use different levels of resources to achieve this. The least resource intensive

solution is to disrupt node 2 (which uses 5 units of interdiction resource), while the

195



most expensive (using all 11 units of interdiction resources) is to attack both nodes

2 and 3.

While all three solutions are feasible (i.e. do not violate the cost constraint),
it may be an ineffective use of resources to use more than necessary to achieve the
optimal solution. It is important to reiterate that the first solution found by [GAMS]
uses more resources than another optimal solution. Therefore, if costs/resources are
indeed a concern, then either this cost should be included in the objective function,

or an examination is needed among all multiple optimal solutions.

For example, consider the notional communications network in Figure [7.4]

Coaxial Cable - ] ]

Fiber Optic Cable = (| Transit Switch L Add/Drop Repeater . Command Bunker
Satellite Link - @} Satellite Facility @ Ssimple Repealer -

Microwavelink ~~~~~ i . Headquart
TroposcatterLink ~ =~ A\ Radio Facility ? Yerminal cadqtariers

Figure 7.4:  Notional Communications Network

As discussed previously, with interdiction resources of 75 units, there are six
multiple optimal solutions to the node only interdiction of this network (as presented
in Section . An examination of these solutions indicates that the option that
uses the least resources (60) is interdiction of nodes 13, 15, 21, 51, 62, and 64. The

other solutions either disrupt nodes unnecessarily, or swap out one node for a more
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expensive one, with the same results. Therefore, all things being equal, the cheapest

solution should be chosen.

7.3 Multilevel Programs

The previous section focused on the role of multiple optimal solutions in net-
work interdiction types of problems. This issue of multiple optimal solutions becomes

more complicated when differing objective functions are involved.

Bullock et al. discussed the necessity of using different objective functions
when dealing with terrorist organizations, and they created a methodology (using
Value Focused Thinking ) to develop likely strategies and courses of action for
all players. [30] This methodology goes well beyond the contribution of each network
asset to be potentially attacked, and considers the values, fundamental objectives,

and means objectives. [30, p. 1866]

Unfortunately, the introduction of multiple objective functions leads to poten-
tially unsolvable problems. This was discussed in Section [2.3.3] along with potential
mitigation strategies. This breakdown is a result of multiple optimal solutions of the
follower’s problem. Since the objective functions of the leader and the follower are
different, the value of the leader’s objective function could potentially change de-
pending on which of the solutions the follower chooses. As the follower is indifferent
to these solutions and the leader can not dictate which solution the follower should

chose, there is no general way to converge to a solution.

Mitigation strategies either make additional assumptions such as the follower
will always chose the solution that is best for the leader (the optimistic strategy) or
will always chose the solution that is worst for the leader (the pessimistic strategy).
However, neither of these strategies are appropriate when dealing with terrorist

adversaries.
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But both the optimistic and pessimistic solutions can in general not be
assumed to be good approximations of the realized solutions in practice.
[49, p. 217]

In addition, as Cao and Leung point out:

But there is little justification to assume that the follower will only behave
in the two extreme ways and that the leader should only choose between
optimistic and pessimistic approaches. [31], p. 135]

This is especially true of terrorist organizations. Often the decision making process
of terrorist organizations is not understood, and terrorist actions may seem unpre-
dictable and counterintuitive. Therefore, the range of possible solutions bounded
by the possible choices of the follower should be examined. To determine the lower
bound, the pessimistic strategy is followed. This bound is determined by replacing
the follower’s objective function fs(y), and it is replaced by subtracting a small por-
tion of the leader’s objective function from the follower’s: fi(y) = fa(y) —e(fi(z,y)).
Conversely, to find the upper bound, a small portion of the leader’s objective function

is added to the follower’s objective function: fi(y) = fa(y) +e(fi(z,y)). [17]

