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ABSTRACT

Multiobjective Fuzzy Stochastic Linear Programming (MFSLP) problem where 
the linear inequalities on the probability are fuzzy is called a Multiobjective Fuzzy 
Stochastic Linear Programming problem with Fuzzy Linear Partial Information on 
Probability Distribution (MFSLPPFI). The uncertainty presents unique difficulties 
in constrained optimization problems owing to the presence of conflicting goals 
and randomness surrounding the data. Most existing solution techniques for 
MFSLPPFI problems rely heavily on the expectation optimization model, the variance 
minimization model, the probability maximization model, pessimistic/optimistic 
values and compromise solution under partial uncertainty of random parameters. 
Although these approaches recognize the fact that the interval values for probability 
distribution have important significance, nevertheless they are restricted by the upper 
and lower limitations of probability distribution and neglected the interior values. 
This limitation motivated us to search for more efficient strategies for MFSLPPFI 
which address both the fuzziness of the probability distributions, and the fuzziness 
and randomness of the parameters. The proposed strategy consists two phases: 
fuzzy transformation and stochastic transformation. First, ranking function is used to 
transform the MFSLPPFI to Multiobjective Stochastic Linear Programming Problem 
with Fuzzy Linear Partial Information on Probability Distribution (MSLPPFI). The 
problem is then transformed to its corresponding Multiobjective Linear Programming 
(MLP) problem by using a-cut technique of uncertain probability distribution and 
linguistic hedges. In addition, Chance Constraint Programming (CCP), and expectation 
of random coefficients are applied to the constraints and the objectives respectively. 
Finally, the MLP problem is converted to a single-objective Linear Programming (LP) 
problem via an Adaptive Arithmetic Average Method (AAAM), and then solved by 
using simplex method. The algorithm used to obtain the solution requires fewer 
iterations and faster generation of results compared to existing solutions. Three realistic 
examples are tested which show that the approach used in this study is efficient in 
solving the MFSLPPFI.
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ABSTRAK

Masalah Pengaturcaraan Linear Kabur Stokastik Multiobjektif (MFSLP) 
di mana ketaksamaan linear pada kebarangkalian adalah kabur dikenali sebagai 
Masalah Pengaturcaraan Linear Kabur Stokastik Multiobjektif dengan Maklumat 
Separa Linear atas Taburan Kebarangkalian (MFSLPPFI). Kewujudan ketidakpastian 
menyebabkan kesukaran yang unik dalam masalah pengoptimuman terkekang 
kerana kehadiran matlamat yang bercanggah dan data sekitaran yang rawak. 
Kebanyakan kaedah penyelesaian MFSLPPFI bergantung pada model jangkaan 
pengoptimuman, model peminimuman varians, model pemaksimuman kebarangkalian, 
nilai pesimistik/optimistik, dan penyelesaian kompromi di bawah ketidakpastian separa 
parameter rawak yang terlibat. Walaupun pendekatan itu mengiktiraf pentingnya nilai 
selang bagi taburan kebarangkalian, namun taburan kebarangkalian hanya menjurus 
kepada had atas dan bawah taburan kebarangkalian dan mengabaikan nilai-nilai 
dalaman. Kekangan tersebut memberi motivasi bagi mencari strategi penyelesaian 
yang lebih efisien bagi masalah MFSLPPFI yang mengambilkira kedua-dua kekaburan 
taburan kebarangkalian dan kekaburan dan kerawakan parameter. Konsep penyelesaian 
bagi penyelidikan ini berasaskan strategi penyelesaian dua fasa, terdiri daripada 
transformasi kabur dan transformasi stokastik. Pertama, fungsi kedudukan digunakan 
untuk mentransformasi MFSLPPFI kepada masalah Pengaturcaraan Linear Stokastik 
Multiobjektif dengan maklumat separa linear kabur pada taburan kebarangkalian 
(MSLPPFI). Masalah yang diperoleh kemudiannya ditransformasi kepada masalah 
Pengaturcaraan Linear Multiobjektif (MLP) yang setara dengan teknik potongan- 
a  bagi taburan kebarangkalian tidak pasti dan lindung nilai linguistik. Selain 
itu, Pengaturcaraan Kekangan Peluang (CCP) dan jangkaan pekali rawak masing- 
masing diaplikasikan kepada kekangan dan objektif. Akhirnya, masalah MLP ditukar 
kepada masalah Pengaturcaraan Linear berobjektif tunggal (LP) menerusi satu Kaedah 
Penyesuaian Purata Aritmetik (AAAM) dan masalah LP tersebut diselesaikan dengan 
menggunakan kaedah simpleks. Algoritma yang digunakan untuk mendapatkan 
penyelesaian memerlukan bilangan lelaran yang kurang dan penjanaan keputusan yang 
lebih pantas berbanding penyelesaian sedia ada dalam literatur. Tiga contoh realistik 
diuji yang hasilnya menunjukkan pendekatan yang digunakan dalam kajian ini efisien 
dalam menyelesaikan MFSLPPFI.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

