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Abstract

We examine multistage optimization problems, in which one or more decision makers solve a

sequence of interdependent optimization problems. In each stage the corresponding decision maker

determines values for a set of variables, which in turn parameterizes the subsequent problem by

modifying its constraints and objective function. The optimization literature has covered multistage

optimization problems in the form of bilevel programs, interdiction problems, robust optimization,

and two-stage stochastic programming. One of the main differences among these research areas lies

in the relationship between the decision makers. We analyze the case in which the decision makers

are self-interested agents seeking to optimize their own objective function (bilevel programming),

the case in which the decision makers are opponents working against each other, playing a zero-sum

game (interdiction), and the case in which the decision makers are cooperative agents working to-

wards a common goal (two-stage stochastic programming). Traditional exact approaches for solving

multistage optimization problems often rely on strong duality either for the purpose of achieving

single-level reformulations of the original multistage problems, or for the development of cutting-

plane approaches similar to Benders’ decomposition. As a result, existing solution approaches usually

assume that the last-stage problems are linear or convex, and fail to solve problems for which the

last-stage is nonconvex (e.g., because of the presence of discrete variables). We contribute exact

finite algorithms for bilevel mixed-integer programs, three-stage defender-attacker-defender prob-

lems, and two-stage stochastic programs. Moreover, we do not assume linearity or convexity for the

last-stage problem and allow the existence of discrete variables. We demonstrate how our proposed

algorithms significantly outperform existing state-of-the-art algorithms. Additionally, we solve for

the first time a class of interdiction and fortification problems in which the third-stage problem is

NP-hard, opening a venue for new research and applications in the field of (network) interdiction.
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Chapter 1

Introduction

The optimization literature has explored multilevel optimization in the form of bilevel pro-

gramming, interdiction problems, robust optimization, and two-stage stochastic programming. In a

multistage setting two decision makers solve a sequence of interdependent optimization problems.

Typically, in the first stage an upper-level decision maker (leader) determines values for its set of

variables, while in the second stage a lower-level decision maker (follower) solves an optimization

problem that is parameterized by the leader’s first-stage decisions. Bilevel programming deals with

the case in which the leader and the follower are self-interested agents seeking to optimize their own

objective function. Interdiction and robust optimization focus on the setting in which the agents

are adversaries engaged in a zero-sum game. Two-stage stochastic programming studies the case

in which the leader and the follower are cooperative agents (or, more frequently when they are the

same agent operating at different time stages) who are optimizing an aligned objective function.

1.1 Background and Contribution

This dissertation presents novel algorithmic approaches to solve three challenging general

classes of multistage optimization problems, as well as featured case studies and applications. The

first class of problems we study are bilevel programs. In this setting, the leader’s first-stage decisions

affect the follower’s second-stage feasible region and objective, and vice versa. In the first stage the

leader selects values for the upper-level variables anticipating that the follower will react in the second

stage by solving the lower-level problem to optimality. The follower response could deteriorate the
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leader’s objective or even render the leader’s solution infeasible. As a result, the leader’s first-stage

decisions should impel the follower to respond in a way that is favorable to the leader.

Figure 1.1 illustrates this bilevel setting with a variation of the traditional shortest-path

problem. Both the leader and the follower seek a minimum-cost path from node 1 to node 6. The

cost of traversing each arc may be different for each agent. Leader and follower costs are displayed

alongside the arcs, respectively, in Figure 1.1. If an arc is traversed by both agents, then its cost is

increased by 3 units (e.g., due to the effect of congestion). Otherwise, the cost of the arc remains

unchanged. For example, if both the leader and the follower traverse arc (4, 5), then the leader

incurs a cost of 5 (2 + 3) and the follower incurs a cost of 7 (4 + 3). If only the leader (follower)

traverses arc (4, 5), then the cost of using the arc is 2 (4). Figure 1.1b presents an optimal solution

to the bilevel shortest-path problem described. Bold arcs represent the leader’s first-stage decisions

and dashed arcs represent the follower’s second-stage response. Note that under this setting an

optimal solution is defined as a first-stage solution that maximizes the leader’s objective, which is

computed using the corresponding follower’s optimal response. The leader selects path 1–4–5–6 and

1

2 3

4 5

6

1,
2

2,2

2,1

2,4

1,1

1,
3

2,3
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1,23,
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(b)

Figure 1.1: Bilevel shortest-path problem from node 1 to 6. Leader and follower costs displayed
alongside the arcs respectively. Bold arcs represent an optimal leader’s path and dashed arcs repre-
sent an optimal corresponding follower’s response.

the follower selects path 1–2–3–6. The optimal objective function value for the leader is 5 and the

optimal follower’s objective is 4, since the agents do not use any common arcs. Note that leader’s

path 1–2–3–6 yields a cost of 4 units and is the optimal solution to the single level shortest-path

problem (ignoring the delays caused by the follower’s decisions). However, if the leader selects path

1–2–3–6 in the first stage, then the follower response in the second stage would be path 1–4–3–6 and
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the corresponding leader’s objective function value would be 7 (4 + 3) because both agents would

use arc (3, 6). On the other hand, the path that the leader selects induces a follower response that

avoids using common arcs, yielding the optimal objective value of 5.

The second class of problems we study are interdiction problems. In this setting, the leader

(or attacker) and the follower (or defender) play a zero-sum Stackelberg game, also known as an

attacker-defender game. The leader selects a set of actions pursuing the sole objective of worsening

the follower’s objective function value. For instance, if the follower attempts to minimize an objective

function, then the leader seeks to maximize the minimum achievable follower’s objective. Typically,

the leader’s actions from the first stage (attack) affect the follower’s feasible region and objective.

In this context, an attack is not necessarily due to a malicious adversary, but could alternatively

represent some bounded worst-case scenario on a system’s uncertain failures. We also analyze a

three stage version of these games in which the defender is able to protect some assets beforehand,

and then the attacker is not allowed to attack protected assets while playing the attacker-defender

game described above. These games are known as defender-attacker-defender games.

We illustrate this attacker-defender setting with a variation of the bilevel shortest-path

problem described above. As before, both the leader and the follower seek a path from node 1 to

node 6. In contrast to the bilevel setting, the leader’s objective is now to maximize the follower’s

minimum-cost path. As before, if an arc is traversed by both agents, then its cost is increased by

3 units. Follower arc costs are displayed alongside the arcs in Figure 1.2. Figure 1.2b depicts an

optimal solution to the attacker-defender shortest-path problem described. The leader selects path

1
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Figure 1.2: Shortest path interdiction problem from node 1 to 6. Follower costs displayed along-
side the arcs. Bold arcs represent an optimal leader path and dashed arcs represent an optimal
corresponding follower response.
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1–2–4–3–6 and the follower responds with path 1–2–3–6, yielding a follower’s objective function

value of 10 (4 + 6). Note that the follower’s minimum-cost path has a cost of 4 (ignoring the delays

caused by the leader’s decisions), and the leader is able to increase this minimum cost by 6 units.

The third class of problems we study are two-stage stochastic programming problems. In

this setting the leader selects a vector of decisions in the first stage, before the realization of some

uncertain parameters. In the second stage (or recourse problem), the follower determines the re-

maining variable values in response to the first-stage variables and to the realization of the uncertain

parameters. The leader and the follower cooperate towards the goal of minimizing the total expected

cost.

We modify the bilevel shortest-path problem described above to illustrate this two-stage

stochastic programming setting. In this case, the cost of the arcs is uncertain and both the leader

and the follower seek a unique path from node 1 to node 6 that minimizes the expected travel cost.

In the first stage, the leader selects an initial path considering a deterministic fixed cost (displayed

outside the parentheses in Figure 1.3) and two equiprobable variable arc cost scenarios (a low-cost

and a high-cost scenario displayed inside the parentheses in Figure 1.3). In the second stage, after

the realization of the uncertain variable arc cost, the follower is allowed to reevaluate part of the

first-stage path by performing at most one detour. We define a detour from node i to node j as

any path i–k–j such that k 6= i and k 6= j. For instance, if the leader selects path 1–4–5–6 in the

first stage, the follower is allowed to select paths 1–2–4–5–6, 1–4–3–5–6, and 1–4–5–6. The optimal
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Figure 1.3: Shortest-path problem from node 1 to 6 having arc cost uncertainty. Fixed costs displayed
outside the parentheses and two cost scenarios displayed inside the parentheses. Bold arcs represent
an optimal first-stage path.
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first-stage solution is path 1–4–5–6. Under the low-cost scenario, the follower does not change the

first-stage path, yielding a cost of 10 (4 + 3 + 3) units. Under the high-cost scenario, the follower

selects path 1–4–3–5–6, yielding a cost of 22 (8 + 5 + 4 + 5) units, in contrast to the 24 units of cost

corresponding to path 1–4–5–6 under the high-cost scenario. The total expected travel cost is 16.

Exact solution techniques for multistage optimization problems often rely on strong dual

formulations to the second-stage problem. A prevalent approach in the literature reformulates the

multistage optimization problem as a single-level problem by appending the lower-level problem

Karush-Kuhn-Tucker or Fritz-John optimality conditions to the upper-level problem or by taking

the dual of the second-stage problem to combine the first- and second-stage problems. The resulting

combined single-level problem is often a bilinear program, which is usually transformed into a mixed-

integer program by means of linearization techniques.

Another approach to solve multistage optimization problems is based on cutting-plane algo-

rithms related to Benders’ decomposition. The main idea of Benders’ decomposition approaches is

to formulate an equivalent single-level master problem, which is a projection of the original problem

onto the space of the first-stage variables. This problem is then solved by a cutting-plane algorithm,

which derives cuts from subproblems that are obtained by fixing the first-stage variables. Benders’

decomposition algorithms have proven to be specially successful for problems in which the second

stage is a linear program. The special structure of the value function of a linear program, which is

convex and piecewise linear, facilitates its approximation by means of cuts derived from the dual of

the second-stage problem.

Since existing exact solution approaches for multistage optimization problems from the

literature usually rely on strong duality, they often require the second-stage problem to be linear

or convex. These approaches usually fail to solve multistage optimization problems for which the

second-stage problem is nonconvex (e.g., due to the presence of discrete decision variables) because

of the lack of polynomial-sized strong dual formulations. We contribute new exact algorithms for

three classes of challenging multistage optimization problems, in which we do not assume that the

second-stage problem is linear or convex and allow the existence of discrete variables in both the first-

and second-stage problems. We demonstrate that, in some cases, our approach not only solves more

general classes of multistage optimization problems than previous approaches from the literature but

also outperforms traditional approaches on multistage problems for which the second-stage problem

is convex.
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1.2 Literature Review

We now present developments in bilevel programming, interdiction, and integer stochastic

programs. Bilevel programming has multiple applications in areas such as traffic systems [Brotcorne

et al., 2001, Dempe and Zemkoho, 2012, Labbé et al., 1998, Migdalas, 1995], resource allocation

[Xu et al., 2012], natural gas market regulation [Dempe et al., 2005, 2011, Kalashnikov et al.,

2010], waste management [Xu and Wei, 2012], bioengineering [Burgard et al., 2003], and chemical

engineering [Bollas et al., 2009, Mitsos et al., 2009a,b]. Two problems in bilevel mixed-integer

programming include a nonlinear procurement problem [Prince et al., 2013a] and a competitive

product introduction game [Hemmati and Smith, 2016]. Prince et al. [2013a] examine the case in

which two firms seek to purchase, at minimum cost, a product from various capacitated suppliers.

The lower-level problem is converted to a linear program, whose optimality conditions are represented

using constraints that enforce strong duality. This paper is notable in that one version of the problem

allows the leader to suboptimize its decisions by some parameter δ in order to maximize the minimum

follower objective. The competitive set covering problem of Hemmati and Smith [2016] considers

a linear bilevel mixed-integer program, which is inspired by product introduction games. Their

approach to solving the problem is based on an exponential-size reformulation of the problem that

is amenable to solution via a cutting-plane algorithm.

Existing algorithms in the literature focus primarily on continuous bilevel programs. Bard

[1983], Candler and Townsley [1982], and Tuy et al. [1993] propose algorithms based on extreme

point enumeration. A single-level reformulation of the problem, obtained by appending the lower-

level problem Karush-Kuhn-Tucker or Fritz-John optimality conditions to the upper-level problem

is studied by Dempe and Zemkoho [2013, 2014], Dempe and Franke [2015], Hansen et al. [1992],

Shi et al. [2005], and Shi et al. [2006]. Tsoukalas et al. [2009] develop an exact algorithm for

nonconvex bilevel problems. The algorithm performs a binary search over the leader’s objective

values using an “oracle” that decides whether a target objective value is achievable or not. Mitsos

et al. [2008] propose an optimal-value-function reformulation for solving nonlinear bilevel problems

having nonconvex functions in both the upper and lower level. Dempe et al. [2007] and Dempe and

Pilecka [2015] study necessary optimality conditions for the optimistic formulation, while Dempe

et al. [2014] study conditions for the pessimistic formulation. Wiesemann et al. [2013] study the

computational complexity of pessimistic bilevel problems and devise an ε-approximation.
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For bilevel mixed-integer linear programs (BMILPs) under the optimistic assumption, Bard

and Moore [1992] propose a binary search procedure that fixes the leader variables to uncover fea-

sible solutions while iteratively improving a bound on the objective function value. They assume

that all variables are binary and that there are no constraints in the upper-level problem. Moore

and Bard [1990] propose a basic implicit enumeration scheme that solves small problems having up

to 40 variables, assuming that the lower-level variables do not appear in the upper-level constraints.

DeNegre and Ralphs [2009] extend this idea and propose a branch-and-cut algorithm for the case

in which all variables are integer. They report computational experiments on a set of interdiction

problems (with sizes ranging from 20 to 34 variables) in which the lower-level problem is a binary

knapsack problem. Saharidis and Ierapetritou [2009] propose a Benders-decomposition-based algo-

rithm. Their approach iteratively solves a subproblem (SP) obtained by fixing the integer variables

to a feasible value and a restricted master problem (RMP), which is a relaxation of the original

bilevel problem. In each iteration of the algorithm, the SP generates a cut for the RMP, which

converges to an optimal solution assuming that the leader has control over all the integer variables

in both the upper- and lower-level problems. Mitsos [2010] solves nonconvex bilevel problems using

an optimal-value-function reformulation to obtain a sequence of nondecreasing lower bounds, which

converge to the optimal objective value. Xu and Wang [2014] propose a branch-and-bound algorithm

that solves a series of mixed-integer linear programs, branching on the contribution of the first-stage

variables to the lower-level constraints to generate multiple branches at each node. They assume

that all leader variables are integer-valued and that the contribution of the first-stage variables to

the lower-level constraints is integer valued. Their work is also notable for reporting a comprehensive

computational study, on instances with sizes ranging from 20 to 920 variables.

Another line of research in BMILPs is based on parametric programming, which attempts

to represent the follower’s optimal variable values as a function of the leader’s variables. Algorithms

in this area are proposed by Domı́nguez and Pistikopoulos [2010] for the (mixed-)integer case and

by Köppe et al. [2010] for a linear case in which the leader variables are continuous and the follower

variables are integer. These works adopt the optimistic assumption and present computational

results over small-sized example problems. Faisca et al. [2007] propose a parametric programming

approach that transforms the original bilevel problem into a set of quadratic, linear, or mixed-integer

linear programming problems.

Fanghänel and Dempe [2009] study optimality conditions for bilevel programs with contin-
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uous upper-level and discrete lower-level problems. See also the work of Dempe et al. [2015] for a

recent survey on bilevel programming.

Special cases of bilevel programs include interdiction problems, in which the leader seeks to

minimize the follower’s objective, and robust optimization problems in which the follower seeks to

minimize the leader’s objective [Wood, 1993]. Interdiction problems have multiple applications in

areas such as military and homeland security operations [Brown et al., 2005a, 2006, 2009, Morton

et al., 2007, Pan et al., 2003, Washburn and Wood, 1995], facility protection [Church and Scaparra,

2007, Church et al., 2004, Scaparra and Church, 2008a,b], survivable network design [Smith et al.,

2007], and power grid protection [Salmerón et al., 2004, 2009]. At a more abstract level, interdic-

tion problems can often be modeled as games that take place over networks having well-studied

recourse problems. Some of these network interdiction problems include shortest path [Bayrak and

Bailey, 2008, Cappanera and Scaparra, 2011, Fulkerson and Harding, 1977, Golden, 1978, Held and

Woodruff, 2005, Held et al., 2005, Israeli and Wood, 2002], maximum flow [Cormican et al., 1998,

Royset and Wood, 2007, Wollmer, 1964, Wood, 1993], and multicommodity flow [Lim and Smith,

2007] studies.

Of particular interest in this dissertation are previous studies on defender-attacker-defender

problems that fit within the problem framework studied in Chapter 3. Church and Scaparra [2007]

consider fortification decisions for the interdiction median problem with fortification (IMF), which

arises in the context of facility protection. They reformulate the three-level problem into a single-

level mixed-integer programming problem (MIP) by explicitly enumerating all possible attack plans.

If the number of attack plans is not too large, then the resulting MIP can be solved via commercial

branch-and-bound software. Scaparra and Church [2008b] extend this idea by reformulating the

problem as a single-level maximal covering problem with precedence constraints. They propose a

heuristic algorithm for finding upper and lower bounds, which they use to reduce the size of the

original model. Scaparra and Church [2008a] formulate the IMF as a bilevel programming problem

and solve it with a specialized implicit enumeration algorithm that efficiently solves the lower-

level interdiction problem. This approach was extended by Cappanera and Scaparra [2011] for the

allocation of protective resources in a shortest-path network.

Another line of research in defender-attacker-defender problems focuses on duality as a

mechanism for formulating interdiction problems. Brown et al. [2006] study the problem of protecting

critical components in an electric power grid. Their approach combines the second- and third-stage
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problems by taking the dual of the third-stage problem, and solves the resulting problem using a

special Benders’ decomposition algorithm in which the subproblem is an MIP. Smith et al. [2007] take

a similar approach for the survivable network design problem. They rely on the dual of the third-

stage problem to combine the second- and third-stage problems into a disjointly constrained bilinear

program, which is then transformed into a MIP by applying a standard linearization technique. The

resulting bilevel problem is solved with a cutting-plane approach. Prince et al. [2013b] followed these

ideas for a three-stage procurement optimization problem under uncertainty. They transform the

third-stage (nonconvex) procurement problem into a large-scale shortest path problem, which can

then be solved by the foregoing strategies. Because the MIP is too large to solve using standard

approaches, the authors propose a scaling approach to quickly obtain optimal MIP solutions. For

a comprehensive literature review on interdiction problems, see [Brown et al., 2005b, Smith, 2010,

Smith and Lim, 2008].

The Prince et al. [2013b] study is notable in that its recourse problem is nonconvex. The

authors obviate this nonconvexity by formulating an equivalent linear programming model that is

pseudopolynomial in size. There are relatively few studies that regard interdiction problems having

more general nonconvex recourse problems. One example of such study is considered by Yen et al.

[2014], who provide an exact approach for solving two-stage interdiction problems having mixed-

integer recourse variables and (general) integer interdiction variables. Their approach is based on

the dualization of a convex restriction of the recourse problem, which is iteratively enlarged as

their algorithm converges to an optimal solution. Their approach is capable of solving relatively

modest-sized problems to optimality.

Regarding stochastic programs having integer variables, an important line of research focuses

on extending L-shaped or Benders’ methods, which are among the most successful algorithms for

stochastic linear programs. Laporte and Louveaux [1993] propose a cutting-plane approach for

problems having binary first-stage variables. They solve the recourse problem by branch-and-bound

and derive first-stage cuts from the objective function values of the recourse problems. These

cuts prevent the algorithm from exploring the same first-stage solution twice, thus guaranteeing

finite termination. Laporte et al. [2002] implement this method for the capacitated vehicle routing

problem with stochastic demands and solve instances having up to 100 customers. This approach

is generalized by Carøe and Tind [1998] for mixed-integer first-stage variables. They propose a

Benders’ decomposition algorithm based on general duality theory. Their approach derives feasibility
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and optimality cuts from dual variables, which are obtained at the termination of a cutting-plane

or branch-and-bound algorithm used for solving the recourse problem.

Sherali and Fraticelli [2002] propose a Benders’ decomposition method for problems in which

first- and second-stage variables are binary. Their algorithm generates partial descriptions of the

convex hull of the recourse problem based on the Reformulation-Linearization Technique (RLT) of

Sherali and Adams [1999]. Sen and Higle [2005] use an alternative convexification process based

on disjunctive programming (see also related work in [Ntaimo and Sen, 2005, Sen and Sherali,

2006]). Sherali and Smith [2009] consider stochastic programs involving binary first-stage variables

and second-stage variables that include both continuous decision variables and binary risk variables.

The risk variables are specially structured so that the second-stage problem can be convexified using

the RLT.

Gade et al. [2014] propose a Benders’ decomposition algorithm for problems in which the

first-stage variables are binary and the second-stage variables are general integers. Their decompo-

sition algorithm approximates the recourse problem using Gomory cuts, which are parametrized by

the first-stage decisions. The resulting master problem is a linear integer program. Their work is no-

table for providing an approximation of the expected recourse function by piecewise linear functions

of the first-stage variables.

Another line of research in stochastic integer programs focuses on branch-and-bound algo-

rithms. Carøe and Schultz [1999] present a branch-and-bound algorithm in which a Lagrangian dual

is solved at each node of the tree. They reformulate the problem by introducing copies of the first-

stage variables and obtain a Lagrangian relaxation with respect to non-anticipativity constraints,

which require the copies of the first-stage variables to be equal. Finite termination is guaranteed if

the first-stage variables are integer, or for an ε-optimal termination condition. Ahmed et al. [2004]

propose an algorithm for two-stage stochastic integer programs that exploits structural properties

of the recourse problem value function. Their scheme develops a branching strategy that guarantees

finite termination even if the first-stage problem allows continuous variables.

Other approaches to solve stochastic integer programs include enumeration algorithms

[Schultz et al., 1998], convex approximations [Haneveld et al., 2006, van der Vlerk, 2004], branch-

and-fix [Alonso-Ayuso et al., 2003, Escudero et al., 2010], and branch-and-price [Lulli and Sen, 2004],

among others. We refer the reader to [Haneveld and van der Vlerk, 1999, Schultz, 2003, Sen, 2005]

for surveys on stochastic mixed-integer programming.
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Because BDDs are relevant to our approach described in Chapter 5, we briefly cover some

of the related developments in this area of research. BDDs were first introduced as graphical repre-

sentations of a Boolean function in the context of circuit design and formal verification [Akers, 1978,

Lee, 1959]. From an optimization perspective BDDs have been used in the generation of valid in-

equalities for integer programs [Becker et al., 2005], vertex and facet enumeration for combinatorial

problems [Behle and Eisenbrand, 2007], and a general branch-and-bound solver for discrete opti-

mization problems [Bergman et al., 2016]. A generalization of BDDs known as multivalued decision

diagrams is used for solving sequencing problems [Cire and van Hoeve, 2013] and multidimensional

bin packing [Kell and van Hoeve, 2013]. The relationship between BDDs and dynamic programming

is explored in [Hooker, 2013].