The optimistic and pessimistic strategies bound the leader’s objective function
based on potential optimal solution selection by the follower. Fortunately, if the
leader has some understanding of the follower’s selection process, he can mitigate
non-cooperative selections by choosing alternate solutions. Specifically, this can be

done using the model developed by Cao and Leung as follows: [31], p. 138]

max 1z + Bey + (1 — §)caz
s.t. All' S Xz S bl

max csy + 3z — €% (7.1)

s.t. A3y S bg — AQIE
AgZ < bg — Agl’
r,y,z2 >0
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where [ is the expected “cooperation” level of the follower. The cooperation level
can refer to an actual level of expected cooperation, a level the follower can be “in-
fluenced” to choose, or simply the expected choice based on past experience and/or

subjective knowledge of the follower’s decision making process.

In addition, Cao and Leung proved that the optimistic solution to this problem
will find the optimal solution for the given cooperation level. [31, p. 138] Moore
demonstrated how to solve problems of the form by replacing the follower’s
model with its equivalent conditions (as discussed in Section[2.3.6)). Solving the
reformulated model for various cooperation levels gives the decision maker the set of

solutions and reactions based on the predicted level of cooperation/non-cooperation.

7.3.1 Ezxample

Consider the following example (from [31, p. 135])

max 8ry + 10xs + 2y; — ys

st. 14+ 22 <10
max Y + y2 (7.2)

sty +yo — 11+ a0 <20
X1, L2, Y1, Y2 Z 0

By solving for the pessimistic and optimistic solutions, it is found that the
leader’s objective function could vary between 50 and 140 depending on the choice of
the follower among his optimal solutions. However, by using the process described in
Section , it is shown that (based on the predicted cooperation level), the decision

maker (leader) can actually bound the problem between 90 and 140. To do this,

(7.2)) is transformed to the form of ([7.1)).
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max 8z1 + 10z + B(2y1 — y2) + (1 — 5)(221 — 22)

s.t. 1+ 22 <10
max i + Y2 + 21+ 20 — 5(221 — ZQ) (73)

st y1 4+ 1y — 1+ 22 <20
Zl+22—$1+$2§20

T1, T2, Y1, Y2, 21,22 > 0

Now, using the reformulation technique of Bard and Moore, the following model

results: [11]

max 8z1 + 1029 4+ 5251 — o) + (1 — 3) (221 — )

st. o1+ 29 <10
(1 —u)yr =0
(I —ur)y2 =0
(1 —2¢) —u)z1 =0
(14+¢)—uz)z =0
l—ui+11=0
l—u+15,=0 (7.4)
(1—2)—us+v3=0
(1+¢e)—ug+vy=0
u (20421 — 23 —y1 —y2) =0
(20 — 2y — 29+ 11 —x2) =0
Y1+ Y2 — 21 +x2 <20
21+ 20— a1+ 20 <20
T1, T2, Y1, Y2, 21,22 = 0

Uy, U2, V1,V3, V3, V4 Z 0

Solving (7.4) for a variety of # € [0, 1] results in the graph in Figure .

As Figure demonstrates, an analysis of potential follower selections among
multiple optimal solutions can lead to better results for the leader. As discussed pre-

viously, if the leader followed a strict pessimistic strategy (and the follower indeed
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Figure 7.5:  Multiple Follower Solutions Example

choose the worst solution for the leader, then the leader’s objective function value
would be 50. If the decision maker believes the follower will be uncooperative, he
can choose the conservative strategy and do no worse than 90 (not the 50 under the
pessimistic strategy). However, he can do no better than 110 using this strategy.
Therefore, if he believes the follower is likely to be more cooperative (or can be influ-
enced or decieved to chose a higher level), then he should switch to the cooperative

strategy.