A Linear Programming (LP) problem is a mathematical programming problem 

with a single linear objective function subject to a linear constraint set and the 

assumption that parameters are known with certainty. LPs involving more than one 

conflicting objective functions are called Multiobjective Linear Programming (MLP) 

problems.

An MLP problem is called a Multiobjective Stochastic Linear Programming 

(MSLP) problem when the parameters in the MLP problems are random and 

represented by probability distributions. MLP problems are called Multiobjective 

Fuzzy Stochastic Linear Programming (MFSLP) problems when the parameters in the 

MLP problems are fuzzy random and represented by probability distributions.

In all MSLP/MFSLP problems, the probability distributions are supposed to 

be known. But in many situations, the probability distributions cannot be specified. 

Such problems are studied under partial uncertainties and described by crisp or 

fuzzy linear inequalities to find optimal solutions. They are called Multiobjective 

Stochastic Linear Programming with Incomplement on probability distribution 

(MSLPI) problems, or Multiobjective Fuzzy Stochastic Linear Programming with
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Incomplement on probability distribution (MFSLPI) problems. When the linear 

inequalities on the probabilities of the states are fuzzy, the problem is called 

Multiobjective Stochastic Linear Programming Problem with Fuzzy Linear Partial 

Information on probability distribution (MSLPPFI), or Multiobjective Fuzzy Stochastic 

Linear Programming Problem with Fuzzy Linear Partial Information on probability 

distribution (MFSLPPFI) problems.

1.2 Motivation

Real life problems are complicated and are subject to change. And this is just 

as true in LP problems where the assumption that all the coefficients of an LP model 

are known with certainty rarely holds in practice. In addition, whether in normal living 

or in professional settings, there may be various conflicting objectives that need to be 

considered in making decisions. Therefore, it is more appropriate to extend an LP 

problem to either a Fuzzy Linear Programming (FLP) problem, a Stochastic Linear 

Programming (SLP) problem, or a Fuzzy Stochastic Linear Programming (FSLP) 

problem.

An LP problem could have fuzziness and randomness occur separately or 

concurrently. Due to two different types of uncertainties, a fuzzy number is assigned 

to incomplete, inaccurate information in the LP problem. On the other hand, the 

stochastic variable represents arbitrariness or possibility of events. There are random 

changes in fuzzy numbers in factual life. For instance, the assessment of tolerance of 

machining products could be estimated as a fuzzy number. The production lot could 

vary from time to time, cycle-by-cycle in values. Moreover, random variable could be 

modeled as fuzzy tolerance values.

FSLP problems appear in numerous real-life situations. The required tools for 

LP problems such as the right-hand-sides (RHSs) and coefficients of the objectives
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and constraints could be fuzzy random variables. However, it is complex to 

resolve accurately the values of these parameters, especially those factors which 

are unpredictable due to uncertainties in the environment which results in varying 

parameters. These conditions happen frequently in long-term planning, advance 

strategies, engineering design and financial modeling, in which the described 

surroundings (objectives, constraints, coefficients) cannot be evaluated specifically and 

with certainty (Luhandjula and Gupta, 1996; Hop, 2007b).

An explanatory example of FSLP problem is in production planning. A large 

reduction in total cost could be considered as an objective that can be represented as a 

fuzzy stochastic variable since the cost components such as cost of inventory holding, 

materials, manpower and operation time and machine maintenance. Production output 

may depend on variables such as speeds, feed rates, and machine running time. 

Machine running time goes up-and-down and is usually difficult to assess accurately. 

Fuzzy random variables can be used to model available resources, demand, and other 

constraint coefficients. Such supposedly statistical data depend on environmental 

conditions including seasonal changes, market price fluctuation, suppliers’ efficiency 

and cost and benefit of defensive maintenance.

Unstable state of equipment results in loss in production output. To reduce 

untimely breakdowns, defensive maintenance is the way to active sustainability. 

Regular inspection, repair, and component replacement as scheduled are preventive 

measures. Such measures are usually cost effective in terms of materials, wages, and 

loss of production due to down-time for preventive works. The uncertainty in length 

of the down-time is caused by the complexity of inspection, repair and/or replacement 

jobs and the maintenance culture of the staff.