1.3 Organization of the Dissertation

Chapter 2 examines bilevel mixed-integer programs whose constraints and objective func-

tions depend on both upper- and lower-level variables. The class of problems we consider allows for

nonlinear terms to appear in both the constraints and the objective functions, requires all upper-

level variables to be integer, and allows a subset of the lower-level variables to be integer. This class

of bilevel problems is difficult to solve because the upper-level feasible region is defined in part by

optimality conditions governing the lower-level variables, which are difficult to characterize because

of the nonconvexity of the follower problem. We contribute an exact finite algorithm for these prob-

lems based on an optimal-value-function reformulation. We demonstrate how this algorithm can

be tailored to accommodate either optimistic or pessimistic assumptions on the follower behavior.

Computational experiments demonstrate that our approach outperforms a state-of-the-art algorithm

for solving bilevel mixed-integer linear programs.

Chapter 3 examines a class of three-stage sequential defender-attacker-defender problems.

In these problems the defender first selects a subset of assets to protect, the attacker next damages a

subset of unprotected assets in the interdiction stage, after which the defender optimizes a recourse

problem over the surviving assets. These problems are notoriously difficult to optimize, and almost

always require the recourse problem to be a convex optimization problem. Our contribution is a

new approach to solving defender-attacker-defender problems. We require all variables in the first

two stages to be binary-valued, but allow the recourse problem to take any form. The proposed
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framework focuses on solving the interdiction problem by restricting the defender to select a recourse

decision from a sample of feasible vectors. The algorithm then iteratively refines the sample to force

finite convergence to an optimal solution. We demonstrate that our algorithm not only solves

interdiction problems involving NP-hard recourse problems within reasonable computational limits,

but it also solves shortest path fortification and interdiction problems more efficiently than state-of-

the-art algorithms tailored for that problem, finding optimal solutions to real-road networks having

up to 300,000 nodes and over 1,000,000 arcs.

Chapter 4 solves a defender-attacker-defender problem over a traveling salesman problem

(TSP), which is a well-known NP-hard problem that seeks a minimum-cost Hamiltonian cycle

(tour) over a graph [Flood, 1956, Lawler et al., 1985]. We present the traveling salesman problem

with interdiction and fortification (TSPIF). In the first stage (fortification), the defender fortifies a

subset of arcs. In the second stage (attack), an attacker interdicts a subset of unprotected arcs, thus

increasing their cost. In the third stage (recourse), the defender solves a TSP defined using the costs

resulting from the attack stage. Apart from defense applications, the TSPIF arises as an alternative

conservative approach to modeling routing problems under uncertainty, in which the road travel

times may not be known in advance due to congestion effects [Pillac et al., 2013]. Our proposed

approach employs the exact approach proposed in Chapter 3 augmented with a TSP restriction

phase to accelerate the convergence of the algorithm. Our computational results show success for

the first time in optimally solving defender-attacker-defender TSP problems.

Chapter 5 considers a class of two-stage stochastic integer programming problems with bi-

nary variables appearing in both stages. The special class of problems has a set-covering structure

in the second stage, where both first- and second-stage variables can be used to satisfy those con-

straints. Our approach seeks to uncover strong dual formulations to the second-stage problems

by transforming them into dynamic programming (DP) problems parameterized by first-stage vari-

ables. We demonstrate how these DPs can be formed by use of binary decision diagrams (BDDs),

which are layered directed acyclic graphs in which arcs correspond to assigning values to binary vari-

ables. Using BDDs we reformulate the second-stage problem as a shortest-path problem in which

arcs availabilities are given as a function of the first-stage variables. This representation allows

us to parameterize our optimal DP solutions as a function of the first-stage variables, which then

yield traditional Benders inequalities that can be strengthened based on observations regarding the

structure of the resulting BDDs. Moreover, we limit the size of the resulting BDDs by employing
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concepts related to the minimization of branchwidth on hypergraphs. We demonstrate the efficacy

of our approach on a set of stochastic vertex cover problems.
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Chapter 2

A Value-Function-Based Exact

Approach for the Bilevel

Mixed-Integer Programming

Problem

2.1 Problem Statement

We study a class of problems known as bilevel mixed-integer programs (BMIPs). These

problems are modeled as two-level, two-player Stackelberg games, in which two decision makers

sequentially solve interdependent problems that optimize different objective functions. In the first

stage an upper-level decision maker (leader) determines values for its set of variables, while in

the second stage a lower-level decision maker (follower) solves an optimization problem that is

parametrized by the leader decisions. Formally, let x ∈ Hx be an n1-dimensional vector of variables

controlled by the leader and y ∈ Hy be an n2-dimensional vector of variables controlled by the

follower, where host set Hx = {x | x ≥ 0; xi ∈ Z, ∀i ∈ I ⊆ {1, . . . , n1}} and Hy = {y | y ≥ 0; yj ∈

Z, ∀j ∈ J ⊆ {1, . . . , n2}}. Let φl, φf , gkj , and hkj be continuous (and possibly nonconvex) functions
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defined over Hx ×Hy, for k = 1, 2 and j = 1, . . . ,mk. The BMIP can be formally stated as:

z∗ = max
x,y

φl(x,y) (2.1a)

s.t. g1
j (x) + h1

j (y) ≤ b1j ∀j = 1, . . . ,m1 (2.1b)

y ∈ argmax
yf

{φf (x,yf ) | g2
j (x) + h2

j (y
f ) ≤ b2j , ∀j = 1, . . . ,m2; yf ∈ Hy} (2.1c)

x ∈ Hx, (2.1d)

where dummy variables yf replace y in the lower-level problem. Note that if the lower-level problem

has alternative optimal solutions, then the follower will select a ŷ that maximizes φl, thus benefiting

the leader. This is known as the optimistic formulation of the problem. We also consider a pessimistic

formulation in Section 2.4, in which the follower seeks to worsen the leader’s objective among all

alternative optimal solutions to its own problem.

Our proposed approach requires the following assumptions:

• Assumption 1: Both the upper- and lower-level feasible regions are compact sets. This as-

sumption, in conjunction with the continuity of φl and φf , ensures the existence of global

optimal solutions for all optimization problems solved by our approach.

• Assumption 2: g2
j (x) is integer-valued for all x ∈ Hx, j = 1, . . . ,m2. This assumption

guarantees the exactness of our algorithm. Remark 1 in Section 2.2.2 discusses the implications

of this assumption in more detail.

• Assumption 3: All leader variables are integer-valued. This assumption guarantees the finite

termination of our algorithm as demonstrated by Proposition 4 in Section 2.2.3.

Additionally, our approach necessitates the repeated solution of subproblems stemming from

problem (2.1), which we describe in Section 2.2.2. Because the algorithm proposed in this chapter is

general, we do not prescribe tailored methods for solving individual classes of subproblems that might

arise. We instead assume that those subproblems are solved by appropriate algorithms available in

the literature. Of course, certain classes of nonlinear programs resist solution in practice by any

known algorithm, and therefore an implicit assumption must also be made that the subproblems

stemming from (2.1) are practically solvable.

Our proposed algorithm relies on establishing a partial enumeration of follower solutions.
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Unlike the case of interdiction problems, though, restricting the follower to select from a set of

sampled solutions does not result in an upper bound on the leader’s problem. Therefore, one of the

primary challenges we address regards the development of lower- and upper-bounding mechanisms

based on a sampling scheme for the follower. We then contribute variable fixing and inequality

generation schemes that accelerate the convergence of our algorithm, which we show runs up to

17 times faster than a state-of-the-art approach for BMILPs proposed by Xu and Wang [2014]

over test instances from the literature. Finally, we contribute a modification to our approach that

accommodates the so-called pessimistic assumption for BMIPs, and illustrate on a competitive

scheduling problem why implicitly treating the objective as a nonlinear function is important in

obtaining good computational results.

The remainder of this chapter is organized as follows. Section 2.2 presents the sampling-

based algorithm and establishes the finite convergence of our approach to an optimal solution.

Section 2.3 devises strengthening strategies for our mathematical formulations. Section 2.4 extends

our algorithm to accommodate the pessimistic assumption. Section 2.5 presents a featured study on

competitive scheduling. Finally, Section 2.6 presents our computational experiments.

2.2 A Sampling-Based Exact Algorithm

The proposed algorithm employs a BMIP relaxation that considers disjunctive constraints,

which are generated from a subset or sample of feasible follower responses. Our algorithm iteratively

solves this relaxation to obtain an upper bound on the BMIP; uncovers bilevel feasible solutions to

obtain lower bounds; and enlarges the current sample to potentially obtain tighter upper bounds at

subsequent iterations. The algorithm stops once it proves global optimality of the current incumbent

solution. Section 2.2.1 presents relevant definitions and notation. Section 2.2.2 describes the pro-

posed BMIP relaxation, while Section 2.2.3 presents our algorithm and proves its finite convergence.

Section 2.2.4 discusses our sampling approach. Finally, Section 2.2.5 discusses the case in which the

objectives and constraints are linear.
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2.2.1 Definitions and Notation

Let

X (y) = {x | g1
j (x) ≤ b1j − h1

j (y), ∀j = 1, . . . ,m1; x ∈ Hx} (2.2)

be the region defined by the leader constraints for any fixed follower decision vector y and

Y(x) = {y | h2
j (y) ≤ b2j − g2

j (x), ∀j = 1, . . . ,m2; y ∈ Hy} (2.3)

be the region defined by the follower constraints for a fixed leader decision vector x. Define

Ω = {(x,y) | x ∈ X (y), y ∈ Y(x)} (2.4)

as the region obtained by relaxing the optimality requirement for the follower variables in formulation

(2.1), and define

Ω(X ) = {x | ∃y such that (x,y) ∈ Ω} (2.5)

as the projection of Ω onto the leader decision space. Next, let

Ψ(x) = argmax{φf (x,y) | y ∈ Y(x)} (2.6)

be the follower rational reaction set for each leader solution x, i.e., the set of all follower solutions

that satisfy (2.1c) for a given value of x. Finally, define

Y =
⋃

x∈Ω(X )

Y(x) (2.7)

as the set of all feasible follower responses.

An (x,y)-solution is called bilevel feasible if x ∈ X (y) and y ∈ Ψ(x). The BMIP can now

be restated as

z∗ = max
(x,y)
{φl(x,y) | x ∈ X (y), y ∈ Ψ(x)}. (2.8)
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Note that if Ψ(x) is not a singleton, then the follower will select a ŷ ∈ Ψ(x) that maximizes φl(x,y),

because of our so-called optimistic assumption that the follower breaks ties in favor of the leader.

We extend our algorithm for a pessimistic formulation of the problem in Section 2.4.

The single-level optimization problem obtained by relaxing the optimality requirement (2.1c)

for the follower variables is called the high point problem (HPP). This problem is stated as

zHPP = max
(x,y)∈Ω

{φl(x,y)}. (2.9)

An optimal solution to the HPP yields a valid upper bound on z∗.

2.2.2 Solving the BMIP

We propose a single-level optimal-value-function reformulation for the BMIP [Ye and Zhu,

1995, Ye, 2006, Mitsos et al., 2008]. This formulation is based on the following result, which is

adapted from Lemma 2.1 in Ye [2006] for the problem we consider in this chapter.

Proposition 1. A solution (x,y) ∈ Ω is bilevel feasible if and only if φf (x,y) ≥ φf (x, ŷ) for every

ŷ ∈ Y(x).

Proof Assume that (x,y) is bilevel feasible and suppose by contradiction that there exists a follower

solution ŷ ∈ Y(x) such that φf (x,y) < φf (x, ŷ). Then y 6∈ Ψ(x), which contradicts the assumption

that (x,y) is bilevel feasible. Now assume that φf (x,y) ≥ φf (x, ŷ) for all ŷ ∈ Y(x). This implies

that y ∈ Ψ(x). Moreover, x ∈ X (y) since (x,y) ∈ Ω, and so (x,y) is bilevel feasible. This completes

the proof. �

This proposition implies that a reformulation may allow the leader to control both the x- and

y-variables (as in the HPP), while formulating disjunctive constraints that enforce bilevel feasibility.

These constraints require that for every ŷ ∈ Y, the leader must either select an (x,y) such that

φf (x,y) ≥ φf (x, ŷ), or block follower solution ŷ by selecting an x such that ŷ 6∈ Y(x). Note that

if ŷ 6∈ Y(x) for some (x, ŷ), then g2
j (x) + h2

j (ŷ) > b2j must hold for at least one j ∈ {1, . . . ,m2},

implying that ŷ is blocked by constraint j. The leader must therefore satisfy at least one constraint

of the form g2
j (x) > b2j − h2

j (ŷ) to block follower solution ŷ.

Proposition 2. Define γŷj = bb2j − h2
j (ŷ)c + 1 for every ŷ ∈ Y, j = 1, . . . ,m2. The leader blocks

solution ŷ ∈ Y by constraint j if and only if g2
j (x) ≥ γŷj.
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Proof Note that g2
j (x) is integer-valued by Assumption 2. If g2

j (x) ≥ γŷj , then because γŷj >

b2j − h2
j (ŷ), solution (x, ŷ) violates follower constraint j. If g2

j (x) < γŷj , then g2
j (x) ≤ γŷj − 1 =

bb2j − h2
j (ŷ)c ≤ b2j − h2

j (ŷ). Thus, g2
j (x) + h2

j (ŷ) ≤ b2j and solution (x, ŷ) does not violate follower

constraint j. This completes the proof. �

Remark 1. If we relax Assumption 2, thus allowing g2
j (x) to take on fractional values, then Propo-

sition 2 could be adjusted by setting γŷj = b2j −h2
j (ŷ) and requiring that g2

j (x) > γŷj. However, these

strict inequalities can lead to open feasible sets, which further complicates the optimization model.

We omit the analysis of this case by imposing Assumption 2. However, we discuss how to address a

similar complication that arises in the solution of the pessimistic case in Section 2.4. The strategies

for the pessimistic case can in turn be used for problems that do not satisfy Assumption 2.

Define B(ŷ,Y) = {(y′, q) | γy′q ≥ γŷq, y′ ∈ Y, q = 1, . . . ,m2}. This set represents

all ordered pairs (y′, q), such that if x blocks follower solution y′ ∈ Y by constraint q, then x also

blocks solution ŷ by constraint q. Also, define binary variables wŷj = 1 if constraint j blocks solution

ŷ; if wŷj = 0, then constraint j may or may not block ŷ. We formulate the Extended High Point

Problem (EHPP), where the M -values are large constants whose values we discuss subsequently.

max
(x,y)

φl(x,y) (2.10a)

s.t. g2
j (x) ≥ −M1

j +
∑
ŷ∈Y

(M1
j + γŷj)wŷj ∀j = 1, . . . ,m2 (2.10b)

φf (x,y) ≥ φf (x, ŷ)−M2
ŷ

∑
(y′,q)∈B(ŷ,Y)

wy′q ∀ŷ ∈ Y (2.10c)

(x,y) ∈ Ω (2.10d)

wŷj ∈ {0, 1} ∀ŷ ∈ Y, j = 1, . . . ,m2. (2.10e)

The objective function (2.10a) maximizes the leader’s objective. Constraints (2.10b) and (2.10c)

utilize binary variables to enforce the bilevel feasibility condition established in Proposition 1. In

particular, constraints (2.10b) ensure that for every follower constraint j, wŷj = 0 for all ŷ ∈

Y such that g2
j (x) < γŷj . In fact, there exists an optimal solution such that wŷj = 1 for ŷ ∈

argmax
y′∈Y

{γy′j | g2
j (x) ≥ γy′j}; if no such index exists, then wŷj = 0, ∀ŷ ∈ Y. Constraints (2.10c)

then imply that the leader must select an (x,y) such that φf (x,y) ≥ φf (x, ŷ) for every ŷ ∈ Y,

unless ŷ has been blocked. Constraints (2.10d) enforce both the upper- and lower-level constraints,
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and constraints (2.10e) restrict the w-variables to be binary-valued.

The M -values in EHPP must be defined to be sufficiently large so that that (2.10b) and

(2.10c) are valid. It is vital for model tightness and computational precision to define the smallest

valid parameter values possible, and so we specify how those parameters should be defined in Section

2.6.5. Practically speaking, if the parameters obtained for the M -values are still large enough to

cause numerical instability, then an alternative methodology that does not require the use of these

M -values would become necessary.

Proposition 3. The EHPP is equivalent to the BMIP.

Proof We first consider a feasible solution (x,y,w) to the EHPP, and show that (x,y) is feasible to

the BMIP as formulated in (2.8). Constraints (2.10d) ensure that x ∈ X (y) and y ∈ Y(x). To show

that y ∈ Ψ(x), note that constraints (2.10b) and (2.10c) enforce the bilevel feasibility condition

established in Proposition 1. Thus (x,y) is feasible to the BMIP.

Now we show that for every solution (x,y) that is feasible to the BMIP, there exists a w

such that (x,y,w) is feasible to the EHPP. For each j = 1, . . . ,m2, identify a solution

ŷj ∈ argmax
y′∈Y

{γy′j | g2
j (x) ≥ γy′j}.

Define w by setting

wŷjj = 1 and wŷj = 0, ∀ŷ ∈ Y \ {ŷj}. (2.11)

Clearly, this solution satisfies (2.10b), (2.10d), and (2.10e). Assume by contradiction that (x,y,w)

violates at least one constraint (2.10c). Then, there exists a ŷ ∈ Y such that φf (x,y) < φf (x, ŷ) and

wy′q = 0, ∀(y′, q) ∈ B(ŷ,Y), which by Proposition 2 implies that ŷ ∈ Y(x). Because of Proposition

1, this contradicts the assumption that (x,y) is feasible for the BMIP.

Because the objective function for both problems is the same, any feasible EHPP solution

corresponds to a BMIP solution having the same objective, and vice versa. This completes the proof.

�

Solving the EHPP requires the enumeration of all solutions in Y, which could be an

exponential-size or infinite set. Therefore, we define a Relaxed Extended High Point Problem

(REHPP), which only includes a subset Ŷ ⊆ Y of follower responses. Formally, problem REHPP(Ŷ)
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is defined exactly as EHPP, except that Y is replaced by Ŷ throughout. Define z(Ŷ) as the optimal

objective function value to REHPP(Ŷ).

Lemma 1. For any Ŷ ⊆ Y, z(Ŷ) ≥ z∗.

Proof Problem REHPP(Ŷ) is a relaxation of the EHPP because it only considers a subset of

disjunctive constraints (2.10b) and (2.10c). Since the EHPP is equivalent to the BMIP by Proposition

3, REHPP(Ŷ) is in turn a relaxation for the BMIP, for any Ŷ ⊆ Y. �

Remark 2. It is instructive to note the relationship between our approach and some similar ap-

proaches in the literature. First, we compare our approach with the sample-based relaxation proposed

by Mitsos et al. [2008] and Mitsos [2010]. The latter works define a sample of pairs (X̂ , ŷ) where

X̂ ⊂ Ω(X ) is a subset of leader solutions such that ŷ ∈ Y(x̂) for all x̂ ∈ X̂ . For each pair in the

sample, they use auxiliary binary variables to enforce the following logical constraint:

x ∈ X̂ ⇒ φf (x,y) ≥ φf (x, ŷ). (2.12)

Note that for a sample of feasible follower solutions Ŷ ⊆ Y, constraints (2.10b) and (2.10c) enforce

φf (x,y) ≥ φf (x, ŷ) for every ŷ ∈ Ŷ and every x ∈ Ω(X ) such that ŷ ∈ Y(x). This is equivalent

to imposing logical constraint (2.12) on a sample of pairs (X̂ , ŷ) in which X̂ contains all leader

solutions x ∈ Ω(X ) for which ŷ ∈ Y(x), rather than a subset of such leader solutions.

Next, Xu and Wang [2014] obtain upper bounds for the BMILP also based on Proposition

1. However, instead of using a value-function reformulation, their branch-and-bound algorithm gen-

erates m2 + 1 branches for a given follower solution ŷ. The first m2 branches correspond to blocking

ŷ by each one of the follower’s constraints while the last branch imposes the following constraint:

φf (x,y) ≥ φf (x, ŷ). (2.13)

As a result, their approach does not require additional binary variables or the calculation and usage of

M -values, which can lead to computational difficulties. However, the approach taken in this chapter

avoids the need to create m2 +1 branches at each node, and permits the use of additional algorithmic

tools and model extensions covered in the remainder of this chapter.
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2.2.3 Algorithm and Convergence

Algorithm 1 presents our proposed approach for solving BMIPs. This algorithm starts in

line 2 by selecting a sample of feasible follower responses Ŷ1 ⊆ Y. As we will discuss in Section 2.2.4,

the only requirement we impose on Ŷ1 for our algorithm to terminate with an optimal solution is

that Ŷ1 ⊆ Y. The main while-loop (line 3) is executed until optimality of the current incumbent

is proven or the problem is declared infeasible. Inside this loop, line 5 checks if REHPP(Ŷi) is

infeasible. If so, then line 6 terminates the algorithm. Otherwise, line 8 solves REHPP(Ŷi) over the

current sample Ŷi, obtains an optimal solution (xi,yil), and sets the new upper bound equal to the

optimal objective function of this relaxed problem. Note that (xi,yil) may not be bilevel feasible,

because yil need not belong to Ψ(xi). Line 9 then finds an optimal follower response yif ∈ Ψ(xi)

by solving max
y
{φf (xi,y) | y ∈ Y(xi)}. Line 10 defines the sample at the next iteration as the

solutions in the previous sample along with yif . Line 11 checks if (xi,yil) is bilevel feasible by testing

if φf (xi,yil) = φf (xi,yif ); if so, then yil and yif must both belong to Ψ(xi). If yil ∈ Ψ(xi), then

(xi,yil) becomes the new incumbent solution in line 12; also, the lower and upper bounds match,

and the algorithm will terminate with optimal solution (xi,yil). If (xi,yil) is not bilevel feasible,

then line 13 determines whether (xi,yif ) is bilevel feasible by checking if xi ∈ X (yif ), and if this

solution improves the current lower bound by checking if φl(xi,yif ) > LBi−1. If both conditions are

satisfied, then the lower bound and incumbent solutions are updated accordingly in line 14. If no

new lower bound is found at iteration i, then line 16 sets LBi = LBi−1. Line 20 returns an optimal

solution. Proposition 4 states the correctness and finiteness of the proposed algorithm.
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Algorithm 1 An Exact Algorithm for the BMIP

1: Initialize UB0 =∞, LB0 = −∞, and set counter i = 0
2: Select an initial subset of follower responses Ŷ1 ⊆ Y . see Section 2.2.4
3: while UBi > LBi do
4: Set i = i+ 1
5: if REHPP(Ŷi) is infeasible then
6: Terminate; the original BMIP instance is infeasible . see Remark 3
7: else
8: Obtain an optimal solution (xi,yil) to REHPP(Ŷi), and set UBi = z(Ŷi)
9: Obtain an optimal follower response yif ∈ Ψ(xi)

10: Set Ŷi+1 = Ŷi ∪ {yif}
11: if φf (xi,yil) = φf (xi,yif ) then

12: Update LBi = UBi and the incumbent solution (x̄, ȳ)← (xi,yil)
13: else if xi ∈ X (yif ) and φl(xi,yif ) > LBi−1 then

14: Update LBi = φl(xi,yif ) and the incumbent solution (x̄, ȳ)← (xi,yif )
15: else
16: Set LBi = LBi−1

17: end if
18: end if
19: end while
20: Return (x̄, ȳ)

Proposition 4. Algorithm 1 terminates finitely with an optimal solution.