To achieve these results, the leader should choose z1 = 0 and x5 = 10 if the
decision maker believes the follower will be cooperative at the 0.67 level or less.
However, if the decision maker believes the follower will be more cooperative than
that, then x1 = 10 and z5 = 0 should be chosen. This change in decision variables

is reflected as a change in the slope in the graph in Figure [7.5]

This example demonstrates how a decision maker can take subjective informa-
tion into account when making decisions. Because the follower has multiple optimal
solutions to choose from, the decision maker can evaluate likely decisions by the

follower.
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7.4 Summary

This chapter illustrated the importance of considering multiple optimal solu-
tions when solving network interdiction and related problems. Both advantages
and disadvantages of multiple optimal solutions were illustrated. In traditional
bilevel /multilevel programming, it was shown how a technique developed to predict
coalitions can be modified to give decision makers a suite of solutions of potential

actions/reactions to determine a proper course of action.
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VIII. Summary

Figure [8.1] once again presents an overview of how the chapters build on each other
and fit together to provide a foundation for the synthesis, interdiction, and protection
of infrastructures. Although the models/theory developed are general in nature,
specific attention is reserved for infrastructure networks because our success as a
nation may depend on our ability to protect our infrastructures. Infrastructures are
the basis of our economy, wealth, and power. Each chapter developed the foundation
and theory for a set of analysis techniques to assist decision makers in each of these

areas.

Synthesis, Interdiction, and Protection of
Layered Networks
Multiobjective Human

Multilayer Network Multll_ay_er Network
Interdiction

Optimization A A Interdiction

Multiobjective Multilayer Network Interdiction
Network Network Nodal Multiple Optimal
Optimization A Optimization A Interdiction Solutions
Multiobjective

Optimization Network Optimization Multilevel Optimization

Foundational Formulation
- Concepts - Development
Figure 8.1:  Dissertation Blueprint

Specifically, new models and solution techniques were developed for the nodal
interdiction, synthesis of robust networks, multilayer interdiction, and human net-
work interdiction. In addition, the importance and effects of multiple optimal solu-

tions for these (and similar) models is discussed.

8.1 Theoretical Developments

This research contributed to the modeling and application of Operations Re-
search in nodal interdiction, social network interdiction, multilayered network inter-

diction, and cost and robustness modeling in layered networks.
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In the nodal interdiction chapter (Chapter , network interdiction models
were extended to directly include node interdiction. Previous literature only directly
considered edge interdiction, with nodes needing to be substituted out through node-
splitting. The extensions in Chapter [[T]| were done through the introduction of vari-
ables and constraints to model the impact of an attack on a node to associated edges.
In addition, modifications to the resource constraints were developed to allow node
only interdiction, node and edge interdiction with shared resources, and node and
edge interdiction with different resources providing the opportunity for the analyst

to directly model a wider array of operational settings.

In the social network interdiction chapter (Chapter , a new technique to
target individual relationships based on shortest-path network interdiction was pre-
sented. It was shown that this idea can be extended by summing shortest path
interdiction across all an individual’s relationships. This new model combined the
shortest path network interdiction model and the social network measure of closeness
centrality. In addition, a model to disrupt the group as a whole was developed by
extending shortest path network interdiction to an all-pairs shortest path network
interdiction. It was shown how this proposed all-pairs formulation can also be used
to target individual members of a network to maximize social closeness (as defined
by closeness centrality). Both of these models (individual relationship interdiction
and all-pairs interdiction) were also extended and combined into nodal interdiction
by the addition of variables/constraints from the nodal interdiction chapter. These
formulations were modified via Benders’ partitioning and solution algorithms were

developed, providing a methodology to investigate larger networks.

In the multilayered network interdiction chapter (Chapter , network inter-
diction modeling was extended to layered network formulations. These extensions
identify the maximum protection/disruption possible across layered networks with
limited resources. This is accomplished primarily through the introduction of a

“commonalities” variable that impacts/effects multiple networks via a single disrup-
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tion. Resource constraints are also modified to account for both inter-network and
intra-network attacks and effects. This formulation is also combined with nodal inter-
diction to present a new model which allows both edges and nodes to be interdicted
across these multiple layers. A Benders’ partitioning version of the formulation was
developed and demonstrated which provides the opportunity to consider/analyze

larger layered networks.