It is desirable to develop a strategy to reduce total down time as a result of 

breakdowns and for preventive maintenance. An additional factor to consider is the 

effective life of the machine. All these times and their related costs should be modeled
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as fuzzy random variables (Hop, 2007b). These instances motivate us to suggest a new 

model for resolving MFSLPPFI.

By and large real life problems usually include some levels of uncertainties in 

the values of various parameters. Quoting the philosopher Nietzche: “No one is gifted 

with immaculate perception”.

Counterfeit certainty is awful science which carries the risks of making wrong 

enunciation of critical choices. Just assuming values to unknown variables will not 

result in much loss of values if they do not play important roles. But, in many real 

situations, building the model based on such assumed values runs the risk of pointing to 

wrong directions in the analysis. Assuming that the parameters are exactly prescribed 

may lead to an oversimplified and inflated picture of the certainty.

The principle of “ garbage in, garbage out ” shows clearly what disasters can 

happen when inaccurate data are falsely given preset values. This is more likely to 

creating the model which churns out meaningless outcomes. It is imperative that when 

a probabilistic explanation of unidentified elements is used, it should be cast as an SLP 

problem (Charnes and Cooper, 1963; Kall, 1976; Luhandjula, 2006). The presence of 

intrinsic or informational ambiguity, should be transformed to result in FLP problems 

(Liu and Liu, 2002; Liu, 2003; Liu, 2002; Sakawa, 1993; Verdegay, 1984).

Given everchanging complexities of real life, real world problems are 

frequently based on information that is vague and probabilistically uncertain 

(Luhandjula and Gupta, 1996). For instance, consider a production situation that is 

set in an LP situation, when it is assumed that the member components of constraints 

are demands which are random variables. If the coefficients in the matrix as given by 

experts who used fuzzy numbers to relate vague perceptions with data are presented 

statistically, the result will be an FSLP problem (Luhandjula, 2006).
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When there are multiple parameters in an FSLP problem, we obtain an MFSLP 

problem. Since we cannot avoid complexities in real life, such problems demand to be 

on center stage.

In many SLP/FSLP problems, the probability distribution is supposed to be 

identified. But in some cases, we only have partial information on the way the 

probability distribution behaves. For example selecting a portfolio based on various 

criteria in the financial market, finding an optimal multiobjective/ multiattribute model 

for products, the demand on a new product of a client, the amount time to prepare 

raw materials, production time of a new product and profit of it...etc, are all random 

phenomena which have to be modeled stochastically.

1.3 Background of the Problem

This section is divided into four subsections that cover relevant information 

on the previous studies and issues surrounding the area being researched. It 

begins with attempts to understand and apply MSLPPFI, Multiobjective Fuzzy Linear 

Programming (MFLP), and MFSLP problems.

1.3.1 Introduction to Background of the Problem

Because the real world is continually changing, its components are in constant 

motion and are unstable. Frequently the effects of these components are superimposed, 

at least partially. Many researchers felt the need to incorporate both randomness and 

fuzziness into multiobjective programming problems (Katagiri and Ishii, 2000; Bector 

and Chandra, 2005a; Hop, 2007c; Chou et al., 2009). Both fuzziness and randomness 

co-occurred in the LP problems related to FSLP when coefficients of objective,
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constraints and goals are fuzzy random variables (Luhandjula, 2006). Hop (2007a, 

2007b, 2007c) has proposed a few models to measure attainment of such problems.

Iskander (2005) considered the FSLP problem as:

j=i

Xj >  0 , j  = 1, n.

where x j , j  =  1, ...,n  are nonnegative decision variables, c j , j  =  1, ...,n  are fuzzy 

coefficients in the objective function, bi}i = 1,..., m  are random variables with known

the FSLP problem by utilizing two possibility as well as two necessity dominance 

indices previously used by Dubois and Prade (1983). The Chance Constraint (CC) 

approach, where feasible solutions satisfying uncertain constraints under certain 

probability are selected, and the a-cut technique are used to obtain the deterministic 

crisp LP problem. The researchers did not consider MFSLP problems, and did not take 

into consideration the case where the coefficients in the objective, the Left Hand Side 

(LHS) of the constraints, as well as its Right Hand Side (RHS) are Fuzzy Stochastic 

Variables (FSVs). They dealt only with the LHS variables with known distribution 

functions.