Proof Suppose that Algorithm 1 completes |Ω(X )|+1 iterations of the while loop beginning at line

3. Then, by the finiteness of Ω(X ), there must be two iterations i and k, 1 ≤ i < k ≤ |Ω(X )| + 1,

such that xi = xk. At line 10 of iteration i, the algorithm includes a follower response yif ∈ Ψ(xi)

into Ŷi+1. Furthermore, because Ŷi+1 ⊆ Ŷk, we have that yif ∈ Ŷk. Since yif ∈ Y(xi) = Y(xk) and

yif ∈ Ŷk, constraints (2.10c) guarantee that φf (xk,ykl ) ≥ φf (xk,yif ), implying that ykl ∈ Ψ(xk).

Therefore, Algorithm 1 reaches line 12 at iteration k, and terminates with solution (xk,ykl ) after

iteration k. Because the algorithm terminates in no more than |Ω(X )|+ 1 iterations with a bilevel

feasible solution whose objective value equals an upper bound on z∗, Algorithm 1 terminates finitely

with a global optimal solution. �

Observe that the proof of Proposition 4 relies on the finiteness of the set Ω(X ). If we allow the

upper-level variables to be continuous, then Ω(X ) could be an infinite set, and we can no longer

claim finite convergence of Algorithm 1.

Remark 3. If the original BMIP is infeasible, then a similar argument as the one used in Proposition

4 proves that Algorithm 1 detects infeasibility in line 5 after no more than |Ω(X )| iterations. To see
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this, suppose that the BMIP is infeasible. The proof of Proposition 4 implies that if two iterations

i < k are encountered such that xi = xk, the algorithm finds a bilevel feasible solution at iteration

k. Therefore, Algorithm 1 yields distinct vectors x1,x2, . . . , and so the REHPP becomes infeasible

after no more than |Ω(X )| iterations.

2.2.4 The Sampling Scheme

We propose a sampling scheme that leverages information obtained in the HPP branch-

and-bound tree to generate an initial set of solutions Ŷ1. The intuition behind this idea is that

the HPP is equivalent to REHPP(∅). Thus, starting Algorithm 1 with Ŷ1 = ∅ would generate an

HPP solution in the first iteration. If the follower’s response y1
f in line 6 makes the HPP solution

x1 infeasible, or if the lower bound due to (x1,y1
f ) is sufficiently poor, then the second iteration

of Algorithm 1 amounts to searching for the second-best HPP solution. This process may continue

for several iterations, with Algorithm 1 generating a sequence x1,x2, . . . of solutions that appear as

feasible solutions in the HPP branch-and-bound tree.

Our proposed sampling scheme is conducted within the branch-and-bound solution of the

HPP. Our sampling scheme analyzes every node that yields a feasible HPP solution, (x,yl), and

finds an optimal follower response yf ∈ Ψ(x). If yl belongs to Ψ(x), then (x,yl) is bilevel feasible:

The procedure adds yl to the sample and updates lower bound, z, accordingly. If (x,yl) is not bilevel

feasible, then the procedure adds yf to the sample. Furthermore, if (x,yf ) is bilevel feasible, then

the procedure updates the lower bound. We terminate the sampling procedure if the best upper

bound from the branch-and-bound tree is less than or equal to z or if a maximum initial sample size

limit is exceeded.

Note that our proposed sampling scheme differs from a standard approach that simply

collects integer leader solutions generated in the branch-and-bound search and then adds the cor-

responding follower responses to the sample. Specifically, our sampling procedure only updates the

lower bound from the branch-and-bound tree when bilevel feasible solutions are found. As a result,

fewer promising leader solutions are fathomed, which in turn leads to the generation of larger and

more relevant initial samples. Preliminary computational experiments show that using our sampling

scheme reduces the execution time of Algorithm 1 by a factor of three compared to the standard

approach.

Collecting a large initial sample using our sampling scheme benefits our proposed algorithm,
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especially if Ŷ is chosen so that an optimal follower solution will typically belong to Ŷ. However, if

|Ŷ| is too large, then REHPP(Ŷ) will be large as well, and may potentially be too difficult to solve.

Therefore, it is prudent to eliminate solutions in Ŷ that will not likely appear as optimal follower

solutions in the course of Algorithm 1. Toward that purpose, we define the concept of dominated

and alternative solutions.

Definition 1. Consider solutions y,y′ ∈ Y. If φf (x,y) ≥ φf (x,y′) for all x ∈ Ω(X ) and h2
j (y) ≤

h2
j (y
′) for all j = 1, . . . ,m2, with at least one inequality being strict (among both sets of inequalities),

then y dominates y′.

Definition 2. Consider solutions y,y′ ∈ Y such that y 6= y′. If φf (x,y) = φf (x,y′) for all

x ∈ Ω(X ) and h2
j (y) = h2

j (y
′) for all j = 1, . . . ,m2, then y and y′ are said to be alternative

solutions.

Proposition 5 shows that for any sample Ŷ ⊆ Y, removing dominated solutions does not

change the optimal objective function value of REHPP(Ŷ).

Proposition 5. Consider any sample Ŷ ⊆ Y and let Ȳ = {y′ ∈ Ŷ | y does not dominate y′, ∀y ∈

Ŷ}. Problem REHPP(Ȳ) is equivalent to REHPP(Ŷ).

Proof For any pair of solutions y and y′, if y dominates y′, then γyj ≥ γy′j , ∀j = 1, . . . ,m2. This

implies that if y dominates y′, then constraint (2.10c) associated with y′ is implied by the corre-

sponding constraint associated with y. All disjunctive constraints (2.10c) associated with solutions

in Ŷ \ Ȳ are redundant, and so any feasible solution to REHPP(Ȳ) is feasible to REHPP(Ŷ) and

vice versa. Because the objective function for these problems is not affected by the sample choice,

this completes the proof. �

Remark 4. The same argument used in Proposition 5 proves that in a sample Ŷ ⊆ Y containing

a pair of alternative solutions y and y′, one can be removed without changing the optimal objective

function value of REHPP(Ŷ).

Based on these results, before solving REHPP(Ŷ) we remove dominated solutions from Ŷ and retain

only one solution out of a set of multiple alternative solutions, if any exist.
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2.2.5 The Linear Case

Of particular interest are BMILPs in which the objectives and constraints are linear. The

BMILP can be formally stated as:

max
x,y

cx + d1y (2.14a)

s.t. A1x + B1y ≤ b1 (2.14b)

y ∈ argmax
yf

{d2yf | A2x + B2yf ≤ b2; yf ∈ Hy} (2.14c)

x ∈ Hx. (2.14d)

The upper-level problem has m1 constraints, the lower-level problem has m2 constraints, and the

coefficient matrices have conforming dimensions. For our algorithm to finitely converge to an optimal

solution we must only assume that all leader variables are integer-valued, the coefficients in constraint

matrix A2 are integers, and that the x- and y-variables are bounded. Also, because the objective

functions are separable, dominance relationships become simpler in this case. Definition 3 specifies

the concept of dominance for BMILPs.

Definition 3. Let βj be the jth row of constraint matrix B2. Consider solutions y,y′ ∈ Y. If

d2y ≥ d2y′ and β2
j ŷ ≤ β2

jy
′ for all j = 1, . . . ,m2, with at least one inequality being strict (among

both sets of inequalities), then y dominates y′.

2.3 Strengthening the REHPP Formulation

Solving REHPP(Ŷ) is the most computationally expensive step of Algorithm 1. Accordingly,

we examine strategies that accelerate the solution of REHPP(Ŷ). Section 2.3.1 seeks to fix w-variable

values a priori, while Section 2.3.2 identifies supervalid inequalities (SVIs) for the problem. SVIs

potentially cut off integer solutions, but ensure that not all optimal solutions are eliminated [Israeli

and Wood, 2002].

The proposed acceleration strategies utilize lower bounds on z∗. Note that in Algorithm 1,

at the beginning of any iteration k > 1, we have a lower bound LBk−1 on z∗. At iteration k = 1

we leverage our proposed sampling scheme by setting LB0 = z. Henceforth, we will refer to these

bounds at a given iteration as LB and denote by Ŷ a sample of follower solutions in Y, with the
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iteration index omitted.

2.3.1 Fixing Variables

We propose a strategy that fixes some wŷj = 0 whenever it is impossible to set wŷj = 1 in

an optimal solution. We start by solving the following continuous optimization problem for every

j = 1, . . . ,m2:

uj = max g2
j (x) (2.15a)

s.t. g1
i (x) + h1

i (y) ≤ b1i ∀i = 1, . . . ,m1 (2.15b)

g2
i (x) + h2

i (y) ≤ b2i ∀i = 1, . . . ,m2 (2.15c)

φl(x,y) ≥ LB (2.15d)

x,y ≥ 0. (2.15e)

Lemma 2. If γŷj > uj for a solution ŷ ∈ Ŷ and a lower-level constraint j ∈ {1, . . . ,m2}, then

wŷj = 0 for any optimal REHPP(Ŷ) solution.

Proof Any optimal REHPP(Ŷ) solution (x̄, ȳ, w̄) satisfies g2
j (x̄) ≤ uj . This inequality holds because

constraints (2.15b)–(2.15d) enforce the upper- and lower-level constraints while ensuring that the

leader’s objective value is greater than or equal to the lower bound. If γŷj > uj , then any optimal

solution (x̄, ȳ, w̄) to REHPP(Ŷ) satisfies g2
j (x̄) < γŷj , which implies that w̄ŷj = 0. This completes

the proof. �

2.3.2 Supervalid Inequalities

Our first set of SVIs is based on the following observation. In the continuous relaxation

of REHPP(Ŷ), constraints (2.10b) tend to be active. This occurs because for any fixed value of x,

optimization forces the w-values to be as large as possible in order to decrease the right-hand side

of constraints (2.10c). Depending on the M -values defined, this can lead to solutions with several

w-variables taking fractional values, resulting in a weak continuous relaxation and a large branch-

and-bound tree. To mitigate the extent to which w-variables can be fractional in this manner,

Lemma 3 states the following condition.
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Lemma 3. There exists an optimal solution to REHPP(Ŷ) in which

∑
ŷ∈Ŷ

wŷj ≤ 1 ∀j = 1, . . . ,m2. (2.16)

Proof Consider an optimal solution (x̄, ȳ, w̄) to REHPP(Ŷ) in which
∑

ŷ∈Ŷ w̄ŷj > 1 for some

j ∈ {1, . . . ,m2}. An alternative optimal solution (x̄, ȳ,w′) that satisfies (2.16) exists by defining w′

as in Equation (2.11). �

Our second set of SVIs is based on the idea of identifying follower solutions that must be

blocked in an optimal solution to REHPP(Ŷ). We first obtain an upper bound, uf , on the maximum

objective achievable by the follower, while insisting that the leader’s objective value is at least LB.

uf = max φf (x,y) (2.17a)

s.t. φl(x,y) ≥ LB (2.17b)

(x,y) ∈ Ω. (2.17c)

Lemma 4. Any follower solution ŷ ∈ Ŷ such that φf (x, ŷ) > uf , ∀x ∈ Ω(X ), must be blocked in

an optimal REHPP(Ŷ) solution.

Proof Suppose by contradiction that there exists an optimal REHPP(Ŷ) solution (x̄, ȳ, w̄) that

does not block ŷ, i.e., w̄y′q = 0, ∀(y′, q) ∈ B(ŷ, Ŷ). By constraints (2.10c) and the assumption

of the lemma, we have that φf (x̄, ȳ) ≥ φf (x̄, ŷ) > uf , which implies that φl(x̄, ȳ) < LB. This

contradicts the optimality of (x̄, ȳ, w̄). �

Based on Lemma 4, let Ŷb = {ŷ ∈ Ŷ | φf (x, ŷ) > uf , ∀x ∈ Ω(X )} be the subset of follower

solutions from the sample that must be blocked. Our second set of proposed SVIs requires the leader

to block any follower solution ŷ ∈ Ŷb:

∑
(y′,q)∈B(ŷ,Ŷ)

wy′q ≥ 1 ∀ŷ ∈ Ŷb. (2.18)

Our third set of SVIs uses upper bounds on φl(x,y), obtained under the assumption that

a given solution ŷ ∈ Ŷ is not being blocked. To obtain the desired bounds, we solve for every
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ŷ ∈ Ŷ \ Ŷb the following optimization problem:

ulŷ = max φl(x,y) (2.19a)

s.t. g1
j (x) + h1

j (y) ≤ b1j ∀j = 1, . . . ,m1 (2.19b)

g2
j (x) + h2

j (y) ≤ b2j ∀j = 1, . . . ,m2 (2.19c)

g2
j (x) ≤ b2j − h2

j (ŷ) ∀j = 1, . . . ,m2 (2.19d)

x,y ≥ 0. (2.19e)

Constraints (2.19d) ensure that follower solution ŷ is not blocked by x. Let ū be the upper bound

on φl(x,y) obtained by solving model (2.19) without constraints (2.19d), i.e., without enforcing that

ŷ ∈ Ŷ is not being blocked. Note that ū ≥ ulŷ for all ŷ ∈ Ŷ \ Ŷb.

Lemma 5. All optimal solutions to REHPP(Ŷ) satisfy the following inequalities:

φl(x,y) ≤ ulŷ + (ū− ulŷ)
∑

(y′,q)∈B(ŷ,Ŷ)

wy′q ∀ŷ ∈ Ŷ \ Ŷb. (2.20)

Proof Consider any optimal REHPP(Ŷ) solution (x̄, ȳ, w̄). If ŷ is not blocked, then w̄y′q =

0, ∀(y′, q) ∈ B(ŷ, Ŷ), and inequalities (2.20) enforce φl(x,y) ≤ ulŷ. If ŷ is blocked, then

∑
(y′,q)∈B(ŷ,Ŷ)

wy′q ≥ 1

and the corresponding inequality (2.20) becomes redundant. In both cases, (x̄, ȳ, w̄) satisfies in-

equalities (2.20). �

Our fourth set of SVIs investigates the complement of inequalities (2.20). Here, we identify

the maximum attainable value of φl(x,y) when the leader blocks some solution ŷ by constraint j.

We compute this value, uŷj , by solving the following optimization problem for every ŷ ∈ Ŷ and

j = 1, . . . ,m2:

uŷj = max φl(x,y) (2.21a)

s.t. g1
i (x) + h1

i (y) ≤ b1i ∀i = 1, . . . ,m1 (2.21b)

g2
i (x) + h2

i (y) ≤ b2i ∀i = 1, . . . ,m2 (2.21c)
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g2
j (x) ≥ γŷj (2.21d)

x,y ≥ 0. (2.21e)

These continuous optimization problems provide the desired upper bound on φl(x,y), because con-

straints (2.21b)–(2.21c) enforce the upper- and lower-level constraints, while (2.21d) requires the

leader to block solution ŷ by constraint j. Lemma 6 states our fourth set of SVIs.

Lemma 6. There exists an optimal solution to REHPP(Ŷ) that satisfies the following inequalities:

φl(x,y) ≤ ū−
∑
ŷ∈Ŷ

(ū− uŷj)wŷj ∀j = 1, . . . ,m2. (2.22)

Proof Consider an optimal REHPP(Ŷ) solution (x̄, ȳ, w̄) and some j ∈ {1, . . . ,m2}. If

∑
ŷ∈Ŷ

w̄ŷj = 0,

then the corresponding inequality (2.22) becomes redundant. If

∑
ŷ∈Ŷ

w̄ŷj = 1,

then the corresponding inequality (2.22) imposes an upper bound uŷj on φl(x,y). In both cases,

(x̄, ȳ, w̄) satisfies inequalities (2.22). Because Lemma 3 guarantees the existence of an optimal

solution in which

∑
ŷ∈Ŷ

w̄ŷj ≤ 1,

this completes the proof. �

2.4 Extension to the Pessimistic Formulation

In the pessimistic formulation the follower chooses a ŷ ∈ Ψ(x) that makes x infeasible if

such a ŷ exists. If no ŷ ∈ Ψ(x) exists for which x 6∈ X (ŷ), then the follower selects a ŷ ∈ Ψ(x) that

minimizes φl(x,y) instead, thus seeking to minimize the leader’s objective among all alternative
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optimal solutions to its own problem. Define

Ψp(x) = argmin
y∈Ψ(x)

{φl(x,y)} (2.23)

as the rational pessimistic reaction set and

Ψb(x) = {y ∈ Ψ(x) | ∃j such that g1
j (x) + h1

j (y) > b1j} (2.24)

as the subset of follower solutions in Ψ(x) that block leader solution x. Under the pessimistic

assumption, a solution (x,y) ∈ Ω is said to be bilevel feasible if (x,y) ∈ Ωp, where

Ωp = {(x,y) | x ∈ X (y), y ∈ Ψp(x), Ψb(x) = ∅}. (2.25)

We initially assume that there is a parameter δ > 0 such that |φf (x,y′) − φf (x,y)| ∈

{0, [δ,∞)} for all x ∈ Ω(X ) and y,y′ ∈ Ψp(x). (Remark 5 below handles the case in which no such

δ is known.) Clearly, δ = 1 for problems in which φf only takes integer values. Alternatively, one

could regard δ as a value such that if |φf (x,y′) − φf (x,y)| < δ, then the follower regards y and

y′ as being essentially alternative optimal solutions. This notion slightly extends the concept of

a pessimistic follower by allowing the follower to suboptimize, choosing a solution whose objective

function value is strictly within δ of optimal in order to minimize the leader’s objective.

We now extend Proposition 1 to accommodate the pessimistic formulation.

Proposition 6. Solution (x,y) ∈ Ω belongs to Ωp if and only if: (i) φf (x,y) ≥ φf (x, ŷ) for

every ŷ ∈ Y(x); (ii) φl(x,y) ≤ φl(x, ŷ) for all ŷ ∈ Ψ(x); and (iii) g1
j (x) + h1

j (ŷ) ≤ b1j for every

ŷ ∈ Ψ(x), j = 1, . . . ,m1.

Proof Assume that (x,y) ∈ Ωp. Proposition 1 proves that statement (i) holds true. For statement

(ii) suppose by contradiction that there exists a follower solution ŷ ∈ Ψ(x) such that φl(x,y) >

φl(x, ŷ). Then y 6∈ Ψp(x), which contradicts the assumption that (x,y) ∈ Ωp. For statement (iii)

suppose by contradiction that there exists a follower solution ŷ ∈ Ψ(x) and an upper-level constraint

j ∈ {1, . . . ,m1} such that g1
j (x) + h1

j (ŷ) > b1j . Then ŷ ∈ Ψb(x), i.e., Ψb(x) 6= ∅, which contradicts

the assumption that (x,y) ∈ Ωp.

Now assume that (i), (ii), and (iii) hold. Statement (i) implies that y ∈ Ψ(x), while (ii)
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implies that y ∈ Ψp(x), and (iii) implies that Ψb(x) = ∅. Moreover, x ∈ X (y) since (x,y) ∈ Ω, and

so (x,y) ∈ Ωp. This completes the proof. �

Define a binary variable vŷ corresponding to every ŷ ∈ Y such that vŷ = 0 if φf (x,y) >

φf (x, ŷ). If vŷ = 1, then φf (x,y) may or may not be greater than φf (x, ŷ). We formulate a

Pessimistic Extended High Point Problem (PEHPP) where the M -values are large constants whose

values we discuss in Section 2.6.5.

max
(x,y)

φl(x,y) (2.26a)

s.t. g2
j (x) ≥ −M1

j +
∑
ŷ∈Y

(M1
j + γŷj)wŷj ∀j = 1, . . . ,m2 (2.26b)

φf (x,y) ≥ φf (x, ŷ)−M2
ŷ

∑
(y′,q)∈B(ŷ,Y)

wy′q ∀ŷ ∈ Y (2.26c)

φf (x,y) +M3
ŷvŷ ≥ φf (x, ŷ) + δ ∀ŷ ∈ Y (2.26d)

φl(x,y) ≤ φl(x, ŷ) +M4
ŷ

∑
(y′,q)∈B(ŷ,Y)

wy′q +M4
ŷ(1− vŷ) ∀ŷ ∈ Y (2.26e)

g1
j (x) + h1

j (ŷ) ≤ b1j +M5
ŷj

∑
(y′,q)∈B(ŷ,Y)

wy′q +M5
ŷj(1− vŷ) ∀ŷ ∈ Y, j = 1, . . . ,m1 (2.26f)

(x,y) ∈ Ω (2.26g)

wŷj ∈ {0, 1} ∀ŷ ∈ Y, j = 1, . . . ,m2 (2.26h)

vŷ ∈ {0, 1} ∀ŷ ∈ Y. (2.26i)

As in the EHPP, the objective function (2.26a) maximizes the leader’s objective. Constraints

(2.26b)–(2.26i) utilize binary variables w and v to enforce the bilevel feasibility conditions estab-

lished in Proposition 6. In particular, constraints (2.26b) define the w-variables and constraints

(2.26c) ensure that y ∈ Ψ(x). Constraints (2.26d) define the v-variables. Constraints (2.26e) then

imply that for every ŷ ∈ Y, the leader must select an (x,y) such that φl(x,y) ≤ φl(x, ŷ) un-

less ŷ has been blocked or ŷ 6∈ Ψ(x). Constraints (2.26f) ensure that Ψb(x) = ∅ by requiring that

g1
j (x)+h1

j (ŷ) ≤ b1j unless ŷ is blocked or ŷ 6∈ Ψ(x). Constraints (2.26g) enforce the upper- and lower-

level constraints. Finally, constraints (2.26h) and (2.26i) restrict the w-variables and v-variables to

be binary-valued, respectively. A similar argument to the one used in Proposition 3 proves that the

PEHPP is equivalent to the pessimistic formulation of the BMIP.

32



We define a Relaxed Pessimistic Extended High Point Problem (RPEHPP), which only

considers a subset Ŷ ⊆ Y of follower responses. Problem RPEHPP(Ŷ) is defined exactly as PEHPP,

except that Y is replaced by Ŷ throughout. Define zp(Ŷ) as the optimal objective function value to

RPEHPP(Ŷ) and note that z(Ŷ) ≥ zp(Ŷ) for any Ŷ ⊆ Y.

Algorithm 2 presents a two-phase approach that extends Algorithm 1 to solve the pessimistic

formulation of the problem. Phase one starts in line 2 by solving the optimistic version of the problem

using Algorithm 1. We record all leader solutions considered throughout the execution of Algorithm

1, and place them into set X̂ . Lines 3–12 generate the initial sample of follower solutions Ŷ1 by

finding an optimal pessimistic follower response ŷ to every x̂ ∈ X̂ .

To obtain a pessimistic follower response for a given leader solution xi, we first compute the

optimal follower’s objective value by solving zf (xi) = max
y
{φf (xi,y) | y ∈ Y(xi)}.