The synthesis chapter (Chapter , extends the formulations for robust net-
work design to maximize robustness of a single layer network subject to budget
constraints. Using e-constraint methods, it was shown that the tradeoff between
cost and robustness could be determined. This formulation was further modified to
consider flow requirements (via the addition of flow constraints) as well as connectiv-
ity requirements. Finally, the model was modified to allow for considerations across
multiple layered networks. The primary addition is a constraint that ensures that
if an interdependent set of edges is selected for inclusion, then the corresponding
individual network components are also selected (but with no additional increase
in cost). The model as formulated, finds the most robust layered network possible
given the budget limitation while ensuring that the demands are met. This will allow
the decision maker to allocate resources to build the most robust network possible
that meets flow demands with the budged constraint. It is also shown that using
the e-constraint, again allows an analysis of the effect of changing budgets on the

robustness of the system (and finds all Pareto optimal solutions).

8.2 Application Developments

All models developed in this research were implemented in research level code
following the guidelines of the Committee on Algorithms (COAL|). With these tools,
computational testing along with moderately realistic applications were considered

to demonstrate the potential of the theory/models.
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8.2.1 Multiple Optimal Solutions

This research also studied the potential impact of multiple optimal solutions
in network-type interdictions. First, the dangers of ignoring alternate optimal so-
lutions in pure network interdiction problems were discussed; this was followed by
a discussion of the opportunities presented by multiple optimal solutions. The is-
sue of multiple optimal solutions for followers in multilevel programming was also
presented and discussed. It was observed that instead of only examining optimistic
and pessimistic strategies, techniques that determine the range of potential solutions

resulting from multiple optimal follower solutions needs to be followed.

8.2.2  Infrastructure Protection

This goal of the research was to develop theory with applied capabilities for the
synthesis, interdiction, and protection of layered networks. The previous chapters
have developed tools which aid in this analysis. While the theory and tools have
general applications to single networks and system of systems of networks, they
have been developed and built to be especially suited for infrastructure modeling.
This section summarizes current infrastructure guidance and illustrates where this

research effort can potentially be applied.

Critical infrastructures and their vital role in the nation’s health was discussed
in Section 2.2.8] Asymmetric adversaries, both foreign and domestic, pose a risk
to the availability and efficiency of critical infrastructures. Following the 9/11 at-
tacks, considerable investments have been made in protecting infrastructure net-
works. However, there are insufficient resources and funding to fully protect all the
nation’s critical infrastructures. In addition, much of this infrastructure is in private
hands. Even if resources were greatly increased, it would be fiscally and physically
impossible to protect everything, particularly while an open society is maintained.
As Frederick the Great is reported to have said, “he who tries to protect everything

protects nothing.”
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Therefore, continued analysis is needed to investigate how to optimally invest
in infrastructure protection, i.e., how to obtain the most protection with limited
resources. This is especially important in light of both potential terrorist attacks
and state-sponsored asymmetric warfare being suggested by rising powers such as

China (see Unrestricted Warfare [98]).

Most critical infrastructures are in the hands of the private sector whose first
responsibility is to shareholders, and not necessarily to homeland security. Therefore,
it may be difficult to motivate some private firms to invest in target hardening.
Lewis suggests approaching this problem by coupling investments in security with
productivity and efficiency enhancements. [81, p. 7] This would achieve greater
security through redundancy, providing a cushion against both heavy loading and
failure. [81, p. 20] The question remains how to best allocate a budget to protect

an infrastructure against damage.

8.2.2.1 Allocation Strategies

Lewis suggests four allocation strategies are available: ranked vulnerability,

apportioned vulnerability, optimal vulnerability, and manual vulnerability reduction.

BT, p. 146]

Ranked Vulnerability /Allocation

Ranked allocation funds the highest-ranking components first, the second-highest
next, and so forth; where ranking is defined in terms of vulnerability or risk. This
is the most commonly used strategy by practitioners. [81], p. 145] For example, this
is how [DHS| and infrastructure protection plans indicate allocation should be done.