Luhandjula (2006) formulated an FSLP problem as:

Min c(w)x

s.t. Ai(w)x  ^  bi(w); i = 1  , . . . ,m  (1.2)

n

n
(1.1)

distribution functions, while a ij- represents the fuzzy coefficient of the j th decision 

variable in the ith stochastic constraint. The author suggested an approach for solving

x e  X  = {x e  Rn |x >  0}
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where c(w ),A i (w) and bi(w) are random variables on (Q, 2° , P ); in which Q =  

{w1, ..., wN} a finite set of possible states of nature, 2° is the power set of Q and P  

the vector of probabilities pi =  P({w  =  wi}). The symbol ~  expresses the fact that 

some flexibility are allowed in satisfying the objective and constraints in the linear 

flexible programs and Linear Stochastic Programs (LSPs) (Zimmermann, 1976; Kall, 

1976). The solution of the problem needs combining symmetrical solution techniques 

(Luhandjula, 1983; Luhandjula et al., 1997) and asymmetrical solution techniques 

(Chakraborty et al., 1994; Chakraborty, 2002; Luhandjula, 1983). It is noted that 

Luhadjula did not consider certain FSVs for the coefficients, but applied flexible 

programs to the system. This lead to a bargaining between the objective function and 

the constraints, thus weakening the results.

Hop (2007a) considered a Fuzzy Stochastic Goal Programming (FSGP) as;

( ck)wx ; (gk)w j k 1,1 
n ^

s.t. (aij)wxj <  (bi)w (1.3)
j=i

xj >  0; w e  Q; i =  1, 2,..., m; j  =  1, 2,..., n; k = 1, 2,..., 1

where a ,b  are (m ,n) and (m, 1) matrices of constraint coefficients, (ck)w is (1,n) 

matrix of Fuzzy Random Coefficients (FRCs), and (gk)w are given fuzzy random 

goals required to maximally satisfy both sides. In other words; if (ck)wx <  (gk)w 

the lower attainment values should be maximized. Otherwise, if (ck)wx >  (gk)w 

the upper attainment values should be maximized. The author suggested a model to 

measure attainment value of the FSGP, and a new measure was used to derandomize 

and defuzzify the FSGP problem to obtain the standard form LP problem.

Another FSLP problem:
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Max cx
n

s.t. (aij)wxj <  (bi)w; i 1 ,...,m  (1.4)
j=i

xj >  0; w e  Q; i =  1,..., m; j  =  1,..., n; k =  1,..., 1

has been considered (Hop, 2007b), where c is (1, n) matrix. A, b are (m, n), and (m, 1) 

matrices of fuzzy random variable constraint coefficients defined on a probability space 

(Q, 2°, P ). The problem was reformulated into its corresponding deterministic LP 

problem by the restrictions on the superiority and inferiority degrees, as the penalty 

for the violation to fuzziness and randomness. The author did not consider MFSLP 

problem but only the single optimization problem. On the other hand Recourse 

Approach (RA) was utilized to convert the problem from fuzziness and randomness 

to its corresponding deterministic form. This study focused on the FSLPPFI and 

highlighted on three aspects which are fuzziness, randomness, and whether a function 

is deterministic, from the beginning of the problem until solution is found, in solving 

the Singleobjective Deterministic Linear Programming (SDLP) problem:

1.3.2 Multiobjective Fuzzy Linear Programming Problem

Maleki et al. (2000) noted that the possibilistic programming or multiobjective 

programming methods have shortcomings in solving problems in which all decision 

parameters are fuzzy numbers. They considered an LP with FVs as:
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Max z =  c j Xj , 
j=1

n ^
s.t. ajjXj <  bj , i = 1, 2,..., m 0,

j=i (1.5)
n

a ijXj >  bi , i =  mo +  1, m,
j=1

Xj >  0, j  =  1, n,

where ajj =  (aL, a j , a j , ) ,  bj =  (bL, bU, aj, ^j), and Cj =  (cL, c^ , Wj, n j) are in the 

set of all Trapezoidal Fuzzy Numbers (F (R )), i =  1 , m,  j  =  1 , n.  They modified 

the FLP problem using a comparison of fuzzy numbers by using areas determined by 

the membership functions, and introduced an effective method to solve this kind of 

problems. In addition, they proposed a new method for solving LP problems with 

fuzzy unknowns via an auxiliary program to the original LP and connecting these LPs 

via relationships between them.