Next, we find a follower response y ∈ Ψb(xi) or establish that Ψb(xi) = ∅. Define a

continuous variable sj and a binary variable qj for every upper-level constraint j = 1, . . . ,m1 such

that sj = 0 if (xi,y) satisfies constraint j. We formulate the following problem to determine if a

solution y ∈ Ψb(xi) exists.

max
y,s,q

m1∑
j=1

sj (2.27a)

s.t. φf (xi,y) = zf (xi) (2.27b)

sj ≤ h1
j (y)−

(
b1j − g1

j (xi)
)

+M6
j qj ∀j = 1, . . . ,m1 (2.27c)

sj ≤ (1− qj) ∀j = 1, . . . ,m1 (2.27d)

y ∈ Y(xi) (2.27e)

qj ∈ {0, 1} ∀j = 1, . . . ,m1 (2.27f)

s ≥ 0. (2.27g)

The objective function (2.27a) takes a positive value if and only if Ψb(xi) 6= ∅. Constraints

(2.27b) guarantee that y ∈ Ψ(xi). Constraints (2.27c)–(2.27d) ensure that if (xi,y) satisfies

constraint j, then sj = 0. If (xi,y) violates constraint j, then optimization ensures that sj =

min
{
h1
j (y)−

(
b1j − g1

j (xi)
)
, 1
}

, which is a strictly positive value. Constraints (2.27e) impose the

lower-level constraints. Constraints (2.27f) restrict the q-variables to be binary-valued and con-

straints (2.27g) require the s-variables the to be nonnegative.
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Finally, if problem (2.27) has an optimal objective function value equal to zero, we select

y ∈ Ψp(xi) by solving:

min
y

φl(xi,y) (2.28a)

s.t. φf (xi,y) = zf (xi) (2.28b)

y ∈ Y(xi). (2.28c)

The objective function (2.28a) minimizes the leader’s objective. Constraints (2.28b) ensure that

y ∈ Ψ(xi) while constraints (2.28c) impose the lower-level constraints.
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Algorithm 2 Exact Algorithm for the Pessimistic Variation of the BMIP

1: Initialize LB0 = −∞, Ŷ1 = ∅, and counter i = 0 . Begin phase one
2: Solve UB0 = max

(x,y)
{φl(x,y) | x ∈ X (y), y ∈ Ψ(x)} using Algorithm 1 and let X̂ be the set of all

leader solutions explored
3: for x̂ ∈ X̂ do
4: if Ψb(x̂) 6= ∅ then
5: Obtain a follower response ŷ ∈ Ψb(x̂) and add it into Ŷ1

6: else
7: Obtain a follower response ŷ ∈ Ψp(x̂) and add it into Ŷ1

8: if φl(x̂, ŷ) > LB0 then
9: Update LB0 = φl(x̂, ŷ) and the incumbent solution (x̄, ȳ)← (x̂, ŷ)

10: end if
11: end if
12: end for
13: while UBi > LBi do . Begin phase two
14: Set i = i+ 1 and LBi = LBi−1

15: if RPEHPP(Ŷi) is infeasible then
16: Terminate; the original BMIP instance is infeasible
17: else
18: Obtain an optimal solution (xi,yil) to RPEHPP(Ŷi), and set UBi = zp(Ŷi)
19: if Ψb(xi) 6= ∅ then
20: Obtain a follower response yif ∈ Ψb(xi)
21: else
22: Obtain a follower response yif ∈ Ψp(xi)

23: if φf (xi,yil) = φf (xi,yif ) and φl(xi,yil) = φl(xi,yif ) then

24: Update LBi = UBi and the incumbent solution (x̄, ȳ)← (xi,yil)
25: else if φl(xi,yif ) > LBi−1 then

26: Update LBi = φl(xi,yif ) and the incumbent solution (x̄, ȳ)← (xi,yif )
27: end if
28: end if
29: Set Ŷi+1 = Ŷi ∪ {yif}
30: end if
31: end while
32: Return (x̄, ȳ)

Phase two (lines 13–31) is a straightforward extension of Algorithm 1 in which the REHPP(Yi)

is replaced by the RPEHPP(Yi) and follower responses to leader solutions xi are obtained from

Ψb(xi) or Ψp(xi). Note that if the optimistic optimal solution found with Algorithm 1 in line 2 also

solves the problem under the pessimistic assumption, then LB0 = UB0 after line 12 and Algorithm

2 terminates without executing phase two.

A similar argument to the one used in Proposition 4 proves that Algorithm 2 terminates

finitely with an optimal solution.

Definitions 4 and 5 provide the concept of dominance and alternative solutions for the
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pessimistic formulation.

Definition 4. Consider solutions y,y′ ∈ Y. If φf (x,y) ≥ φf (x,y′) for all x ∈ Ω(X ), h2
j (y) ≤

h2
j (y
′) for all j = 1, . . . ,m2, φl(x,y) ≤ φl(x,y′) for all x ∈ Ω(X ), and h1

j (y) ≥ h1
j (y
′) for all

j = 1, . . . ,m1, with at least one inequality being strict (among all sets of inequalities), then y

dominates y′.

Definition 5. Consider solutions y,y′ ∈ Y such that y 6= y′. If φf (x,y) = φf (x,y′) for all

x ∈ Ω(X ), h2
j (y) = h2

j (y
′) for all j = 1, . . . ,m2, φl(x,y) = φl(x,y′) for all x ∈ Ω(X ), and

h1
j (y) = h1

j (y
′) for all j = 1, . . . ,m1, then y and y′ are said to be alternative solutions.

Definition 4 requires several conditions in order to establish dominance between two follower

solutions. Accordingly, dominance relationships are less likely to occur in the pessimistic formulation.

A similar argument to the one used in Proposition 5 proves that for any sample Ŷ ⊆ Y, removing

dominated solutions does not change the optimal objective function value of RPEHPP(Ŷ).

Remark 5. If we do not assume the existence of a minimum follower’s objective difference δ > 0,

then problem PEHPP is no longer equivalent to the pessimistic BMIP, because (2.26d) is not valid

for δ > 0, and is not sufficient to correctly define the v-variables if δ = 0. Alternatively, even if δ

exists, it might be difficult to obtain, or its value might be so small as to introduce computational

instability in the model (similar to the potential problems encountered in obtaining and using the

big-M values). For this case we instead propose a cutting-plane algorithm, described in Algorithm

3.

Algorithm 3 A Cutting-Plane Algorithm for the Pessimistic Variation of the BMIP

1: Set LB0 = −∞ and i = 0. Initialize the set of cutting planes C = ∅ and incumbent solution x̄
= ȳ = ∅.

2: Set i = i+ 1. Solve the optimistic version of the problem augmented with constraints in C using
Algorithm 1. If the problem is infeasible, then go to Step 5. Otherwise, let UB i be the optimal
objective function value obtained for this problem, and record the optimal leader solution x̂
found.

3: Compute an optimal pessimistic follower response, ŷ, given x̂. If ŷ /∈ Ψb(x), then φl(x̂, ŷ) is
a lower bound on the pessimistic objective. If φl(x̂, ŷ) > LB i−1, then set LB i = φl(x̂, ŷ) and
update incumbent (x̄, ȳ) = (x̂, ŷ). Otherwise, set LB i = LB i−1.

4: If LB i = UB i, then go to Step 5. Otherwise, add a no-good constraint set [Balas and Jeroslow,
1972] to C. This constraint set is constructed so that x̂ is the only solution in Ω(X ) that is
infeasible to the constraints. Return to Step 2.

5: If the incumbent (x̄, ȳ) = (∅, ∅), then terminate and conclude that the pessimistic BMIP is
infeasible. Otherwise, terminate with an optimal pessimistic BMIP solution given by (x̄, ȳ).
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Two notes conclude this remark. One, the exactness and finiteness of our cutting-plane

algorithm then follows from the finiteness of Ω(X ). Two, although the no-good constraint of Balas

and Jeroslow [1972] is intended for binary x-variables, we can accommodate the case of general

integer x-variables by replacing each variable xi with the expression
∑k
j=1(2j)xji , where x1

i , . . . , x
k
i

are binary variables, and k is a sufficiently large number. The no-good constraints can then be

written for the binary xji -variables instead of the general x-variables.

2.5 Featured Study on Competitive Scheduling

We consider a competitive single-machine scheduling problem, in which two agents, a leader

and a follower, each provide a permutation ordering of their own set of jobs. Both agents have

the goal of maximizing the number of jobs that complete on or before their due date. The agents’

jobs are placed on the machine by an independent central operator. This operator receives the job

permutations selected by the agents, and alternates the jobs sequentially on the machine, starting

with the leader’s first job, the follower’s first job, the leader’s second job, and so on with no machine

idle time until all jobs are scheduled. Define n as the total number of leader (follower) jobs, pli (pfi )

as the processing time for leader (follower) job i, and dli (dfi ) as the due date for leader (follower) job

i. A job is considered to be on-time if its completion time is less than or equal to its due date. Let

xik (yik) be a binary variable that takes a value of 1 if a leader (follower) job i ∈ {1, . . . , n} is the

kth job scheduled by the leader (follower), for k = 1, . . . , n. Define φl(x,y) (φf (x,y)) as the number

of on-time jobs for the leader (follower). We formulate the competitive single-machine scheduling

problem under the pessimistic assumption as:

max φl(x,y) (2.29a)

s.t.

n∑
k=1

xik = 1 ∀i = 1, . . . , n (2.29b)

n∑
i=1

xik = 1 ∀k = 1, . . . , n (2.29c)

y ∈ Ψp(x) (2.29d)

x ∈ {0, 1}n×n. (2.29e)
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The objective function (2.29a) maximizes the number of the leader’s on-time jobs. Constraints

(2.29b) ensure that every leader job is assigned to a position while constraints (2.29c) enforce that

every position has an assigned job. Constraints (2.29d) require the follower’s response to be in

the rational pessimistic reaction set, where the pessimistic assumption can easily be relaxed to the

optimistic assumption if desired. Constraints (2.29e) restrict the x-variables to be binary-valued.

Formally, Ψp(x) = argmin
y∈Ψ(x)

{φl(x,y)}, where Ψ(x) is the set of all optimal solutions to:

max φf (x,y) (2.30a)

s.t.

n∑
k=1

yik = 1 ∀i = 1, . . . , n (2.30b)

n∑
i=1

yik = 1 ∀k = 1, . . . , n (2.30c)

y ∈ {0, 1}n×n. (2.30d)

The problem of selecting a follower response y ∈ Ψp(x) that minimizes φl(x,y) for a given leader

solution x ∈ Ω(X ) is NP-hard, as we now show.

Denote by FSP the decision version of the follower’s subproblem, which seeks a schedule

that maximizes the number of on-time follower jobs, while ensuring that no more than τ leader jobs

are on time.

Proposition 7. FSP is NP-complete.

Proof We show that FSP is NP-hard by using a transformation from EQUIPARTITION (EP)

stated as follows: Given 2k positive integers a1, . . . , a2k such that
∑2k
i=1 ai = 2b, does there exist a

set S ⊆ {1, . . . , 2k} such that |S| = k and
∑
i∈S ai = b? To transform an EP instance into an FSP

instance, we set the number of jobs n = 2k, the leader processing times pli = 1 for all i = 1, . . . , n,

the follower processing times pfi = ai for all i = 1, . . . , n, the due dates dli = dfi = b + k for all

i = 1, . . . , n, and the objective target τ = k. We assume that the sum of the smallest k + 1 integers

ai is greater than b, noting that EP remains NP-complete under this assumption. (The latter claim

holds true because any EP instance can be transformed to satisfy this assumption by rescaling the

integers ai.) Note that this transformation is polynomial, and so it is now sufficient to prove that

EP has a solution if and only if FSP has a solution.

In the following discussion, note that the leader’s jobs are equivalently scheduled in any
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order. The follower always maximizes its objective by scheduling k jobs on time. This is because

after k jobs have been scheduled by both agents, the leader has used k units of processing time on

the machine, while the follower has b units available on the machine for processing. The follower can

achieve at least k on-time jobs by scheduling the k-smallest-processing-time jobs first, in any order.

By assumption, no set of k + 1 jobs can be scheduled by the follower within its allotted b units of

time before the deadline.

Assume that EP has a solution S. We construct a follower solution to the FSP by scheduling

the k jobs indexed in S first and the remaining jobs later. Let Cfk (Clk) denote the completion time

for the follower (leader) job scheduled at position k. Because
∑
i∈S p

f
i = b and pli = 1 for all

i = 1, . . . , n, we get that Cfk = b + k, Clk < b + k, and Clk+1 > b + k. This implies that the leader

has exactly k on-time jobs. The follower also obtains k on-time jobs, which is optimal. The solution

constructed therefore solves FSP.

Now assume that FSP has a solution. We construct a solution to EP by including in S the

first k jobs scheduled by the follower. Note that Cfk ≤ b + k since the optimal number of follower

on-time jobs is equal to k. However Cfk < b+k is impossible, or else Clk+1 ≤ b+k, which contradicts

the assumption that the leader has no more than k on-time jobs. The fact that Cfk = b+ k implies

that
∑
i∈S ai =

∑
i∈S p

f
i = b because pli = 1 for all i = 1, . . . , n. Therefore S is a solution to EP. �

We now present the PEHPP for the competitive single-machine scheduling problem. In

models (2.29) and (2.30) the leader is not able to block any follower solution and vice versa. This

implies that Ψb(x) = ∅ for all x ∈ Ω(X ) and that the w-variables can be removed from the PEHPP,

yielding the following model.

max
(x,y)

φl(x,y) (2.31a)

s.t. φf (x,y) + vŷ ≥ φf (x, ŷ) + 1 ∀ŷ ∈ Y (2.31b)

φl(x,y) ≤ φl(x, ŷ) + (n− 1)(1− vŷ) ∀ŷ ∈ Y (2.31c)

(x,y) ∈ Ω (2.31d)

vŷ ∈ {0, 1} ∀ŷ ∈ Y. (2.31e)

The objective function (2.31a) maximizes the number of leader on-time jobs. Constraints (2.31b)–

(2.31e) enforce the bilevel feasibility conditions established in Proposition 6. Note that (2.31b)
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implies that φf (x,y) ≥ φf (x, ŷ), for all ŷ ∈ Y; furthermore, if φf (x,y) = φf (x, ŷ), then vŷ = 1.

When vŷ = 1, (2.31c) ensures that φl(x,y) ≤ φl(x, ŷ) as desired by the pessimistic assumption, and

otherwise the constraint becomes redundant.

Models (2.29)–(2.31) are difficult to solve because of the nonlinear functions φl(x,y) and

φf (x,y) used in those formulations. In order to optimize these problems, we can use any of the var-

ious strategies proposed in the literature for single-machine scheduling, such as mixed-integer linear

programming (MILP), constraint programming, or other implicit enumeration strategies. We de-

scribe a MILP-based approach in Section 2.5.1 for solving these problems along with the RPEHPP(Ŷ)

model. These models require many additional variables and constraints to linearize the model, in-

cluding several auxiliary binary variables. This approach highlights an important distinction in how

we have stated the scheduling problem in this section. Models (2.29)–(2.31) themselves do not em-

ploy the additional auxiliary variables used in our MILP formulations, which are only used as tools

to yield optimal solutions for models (2.30) and (2.31). Therefore, because the follower is solving

(2.30) and the leader is solving (2.31) (although indirectly), no agent can block another agent’s

solution due to the absence of x in the constraints for (2.30) and the absence of y in the constraints

for (2.29) (excluding the condition that y ∈ Ψp(x)). As a result, all M -values for this model (see

Section 2.6.5 for details) are very small, thus obviating potential issues with numerical instability

due to their use.

On the contrary, if we had previously restricted our analysis to BMILPs, then our models

would necessarily include auxiliary variables to linearize the problems. The leader and follower

problems detailed in Section 2.5.1 include (among others) binary variables slk that equal 1 if the

leader job in position k will be on time, and 0 otherwise. The leader is therefore forced to declare

specifically which jobs will be on time. However, a follower can now force such a solution to become

infeasible, simply by identifying a follower schedule that makes a single leader job k late, among

those positions for which the leader had set slk = 1. This blocking of solutions is artificial, and

would require additional iterations of our algorithm in which various leader schedules and vectors

of on-time leader jobs are blocked by the follower, and vice versa. This situation is similar to the

difficulties faced within robust optimization, in which the presence of auxiliary variables complicates

the development of useful robust optimization counterparts [Delage and Iancu, 2015, Gorissen and

den Hertog, 2013].

40



2.5.1 Competitive Scheduling Formulations

We now present MILP formulations that we employ in our algorithm to solve the competitive

scheduling problem described in Section 2.5. We assume without loss of generality that pli, p
f
i , dli, and

dfi are integer-valued for all i = 1, . . . , n. To obtain a follower response for a given leader solution x̄,

we first compute the follower’s optimal number of on-time jobs by solving zf (x̄) = max
y
{φf (x̄,y) | y ∈

Y(x̄)}. We solve this problem in polynomial time using Moore’s earliest due date algorithm [Moore,

1968], which is still valid when considering the fixed processing times for the leader jobs scheduled

by x̄. Note that for the optimistic formulation, obtaining zf (x̄) via Moore’s algorithm suffices to

identify a follower response y ∈ Ψ(x̄). However, obtaining a pessimistic response y ∈ Ψp(x̄) is

NP-hard as already shown.

To find a pessimistic response, the follower seeks a schedule y ∈ Ψp(x̄) that minimizes the

leader’s objective among all solutions that schedule zf (x̄) on-time follower jobs. Let Cfk (Clk) denote

the completion time for the follower (leader) job scheduled in position k. Define a binary variable

sfk for every schedule position k = 1, . . . , n, such that sfk = 1 if Cfk is less than or equal to the due

date of the follower’s job scheduled in the kth position. Let binary variable slk be such that slk = 1

if Clk is less than or equal to the due date of the leader’s job scheduled in position k, for every

position k = 1, . . . , n. We obtain y ∈ Ψp(x̄) by solving the following problem, where T̄ -values are

large constants whose values we discuss subsequently:

min

n∑
k=1

slk (2.32a)

s.t. y ∈ Y(x̄) (2.32b)

n∑
i=1

k∑
q=1

plix̄iq +

n∑
i=1

k∑
q=1

pfi yiq −
n∑
i=1

dfi yik ≤ T fk (1− sfk) ∀k = 1, . . . , n (2.32c)

n∑
k=1

sfk = zf (x̄) (2.32d)

n∑
i=1

k∑
q=1

plix̄iq +

n∑
i=1

k−1∑
q=1

pfi yiq −
n∑
i=1

dlix̄ik ≥ −T̄ lkx̄slk + 1 ∀k = 1, . . . , n (2.32e)

sf , sl ∈ {0, 1}n. (2.32f)

The objective function (2.32a) minimizes the number of leader on-time jobs. Constraints (2.32b)–

(2.32d) enforce optimality restrictions for the follower. In particular, the first two terms on the
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left-hand side of (2.32c) compute Cfk , while the third term states the due date of the follower job

in position k. If the left-hand side of (2.32c) is positive, then sfk is forced to equal 0; otherwise, sfk

will equal 1 at optimality. Thus, T fk must be at least as large as the largest possible value for the

left-hand side of (2.32c), i.e., the maximum amount of time by which the kth job scheduled by the

follower could be late. To find this value, let U lk (Ufk ) be the sum of processing times for the leader’s

(follower’s) k-largest-processing-time jobs. We can then find i ∈ argmax
ı̂∈{1,...,n}

{pfı̂ − d
f
ı̂ } and set

T fk =


U lk + Ufk−1 + pfi − dfi if pfi is not among the

follower’s (k − 1)-largest-processing-time jobs

U lk + Ufk − d
f
i otherwise.

∀k = 1, . . . , n

Constraints (2.32e) define the sl-variables, and constraints (2.32f) restrict variables to be binary-

valued. Observe now that optimality forces slk to its smallest possible value, but (2.32e) forces slk to

equal 1 when the leader job in position k is on time. To compute the T̄ -values let Lfk be the sum of

processing times for the follower’s k-smallest-processing-time jobs. We set

T̄ lkx̄ =

n∑
i=1

dlix̄ik −
n∑
i=1

k∑
q=1

plix̄iq − Lfk−1 + 1.

Using these T̄ -values, slk must equal 1 whenever the left-hand side of (2.32e) is nonpositive; moreover,

the left-hand side of (2.32e) is never less than −T̄ lkx̄slk + 1, which establishes the validity of that

constraint. When the left-hand side of (2.32e) is positive, then that value must be at least one

because of our data integrality assumption, and slk = 0 at optimality as desired.

We now formulate RPEHPP(Ŷ). We begin by defining T -values that will be used in this

model, analogous to those used before. First, let T lk be the maximum amount of time by which a

leader job scheduled in position k could be late. As before for T fk , letting i ∈ argmax
ı̂∈{1,...,n}

{plı̂ − dlı̂}, we

set

T lk =


U lk−1 + Ufk−1 + pli − dli if pli is not among the

leader’s (k − 1)-largest-processing-time jobs

U lk + Ufk−1 − dli otherwise.

∀k = 1, . . . , n
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Now, define
(
T̄ fkŷ − 1

)
as the maximum amount of time by which the follower job scheduled

in position k by solution ŷ could be early. Let Llk be the sum of processing times for the leader’s

k-smallest-processing-time jobs. For every ŷ ∈ Ŷ we set

(
T̄ fkŷ − 1

)
=

n∑
i=1

dfi ŷik −
n∑
i=1

k∑
q=1

pfi ŷiq − Llk.

Define binary variables ŝl such that ŝlkŷ = 1 if Clk, measured with respect to follower solution ŷ, is less

than or equal to the due date of the leader job scheduled at position k, and ŝlkŷ = 0 otherwise. Define

also binary variables ŝf such that ŝfkŷ = 1 if the job scheduled at position k by follower solution ŷ is

on time, and ŝfkŷ = 0 otherwise. We formulate RPEHPP(Ŷ) for the competitive scheduling problem

as follows.

max

n∑
k=1

slk (2.33a)

s.t. (x,y) ∈ Ω (2.33b)

n∑
i=1

k∑
q=1

plixiq +

n∑
i=1

k−1∑
q=1

pfi yiq −
n∑
i=1

dlixik ≤ T lk(1− slk) ∀k = 1, . . . , n (2.33c)

n∑
i=1

k∑
q=1

plixiq +

n∑
i=1

k∑
q=1

pfi yiq −
n∑
i=1

dfi yik ≤ T fk (1− sfk) ∀k = 1, . . . , n (2.33d)

n∑
i=1

k∑
q=1

plixiq +

n∑
i=1

k∑
q=1

pfi ŷiq −
n∑
i=1

dfi ŷik ≥ −T̄ fkŷŝ
f
kŷ + 1 ∀ŷ ∈ Ŷ, k = 1, . . . , n (2.33e)

n∑
k=1

sfk + vŷ ≥
n∑
k=1

ŝfkŷ + 1 ∀ŷ ∈ Ŷ (2.33f)

n∑
i=1

k∑
q=1

plixiq +

n∑
i=1

k−1∑
q=1

pfi ŷiq −
n∑
i=1

dlixik ≤ T lk(1− ŝlkŷ) ∀ŷ ∈ Ŷ, k = 1, . . . , n (2.33g)

n∑
k=1

slk ≤
n∑
k=1

ŝlkŷ + (n− 1)(1− vŷ) ∀ŷ ∈ Ŷ (2.33h)

v ∈ {0, 1}|Ŷ| (2.33i)

sl, sf ∈ {0, 1}n (2.33j)

ŝl, ŝf ∈ {0, 1}n×|Ŷ|. (2.33k)

The objective function (2.33a) maximizes the number of leader on-time jobs. Constraints (2.33b)
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ensure that every job is assigned to a position and every position has an assigned job. Constraints

(2.33c) ensure that slk = 0 if Clk is greater than the due date of the leader job scheduled at position

k. Constraints (2.33d) enforce the same condition for follower variables sf . Constraints (2.33e)

define the ŝf -variables. Constraints (2.33f) define the v-variables and enforce the condition that

φf (x,y) ≥ φf (x, ŷ) for all ŷ ∈ Ŷ. Constraints (2.33g) define the ŝl-variables. Constraints (2.33h)

then enforce that φl(x,y) ≤ φl(x, ŷ) unless ŷ 6∈ Ψ(x). Constraints (2.33i)–(2.33k) require all

variables to be binary-valued.