[130, p. 23]

The National Infrastructure Protection Plan recognizes that “Resources must

be directed to areas of greatest priority to enable effective management of risk.”
[92, p. 91] Therefore, the INIPP| serves as a “unifying framework to ensure that

critical infrastructures and key resource investments are coordinated and address
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the highest priorities ...” [92 p. 91] To do this, the directs the to
combine information from sector specific reports and state reports to assess the
protection status and requirements. Based on this the {DHS| will develop funding
recommendations for programs and initiatives designed to reduce national-level risk

in the critical infrastructure / key resources protection mission area.” [92] p. 92-93]

However, a prioritized list of defended assets has a serious flaw for our
applications. Such a list creates a preferred set of n+1 assets by adding
one asset to the preferred set of size n. But, we know that an optimal set
of size n and an optimal set of size n+1 may have nothing in common.
For instance, a community with funds to build a new facility for one
bomb disposal truck would select the most central location. However,
if the community has money available for two facilities and two trucks,
it would select two completely different facility locations, based on their
ability to provide better average response time. [28, p. 531]

While a single prioritized list may not be the best solution, a range of solu-
tions to present to decision makers is logical. For example, Chapter developed
a technique to maximize robustness across layered networks subject to a cost con-
straint. It was shown that using the elastic-constraint method, the cost can be varied
to find the efficient front (Pareto-optimal solutions). Using the proposed approach,
decision makers can be presented with the trade-offs between budget and increased

robustness in making the selection of assets to build.

Similarly, the vulnerabilities identified through interdiction techniques (whether
traditional, nodal, social network, or layered network) are all dependent on the at-
tacker’s resource constraint(s). However, as was demonstrated in each respective
chapter, these techniques can be parameterized by cost to find the tradeoffs between

attacker’s cost and the identification of vulnerable systems.

Optimal Allocation

Optimal allocation minimizes a combined vulnerability across all networks. Devel-
oping tools to assist this analysis has been the focus of this research. Of course,

there are various ways to define this vulnerability function: minimize the probability

208



of any event, minimize the probability of the worst event, minimize the probability
of expected events, and so forth. This strategy seeks to find the absolute minimum
vulnerability given cost estimates. While it seems ideal, “it is brutal in its exactness,

leaving some components unfunded.” [81, p. 187]

Chapter [VI developed techniques to consider cost versus robustness in network
design. These concepts were further developed to allow the maximization of robust-
ness across multiple layers of networks. This has direct application in infrastructure
networks, which themselves are layered networks. The tools developed in Chapter [V]]
will help a decision maker decide which facilities to construct (or fund construction)

to maximize robustness across the layered infrastructure networks.

Instead of designing a network to a desired (or maximized) robustness level,
another approach to robust network design is to design a network subject to predicted
interdictions. For example, Garg and Smith start with the multicommodity network
design formulation and modify it to account for potential failure scenarios. These
scenarios, which are inputs to the model, are the set of arcs that could all fail at any
one time. [60, p. 2] However, this method requires prediction of “likely” attacks,

which requires subjective beliefs from subject matter experts.

Instead of trying to predict likely attacks, trilevel models can build the network
synthesis problem given worse-case (optimal) network interdictions. Smith et al.
took a step in this direction with [I10]. Their trilevel model can be visualized as
three stages. First, a network designer seeks to construct and/or expand a network
subject to a budget constraint (note: this budget constraint could also be a second
objective and multiobjective techniques could be used, but this was not done by
these authors) on arc construction costs. In the second stage, an enemy interdicts
this network to minimize the maximum flow. Finally, in the third stage, the network

users solve a minimum cost network flow problem.

In their formulation, the designer’s objective function is “a weighted combina-

tion of flow profits before and after enemy interdiction minus arc construction costs.”