Cadenas and Verdegay (2000) used Ranking Function (R (F )) in MFLP 

problems, Multiobjective Mathematical Programming (MMP) problems, Vector 

Optimization Programming (VOP) problems, and Fuzzy Multiobjective Optimization 

(FMO) problems. MMP problems in their conventional cases were transformed 

into uni-objective mathematical programming problems either by using the weighted 

approach or the constant approach (kth-objective A-constraint), then finding the non

inferior solutions. For the FMO problem, which was the extension of the VOP 

problem in the fuzzy environment with fuzziness in the constraints and in the objective 

functions, the following formulation had been developed and studied;

Min [c{x, c2x ,..., cnx]

s.t. Ax <  b (1.6)

X >  0
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where each c f , j  =  1, 2,..., n is a N - vector of fuzzy numbers. The existence of the 

fuzzy goals had been considered and assumed as follows:

Find x e  R n

(1.7)

s.t. cjx <  Zj; j  =  1,..., n 
g

Ax < b
g

x >  0

where <  means that there was a membership function; ^  : R ^  [0,1], i =  1,..., m,
g

Vx e  R N.

The obtained problem was:

Min [c1x, c2x , ..., cnx]

s.t. Ax <  ^ - 1(a) (1.8)

x >  0, a  e  [0, 1]

where ^ -1 was an m-vector constraint inverse of the membership function i =

1,..., m, Va e  [0,1].

A Fuzzy Number Linear Programming (FNLP) problem in the form of

Max z =  cx
R(F)

s.t. Ax =  b, (1.9)

x >  0

where b e  Rm,x  e  Rn, A e  Rmxn, c e  (F(R))n is n-dimension of the set of all 

Trapezoidal Fuzzy Numbers (TpFNs), had been considered by Nasseri et al. (2005), 

and a linear ranking function was used in solving the problem for comparing fuzzy 

numbers.
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Ganesan and Veeramani (2006) introduced and defined a kind of FLP problem 

with TpFNs in its symmetric form as:

max z «  c j Xj 
j=i

n
s.t. a jX j ^  bi , i =  1, 2, m 0,

j=i (1.10)
n

aijXj >; bi; i =  mo +  1, m 0 +  2, m,
j=i

Xj >; 0 Vj =  1, 2, n

where a ij G R, cj ,Xj ,b i G F(S)s ( The Set of Symmetric Trapezoidal Fuzzy 

Numbers). The solution for the problem was obtained without converting it to a crisp 

LP problem.

Some properties in FNLP problems have been explored by Mahdavi-Amiri and 

Nasseri (2006) when they used a linear ranking function to introduce the dual of the 

following FNLP problem, where several duality results were presented:

max z =  cx
R(F)

s.t. Ax <  b, (1.11)
R(F)

x >  0

where =  , <  were equality and inequality with respect to the R (F ) respectively,
R(F) R(F)

A =  (aij)(m,n), c =  (c 1, c2, Cn), b =  (bi, b2, bm)T and a ij , bi, ci G F(R).

Based on Maleki et al. (2000) and Maleki (2002), a Linear Programming 

Problem with Trapezoidal Fuzzy Variable (FVLP):
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max z =  cX
R(F)

s.t. Ax <  b, (1 12)
R(F)

X >  0,
R(F)

had been considered by Mahdavi-Amiri and Nasseri (2007), where b G (F(R))m, A G 

R (m,n), cT G Rn are given and x G (F(R))n is to be determined , and a linear ranking 

function on TPFN; a =  (aL,au ,a,/3 ) defined as: R(F)(a) = The

dual problem on FVLP was established to deduce duality results, those results are then 

used to develop a dual algorithm to solve the problem by using the primal simplex 

tableau. It should be noted all these studies did not consider the MFLP problems in the 

optimization problems but contented themselves with single FLP problem. They also 

did not use the linear ranking function R (F ) as a tool to transform the FLP problem 

to its corresponding deterministic LP problem. R (F )s were used only as a tool to 

compare FVs.

1.3.3 Multiobjective Stochastic Linear Programming Problem

As related to the stochastic part of the MFSLPPFI, the first work on SLPPFI 

was presented by Ben Abdelaziz and Masri (2005a). The problem was modeled as:

Min cT(w)x

s.t. T(w )x — h(w) >  0 (1.13)

X G X

where c(w), T(w) and h(w) were respectively (n, 1), (m, n) and (m, 1) random 

matrices defined on some probability space (Q, 2° , P ) with Q =  {w1,...,w N} a 

finite set of possible states of nature, 2° was the power set of Q and P  the vector
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of probabilities pi =  P({w  =  wi}) . The set X  is a polyhedral set of feasible solutions 

that includes the deterministic constraints of the problem on the probability space 

(ft, 2° , P ).