2.6 Computational Experiments

In Section 2.6.1 we analyze the effect of the proposed acceleration strategies on the perfor-

mance of the algorithm. In Section 2.6.2 we compare our algorithm’s performance with the current

state-of-the-art approach for BMILPs by Xu and Wang [2014]. In Section 2.6.3 we present compu-

tational results on the extension to the pessimistic formulation. Finally, in Section 2.6.4 we report

the results on the focus application in Section 2.5.

We coded our algorithm in Java, using Eclipse SDK version 4.4.2, and executed the exper-

iments on a machine having an Intel Core i7–3537U CPU (two cores) running at 2.00 GHz with 8

GB of RAM on Windows 8. We solve all optimization problems using CPLEX 12.6. All instances

and source code used in this section are available at http://people.clemson.edu/~jcsmith.

Our core set of test instances consists of the BMILP testbed provided by Xu and Wang

[2014]. This dataset contains 100 instances with sizes ranging from 20 to 920 variables, and 8 to

368 constraints (10 instances for each size). In every instance n1 = n2, m1 = m2 = 0.4n1, and 50%

of the follower variables are randomly included in set I. The cost coefficients are random integers

uniformly distributed between [−50, 50], the right-hand side coefficients b1 (b2) are random integers

uniformly distributed between [30, 130] ([10, 110]), and all other coefficients are random integers

uniformly distributed between [0, 10]. Note that both the instances in Xu and Wang [2014] and the

competitive set covering instances satisfy the three assumptions listed in Section 2.1, including the

boundedness requirement in Assumption 1.
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2.6.1 Assessing the Effectiveness of the Proposed Acceleration Strategies

We conducted experiments to measure the effect of the proposed acceleration strategies

on the performance of the algorithm. Section 2.6.1.1 discusses the results for the variable fixing

procedure, and Section 2.6.1.2 discusses those for the four sets of proposed SVIs.

2.6.1.1 Variable Fixing

We compared the performance of our proposed algorithm with and without the variable

fixing technique proposed in Section 2.3.1. After tuning the algorithm parameters, we set a maximum

initial sample size limit of 250, 000 follower solutions.

Table 2.1 shows the results for these experiments. The first two columns show the total

number of variables (n = n1 + n2) and constraints (m = m1 + m2), respectively. Columns 3–6

show the average CPU time in seconds obtained over 10 instances with the same size (Avg) and

the largest CPU time obtained over those runs (Max), for both algorithms. Column 7 presents the

speedup measured as the ratio between the average execution times reported in columns 3 and 5.

Table 2.1: Assessing the impact of the variable fixing procedure

n m No fixing Variable fixing Speedup

Avg Max Avg Max

20 8 1.5 5.6 1.4 5.5 1.0

120 48 21.1 60.4 16.9 50.7 1.2

220 88 70.3 634.5 60.4 552.7 1.2

320 128 29.0 68.5 20.1 47.0 1.4

420 168 124.4 754.1 74.4 488.6 1.7

520 208 232.5 1034.1 92.8 285.8 2.5

620 248 678.2 1679.3 207.4 561.9 3.3

720 288 861.4 6034.6 199.0 930.5 4.3

820 328 513.5 2042.3 248.6 922.6 2.1

920 368 1193.0 4359.8 465.5 872.1 2.6

All computational times in CPU seconds

Table 2.1 shows that using the variable fixing procedure reduces the average CPU times
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over all instance sizes. This time reduction is more evident in the larger instances; in particular, the

algorithm with variable fixing runs up to 4.3 times faster than the original algorithm for instances

with size n = 720. The improvement in the maximum CPU times is also consistent across all

instance sizes. For the instances with n = 920 the worst execution time is reduced from roughly

4000 seconds to under 900 seconds by the variable fixing procedure.

2.6.1.2 SVIs

We compared six different versions of the proposed sampling algorithm, each of which in-

cludes the variable fixing technique. The first one does not include any SVIs. The next four versions

include one by one each of the proposed SVI sets. The last version includes the first and second SVI

sets. Table 2.2 shows the results for these experiments.
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Table 2.2 shows that when measuring each set of SVIs individually, the greatest reduction

in execution times is achieved by the first set, followed by the second one. Including the third set of

SVIs has a slight negative effect on the CPU times on most of the instances, and using the fourth

set greatly increases the execution times. These SVIs perform poorly due to the large number of

linear programming problems that must be solved to obtain the necessary upper bounds for these

SVIs, especially over the larger instances. Using both the first and second sets of SVIs leads to the

most efficient version of the algorithm.

2.6.2 Comparison with Xu and Wang [2014]

We conducted a comparison between our algorithm (Sampling) and the branch-and-bound

algorithm (BB) by Xu and Wang [2014]. We chose the BB approach due to its impressive performance

in the problems discussed by Xu and Wang [2014]. Naturally, for different problem classes, some of

the other algorithms cited in Section 2.1 would be appropriate to examine here as well. Because a

full computational comparison of a wide array of modern bilevel algorithms is beyond the scope of

this study, the goal in this section is to demonstrate the advantages of our proposed algorithm with

respect to a current state-of-the-art bilevel programming algorithm.

For completeness, we note that the approach in Xu and Wang [2014] does not place bounds

on y, whereas the approach in our algorithm requires these bounds to guarantee convergence. How-

ever, the problems in the BMILP testbed allow us to bound the y vector, allowing a direct comparison

of the approaches over these instances.

We coded the BB algorithm in Java and found that the run times obtained with our BB

implementation were roughly two times faster than those reported by Xu and Wang [2014], due to

our use of a newer version of CPLEX on a faster computer. Table 2.3 presents computational results

comparing the two algorithms. For our algorithm we included the proposed variable fixing technique

along with the first and second sets of SVIs. Columns 1–6 are defined as before. Column 7 presents

the speedup calculated as the ratio between the BB and our algorithm average times.
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Table 2.3: Comparing the sampling algorithm to the state-of-the-art algorithm for BMILP

n m BB Sampling Speedup

Avg Max Avg Max

20 8 0.9 2.8 1.5 5.6 0.6

120 48 23.8 83.9 16.3 49.4 1.5

220 88 58.1 368.3 56.8 521.0 1.0

320 128 96.8 218.5 17.8 42.8 5.4

420 168 547.9 3932.4 69.1 463.5 7.9

520 208 547.5 1703.3 75.5 186.0 7.2

620 248 2152.3 6348.0 152.9 443.5 14.1

720 288 1623.1 3214.7 163.4 728.7 9.9

820 328 2178.6 8891.0 157.9 443.7 13.8

920 368 4544.2 9008.3 264.4 438.7 17.2

Table 2.3 shows that our sampling algorithm compares favorably to BB. Both algorithms

solve the smaller instances in less than one minute on average. Over the medium-sized instances

our sampling algorithm is faster than BB, exhibiting speedups ranging from 5.4 to 7.9. Over the

larger instances the difference in performance between the algorithms is greater, and our algorithm

achieves speedups ranging from 9.9 to 17.2. Regarding the maximum execution times, the sampling

algorithm outperforms BB over almost all instances, except for instances with n = 20 and n = 220.

Moreover, on the larger instances (n = 820 and 920) the maximum execution time is reduced by

roughly 90%.

2.6.3 Extension to the Pessimistic Formulation

In this section we study our algorithm’s performance under the pessimistic assumption.

In the original Xu and Wang [2014] testbed, the optimal solution obtained under the optimistic

assumption is also optimal for the pessimistic formulation for most of the instances. This behavior

is due to the lack of alternative optimal solutions to the follower’s problem, given a leader’s optimal

solution. We modified the testbed to increase the chances of getting alternative optimal solutions

in the follower’s problem by setting the follower’s cost coefficients d2
i = 1 with probability α, and

d2
i = 0 with probability 1− α, for i = 1, . . . , n2.
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Note that for these instances, Algorithm 2 provides heuristic solutions since we cannot

establish the existence of a minimum follower’s objective function difference δ > 0. On the other

hand, the cutting-plane algorithm in Remark 5 finds provable global optimal solutions. We set

δ = 10−3 for solving RPEHPP(Ŷ) within Algorithm 2.

Tables 2.4 and 2.5 compare our algorithm’s performance under the optimistic and pessimistic

assumptions over the modified testbed with α = 0.15 and α = 0.01. The “Avg” and “Max” columns

are defined as before, while columns “z∗”, “zhp”, and “z∗p” show the average optimal objective

function value for the optimistic formulation, the average heuristic objective function value for the

pessimistic formulation with δ = 10−3, and the average optimal objective function value for the

pessimistic formulations, respectively. The “# Cuts” column presents the average number of cuts

added in the cutting-plane algorithm. The “Gap” column presents the average objective function

value gap, calculated as (z∗ − z∗p)/z∗.

Table 2.4: Comparing the algorithm performance under the optimistic and pessimistic assumptions
when α = 0.15

α = 0.15

n m Optimistic Pessimistic Algorithm 2 Pessimistic cutting-plane Gap

Avg Max z∗ Avg Max zhp Avg Max # Cuts z∗p

20 8 1.0 8.0 244.7 1.2 7.2 201.2 170.7 1677.5 170.3 201.2 0.18

120 48 4.0 12.8 186.6 17.7 66.6 173.7 23.4 63.8 15.2 173.7 0.07

220 88 8.5 34.3 166.1 73.1 613.9 157.9 26.8 93.1 7.4 157.9 0.05

320 128 27.9 209.2 149.1 106.6 594.4 136.8 86.4 331.1 10.1 136.8 0.08

420 168 34.1 153.8 141.9 202.1 1186.3 137.5 118.9 501.3 6.4 137.5 0.03

520 208 37.9 161.1 134.8 79.2 296.5 130.5 75.6 327.9 4.7 130.5 0.03

620 248 85.2 205.6 134.5 169.7 627.8 130.8 122.2 368.8 4.6 130.8 0.03

720 288 85.0 195.6 126.7 110.9 296.9 125.2 94.9 248.3 1.7 125.2 0.01

820 328 123.2 318.0 114.1 422.6 1896.2 109.2 292.8 1082.4 6.0 109.2 0.04

920 368 129.1 190.3 112.8 161.3 310.1 112.4 142.9 214.8 0.7 112.4 <0.01
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Table 2.5: Comparing the algorithm performance under the optimistic and pessimistic assumptions
when α = 0.01

α = 0.01

n m Optimistic Pessimistic Algorithm 2 Pessimistic cutting-plane Gap

Avg Max z∗ Avg Max zhp Avg Max # Cuts z∗p

20 8 1.0 10.0 281.1 1.7 11.3 179.2 335.4 2371.1 299.4 179.2 0.36

120 48 0.4 1.9 207.6 11.6 37.6 162.8 52.8 171.2 108.1 162.8 0.22

220 88 1.5 7.3 172.7 46.7 261.6 148.4 31.0 112.7 35.0 148.4 0.14

320 128 2.1 6.2 159.8 172.0 1542.9 132.8 209.9 1841.8 67.9 132.8 0.17

420 168 6.6 38.3 159.6 105.8 430.6 130.6 98.2 352.4 33.9 130.6 0.18

520 208 6.6 24.0 145.8 282.3 2182.6 120.6 153.0 416.4 33.2 120.6 0.17

620 248 6.7 19.0 148.8 162.3 442.0 126.3 208.2 914.7 39.5 126.3 0.15

720 288 8.7 21.4 140.0 176.8 729.9 118.9 146.9 619.4 19.7 118.9 0.15

820 328 12.2 28.3 121.2 578.2 3646.9 104.0 314.1 968.1 32.5 104.0 0.14

920 368 24.8 60.3 122.3 207.9 427.7 105.3 363.8 1288.9 35.6 105.3 0.14

Tables 2.4 and 2.5 show that it takes considerably longer to solve the instances under

the pessimistic formulation both in terms of the average and the maximum execution times. Our

proposed cutting-plane algorithm solves all instances to optimality, with the largest execution time

of 2132.7 seconds occurring in the n = 20 group with α = 0.01. The difference in the optimal

objective values is greater on the smaller instances than on the larger ones. Furthermore, as α

decreases, there is more potential for finding alternative optimal solutions in the follower’s problem.

Therefore, the gap between the optimal optimistic and pessimistic objectives increases.

As α decreases the optimistic formulation becomes easier to solve because of the increased

number of alternative optimal follower solutions. Algorithm 2 tends to outperform the cutting-plane

algorithm for instances having larger gaps, because larger gaps tend to require more iterations of

the cutting-plane algorithm. However, for instances in which the gap is small, the cutting-plane

algorithm adds very few cuts and quickly finds provable optimal solutions.

2.6.4 Featured Study on Competitive Scheduling

We generated random instances with sizes ranging from n = 10 to n = 30 in increments of

five (10 instances for each size). In every instance the leader’s processing times are random integers

uniformly distributed in the range [10, 20]. The follower processing times are set to 10, 50, or 100

with equal probability (1/3). Let T =
∑n
i=1(pli + pfi ) be the total time required to process all the
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jobs. For any job i, the leader’s (follower’s) due date is a random integer uniformly distributed

between [pli, 0.5T ] ([pfi , 0.2T ]). Because the follower’s objective is integer-valued, using δ = 1 within

Algorithm 2 guarantees optimality. We thus choose this pessimistic algorithm in the computational

experiments on competitive scheduling problems.

Table 2.6 compares our algorithm’s performance under the optimistic and pessimistic as-

sumptions over the generated testbed. The first column shows the number of jobs (n), while all

other columns are defined as before. We impose a time limit of four hours (14,400s) and calculate

the average CPU time only among the instances solved within the time limit.

Table 2.6: Computational experiments on competitive scheduling

n Optimistic Pessimistic Gap

Avg Max z∗ Avg Max z∗p

10 0.9 3.4 6.8 1.3 4.0 5.3 0.22

15 1.8 3.8 10.2 6.0 14.7 8.0 0.22

20 4.8 11.9 13.7 16.9 74.0 11.0 0.20

25 10.8 20.8 17.2 64.1 122.7 14.4 0.16

30† 22.3 71.6 20.9 >495.5 >14,400 17.0 0.19

†: Nine of ten instances solved to optimality within the time limit for n = 30.

Table 2.6 shows that there is a considerable difference in the average number of on-time

jobs under the optimistic and the pessimistic assumption. The pessimistic version of the problem

is also significantly harder to solve, as evidenced by the comparison between average and maximum

computation times between the optimistic and pessimistic cases. Furthermore, while our algorithm

solves all instances under the optimistic assumption in less than roughly one minute, it fails to

solve one n = 30 instance within the time limit under the pessimistic assumption. The difference

in algorithmic performance is explained by the fact that RPEHPPs are considerably larger than

REHPPs, along with the added difficulty required to solve the follower’s subproblems under the

pessimistic assumption.
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2.6.5 Computing M-values in our Proposed Formulations

Table 2.7 presents general conditions on theM -values used in our models. Column 1 presents

the vector of M -values being considered. Column 2 establishes conditions that a valid M -value must

satisfy. Table 2.8 then shows the methods used to calculate the M -values.

Table 2.7: Conditions defining valid M -values

M -value Validity conditions

M1 M1
j ≥ −g2

j (x), ∀x ∈ Ω(X ), j = 1, . . . ,m2

M2 M2
ŷ ≥ φ

f (x, ŷ)− φf (x,y), ∀(x,y) ∈ Ω, ŷ ∈ Y

M3 M3
ŷ ≥ φ

f (x, ŷ)− φf (x,y) + δ, ∀(x,y) ∈ Ω, ŷ ∈ Y

M4 M4
ŷ ≥ φ

l(x,y)− φl(x, ŷ), ∀(x,y) ∈ Ω, ŷ ∈ Y

M5 M5
ŷj ≥ g

1
j (x) + h1

j (ŷ)− b1j , ∀x ∈ Ω(X ), ŷ ∈ Y, j = 1, . . . ,m1

M6 M6
j ≥ b1j − g1

j (xi)− h1
j (y), ∀j = 1, . . . ,m1, y ∈ Y(xi)

Table 2.8: Calculating valid M -values

M -value Value used for computations

M1 M1 = 0 because g2
j (x) ≥ 0 in the BMILP testbed

M2 Set lf = min
(x,y)∈Ω

{φf (x,y)} and M2
ŷ = φf (x, ŷ)− lf , ∀ŷ ∈ Y

M3 M3
ŷ = M2

ŷ + δ, ∀ŷ ∈ Y

M4 M4
ŷ = zHPP − φl(x, ŷ), ∀ŷ ∈ Y

M5 M5
ŷj = h1

j (ŷ), ∀ŷ ∈ Y, j = 1, . . . ,m1 since g1
j (x) ≤ b1j , ∀x ∈ Ω(X ), j = 1, . . . ,m1 in the BMILP testbed

M6 M6
j = b1j − g1

j (xi) because h1
j (y) ≥ 0, ∀y ∈ Y(xi) in the BMILP testbed
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Chapter 3

A Backward Sampling Framework

for Interdiction Problems with

Fortification

3.1 Problem Statement

We consider defender-attacker-defender problems that are modeled as three-level, two-player

Stackelberg games. In the first stage a defender (also known as the “owner” or “operator”) can fortify

a subset of assets, while in the second stage an attacker (often called the “interdictor”) destroys a

subset of the unprotected assets. The attacker’s goal in the second stage is to maximize damage to

the defender’s objective, which is determined by solving an optimization problem in the third stage,

using the surviving assets from the initial system.

Formally, let w, x, and y be the decision variables for the first-, second-, and third-stage

problems, respectively. We assume that the third-stage problem can take any general form, while the

first- and second-stage problems include only binary variables, i.e., w ∈ {0, 1}nw and x ∈ {0, 1}nx ,

where nw (nx) is the number of variables required to model asset fortification (attack). Let W be

the set of feasible solutions to the first-stage problem. Let X (w) be the set of feasible second-stage

solutions given a defense vector w, and let Y(x) be the set of feasible third-stage solutions for a given
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attack vector x. Also, define X =
⋃

w∈W
X (w) and Y =

⋃
x∈X
Y(x), i.e., X and Y are the set of all

possible second- and third-stage feasible solutions, respectively. Finally, let f(y) be the defender’s

objective function. We study problems of the form:

P : z∗ = min
w∈W

max
x∈X (w)

min
y∈Y(x)

f(y), (3.1)

We refer to the first-, second-, and third-stage problems as fortification, attack, and recourse prob-

lems, respectively.

We present a novel backward sampling framework for solving three- (and two-) stage inter-

diction problems in which the recourse problem can take any form (e.g., it can be nonlinear, and

can have integer variables), provided that all variables in the first two stages are restricted to be

binary-valued. Hence, both fortification and interdiction of critical assets in the problem are “all

or none” type decisions. An asset that is fortified is completely immune to attacks, and no assets

can be only partially attacked. This framework is primarily designed to improve the solution of

the interdiction problem, by solving relatively easy interdiction problem relaxations in which the

defender is restricted to choose its recourse actions from a sample of the third-stage solution space.

These problems provide upper bounds on the optimal interdiction solution; lower bounds can then be

obtained by fixing an interdiction solution and optimizing the (original) recourse problem as a func-

tion of the fixed interdiction actions. This framework avoids linearizing a (potentially large) bilinear

program, and also eliminates the need for applying combinatorial Benders’ cuts at the interdiction

stage (although we still require them to solve the fortification problem).

Using our framework, we construct an algorithm for the shortest path interdiction problem

with fortification (SPIPF) that compares favorably to the current state-of-the-art algorithm, finding

optimal solutions over random grid networks having up to 3,600 nodes and 17,000 arcs, and over

real-road networks having up to 300,000 nodes and more than 1,000,000 arcs. We also consider the

capacitated lot sizing interdiction problem with fortification (CLSIPF), in which the NP-hard third-

stage problem is modeled as a MIP. We extend our framework to solve the CLSIPF, and demonstrate

its ability to solve instances of this new problem class.

The remainder of this chapter is organized as follows. Section 3.2 presents the backward

sampling framework and establishes the finite convergence of our approach to an optimal solution.

Sections 3.3 and 3.4 describe how to specialize the framework for the SPIPF and CLSIPF, respec-
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tively. Section 3.5 presents our computational experiments.

3.2 The Backward Sampling Framework

The core idea behind the backward sampling framework is to iteratively sample the third-

stage solution space so that instead of solving the original problem P directly, we solve restricted

problems defined over smaller recourse solution spaces. We exploit this idea to more efficiently

solve two-level max-min interdiction problems over x and y, given a fixed defense vector w. The

solution of these restricted problems yields an upper bound on z∗, and also affords a mechanism for

finding a lower bound on z∗ as well. Finally, we embed this procedure within an outer optimization

scheme that optimizes over w. Section 3.2.1 describes our sampling procedure. Section 3.2.2 presents

our proposed approach for solving the interdiction problems, and Section 3.2.3 discusses the outer

optimization algorithm. Section 3.2.4 analyzes strategies for improving the effectiveness of the overall

algorithm.

For convenience, we provide a summary of relevant definitions and notation used throughout

this chapter in Table 3.1.
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Table 3.1: Relevant definitions and notation

Symbol Explanation

Section 3.1

W Set of feasible solutions to the first-stage problem

X (w) Set of feasible second-stage solutions given a w ∈ W

X Set of all possible second-stage feasible solutions

Y(x) Set of feasible third-stage solutions for a given x ∈ X

Y Set of all possible third-stage feasible solutions

Section 3.2.1

Ŷ A sample of third-stage solutions

Ŷ(x) Ŷ ∩ Y(x)

Section 3.2.2

Q(w) Two-level interdiction problem associated with a w ∈ W

zI(w) Optimal objective function value for Q(w)

x∗ An optimal solution to the attacker problem for a given w ∈ W

y∗ An optimal solution to the recourse problem for a given x ∈ X

Q(w, Ŷ) Two-level interdiction problem associated with a w ∈ W and a sample Ŷ ⊆ Y

zI(w, Ŷ) Optimal objective function value for Q(w, Ŷ)

zR(x̂) Real damage of an attack x̂ ∈ X , obtained by solving zR(x̂) = min
y∈Y(x̂)

f(y)

Yz Set of feasible third-stage solutions whose objective value is less than or equal to z

Section 3.2.3

C Set of covering constraints added to the fortification problem

W(C) Set of feasible first-stage solutions that satisfy all constraints in C

z̄ Global upper bound on z∗

Section 3.2.4

ψ̂ Tentative covering constraint

Cψ Set of tentative covering constraints

L Waiting list that stores triples (ŵ, zR(x̂), ψ̂)

ε Parameter that controls the addition of elements into L
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3.2.1 Sampling the Third-stage Solution Space

The sampling procedure selects a subset of third-stage solutions Ŷ ⊆ Y, and throughout

the algorithm augments Ŷ with new third-stage solutions from Y. The sampling procedure would

ideally be able to quickly identify several near-optimal solutions; however, we do not require this

procedure to guarantee the generation of any new solutions in order for our framework to converge

to an optimal solution. An appropriate strategy would tailor the sampling procedure for the problem

at hand, as would be done for heuristic approaches. Some candidate methods may involve randomly

restarted greedy heuristics; the use of optimal y-vectors corresponding to fixed x-values, along with

neighboring solutions (obtained, e.g., by 2-opt swaps); or solutions generated via metaheuristics.