209



[110, p. 4] Of course, part of this objective function involves solving the network
interdiction model (which is itself a bilevel program reformulated as a single level
program). Smith et al. also considered heuristic interdiction strategies such as greed-
ily destroying the largest-capacity arcs. However, as they point out in their analysis,
these heuristic strategies only achieve 50% of the interdiction possible compared to

an optimal interdiction. [I10, p. 25]

Regardless of the methodology used, some research indicates large improve-
ments in reliability can often be obtained with small increases in design cost. This is
because many of these types of problems have many near-optimal solutions, “some
of which may have desirable properties like reliability.” [112, p. 4] Therefore, Sny-
der et al. suggest developing trade-off curves between formulations that account for
failures and those that do not. To do this, they suggest using a weighted sum of
the two objectives, where various weights will generate all non-dominated solutions.

112, p. 12]

In addition, the issues discussed in Chapter [VII] should be considered in any
modeling effort involving networks where multiple optimal solutions may be a con-

cern.

Apportioned & Manual Allocation

Apportioned allocation is a “middle of the road strategy that meets two objectives:
(1) reduce risk and (2) fund as many counter-threat target hardening projects as
possible.” [81) p. 172] In essence, this is the technique used to “satisfy politicians”
by reducing risk while funding projects across multiple congressional districts to

satisfy political concerns.

Similarly, a policy maker may take subjective and/or intangible considerations
into account and allocate resources manually. For example, while not essential to
the operation of any other critical infrastructures and key assets, the destruction of
a national icon such as the Statue of Liberty would create unknown psychological

damage to the nation. [81, p. 145] This would seem to advocate using a “soft”
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operations research (OR)) approach such as value-focused thinking to determine a
protection strategy. For example, in [06] Pruitt developed such a hierarchy that

could be used.

8.3 Future Research

8.3.1 Nodal Interdiction

The nodal interdiction formulations developed in Chapter [[II] do not require
the node splitting techniques required in traditional nodal interdiction. Therefore,
without the artificial nodes and edges, it is believed that a robust sensitivity analysis
may be possible. This sensitivity analysis would provide the decision maker with
additional information about the nodes and their removal which is not possible with

traditional interdiction methods.

8.3.2 Social Network Interdiction

Sociologists use measures adapted from graph theory in developing centrality
measures. However, many of these measures are computationally inefficient and not
easily extended. Therefore, research needs to be conducted to incorporate more op-
erations research techniques into social network analysis. Chapter [[V] provided the
foundation for one potential proxy measure by using shortest path network interdic-
tion. By analyzing the network before and after potential interdictions, a measure
of difference could be developed to more accurately determine a person’s closeness

and/or potential for targeting.

This method could be combined with the techniques developed to measure
Network Centric Warfare by Wong-Jiru et al. (as discussed in Section [2.2.6.4]). In
this way, a comparison of the social networks prior to and after an interdiction could

be quantified in several dimensions. The measure of vulnerability on these bases may
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capture more information than traditionally conveyed in traditional social network

analysis measures.

More research needs to be conducted to determine the impact of missing infor-
mation on these [SNA] measures. Most open source literature focuses on the impact
of missing information on random networks (see [25]). However, social networks are
not random. The impact of missing information on the models developed in Chap-
ter [[V] needs to be determined. This would include missing information such as a
cellular structure, unknown cells, unknown relationships, and so forth. Using a real-
istic social network generator (see [87]), one could test the effects of selected missing
data. Techniques to create realistic social networks have been recently developed

and should be used to test these models/measures.

Benders’ partitioning version of the models developed in Chapter [[V] were pre-
sented, but they need to be further developed. In each case, the implementation of
these models did not incorporate any techniques to increase efficiency. For example,
in each iteration, the subproblems were created from scratch. It would be more ef-
ficient to store information from previous iterations and update them as necessary,
instead of recreating them each time. In addition, techniques such as flow disper-
sion developed by Cormican could likely be used to reduce computational times of

partitioning methods. [46]

The developments in Chapter [[V]focused on the disruption of enemy networks.
However, there are other potential applications, particularly in a counter-insurgency
environment. For example, with small modifications, it is believed that the models
could be used to maximize closeness within a specified group while minimizing close-
ness between one or more groups. The goal in a counter-insurgency is to disrupt
the terrorist group while winning the hearts and minds of the people. This involves
bringing together (maximizing closeness of) coalition forces, government forces, and
neutral forces; while minimizing the closeness of insurgent forces. There may also be

potential to combine this model with strategy selection using coalition formulations
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discussed in Section [2.3.4] Again, this would allow the selection of a strategy that
considers all aspects of coalition counter-insurgency action, not just what may be

best for a single decision maker.