In this work, the partial information on the probability distribution P  was with 

in two ways:

• The probability was generated by stochastic inequalities on n

pi =  1,pi >  0, i =  1, . . . , n } (1.14)

where A =  (aij-) and b =  (bi) were respectively (s, N ) and (s, 1) fixed matrices.

• Either the probability was generated by fuzzy inequalities on n, or the probability 

distribution was approximated on n by

Pi =  1,Pi >  0, i =  1, . . . , n |  (1.15)

where A and b were as defined above, and ^  was a fuzzy inequality which meant 

that Ap was almost equal or less than b.

The solution was obtained by first applying the fuzziness on the Stochastic 

Linear Programming with Fuzzy Linear Partial Information on probability distribution 

(SLPF), then through Stochastic Programming (SP) using Chance Constrained 

Approach (CCA), for minimizing expected value of the random objective functions 

on n, and RA after the solution when the deviation or shortage had been obtained.

Ben Abdelaziz and Masri (2010) also studied the Multiobjective Stochastic 

Linear Programming with Incomplement on probability distribution (MSLPI) 

problems:

n =  < p =  (p1, ..., P n )* : Ap ^  b.
N

E
i=1

N
P (p1, ..., P n )* : Ap <  b ,y ^

i=1
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Min Z  =  C(w)x =  [c1(w )x ,..., cn(w)x]

s.t. T(w )x — h(w) >  0 (1.16)

x G X~

They addressed the SP, and used the Chance Constrained Programming (CCP) 

approach as possible resolutions thus sustaining the indeterminate restraint probability 

level. They extended this method to the MSLPI as follows:

Min Z  =  C(w)x

s.t. P[T(w )x — h(w) >  0] >  a , VP G n (1.17)

x G

by using stochastic inequalities on n as in (1.4), and denoting F  as the inferior 

likelihood purpose interrelated to the set as:

F(A ) =  inf { P (A )/P  G n} ; VA G ft (1.18)

This problem is equivalent to:

F[T (w )x — h(w) >  0] >  a . (1.19)

By utilizing the Compromise Programming (CP) approach which was presented 

by Zeleny (1982) aimed at multi-objective problems, reducing the distances of the sum 

from objective- functions to their ideal values, and using the following: CCP approach, 

CP approach, and Chance Constrained Compromise Programming (CCCP) approach, 

the CP was addressed as:
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Min C(x, w)

s.t. F [(T (w )x — h(w) >  0)] >  a  

x G  X

(1.20)

Next, to minimize the value of;

Y (x) =  MaxP en E P [C (x,w)] (1.21)

with some extra hypotheses by the Decision Maker (DM) the CCCP problem became: 

Min MaxPenE P [C(x, w)]

x G X, £(w) >  0

They solved this optimization problem in Singleobjective Deterministic Linear 

Programming (SDLP) problem under two basic conditions:

(i) detail the form of the lower probability function F  and,

(ii) the compromise function C (x ,w ) , or a weighted sum of the gap between the 

stochastic objective functions values C(w)x and the ideal values c* for x under

For the value of F , the notion of P-Level Efficient Points (pLEP) was used, 

and for the CP some hypotheses had been used in addition to the modified L-shaped 

method.

s.t. F [(T (w )x — h(w) >  0)] >  a (1.22)

event w.
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It must be mentioned that the limitations of the study by Ben Abdelaziz and 

Masri (2010) are the incomplete information in a linear way and the low value of the 

minimax solutions. They did not consider the situation where a feasible decision for 

the deterministic constraints did not satisfy the uncertainty constraints (i.e. deviation or 

shortage occurs). There are implicit loops of iterations in their solution algorithm when 

using L-shaped method. Finally, they did not consider fuzzy probability distributions 

and only depended on a CP approach to the MSLPI. In addition only maximum extreme 

points of P  had been used. Also the probability distributions had been used on the 

maximum extreme points for the discrete events in the continuous interval of P .

1.3.4 Deterministic Multiobjective Linear Programming Problem

In Deterministic Linear Programming (DLP) problems of the MFSLPPFI; the 

following mixed deterministic multiobjectives Max/Min problem

n
Max E p Z i  =  E p 2̂ Cij(w)xj ; i =  1,..., r, 

j=1
n

iMin E pgnZi E pgn ^   ̂Cij(w)xj , i r  +  1  ..., S, (1 23)
j=1

s.t. P (L (w )x — l(w)) >  0) >  a , VP G n, 

x G  X

with conflict in the same constraints can be solved by using an appropriate technique 

to get an optimal solution for the original problem.