We present two problem-specific sampling procedures in this study (see Sections 3.3 and 3.4), but

emphasize that any sampling method can be employed in our overall (exact) optimization scheme.

For any attack vector x and third-stage solution sample Ŷ, we denote by Ŷ(x) ≡ Ŷ ∩ Y(x)

the subset of solutions that belong to Ŷ and are feasible given the attack vector x. Anticipating

the case for which there exists an attack x ∈ X for which Ŷ(x) = ∅, we seed Ŷ with an artificial

third-stage solution ya that cannot be interdicted and has objective value f(ya) =∞. This artificial

solution ensures that Ŷ(x) 6= ∅ for any x ∈ X .

3.2.2 Solving Bilevel Interdiction Problems

Consider any feasible defense vector w ∈ W and let

Q(w) : zI(w) = max
x∈X (w)

min
y∈Y(x)

f(y) (3.2)

be its associated two-level interdiction problem. Note that if there exists a defense w ∈ W such

that X (w) = ∅, then problem (3.2) is not defined. Hence, without loss of generality, we assume that

X (w) 6= ∅, ∀w ∈ W.

Let Ŷ ⊆ Y be any third-stage solution sample and

Q(w, Ŷ) : zI(w, Ŷ) = max
x∈X (w)

min
y∈Ŷ(x)

f(y) (3.3)

be the restricted problem in which recourse (third-stage) decisions are restricted to Ŷ. The following

result establishes that solving a restricted problem Q(w, Ŷ) yields a valid upper bound on zI(w),
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which is in turn a valid upper bound on z∗.

Proposition 8. Consider any w ∈ W and third-stage solution sample Ŷ ⊆ Y. Then we have

zI(w, Ŷ) ≥ zI(w) ≥ z∗.

Proof Because Ŷ ⊆ Y, we have that Ŷ(x) ⊆ Y(x), which implies min
y∈Ŷ(x)

f(y) ≥ min
y∈Y(x)

f(y) for

any attack x. As a result, zI(w, Ŷ) ≥ zI(w). Also, Q(w) is a restriction of problem P in which w

is fixed, and so zI(w) ≥ z∗. This completes the proof. �

We now establish conditions under which we can obtain an optimal solution to Q(w), for

some w ∈ W, from a restricted problem Q(w, Ŷ). First, let (x̂, ŷ) be an optimal solution to the

restricted problem Q(w, Ŷ). We say that zI(w, Ŷ) is the perceived damage of x̂ given Ŷ, because

the interdictor perceives that the recourse decision must come from Ŷ. However, the defender may

instead select from uninterdicted solutions in Y, and so we define the real damage of attack x̂ over

the original third-stage solution space Y as

zR(x̂) = min
y∈Y(x̂)

f(y). (3.4)

Observe that zR(x̂) ≤ zI(w) ≤ zI(w, Ŷ) for any x̂ ∈ X (w). Proposition 9 states a condition in

which an optimal solution to Q(w, Ŷ) also optimizes Q(w).

Proposition 9. Let w ∈ W be a feasible defense, Ŷ be a third-stage solution sample, and (x̂, ŷ) be

an optimal solution to Q(w, Ŷ). If zI(w, Ŷ) = zR(x̂), then (x̂, ŷ) optimizes Q(w).

Proof Suppose by contradiction that (x̂, ŷ) is not optimal to Q(w), and that there exists an attack

x′ ∈ X (w) such that zR(x′) > zR(x̂). However, Ŷ(x′) ⊆ Y(x′) implies that min
y∈Ŷ(x′)

f(y) ≥ zR(x′) >

zR(x̂) = zI(w, Ŷ), which contradicts the fact that (x̂, ŷ) is an optimal solution to Q(w, Ŷ). �

Our algorithm uses these results to solve Q(w), given w ∈ W, by iteratively solving re-

stricted problems Q(w, Ŷi) defined over different third-stage samples Ŷi ⊆ Y. Algorithm 4 presents

this approach, in which each iteration i yields an upper bound UB i on zI(w) from solving Q(w, Ŷi),

and a lower bound LB i on zI(w) by obtaining zR(x̂), for some x̂ ∈ X (w). As we will demonstrate,

the sequence of UB i-values is nonincreasing, although the LB i-values need not be monotone. The

main while-loop (line 4) is executed until the optimality condition described in Proposition 9 is

met. Line 6 solves the restricted problem Q(w, Ŷi) defined over the current sample Ŷi. Line 7
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calculates the real damage zR(x̂) for attack x̂ and sets LB i equal to this value (see Remark 7 for

additional explanation). Line 8 creates Ŷi+1 by including solutions in Ŷi along with ŷ∗, i.e., an

optimal third-stage response to attack x̂.

If the perceived damage obtained is less than the upper bound at the previous iteration,

then a new upper bound on zI(w) has been obtained, and the algorithm executes lines 10–12. Line

10 removes from Ŷi+1 all those solutions whose objective value is greater than UB i, and lines 11–12

attempt to add new solutions to Ŷi+1 from YUBi ≡ {y ∈ Y | f(y) ≤ UBi} by sampling the third-

stage solution space Y and retaining only those samples having objective no more than UB i. If the

optimality condition in line 14 is satisfied, then line 15 returns an optimal solution.

Remark 6. Using a large sample size increases the chances of obtaining tighter upper bounds in

line 6. However, if |Ŷ| is too large, then Q(w, Ŷ) will be large as well, and may potentially be too

difficult to solve. On the other hand, if third-stage solutions in Ŷ are not diverse, then the attacker

can easily interdict all y ∈ Ŷ by attacking a few critical assets. This leads to poor upper bounds

from solving Q(w, Ŷ). It is thus desirable to use a sampling scheme that generates a diverse sample

of moderate size, containing optimal or near-optimal uninterdicted third-stage solutions, which are

likely to be optimal responses to attacks x̂ explored by the algorithm. Sections 3.3.2.1 and 3.4.2.1

present our sampling scheme tailored for the SPIPF and CLSIPF, respectively.

Remark 7. Intuitively, it may seem better to set LBi to the maximum of LBi−1 and the real

damage at iteration i, given by min
y∈Y(x̂)

f(y). However, doing so creates the possibility that the optimal

objective is found, but not a solution that achieves that objective. This could happen if the objective

value (perceived damage) for x̂ obtained in line 6 is such that zI(w, Ŷi) > zR(x̂), even though

zI(w, Ŷi) = max
k=1,...,i

{LBk}.
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Algorithm 4 Solving bilevel interdiction problem Q(w) via backward sampling

Input: Problem P and a feasible defense w ∈ W
Output: An optimal solution to Q(w)

1: Set UB0 =∞ and LB0 = −∞ . Initialization
2: Select Ŷ1 ⊆ Y as a sampling of the third-stage solution space, and compute f(y) for each solution

y ∈ Ŷ1 . See Remark 6
3: Set counter i = 0
4: while LBi < UBi do . Main while-loop
5: Set i = i+ 1
6: Solve UBi = zI(w, Ŷi) = max

x∈X (w)
min

y∈Ŷi(x)
f(y) and obtain an optimal solution (x̂, ŷ)

7: Solve LBi = zR(x̂) = min
y∈Y(x̂)

f(y) and obtain an optimal solution ŷ∗ . See Remark 7

8: Set Ŷi+1 = Ŷi ∪ {ŷ∗}
9: if UBi < UBi−1 then

10: Remove from Ŷi+1 all solutions having objective value greater than UBi
11: Select Ŷ ′ ⊆ Y as a sampling of the third-stage solution space
12: Add to Ŷi+1 all new solutions in Ŷ ′ ∩ YUBi

13: end if
14: if LBi = UBi then
15: Terminate with solution (x̂, ŷ)
16: end if
17: end while

Proposition 10 shows that the sequence of UB i-values obtained is nonincreasing, and Propo-

sition 11 states the finiteness and correctness of the proposed algorithm.

Proposition 10. The upper bounds UBi produced by Algorithm 4 are nonincreasing, and at itera-

tion i, Ŷ1
UBi
⊆ Ŷ2

UBi
⊆ · · · ⊆ Ŷi+1

UBi
, where ŶjUBi

≡ {y ∈ Ŷj | f(y) ≤ UBi}.

Proof We establish the result by induction. As a base case, UB0 = ∞ ≥ UB1 is obvious. Also,

if UB1 = UB0, then Ŷ2 = Ŷ1 ∪ {ŷ∗} for some ŷ∗, and if UB1 < UB0, then each y ∈ Ŷ1 such

that f(y) ≤ UB1 also belongs to Ŷ2. Hence, Ŷ1
UB1
⊆ Ŷ2

UB1
in either case. Next, suppose that by

induction, UBi−1 ≥ UBi and ŶiUBk
⊆ Ŷi+1

UBk
∀i = 1, . . . , k, for some k ≥ 1. We compute UBk+1 =

zI(w, Ŷk+1). Note that because UBk = zI(w, Ŷk), then zI(w, Ŷk) = zI(w, ŶkUBk
) (because the

attacker can ignore solutions y ∈ Ŷk : f(y) > UBk). Noting that ŶkUBk
⊆ Ŷk+1

UBk
by assumption, we

have that ŶkUBk
⊆ Ŷk+1 and UBk = zI(w, ŶkUBk

) ≥ zI(w, Ŷk+1) = UBk+1.

Moreover, since ŶiUBk
⊆ Ŷi+1

UBk
∀i = 1, . . . , k by assumption, UBk+1 ≤ UBk implies that

ŶiUBk+1
⊆ Ŷi+1

UBk+1
∀i = 1, . . . , k. For i = k + 1, if UBk+1 = UBk, then Ŷk+2 = Ŷk+1 ∪ {ŷ∗}, and

otherwise any y ∈ Ŷk+1 satisfying f(y) ≤ UBk+1 also belongs to Ŷk+2. Hence, Ŷk+1
UBk+1

⊆ Ŷk+2
UBk+1

.

This completes the proof. �
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Proposition 11. Algorithm 4 terminates finitely with an optimal solution.

Proof The first time that an attack x̂ is a part of an optimal solution to zI(w, Ŷi) at line 6, the

algorithm includes a corresponding optimal recourse response ŷ∗ into Ŷi+1. Suppose that x̂ is a part

of an optimal solution to zI(w, Ŷk) for a second time at iteration k > i. Proposition 10 guarantees

that ŷ∗ ∈ Ŷk for k > i. Therefore, upon encountering x̂ at iteration k, an optimal recourse response

is ŷ∗, thus ensuring that the optimality condition stated in Proposition 9 is met. Finite termination

of the algorithm then follows from the finiteness of X . �

We now discuss similarities and differences between our sampling approach and Benders’

decomposition [Benders, 1962]. Consider a two-level interdiction problem in which the recourse

problem is a linear program whose objective function is parametrized by the attacker’s decisions.

Let A be the recourse constraint coefficient matrix, b be the right-hand-side vector, and D be a

diagonal matrix with penalty values corresponding to attack decisions. We consider the following

problem:

max
x∈X

min (c + Dx)ᵀy (3.5)

s.t. Ay = b (3.6)

y ≥ 0. (3.7)

Since the recourse problem is a linear program, we reformulate (3.5)–(3.7) by considering its dual:

max
x∈X

max bᵀπ (3.8)

s.t. Aᵀπ ≤ c + Dx. (3.9)

Note that solving (3.5)–(3.7) with our sampling algorithm is the same as solving (3.8)–(3.9) using

Benders’ decomposition since recourse solutions included in the sample are feasible solutions to the

Benders’ dual subproblem. However, if the attacker’s decisions also impact the recourse constraints,

then this equivalence is no longer true because recourse solutions in the sample need not be feasible

solutions to the Benders’ dual subproblem. Moreover, if the recourse problem takes a more general

form (e.g., an integer program), then we cannot establish a direct mapping from our sampling

approach to Benders’ decomposition since a strong dual may not be available to transform the
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original max-min problem into a max-max type of problem.

Also, previous approaches for two-stage max-max (or min-min) problems employ variations

of Benders decomposition. These approaches employ general duality [Carøe and Tind, 1998], infer-

ence duality [Hooker and Ottosson, 2003], or disjunctive decomposition algorithms [Sen and Sherali,

2006] to generate valid inequalities that approximate the recourse problem value function. Our sam-

pling algorithm also approximates the recourse problem value function by iteratively adding new

solutions into the sample. However, our approach differs in that it attacks min-max (or max-min)

problems, and it does not rely on any notion of duality in order to generate the desired value function

approximation.

3.2.3 Optimizing the Defense Decisions

We now propose an approach to solve the three-level problem P. This approach is based

on the identification of critical attacks, i.e., attacks that must be blocked in order to improve the

defender’s incumbent objective value. Formally, we define a critical attack as any attack x̂ such

that its real damage zR(x̂) is greater than or equal to a target upper bound z̄. Our approach adds

a covering constraint wᵀx̂ ≥ 1 to the fortification problem for each critical attack x̂, which states

that at least one of the assets attacked by x̂ must be fortified.

Proposition 12. For problem P having optimal objective value z∗, consider any attack x̂ ∈ X . If

z∗ < zR(x̂), then any optimal solution (w∗,x∗,y∗) satisfies w∗ᵀx̂ ≥ 1.

Proof By contradiction, suppose that z∗ < zR(x̂), and that there is an optimal solution (w∗,x∗,y∗)

such that w∗ᵀx̂ = 0. Then x̂ ∈ X (w∗), and so z∗ = max
x∈X (w∗)

min
y∈Y(x)

f(y) ≥ zR(x̂). This contradicts

the assumption that z∗ < zR(x̂) and concludes the proof. �

These covering constraints can be seen as a general case of the combinatorial Benders’ cut

[Codato and Fischetti, 2006] where the fortification problem acts as a master problem and Q(ŵ) as

a subproblem. Similar so-called supervalid inequalies were introduced by Israeli and Wood [2002]

for a two-level shortest path interdiction problem.

Our approach explores different defense vectors ŵ ∈ W and solves the associated interdiction

problems Q(ŵ) with a variation of Algorithm 4 that stops whenever it identifies a critical attack.

When such an attack is identified, the algorithm adds a covering constraint to the fortification

problem, forcing the defender to block each identified critical attack. When the fortification problem
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becomes infeasible, the algorithm terminates with the incumbent solution being optimal. This

process must eventually terminate with an infeasible first-stage problem because X (w) 6= ∅, ∀w ∈

W, by assumption.

Algorithm 5 presents the proposed approach. Let C be the set of covering constraints added

to the fortification problem and W(C) ≡ {w ∈ W | w satisfies all constraints in C}. The algorithm

starts with C = ∅ and a global upper bound z̄ = ∞. The main while-loop (in line 4) is executed

until the fortification problem becomes infeasible. The two main steps inside this while-loop are

selecting a feasible defense ŵ ∈ W(C) (in line 5), and solving its associated interdiction problem

Q(ŵ) with a variation of Algorithm 4 (lines 6–23). The inner while-loop (in line 7) is executed until

LBi = zR(x̂) ≥ z̄, for some x̂ ∈ X (ŵ), indicating that x̂ is a critical attack. At this point, Algorithm

5 stops solving Q(ŵ) and adds a covering constraint to C. Finally, lines 8–22 replicate Algorithm

4, except for updating the global upper bound z̄ (in line 13), adding a covering constraint to C if a

critical attack is identified (in lines 17–19), and updating the incumbent solution when an optimal

solution to Q(ŵ) has an objective value equal to z̄ (in lines 20–22).

Algorithm 5 terminates finitely because each critical attack x̂ ∈ X triggers the generation of

a covering constraint to C, which excludes the fortification action ŵ from W(C). Finite termination

of the algorithm then follows from the finiteness of W and from Proposition 11.

The correctness of Algorithm 5 results directly from Propositions 8 and 12. Note that the

upper bound z̄ is nonincreasing throughout the execution of the algorithm. Proposition 12 states

that each of the covering constraints is necessary in order to achieve an objective value less than z̄.

As a result, once W(C) becomes empty we conclude that z∗ ≥ z̄. Since z̄ is an upper bound, we also

have that z∗ ≤ z̄, which guarantees that the algorithm terminates with the optimal value z̄ = z∗.

For any ŵ that reduces z̄, the algorithm solves Q(ŵ) to optimality, i.e., until LBi = UBi = z̄, and

updates the incumbent solution. As a result, the algorithm terminates with an optimal incumbent

solution since its objective value is equal to z̄ = z∗.

3.2.4 Accelerating the Algorithm

We now describe a mechanism designed to reduce the number of restricted interdiction

problems that are solved to optimality. The idea is to “pause” the exploration of any ŵ ∈ W

whenever the potential relative improvement to the current global upper bound is sufficiently small.

At this point, we add a tentative covering constraint to the fortification problem, guessing that the
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Algorithm 5 Backward sampling framework

Input: Problem P
Output: An optimal solution to P

1: Set the global upper bound z̄ =∞ and covering constraints set C = ∅ . Initialization
2: Select Ŷ1 ⊆ Y as a sampling of the third-stage solution space, and compute f(y) for each solution

y ∈ Ŷ1

3: Set counter i = 0
4: while W(C) 6= ∅ do . Main while-loop
5: Select any ŵ ∈ W(C)
6: Initialize UB i =∞ and LB i = −∞
7: while LBi < z̄ do
8: Set i = i+ 1
9: Solve UBi = zI(ŵ, Ŷi) = max

x∈X (ŵ)
min

y∈Ŷi(x)
f(y) and obtain an optimal solution (x̂, ŷ)

10: Solve LBi = zR(x̂) = min
y∈Y(x̂)

f(y) and obtain an optimal solution ŷ∗

11: Set Ŷi+1 = Ŷi ∪ {ŷ∗}
12: if UBi < z̄ then
13: Update global upper bound z̄ ← UBi
14: Remove from Ŷi+1 all solutions having objective value greater than UBi
15: Select Ŷ ′ ⊆ Y as a sampling of the third-stage solution space
16: Add to Ŷi+1 all new solutions in Ŷ ′ ∩ YUBi

17: else if LBi ≥ z̄ then . A critical attack has been identified
18: Add the covering constraint wᵀx̂ ≥ 1 to C
19: end if
20: if LBi = UBi = z̄ then
21: Update the incumbent solution (w̄, x̄, ȳ)← (ŵ, x̂, ŷ)
22: end if
23: end while
24: end while
25: Return (w̄, x̄, ȳ)

best known attack x̂ corresponding to ŵ is critical (which it will indeed be if the global upper bound

is reduced by a relatively small amount). We store ŵ in a waiting list to be revisited later in the

execution of the algorithm, at which time we either confirm that x̂ was critical and discard ŵ from

the waiting list, or conclude that the attack may not be critical and continue exploring ŵ.

Formally, let C be the set of covering constraints derived from (known) critical attacks

and Cψ be the set of tentative covering constraints. Let L be a waiting list that stores triples

(ŵ, zR(x̂), ψ̂), where ŵ is a defense vector that must be revisited, zR(x̂) is the real damage for an

attack x̂ ∈ X (ŵ) that we guess is critical, and ψ̂ is the corresponding covering constraint. Algorithm

6 formally states the accelerated backward sampling algorithm. IfW(C ∪Cψ) 6= ∅, then line 6 selects

a defense ŵ ∈ W(C ∪ Cψ) and lines 7–22 explore problem Q(ŵ) as in Algorithm 5. When x̂ has

not been shown to be critical, line 23 computes the ratio (z̄ − LBi)/z̄, assuming that z̄ > 0, to
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measure the percent reduction to z̄ that could be achieved by continuing to solve Q(ŵ). If this

ratio is not greater than some parameter ε > 0, then lines 24–25 store (ŵ, zR(x̂),wᵀx̂ ≥ 1) in L,

add the corresponding tentative covering constraint to Cψ, and stop the exploration of the current

ŵ. When W(C ∪ Cψ) = ∅, if Cψ 6= ∅, then lines 30–39 reconsider the items stored in the waiting

list. The first for-loop (in lines 30–34) iterates over L and moves from Cψ to C all the covering

constraints corresponding to attacks with zR(x̂k) > z̄, discarding the associated wk from further

exploration. Note that if zR(x̂k) = z̄, then we cannot yet discard wk: even if z̄ = z∗, the algorithm

might not have updated the incumbent (w̄, x̄, ȳ). The second for-loop (in lines 35–39) iterates over

the remaining items in L and resumes exploration for any wk that is still in W(C), but with ε = 0.

Finally, line 40 discards the remaining constraints in Cψ, empties the waiting list, and returns to the

main while-loop.
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Algorithm 6 Backward sampling framework with waiting list

Input: Problem P and a threshold parameter ε > 0
Output: An optimal solution to P

1: Set z̄ =∞ . Initialization
2: Initialize covering constraints sets C = ∅, Cψ = ∅, and waiting list L = ∅
3: Select Ŷ1 ⊆ Y as a sampling of the third-stage solution space, and compute f(y) for each solution

y ∈ Ŷ1

4: Set counter i = 0
5: while W(C ∪ Cψ) 6= ∅ do . Main while-loop
6: Select any ŵ ∈ W(C ∪ Cψ)
7: Initialize UB i =∞ and LB i = −∞
8: while LBi < z̄ do
9: Set i = i+ 1

10: Solve UBi = zI(ŵ, Ŷi) = max
x∈X (ŵ)

min
y∈Ŷi(x)

f(y) and obtain an optimal solution (x̂, ŷ)

11: Solve LBi = zR(x̂) = min
y∈Y(x̂)

f(y) and obtain an optimal solution ŷ∗

12: Set Ŷi+1 = Ŷi ∪ {ŷ∗}
13: if UBi < z̄ then
14: Update global upper bound z̄ ← UBi
15: Remove from Ŷi+1 all solutions having objective value greater than UBi
16: Select Ŷ ′ ⊆ Y as a sampling of the third-stage solution space
17: Add to Ŷi+1 all new solutions in Ŷ ′ ∩ YUBi

18: else if LBi ≥ z̄ then . A critical attack has been identified
19: Add the covering constraint wᵀx̂ ≥ 1 to C
20: end if
21: if LBi = UBi = z̄ then
22: Update the incumbent solution (w̄, x̄, ȳ)← (ŵ, x̂, ŷ)
23: else if (z̄ − LBi)/z̄ ≤ ε and LBi < z̄ then
24: Add (ŵ, zR(x̂),wᵀx̂ ≥ 1) to the waiting list L
25: Add the covering constraint wᵀx̂ ≥ 1 to Cψ and go to line 6
26: end if
27: end while
28: end while
29: if Cψ 6= ∅ then . Reconsider items stored in the waiting list
30: for each list member k ∈ L represented by (wk, zR(x̂k), ψk) do
31: if zR(x̂k) > z̄ then
32: Add ψk to C, remove ψk from Cψ, and remove (wk, zR(x̂k), ψk) from L
33: end if
34: end for
35: for each list member k ∈ L represented by (wk, zR(x̂k), ψk) do
36: if wk ∈ W(C) then
37: Resume solving Q(wk) with a threshold ε = 0
38: end if
39: end for
40: Reset Cψ ← ∅, L ← ∅, and go to line 5
41: end if
42: Return (w̄, x̄, ȳ)
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We further note that setting the value of the precision parameter ε to zero is equivalent to

using no waiting list L, which in turn converts Algorithm 6 to Algorithm 5.