8.3.83  Multilayered Network Interdiction

As with social network interdiction, a Benders’ partitioning version of the
model developed in Chapter [V] was developed. Again, this implementation did not
incorporate any techniques to increase the efficiency of the partitioning model. Tech-
niques to increase computational efficiency need to be researched and applied to these
models, including those discussed in the previous subsection: storing iteration infor-
mation for reuse, flow dispersion, and so forth. These extensions will facilitate the

investigation of increasingly larger systems of systems.

8.3.4 Synthesis of Robust Networks

In Chapter [VI] a method to consider cost versus robustness in layered networks
was developed. However, this chapter focused on the edge disjoint version of the
synthesis problem. Although less common, a model which also considers robustness
in terms of node disjoint paths also needs to be developed and incorporated with the

edge formulation.

In addition, although the theoretical developments of Chapter [VI] are sound,
additional developments are necessary to broaden the models’ applications to large
networks. The application of heuristics developed for similar models (such as the
traveling salesman) may provide some necessary time savings. Parametric program-
ming on the models presented here will provide additional post-optimality analysis

to aid the decision maker.

One of the developments of Chapter [VI]is the formulation in which the network

designer has an explicit objective function to maximize robustness subject to a cost
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constraint. A potential application of this tool is to combine this objective function
with the trilevel model developed by Smith et al. For example, the lowest level would
be the network user who seeks network flow across multiple layers. The second level
(above the network user) would be modeled as an attacker seeking optimal network
interdiction against this layered network. Finally, the top level decision maker,
would be the decision maker (such as the government or a combatant commander)
who allocates resources to maximize robustness subject to this potential network

interdiction.

In such a proposed formulation, the inner (two) levels will still be network
interdiction problems. In addition, the interdiction model across layered networks
was also developed in Chapter [V] which could be used for this inner formulation.
Of course, if nodes are a consideration, along with edges, then the tools on nodal
interdiction (Chapter could be used as well. If the networks involved contain
social networks, then techniques and models developed in Chapter [[V] should be

considered as well.

8.3.5 Multiple Optimal Solutions

Section [7.3|introduced the need to examine cases of non-symmetric interdiction
where attackers and defenders do not have diametrically opposed objective functions.
For example, it is the goal of infrastructure operators to maximize efficiency or
minimize cost. However, the terrorist goal is to maximize loss of life (CNN effect),
not maximize cost of operating infrastructure systems. The impact of these differing

objective functions needs to be explored in more depth.

The impact of secrecy and deception of one or more players needs to be ex-
plored. Multilevel programs assume rational players with perfect information avail-
able to all players. An examination of the impact of relaxing these assumptions
needs to be done. Both traditional game theory and stochastic interdiction may

allow some insight. As part of this research, a model needs to be built to allow for
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partial information, beliefs/probabilities, and so forth. Part of this modeling effort

should incorporate behavioral modeling.

8.4 Concluding Remarks

This research developed the foundation, theory, and framework for a set of
analysis techniques to assist decision makers in analyzing questions regarding the
synthesis, interdiction, and protection of infrastructure networks. While there is
still ample work to do, it is hoped that the suite of analysis techniques developed
will assist decision makers and aid in national defense. Specifically, it is hoped
that this research will help identify critical people, relationships, and/or assets to
attack/exploit or protect; maximally protect or disrupt layered networks with limited
resources; balance robustness, cost, and risk in designing or expanding networks; and

provide decision makers with potential ramifications of multiple optimal solutions.
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