Sen (1983) provided a solution to this kind of problem when he obtained 

a single value corresponding to each of the objective functions being optimized 

individually, subjected to constraints as follows:

Max Z» =  6̂  ; i =  1,..., r, Min Z» =  6̂  ; i =  r  +  1,..., s. (1.24)
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where 6 , i =  1,..., r, r  +  1,..., s the decision variable may not necessarily be common 

to all optimal solutions in the presence of conflicts among objectives. But the common 

sets of decision variables among objective functions were necessary in order to select 

the best compromised solution. After that, he determined the common set of decision 

variables from the combined objective function formulated below:

s.t. P (L (w )x — l(w)) >  0) >  a , VP G n, 

x G  X

VZi and 6  >  0, i =  1,..., r, r  + 1, ...s.

This methodology was highly efficient in its application in operation research 

to get optimal solutions and was thus considered one of the most appropriate methods 

in finding solutions. However the author did not mention whether the values of the 

objective functions were or were not positives. Figure 1.1 presents the scenario leading 

to the problem considered in this study.

1.4 Problem Statement

This study will focus on the development of an improved two-phase solution 

strategy of the MFSLPPFI. The phases are the defuzzification of the problem to its 

stochastic counterpart and the conversion of the stochastic problem to deterministic 

problem. Specifically we transform MFSLPPFI into its corresponding MSLPPFI 

through Fuzzy Trapezoidal Membership Function (FTpMF) on the Trapezoidal Fuzzy 

Numbers (TpFNs), then convert the resulting MSLPPFI into MLP problems through 

stochastic transformations via CCP approach in stochastic constraints, and using 

stochastic transformations in the objective functions by implementing expectation 

of the random events after employing the linguistic hedges of P  to get the certain

(1.25)
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Figure 1.1 Scenario leading to the statement of the problem
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probability distributions over intervals of P . In addition, an efficient solution method 

to the resulting deterministic problem will also be developed.

1.5 Research Questions

The problem statement raises several research challenges. These challenges 

will be addressed by providing answers to the following questions:

(i) •  How to address the fuzziness in the probability distribution?

• What membership function to use?

(ii) •  How to convert the FSP problem to SP problem?

• What fuzzy transformation technique to be used?

(iii) How to convert the SP problem to deterministic problem?

• What stochastic transformation technique to be used?

• What to do if the deterministic constraints do not fully satisfy the uncertain 

constraints?

(iv) How to solve the deterministic problem efficiently?

• How to avoid the implicit loops in L-shaped method? ( The L-Shaped 

method is a decomposition method that is useful for solving problems 

that have the problem of a master problem and several sub problems 

represented by the side model, and it is an outer linearization procedure 

that approximates the convex objective term in the stochastic program by 

successively appending supporting hyper planes (Birge, 1988)).

• What criteria should be considered in evaluating the performance of the 

proposed solution method?.
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1.6 Research Objectives

The following are the objectives in dealing with MFSLPPFI:

(i) To address the MFSLPPFI problem through membership function.

(ii) To transform the MFSLPPFI problem into MSLPPFI problem by using the 

ranking function as the fuzzy transformation technique. To use linguistic hedges 

in the probability distribution.

(iii) To transform the MSLPPFI problem into MLP problem by using the CCP 

Approach via fuzzy transformation in the probability distribution by using the 

a-cut technique.

(iv) To introduce recourse function in the stochastic transformation technique.

(v) To find a pareto optimal solution for the deterministic MLP.

(vi) To solve the deterministic MLP problem by using Big-M  method instead of L- 

Shaped method to avoid implicit loops in the solution algorithm. And using the 

cutting-plane method.

(vii) To find a relation between the pareto optimal solution set and the compromise 

solution set, and compare between them.

1.7 Scope of the Study

This study focuses on the MFSLPPFI. Both objective function and constraints 

are in fuzzy stochastic forms. The solution of the original problem will be obtained 

from solving the associated deterministic problem.
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1.8 Significance of the Study

This research focuses on developing the transformation techniques for the 

MFSLPPFI. The proposed techniques will convert the problem to deterministic 

problem which can be solved easily. The main contributions of this research on the 

advancement of knowledge are summarized as follows:

(i) Development of a fuzzy transformation technique that transforms an MFSLPPFI 

into an MSLPPFI problem through a ranking function. This is proposed to 

soften the rigid requirements of the DM to considering the fuzziness and/or 

randomness of the DMs judgment in real life optimization problems when he/she 

dealing with the optimization problem by considering the fuzziness and/or the 

randomness in objectives, goals and constraints in the problem. Moreover, the 

DM would be able to use the ranking function as a defuzzifying tool to transform 

the MFSLPPFI problem into an MSLPPFI problem in various real life situations.