3.3 Shortest Path Interdiction Problem with Fortification

A significant amount of research has been dedicated to the shortest path interdiction prob-

lem. However, fewer studies consider the SPIPF, in which the defender is able to fortify a subset

of arcs before being attacked. Brown et al. [2006] include fortification decisions for the problem of

protecting an electric power grid and Smith et al. [2007] consider fortification against three attacker

strategies (including both heuristic and optimal strategies) in the context of survivable network

design. Both approaches are based on a dualization of the recourse problem followed by a decompo-

sition algorithm that generates Benders’ cuts, and can be easily adapted for the SPIPF. Cappanera

and Scaparra [2011] propose an implicit enumeration algorithm that is capable of finding optimal

solutions to the SPIPF on networks having up to 225 nodes and 996 arcs.

3.3.1 Problem Statement

The SPIPF is formally defined on a directed graph G = (N ,A), where N is the set of nodes

and A ⊆ N ×N is the set of arcs, s is the source node, and t is the destination node. For each arc

(i, j) ∈ A there are two nonnegative attributes: the cost cij ≥ 0 of traversing the arc, and the delay

(or penalty) dij ≥ 0 incurred when traversing an interdicted arc (so that crossing an interdicted

arc costs cij + dij). Let w be the fortification decision variables defined over the arcs, where

W ≡
{
w : eᵀw ≤ Q, w ∈ {0, 1}|A|

}
enforces a cardinality constraint on the number of fortified

arcs and ensures that the variables are binary. Similarly, let x ∈ X (w) be the second-stage attack

decision variables, where X (w) ≡
{
x : eᵀx ≤ B, xij ≤ 1− wij ∀(i, j) ∈ A, x ∈ {0, 1}|A|

}
ensures

that a maximum of B unprotected arcs are attacked, and forces the x-variables to be binary. Finally,

let y be the third-stage arc-flow variables. The SPIPF can be formally stated as:

min
w∈W

max
x∈X (w)

min
∑

(i,j)∈A
(cij + dijxij)yij (3.10)
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s.t.
∑

{j|(i,j)∈A}
yij −

∑
{j|(j,i)∈A}

yji =


1, for i = s

0, for i ∈ N\{s, t}

−1, for i = t

(3.11)

yij ≥ 0, ∀(i, j) ∈ A, (3.12)

where in the objective function (3.10), the original cost of any arc is increased by dij when the arc

is attacked (i.e., xij = 1). Constraints (3.11) define the shortest path flow conservation constraints,

and (3.12) restrict the y-variables to be nonnegative.

3.3.2 Solution Approach

The implementation of the backward sampling framework for the SPIPF requires a sampling

scheme, an algorithm for solving two-level shortest path interdiction problems restricted over a

sample of s-t paths, and a method to solve third-stage shortest path problems. The latter is simply

accomplished via Dijkstra’s algorithm [Dijkstra, 1959]. We discuss the first two components of our

approach in the following subsections.

3.3.2.1 Sampling Scheme

We adapt the pulse algorithm [Lozano and Medaglia, 2013] for the constrained shortest path

problem to sample s-t paths from G. The pulse algorithm conducts a recursive implicit enumeration

of the solution space, supported by pruning strategies that efficiently discard a vast number of

suboptimal solutions. The algorithm conducts a depth-first search beginning at s. When a partial

path is pruned or the search reaches node t, the algorithm backtracks and continues the search

through unexplored regions of the solution space.

We implemented two pruning strategies: bound and arc-usage pruning. The bound pruning

strategy [Lozano and Medaglia, 2013] discards any path whose cost exceeds the current upper bound

z̄. To do so, we first obtain the minimum cost needed to reach node t from any node i, denoted by

cit. Then, we prune any partial path from node s to node i with cost csi, such that csi + cit > z̄.

In the arc-usage pruning strategy, we define an upper limit ū on the number of paths in Ŷ

that can use any arc (i, j). Let uij be the number of paths in Ŷ that use arc (i, j). When the search

reaches node t, we add an s-t path to Ŷ and increase uij by one, for each arc (i, j) traversed in the
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path. Once uij = ū, we eliminate arc (i, j), forcing the pulse algorithm to explore paths that do

not traverse arc (i, j). This strategy yields a diverse sample of s-t paths, which is desirable in our

backward sampling framework.

Finally, we stop the sampling procedure once a maximum sample size limit |Ŷ|max is reached

or once a time limit is exceeded.

3.3.2.2 Solving the Restricted Problem

We formulate the restricted problem Q(ŵ, Ŷ) as a MIP. Let Pk be the set of arcs corre-

sponding to the kth path in sample Ŷ, and let c(Pk) denote its cost. We formulate Q(ŵ, Ŷ) as

follows:

max z (3.13)

s.t. z ≤ c(Pk) +
∑

(i,j)∈Pk

dijxij , ∀Pk ∈ Ŷ, (3.14)

x ∈ X (ŵ). (3.15)

The objective function (3.13) maximizes z, which is constrained by (3.14) to be no more than the

least cost path in Ŷ, after considering delays caused by arc interdiction. Finally, constraints (3.15)

ensure that we only consider feasible attacks in X (ŵ).

Observe that if our algorithm generates an attack x̂ ∈ X (ŵ) having a perceived damage

greater than z̄, then z̄ cannot be improved in the current iteration. In this case, our algorithm does

not utilize the precise perceived damage value (beyond establishing that it exceeds z̄). It is thus not

necessary to optimize model (3.13)–(3.15) if we have proven that its objective exceeds z̄, and so we

add the objective target constraint z ≤ z̄ + δ, for a small constant δ > 0, to model (3.13)–(3.15).

This ensures that any attack x̂ ∈ X (ŵ) with perceived damage strictly greater than z̄ is sufficient

to allow the overall algorithm to continue, even though x̂ may not optimize Q(ŵ, Ŷ).

Furthermore, because the x-variables are binary-valued and dij ≥ 0, ∀(i, j) ∈ A, the addi-

tion of the objective target constraint allows us to revise (3.14) as follows, where (•)+ = max{0, •}:

z ≤ c(Pk) +
∑

(i,j)∈Pk

min{dij , (z̄ + δ − c(Pk))+}xij , ∀Pk ∈ Ŷ. (3.16)
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Constraints (3.16) are at least as tight as (3.14). (Note that (3.16) corresponding to some Pk may

persist in our interdiction model for a few iterations after z̄ + δ ≤ c(Pk). We therefore require the

coefficients of the x-variables to be nonnegative in order to ensure the validity of (3.16).)

3.4 Capacitated Lot Sizing Interdiction Problem with Forti-

fication

The capacitated lot sizing problem (CLSP) is a well-known NP-hard problem [Bitran and

Yanasse, 1982, Florian et al., 1980] in which a facility manufactures a single product to satisfy a

known demand over a finite planning horizon subject to production capacity constraints. Among

the many CLSP studies in the literature, we note the seminal MIP formulation of Karmarkar et al.

[1987], later extended by Eppen and Martin [1987] with a variable redefinition technique, and the

branch-and-cut framework by Belvaux and Wolsey [2000]. For a comprehensive CLSP literature

review see surveys by Karimi et al. [2003] and Brahimi et al. [2006].

In the CLSIPF production capacity at any time period could be lost (e.g., due to machine

failures). The system operator can ensure that capacity is protected against loss for some time

periods (e.g., by performing preventive maintenance). In this context, an “attack” is not necessarily

due to a malicious adversary, but represents some bounded worst-case scenario on capacity loss.

3.4.1 Problem Statement

Formally, we define the CLSIPF as the problem of finding a subset of time periods to fortify,

in order to minimize the total cost resulting from a worst-case attack that disables production

capacity on some of the unprotected time periods. Let T = {1, . . . , |T |} be the set of time periods

in the planning horizon. For each time period t ∈ T , let dt be the demand, Ct be the production

capacity, and let ct, ft, ht, and qt be the production, setup, holding, and shortage cost, respectively.

All parameters are assumed to be nonnegative.

Let w ∈ W be the fortification decision variables and x ∈ X (w) be the attack decision vari-

ables, whereW ≡
{
w : eᵀw ≤ Q, w ∈ {0, 1}|T |

}
establishes the defender’s budget and ensures that

the fortification variables are binary, and X (w) ≡
{
x : eᵀx ≤ B, xt ≤ 1− wt ∀t ∈ T , x ∈ {0, 1}|T |

}
ensures that a maximum ofB unprotected time periods are attacked, and forces the attacker variables
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to be binary. Finally, let y, v, I, and s be the third-stage decision variables modeling production,

setup, inventory, and shortage, respectively. The CLSIPF can be formally stated as:

min
w∈W

max
x∈X (w)

min
∑
t∈T

ctyt + ftvt + htIt + qtst (3.17)

s.t. It = It−1 + yt + st − dt, ∀t ∈ T , (3.18)

yt ≤ Ctvt, ∀t ∈ T , (3.19)

vt ≤ 1− xt, ∀t ∈ T , (3.20)

yt, It, st ≥ 0, ∀t ∈ T , (3.21)

vt ∈ {0, 1}, ∀t ∈ T . (3.22)

The objective function (3.17) minimizes the total cost after interdiction. Constraints (3.18) are

inventory constraints, constraints (3.19) enforce production capacity limits, and constraints (3.20)

forbid production on interdicted time periods. Constraints (3.21) and (3.22) place bounds and binary

restrictions on the decision variables.

3.4.2 Solution Approach

In the following subsections we discuss the three components required for solving the

CLSIPF: a sampling scheme, an approach for solving two-level CLSP interdiction problems restricted

over a sample of third-stage solutions, and a method to solve third-stage CLSP problems.

3.4.2.1 Sampling Scheme

Let S denote a production plan (third-stage recourse solution) that specifies values for y,

v, I, and s. To obtain a sample of production plans, we propose a simple random search that

iteratively generates a random attack plan xr, and solves a MIP to compute the optimal recourse

response given xr. In particular, xr interdicts K time periods randomly selected among {0, . . . , |T |}.

We then solve the following MIP given xr:

min
(y,v,I,s)∈Y(xr)

∑
t∈T

ctyt + ftvt + htIt + qtst, (3.23)

where Y(xr) is the third-stage feasible region defined by inserting xr in constraints (3.18)–(3.22).
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Let production plan S∗ = {y∗,v∗, I∗, s∗} be an optimal solution to the MIP given an attack

plan xr, and let c(S∗) denote its cost. If c(S∗) ≤ z̄, then we add S∗ to the sample, and otherwise

we discard S∗. We repeat this procedure for a prescribed number of iterations (regardless of how

many production plans are added to the sample). Note that integer parameter K could be different

from the attacker’s budget B, and can take any value between [0, |T |]. Large values of K result in

a sample with more conservative production plans, which only produce during a few time periods,

and are thus more difficult to interdict.

The repeated solution of MIPs in the sampling phase of this algorithm may ultimately be

too computationally intensive to justify its use. We will demonstrate in our computational section

that the solution of MIPs in this phase is justified. However, an alternative to this scheme would

simply generate heuristic recourse solutions in response to randomly sampled attacks. The tradeoff

thus involves the quality of sampled solutions (where higher quality samples tend to speed overall

convergence) versus the time required to generate them.

3.4.2.2 Solving the Restricted Problem

As done in the SPIPF, we formulate the restricted problem Q(ŵ, Ŷ) as a MIP. Let Sk =

{yk,vk, Ik, sk} denote production plan k in Ŷ and T (Sk) ≡ {t ∈ T | ykt > 0} be the set of time

periods in which plan Sk produces a positive amount of items. We formulate Q(ŵ, Ŷ) analogously

to (3.13)–(3.15):

max z (3.24)

s.t. z ≤ c(Sk) +
∑

t∈T (Sk)

Mk
t xt, ∀Sk ∈ Ŷ, (3.25)

x ∈ X (ŵ). (3.26)

We use a suitably large cost Mk
t to penalize attacked production plans. To determine this

cost, we decompose yk into values aktt, . . . , a
k
t|T |, ∀t ∈ T , where aktj denotes the amount produced

at period t that satisfies demand at period j, for j ≥ t. One possible way of adjusting a solution if

an attack occurs at period t is to simply retain the previous solution, but with ykt = 0. As a result,

there will be a savings of ft + cty
k
t due to eliminated fixed and variable costs, plus any holding costs

that were incurred due to production in period t. However, without adjusting production at any
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other period, we would incur additional shortage costs of qja
k
tj for each j ≥ t. Accordingly, we define

the cost penalty for any production plan Sk at time period t as

Mk
t =

 ∑
j∈T :j≥t

qja
k
tj

− ft − ctykt −
 ∑
j∈T :j>t

j−1∑
l=t

hla
k
tj

 . (3.27)

Proposition 13 shows that (3.25) remains valid when Mk
t is defined as in (3.27).

Proposition 13. Consider any x ∈ X and let S∗ ∈ Y(x) be its corresponding optimal recourse

response. For any production plan Sk, we have that c(Sk) +
∑

t∈T (Sk)

Mk
t xt ≥ c(S∗), where the

M -values are defined in (3.27).

Proof Let S ′k be a modification of Sk in which all the production from interdicted time periods is

canceled, as described above. Because production is zero in solution S ′k at time periods interdicted

by x, then S ′k ∈ Y(x), which implies that c(S ′k) ≥ c(S∗). Noting that c(S ′k) = c(Sk) +
∑

t∈T (Sk)

Mk
t xt,

this completes the proof. �

We use the objective target strategy introduced for the SPIPF in Section 3.2.2. Following

the same logic in that section, we add the constraint z ≤ z̄ + δ to model (3.24)–(3.26), which allows

us to tighten (3.25) as follows:

z ≤ c(Sk) +
∑

t∈T (Sk)

min{Mk
t , (z̄ + δ − c(Sk))+}xt, ∀Sk ∈ Ŷ. (3.28)

Remark 8. Recall that in our sampling strategy, we create recourse solutions that are optimal with

respect to some attack vector x. Hence, in those solutions, the Mk
t -parameters in (3.27) must not be

negative, or else the recourse solution could be improved by simply eliminating production in period

t. If exact optimization is not used to create recourse solutions in Ŷ, then it is possible for some

value of Mk
t to be negative. Constraint (3.28) remains valid in this case, but could be tightened by

simply replacing the sampled solution with one in which yt is modified to equal 0 whenever Mk
t < 0.

3.4.2.3 Obtaining the Real Damage for an Attack

Calculating the real damage of an attack x̂ requires solving a CLSP in which the production

capacity for time periods attacked by x̂ is set to zero. One simple approach solves the classical MIP
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model for the CLSP given attack plan x̂ stated in (3.23). Because the backward sampling framework

does not require a specific solution method for the third-stage problem, we could employ any of

the well-established methods for solving the CLSP, including the standard dynamic programming

approach in which inventory at time t is used as state variable.

3.5 Computational Experiments

This section presents computational results on the SPIPF and the CLSIPF. We assess the

performance of our algorithm on the SPIPF using randomly generated grid networks in Section

3.5.1 and on large-scale real road networks in Section 3.5.2. In Section 3.5.3 we analyze the effect of

the defender’s (attacker’s) budget and the parameter ε on the performance of the algorithm for the

SPIPF. In Section 3.5.4 we evaluate our algorithm on randomly generated CLSIPF instances.

We coded our algorithm in Java, using Eclipse SDK version 4.4.1, and executed the ex-

periments on a machine having an Intel Core i7–3537U CPU (two cores) running at 2.00 GHz

with 2 GB of RAM allocated to the Java Virtual Machine memory heap on Windows 8. We im-

pose a time limit of four hours (14,400s) and solve all mathematical optimization problems using

Gurobi 5.6. All instances and source code used in this section are available from the author at

http://people.clemson.edu/~jcsmith.

3.5.1 Solving the SPIPF Over Directed Grid Networks

We generate directed grid networks with the same topology used by Israeli and Wood [2002]

and Cappanera and Scaparra [2011]. These networks have a source node s, a sink node t, and m×n

nodes arranged in a grid of m rows and n columns. There exists an arc from s to every node in the

first column and an arc from every node in the last column to t. Also, arcs exist from each node in

grid row r and column c to (existing) nodes in positions (r+ 1, c), (r− 1, c), (r, c+ 1), (r+ 1, c+ 1),

and (r − 1, c+ 1) provided that these are not vertical arcs in the first or last columns.

We build networks with sizes ranging from 10 × 10 to 60 × 60. For each network size

we explore different (cost, delay) configurations in which arc costs (delays) are random integers

uniformly distributed between [1, c] ([1, d]), where c (d) denotes the maximum cost (delay). As done

by Cappanera and Scaparra [2011], we explore the following (c, d) configurations: (10, 5), (10, 10),

(10, 20), (100, 50), (100, 100), and (100, 200). For a fixed network size and (c, d) configuration, we
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generate ten instances with different random arc attributes for a total of 360 = 6× 6× 10 different

instances. We solve each instance six times with different Q values in {3, 4, 5, 7} and B values in

{3, 4, 5}, for a total of 2160 = 360 × 6 experiments. After tuning the algorithm parameters, we set

the maximum sample size to 100, the sampling time limit |Ŷ|max to 1 second, the arc-usage upper

limit to 20, threshold ε to 0.1, and δ to 1 (see (3.16)).

Tables 3.2 and 3.3 show the computational results for medium- and large-sized grid networks,

respectively. The first five columns show grid size, number of nodes and arcs, and the defender’s

and attacker’s budget (Q and B), respectively. For each of the six (c, d) configurations, the tables

depict the average CPU time obtained over ten runs (Avg) and the largest CPU time obtained over

those runs (Max).
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Table 3.2 shows that on average, our algorithm finds optimal solutions for the 10× 10 and

20 × 20 networks in just a few seconds, and requires less than one minute to solve the 30 × 30

networks, which have more than 4000 arcs. The maximum execution times are close to the average

times; even in the worst case (30× 30 grids with Q = 7, B = 5, and (c, d) = (10, 20)), the algorithm

terminates in just over two minutes.
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Table 3.3 shows that, on average, the algorithm terminates in less than six minutes for the

40 × 40 networks, in less than nine minutes for the 50 × 50 networks, and in less than 29 minutes

for the 60× 60 networks, for any combination of c, d, Q, and B examined. The maximum execution

times are larger relative to the average CPU times on these instances, and some of them require

roughly four hours of computational time over the 60 × 60 networks. This behavior is expected,

considering that these networks have more than 3000 nodes and 17,000 arcs. Table 3.3 suggests that

the instances become more difficult as d grows larger relative to c and when the cost (delay) values

increase (implying that (c, d) = (100, 200) are typically the most challenging instances). Finally, an

increase in the attacker’s budget tends to have a greater impact on the computation time than an

increase in the defender’s budget. We further study this idea in Section 3.5.3.

We compare our approach (Sampling) to the current state-of-the-art algorithm by Cap-

panera and Scaparra [2011] over medium-sized instances, who graciously provided their code for

the purposes of this comparison. They present two versions of their implicit enumeration algorithm,

which are based on a shortest path formulation (SPI) and on a k-shortest-paths formulation (KSPI).

The former performs better when the set of s-t paths whose cost is less than or equal to the objec-

tive value obtained at the root node of the enumeration tree is large, and the latter performs better

when this set is small. For our test instances, SPI strengthened with the variable fixing rules and

acceleration strategies proposed by Cappanera and Scaparra [2011] outperforms KSPI.

Table 3.4 shows the results for this comparison. Here, the “Avg” column depicts the average

CPU time in seconds, computed only among the instances solved within the time limit. As before,

“Max” refers to maximum CPU seconds out of the 60 instances solved for the row, and “# solved”

gives the number of instances solved within the four-hour time limit.

Table 3.4: Comparing the backward sampling algorithm to the state-of-the-art algorithm for SPIPF

Instance Nodes Arcs Q B Sampling SPI

Avg Max # solved Avg Max # solved
3 3 0.1 0.3 60 1.9 4.6 60

10× 10 102 416 5 4 0.3 0.8 60 30.9 162.8 60
4 5 0.7 2.9 60 67.5 284.2 60

3 3 0.6 3.3 60 26.7 305.1 60
20× 20 402 1,826 5 4 2.2 12.8 60 1128.4 7723.4 60

4 5 5.8 33.4 60 2495.2 >14,400 56

3 3 1.7 7.5 60 766.9 12,728.8 60
30× 30 902 4,236 5 4 7.2 36.9 60 4857.3 >14,400 45

4 5 18.6 94.8 60 4256.8 >14,400 26

Table 3.4 shows that our algorithm compares favorably to SPI, consistently reducing computational
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time by more than two orders of magnitude both in terms of average and maximum execution times,

for any combination of (Q,B) examined. Moreover, our sampling algorithm solves all instances

within the time limit while SPI solves 56 instances when (Q,B) = (4, 5) on the 20 × 20 networks,

45 instances when (Q,B) = (5, 4) on the 30× 30 networks, and 26 instances when (Q,B) = (4, 5).

3.5.2 Solving the SPIPF Over Real Road Networks

We use the road networks from Washington (DC), Rhode Island (RI), and New Jersey (NJ)

presented by Raith and Ehrgott [2009]. These networks range from 9559 nodes and 39,377 arcs

to 330,386 nodes and 1,202,458 arcs. For each road network, Raith and Ehrgott [2009] define nine

randomly selected s-t pairs. We define cij as the arc distance and set dij = 10,000, ∀(i, j) ∈ A.

For each network and s-t pair we explore six budget configurations for a total of 162 = 3 × 9 × 6

experiments. We use the same algorithm parameters as in the directed grid networks. Table 3.5

shows the results for these experiments.

Table 3.5: Computational time in CPU seconds for solving the SPIPF over road networks

Instance Nodes Arcs Q B Avg Max # solved
DC 9559 39,377 3 3 45.8 124.9 9

4 3 50.6 127.1 9
3 4 92.2 402.9 9
5 4 103.0 374.8 9
4 5 492.8 2829.5 9
7 5 450.1 1906.4 9

RI 53,658 192,084 3 3 284.5 756.0 9
4 3 295.6 817.3 9
3 4 800.7 4925.1 9
5 4 946.2 5974.9 9
4 5 560.1 >14,400 8
7 5 754.0 >14,400 8

NJ 330,386 1,202,458 3 3 6743.8 10,551.9 9
4 3 6345.8 >14,400 8
3 4 6526.8 >14,400 8
5 4 6964.3 >14,400 8
4 5 7354.6 >14,400 8
7 5 8452.6 >14,400 8

Table 3.5 shows that the algorithm solves all DC instances to optimality within the time

limit. The average CPU time for these instances is less than nine minutes and the worst execution

time is well under one hour. On the RI network, the algorithm solves all instances with B ≤ 4 and

solves all but one instance each when (Q,B) = (4, 5) and (7, 5). Average CPU times are less than 15

minutes among the instances solved to optimality within the time limit, for any choice of (Q,B). On

the NJ network, the algorithm solves all instances with Q = B = 3 and solves all but one instance

in each set corresponding to the other (Q,B) combinations. Average times are roughly two hours

81



among the instances solved to optimality.