(ii) Development of a stochastic transformation technique that transforms an 

MSLPPFI problem into an MLP problem using CCP approaches, Linguistic 

hedge and a-cut technique. The stochastic technique allows the DM to consider 

the expectation optimization model, the variance minimization model, and the 

probability optimization model with optimistic/pessimistic values under partial 

uncertainty of the probability distribution for real life problems. In addition, the 

DM will be able to recognize the interval values of the probability distribution 

by dealing with these interval values as linguistic hedges via a-cut technique 

on fuzzily imprecise variables with probabilistic uncertainty. Furthermore, the 

development of the stochastic transformation technique supports the DM to detail 

the form of the lower probability function for the stochastic constraints via the 

CCP approach. This will lead to the compromise function for the objective 

functions in the MSLPPFI problem.

(iii) Introduction of a recourse function in the stochastic transformation technique to 

provide a feasible decision for deterministic constraints which do not satisfy the
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uncertainty constraints. The significance of the recourse function approach is to 

provide a tool to help DM in industrial or productive optimization problems to 

create efficient models where continuous sufficient supplies of the raw materials 

and the basic resources for production are required.

(iv) Development of an Adaptive Arithmetic Average Method (AAAM) which 

transforms an MLP problems into its corresponding SDLP problem, instead of 

using Sen’s method and others we found those in literature review. Sen’s method 

is restricted to positive values of objective functions only, whereas AAAM is 

more general since it is valid for all real numbers. In addition, this approach leads 

to the compromise solution in less iterations and elapsed time in the solution 

algorithm.

(v) Development of pareto optimal solution to the deterministic MLP problems. 

Significantly, this solution finds the complete optimal solution as a compromise 

solution among conflicting objective functions in the MLP problems.

(vi) Development of the cutting-plane method as the solution technique to the 

associated MLP problem. Significantly, the cutting-plane method is to help the 

DM to reduce the obtained solution as an optimum solution for the objectives at 

the extreme point of the feasible constraints in the optimization problem.

Figure 1.2 shows the significance of the study in the advancement of the 

knowledge.

Beside academic contributions, the work also has practical contributions. The 

work will be able to help solve real life and industrial problems which are usually 

complicated, uncertain and continuously subject to changes, by considering both the 

fuzziness and randomness in the formulation of the model. In addition, the proposed 

solution procedure will provide an efficient and fast approach to solution generation 

which is important when dealing with real life problems which usually involve many 

variables and need to obtain optimum solutions quickly. The findings of the study
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Figure 1.2 Summary of academic contributions

are believed to be able to have positive impacts on organization productivity and 

competitiveness in many industries.

1.9 Research Framework

Figure 1.3 and 1.4 shows the research framework and the relative knowledge 

areas related to each component of the MFSLPPFI. In what follows, some major 

components of the conceptual framework will be briefly described.

We consider MFSLPPFI and use ranking function technique to transform it into 

MSLPPFI. Then we use a-cut technique to defuzzify the probability distribution from 

fuzzy assertion into deterministic form to get MSLP problems. After that, by utilizing 

linguistic hedges of the probability distribution through stochastic transformation, and 

in addition CCP approach, we convert MSLP problems into its corresponding MDLP 

problems.
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An AAAM will be used to transform the resulted MDLP problems into its 

corresponding SDLP problem. The research uses Big-M  method to solve the SDLP 

problem. If the solution does not satisfy the uncertain constraints it should be penalized 

by using RA, and if is it not an extreme point of the feasible constraints, then cut-plane 

method should be used to introduce it as an extreme point of the feasible constraints.

We also find pareto optimal solution for the MDLP problems and comparing 

between it and the compromise solution.
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Figure 1.3 Conceptual framework: Part - 1
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1.10 Outline of the Thesis

The organization of the thesis is as follows:

Chapter 1 provides the introduction to the study domain of this thesis that is 

MFSLPPFI. The chapter later discusses the background of the problem, statement of 

the problem, research objectives and contributions.

Chapter 2 provides the literature review of the study areas. Related background 

works on the study domain are also discussed here.

Chapter 3 provides research methodology where the research activities that will 

be carried out towards achieving the objectives of this research are presented.

Chapter 4 provides the development of the improved two-phase solution 

strategy for the MFSLPPFI.

Chapter 5 provides the applications to support the problem statements, research 

methodology and development of the improved two-phase solution strategy for the 

MFSLPPFI, through numerical examples.

Chapter 6 presents the results and conclusion of the present work, contributions 

and further works.
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