3.5.3 Sensitivity Analysis for SPIPF

We conduct additional experiments to measure the effect of increasing the defender’s (at-

tacker’s) budget on the execution time. For this purpose, we use a subset of ten 30×30 grid networks

with (c, d) = (100, 200) and solve instances that result from fixing an intermediate value of Q = 4

(B = 4) and increasing B (Q). The results of this experiment are shown in Tables 3.6 and 3.7.

Table 3.6: Measuring the effect of increasing B on CPU time over a subset of 30× 30 grid networks

Q B Avg Max # solved
4 2 1.1 2.9 10
4 3 2.6 6.0 10
4 4 7.2 20.4 10
4 5 27.3 73.4 10
4 6 62.7 169.6 10
4 7 241.4 704.8 10
4 8 1208.5 4878.1 10
4 9 4901.8 >14,400 9
4 10 4750.8 >14,400 2

Table 3.7: Measuring the effect of increasing Q on CPU time over a subset of 30× 30 grid networks

Q B Avg Max # solved
2 4 5.2 13.1 10
4 4 6.8 18.5 10
6 4 10.1 29.0 10
8 4 15.8 56.4 10

10 4 16.4 48.2 10
12 4 17.7 44.4 10
14 4 24.3 73.7 10
16 4 26.0 53.5 10
18 4 30.8 57.2 10
20 4 36.8 55.3 10

Table 3.6 shows that increasing B for a fixed value of Q has a dramatic impact on the

computational time. Increasing B from 5 to 7 produces an increase of roughly one order of magnitude

in the average execution time, and while the algorithm is able to solve all ten instances having B = 8,

it is only able to solve two instances having B = 10. On the contrary, Table 3.7 shows that increasing

Q for a fixed value of B has a less pronounced impact on the computational time. Even for Q = 20,

the algorithm finds optimal solutions to all instances in less than one minute. This behavior may be

explained by noting that increasing B directly affects the difficulty of the restricted MIP problems,

which are solved in every iteration, while increasing Q affects only the fortification problem.

We also conduct an experiment that measures the effect of the parameter ε on the perfor-

mance of the algorithm. For this purpose, we select a set of difficult instances, i.e., those requiring

roughly one to three hours of computational time when ε = 0 (listed in the first column of Table 3.8).
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For each ε-value considered we report the number of defense plans evaluated (# of ŵ evaluated), the

number of defense plans added to the waiting list L (# of ŵ interrupted), the number of restricted

interdiction problems solved (# of Q(ŵ, Ŷ) solved), the total time spent solving fortification prob-

lems (timeF ), the total time spent solving restricted interdiction problems (timeI), and the total

execution time.

Table 3.8 shows the results for this experiment, where the “Metric” column shows the

performance metrics evaluated, and the last five columns show the results for ε-values ranging from

0 (i.e., not using the waiting list) to 0.2. First, observe that the time spent solving fortification

problems is negligible compared to the time spent solving restricted interdiction problems, which

is the most time-consuming task in the algorithm. It is thus vital to use ε to limit the number of

restricted interdiction problems that the algorithm must solve.

Table 3.8: Profiling the algorithm on a subset of hard instances

Instance (c, d) Metric ε = 0 ε = 0.05 ε = 0.1 ε = 0.15 ε = 0.2
# of ŵ evaluated 59 91 95 93 112
# of ŵ interrupted 0 77 78 73 87

# of Q(ŵ, Ŷ) solved 1745 1505 1383 1376 1532
40× 40-0 (10, 20) TimeF (s) 2.1 3.2 3.2 3.0 3.7

TimeI (s) 4256.8 3493.3 2083.2 2773.7 2790.1
Total time (s) 4320.9 3557.5 2146.5 2837.7 2849.3

# of ŵ evaluated 68 107 122 76 120
# of ŵ interrupted 0 87 97 57 99

# of Q(ŵ, Ŷ) solved 2218 2257 1910 2083 2045
60× 60-5 (10, 20) TimeF (s) 6.7 9.3 9.6 6.1 9.2

TimeI (s) 3474.7 3769.8 2942.6 2923.0 3144.9
Total time (s) 3531.0 3828.1 2999.5 2979.0 3204.9

# of ŵ evaluated 81 120 142 148 160
# of ŵ interrupted 0 101 123 127 134

# of Q(ŵ, Ŷ) solved 1270 1190 1226 1201 1239
60× 60-1 (100, 100) TimeF (s) 8.7 11.7 12.5 13.3 15.3

TimeI (s) 6977.2 5130.5 8076.5 7513.5 6693.4
Total time (s) 7074.0 5229.4 8162.9 7595.5 6773.6

# of ŵ evaluated 55 122 128 135 96
# of ŵ interrupted 0 93 99 111 82

# of Q(ŵ, Ŷ) solved 3043 2176 2110 2296 2394
60× 60-6 (100, 200) TimeF (s) 5.2 10.5 11.4 12.0 7.7

TimeI (s) 10,902.3 3846.2 4303.6 5007.5 4973.1
Total time (s) 10,989.7 3931.1 4388.2 5109.1 5068.6

Table 3.8 shows that there is not a single ε-value that achieves the best performance over

all the instances. However, small positive values for ε (i.e., ε = 0.05 and ε = 0.1) produce significant

computational improvements over other values of ε on average. As expected, the number of defense

plans evaluated (and interrupted) increases for larger values of ε. However, the number of restricted

interdiction problems solved over this subset of difficult instances is always smaller when using the

waiting list (ε > 0) than when we set ε = 0.
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3.5.4 Solving the CLSIPF

We generate random instances for the CLSIPF having |T | ∈ {10, 20, 30, 40}. For each

choice of |T | we generate ten instances in which dt, Ct, ct, ft, and qt are random integers uniformly

distributed between [10, 210], [150, 200], [5, 10], [44, 64], and [2ct, 3ct], respectively, and ht is randomly

selected in the interval [0.3, 0.5]. These intervals were defined based on the parameter structure of a

classical instance introduced by Peterson and Silver [1979]. For each instance we consider all possible

choices of Q ∈ {3, 5} and B ∈ {2, 3, 4}, for a total of 240 = 4× 10× 6 experiments. After tuning the

algorithm parameters, we set the integer parameter K used to control the sampling scheme to 2B,

the number of iterations for the sampling procedure to 50, threshold ε to 0.1, and δ to 1 (see (3.28)).

Because each iteration of our sampling scheme in Section 3.4.2.1 generates at most one sample, the

initial sample size will be between 0 and 50.

We compare our approach, in which we directly solve the third-stage problem (MIP) to an

alternative solution method in which the third-stage CLSP problem is transformed into a shortest

path problem (SP) using a standard dynamic programming approach. Table 3.9 shows the results

for these experiments. Here, the “Algorithm” column indicates the approach used. As before, the

“Avg” column shows the average CPU time in seconds, computed only among the instances solved

within the time limit, “Max” refers to maximum CPU time over ten runs, and “# sol” gives the

number of instances solved within the four-hour time limit.

84



T
ab

le
3.

9:
C

om
p
u

ta
ti

on
al

ti
m

e
in

C
P

U
se

co
n

d
s

fo
r

so
lv

in
g

th
e

C
L

S
IP

F
ov

er
ra

n
d

o
m

ly
g
en

er
a
te

d
p

ro
b

le
m

in
st

a
n

ce
s

A
lg

o
ri

th
m

Q
B

|T
|=

1
0

|T
|=

2
0

|T
|=

3
0

|T
|=

4
0

A
v
g

M
a
x

#
so

l
A

v
g

M
a
x

#
so

l
A

v
g

M
a
x

#
so

l
A

v
g

M
a
x

#
so

l
3

2
9
7
.7

3
7
6
.7

1
0

1
1
8
0
.0

2
5
0
7
.6

1
0

1
8
2
7
.2

3
9
2
9
.1

1
0

4
4
6
4
.4

6
5
8
7
.7

1
0

5
2

1
1
1
.5

3
9
2
.1

1
0

1
1
8
6
.8

2
4
6
7
.1

1
0

1
9
0
7
.4

4
0
7
7
.3

1
0

4
6
3
5
.5

6
5
6
0
.6

1
0

S
P

3
3

8
5
.9

2
0
2
.9

1
0

1
9
7
8
.5

3
3
6
1
.6

1
0

9
6
1
0
.3

1
4
0
5
1
.6

9
-

-
0

5
3

1
3
1
.5

4
5
9
.8

1
0

1
9
9
7
.7

3
4
4
0
.6

1
0

1
0
0
7
0
.3

1
4
2
3
7
.3

9
-

-
0

3
4

1
1
0
.0

1
9
7
.8

1
0

5
1
7
0
.7

8
5
2
9
.8

1
0

-
-

0
-

-
0

5
4

1
7
6
.5

4
9
9
.4

1
0

5
2
8
4
.2

8
2
3
8
.6

1
0

-
-

0
-

-
0

3
2

1
.8

3
.8

1
0

5
.7

8
.9

1
0

1
7
.7

3
3
.8

1
0

4
6
.7

6
9
.0

1
0

5
2

1
.4

2
.6

1
0

6
.3

1
1
.3

1
0

1
9
.3

3
0
.7

1
0

5
3
.4

7
0
.0

1
0

M
IP

3
3

2
.8

5
.9

1
0

2
6
.4

7
2
.8

1
0

1
5
3
.3

6
0
3
.3

1
0

7
0
2
.4

1
6
6
7
.7

1
0

5
3

2
.2

4
.4

1
0

2
9
.7

7
6
.7

1
0

1
6
9
.3

5
6
1
.1

1
0

9
9
4
.6

2
0
3
2
.9

1
0

3
4

2
.9

4
.8

1
0

1
1
5
.3

2
6
5
.6

1
0

1
7
1
1
.1

>
1
4
,4

0
0

9
4
9
3
3
.4

>
1
4
,4

0
0

5
5

4
2
.2

3
.4

1
0

1
0
9
.6

1
7
7
.3

1
0

2
6
2
2
.2

1
2
,1

8
2
.0

1
0

1
0
,0

8
6
.0

>
1
4
,4

0
0

4

85



Table 3.9 shows that SP solves all instances having |T | ≤ 20, 38 out of 60 instances having

|T | = 30, and 20 out of 60 instances having |T | = 40, within the time limit. However, the sampling

method that directly uses the MIP recourse problem solves all but one instance having |T | ≤ 30,

and 49 out of 60 instances having |T | = 40, within the time limit. Solving instances having |T | ≤ 20

requires on average less than two minutes, and even the worst execution times are less than five

minutes. For instances having |T | = 30, MIP requires on average less than one hour of CPU time;

however, one instance cannot be solved to optimality within four hours when (Q,B) = (3, 4). For

instances having |T | = 40, MIP performs well when B ≤ 3, solving all instances in less than 20

minutes. However, when B = 4 it fails to solve 11 instances (five when Q = 3 and six when Q = 5)

within the time limit. These results show that MIP outperforms SP over all instance sizes and (Q,B)

configurations, reducing computational time by about two orders of magnitude. Also, as observed in

the SPIPF, an increase in the attacker’s budget has a dramatic impact on the computational time.

For example, when |T | = 30, increasing B by one results in about a tenfold increase in the average

CPU time. On the contrary, increasing Q tends to have a minor effect on the computational time.
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Chapter 4

Solving the Traveling Salesman

Problem with Interdiction and

Fortification

4.1 Problem Statement

We formally define the TSPIF on a directed graph G = (N ,A), where N is the set of

nodes and A ⊂ N × N is the set of arcs. For each arc (i, j) ∈ A, let cij ≥ 0 be the cost of

traversing an uninterdicted arc and dij ≥ 0 be the additional cost (delay) incurred when traversing

an interdicted arc. Thus, the total cost of traversing an interdicted arc is cij + dij . Let w ∈

W be the fortification decision variables, where W ≡
{
w | Tw ≤ b, w ∈ {0, 1}|A|

}
ensures that

the variables are binary and enforces a set of linear constraints that limits the extent to which

the defender can fortify arcs. Let x ∈ X (w) be the attack decision variables, where X (w) ≡{
x | T′x ≤ b′, xij ≤ 1− wij , ∀(i, j) ∈ A, x ∈ {0, 1}|A|

}
forces the x-variables to be binary, ensures

that only unfortified arcs are interdicted, and imposes a set of linear constraints that models the

ability of the attacker to interdict arcs. Finally, let y be a vector of binary arc-selection variables

such that yij = 1 if arc (i, j) is used in the optimal tour identified for the recourse problem, and

yij = 0 otherwise, for all (i, j) ∈ A. We restrict y ∈ Y, where Y includes the set of binary vectors y
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that correspond to TSP solutions in G. The TSPIF can be formally stated as:

z∗ = min
w∈W

max
x∈X (w)

min
y∈Y

∑
(i,j)∈A

(cij + dijxij)yij , (4.1)

where in the objective function (4.1), the original cost of any arc is increased by dij when the arc is

attacked (i.e., xij = 1).

The TSP with interdiction and fortification may occur in a defense scenario in which troops

need to monitor a set of locations and return to a base. If the troops wish to perform these tasks

as quickly as possible, they solve a TSP. An adversary might attempt to impair the troops’ move-

ment by degrading (interdicting) roadways or bridges. The adversary’s actions could be anticipated

by the troops, who secure pathways ahead of time by stationing personnel or other resources to

deter interdictions. Hence, the troops act first to fortify arcs, after which the adversary interdicts

unfortified arcs, and the troops respond by solving a TSP on the resulting network. The TSPIF

may also arise in a civilian application in which a set of areas has been affected by a disaster such

as an earthquake. Nodes now correspond to areas that need emergency supplies, and the defender

deploys a relief vehicle to provide supplies to the nodes. Fortification is performed ahead of time in

a planning stage to either improve bridges or roads in anticipation of a disaster, or to pre-position

assets (e.g., ferries or pontoon bridges) that would facilitate travel in the event that the disaster

damages existing infrastructure. In the worst case, damage will be inflicted on a set of arcs that had

not been fortified in the planning stage.

Since the TSP is a nonconvex combinatorial problem, it is not practical to combine the

second- and third-stage problems, because no polynomial-size strong dual formulation for the TSP

is known to exist. Furthermore, enumerating all (exponentially-many) feasible recourse solutions

is computationally prohibitive. Therefore, a new approach is required to solve problems like the

TSPIF. In Chapter 3 we propose a backward sampling framework (BSF) for interdiction problems

with fortification in which the recourse problem can take any form. We solve defender-attacker-

defender games played over shortest path (SPIF) and capacitated lot sizing problems (CLSIF).

The BSF significantly outperforms prior approaches for solving the SPIF, and yields an effective

mechanism for solving interdiction and fortification problems. However, the design of practically

effective algorithms for interdiction and fortification problems defined over a strongly NP-hard

problem like the TSP is still an open research question, despite the abundance of research separately
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developed for the TSP and for network interdiction.

In this chapter we explore the solution of the TSPIF via the BSF. Our contribution analyzes

two problem restrictions, where both restrictions serve as a heuristic for the TSPIF and model the

situation in which the defender lacks the computational resources to compute an optimal response to

an attack. We also demonstrate that these restrictions are instrumental in reducing computational

time for solving the TSPIF within an exact two-phase approach. We then use these developments to

tailor a BSF-based approach for this problem, and demonstrate the efficacy of our approach using

TSP instances from the literature.

The remainder of this chapter is organized as follows. Section 4.2 presents the BSF for the

TSPIF. Section 4.3 discusses our proposed sampling approaches. Section 4.4 describes alternative

restrictions for the recourse problem. Given these algorithm components, Section 4.5 presents our

proposed two-phase approach for the TSPIF. Section 4.6 presents our computational experiments.

4.2 Solving the TSPIF

We now adapt the backward sampling framework presented in Chapter 3 for the TSPIF.

Algorithm 7 presents the proposed approach. Let C be the set of covering constraints added to the

(outer) fortification problem and W(C) = {w ∈ W | w satisfies all constraints in C}. The algorithm

starts with an empty set of covering constraints and a global upper bound z̄ =∞. Line 2 selects an

initial sample of tours over G. As we will discuss in Section 4.3, the size and diversity of the initial

sample plays an important role in the overall efficiency of the algorithm. The outer while-loop (line

4) is executed until the fortification problem becomes infeasible. Line 5 selects a feasible defense ŵ

and lines 6–21 solve the corresponding problem Q(ŵ) with our proposed sampling approach. The

inner while-loop (line 7) is executed until the global upper bound cannot be further reduced by the

current choice of ŵ. Line 9 obtains an upper bound on zI(ŵ) by solving the restricted problem

Q(ŵ, Ŷi) and obtaining an attack vector x̂ ∈ X (ŵ). Line 10 solves a TSP given the fixed attack

x̂. The optimal tour, ŷ∗, identified in this step yields a lower bound. Line 11 defines the sample

at the next iteration as the solutions in the previous sample along with ŷ∗. Line 12 checks if UB i

reduces the current global upper bound; if so, then line 13 updates the global upper bound, and line

14 removes from the sample all tours whose cost is greater than z̄. Line 15 determines if attack x̂

is critical by checking if LBi ≥ z̄, and if so, line 16 adds a covering constraint to the fortification
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problem. Finally, if the optimality condition is satisfied (line 18), then line 19 updates the incumbent

solution.

Algorithm 7 Backward sampling framework for the TSPIF

1: Set the global upper bound z̄ =∞ and covering constraints set C = ∅ . Initialization
2: Select Ŷ1 ⊆ Y as a sampling of tours from G, and compute their objective values
3: Set counter i = 0
4: while W(C) 6= ∅ do . Main while-loop
5: Select any ŵ ∈ W(C)
6: Initialize LB i = −∞
7: while LBi < z̄ do
8: Set i = i+ 1
9: Solve Q(ŵ, Ŷi), set UBi = zI(ŵ, Ŷi), and record an optimal solution (x̂, ŷ)

10: Solve LBi = zR(x̂) = min
y∈Y

∑
(i,j)∈A

(cij + dij x̂ij)yij and obtain an optimal tour ŷ∗

11: Set Ŷi+1 = Ŷi ∪ {ŷ∗}
12: if UBi < z̄ then
13: Update global upper bound z̄ ← UBi
14: Remove from Ŷi+1 all tours having cost greater than z̄
15: else if LBi ≥ z̄ then . A critical attack has been identified
16: Add the covering constraint wᵀx̂ ≥ 1 to C
17: end if
18: if LBi = UBi = z̄ then
19: Update the incumbent solution (w̄, x̄, ȳ)← (ŵ, x̂, ŷ)
20: end if
21: end while
22: end while
23: Return (w̄, x̄, ȳ)

4.3 Sampling TSP Tours

The only condition required on the initial sample to ensure that our algorithm terminates

with an optimal solution is that Ŷ1 ⊆ Y. However, Ŷ1 has an important effect on the performance

of the BSF since both the tightness of the upper bounds obtained by solving restricted problems

Q(ŵ, Ŷi) and the number of constraints in formulation (3.13)–(3.15) depend on the choice of Ŷ1.

We now describe desirable features for a choice of Ŷ1. Tours in Ŷ1 should be diverse in

the sense that they do not contain too many of the same arcs, or else the attacker could interdict

many tours in the sample by interdicting a few arcs common to those tours. Tours in Ŷ1 should

also be optimal or near-optimal solutions to the TSP when x̂ = 0. Finally, if |Ŷ1| is too large, then

formulation (3.13)–(3.15) will be large as well, and may potentially be too difficult to solve.
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Attempting to achieve a balance between the desirable features listed, we propose a genetic

algorithm (GA) based on the NSGA-II framework [Deb et al., 2002] in which each solution has two

objectives, both of which are to be minimized. The first objective is the tour length with respect to

the uninterdicted graph. The second objective is a measure of the individual solution’s similarity to

some reference set of TSP tours. We include in our reference set all tours whose length is not more

than ε percent greater than the best tour-length seen so far. We compute our second objective as

the number of times each solution arc appears in the reference set, divided by the total number of

arcs in the set population. A solution that has no arcs in common with any tour in the reference

set is in some manner “maximally different” and is desirable, having a second objective of 0.

Each solution is represented using the bidimensional array from [Buriol et al., 2004]. The

population size is set at 400 and the algorithm stops if the total number of evaluations reaches

2,000,000 or the total number of iterations reaches 1000. The initial population is formed by seeding

with the solution to the original problem found using LKH. One solution is taken directly from the

LKH result, and the rest are formed from randomly selected pairwise-interchanges of nodes from

this original tour.

In order to create the offspring population, 90% of the offspring population is filled using

the strategic arc crossover [Buriol et al., 2004] with a requirement that any such generated solutions

have tour lengths within 20% of the best seen tour length. The rest of the population is filled

using random pairwise interchange of the initial LKH-generated tour. Each solution then undergoes

mutation with 0.1% probability, where mutations are performed via a pair-wise interchange of nodes

on the tour. Each solution’s tour length is computed. The reference set is updated, including only

those solutions within ε = 5% of the best seen tour length but allowing duplicated tours to remain.

Then the second (similarity) objective can be computed for each solution. Once both objectives are

computed for each solution, the next population is formed using the front framework from NSGA-II.

Alternatively, one simple option is to seed Ŷ1 with one TSP tour. In this case we solve the

TSP when x̂ = 0, and use only that tour in our initial sample.

4.4 Alternative Restrictions for the Recourse Problem

We now present two restrictions for the recourse problem that model the case in which the

defender must compute a quick response to an attack, rather than expending the computational
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resources required to compute an optimal response. These restrictions are also instrumental in

devising a more computationally effective exact TSPIF algorithm.

The first restriction is inspired by very large-scale neighborhood search algorithms Ahuja

et al. [2002]. We start with a base tour y∗ obtained by solving the TSP to optimality given costs

cij , ∀(i, j) ∈ A. For the symmetric case, the defender recourse responses are restricted to belong to

the set of tours that can be obtained by performing a series of so-called disjoint 2-opt swaps on y∗.

(See Remark 9 for an extension of this idea for the asymmetric case.) To understand the concept of

disjoint 2-opt swaps, we first order the nodes in tour y∗ as v(1), v(2), . . . , v(|N |). Let v(|N |+1) ≡ v(1).

A 2-opt swap is performed by identifying two tour indices i and j, where i ≥ 1, j ≤ |N | + 1, and

i + 3 ≤ j. The tour formed by a 2-arc swap replaces arcs (v(i), v(i+1)) and (v(j−1), v(j)) with arcs

(v(i), v(j−1)) and (v(i+1), v(j)) in the original tour. Arcs (v(k), v(k+1)), k = i + 1, . . . , j − 2, would

now be traversed in the opposite direction after the symmetric 2-opt arc swap. (See Figure 4.1 for

an illustration.) A set of 2-opt swaps are disjoint if the 2-opt swaps are performed over indices

(i1, j1), (i2, j2), . . . , (ik, jk) such that jh ≤ ih+1, ∀h = 1, . . . , k − 1.

We model the disjoint 2-opt swap restriction on y∗ by transforming the recourse prob-

lem into a shortest path problem defined over a new graph G′ = (N ′,A′). The set of nodes

N ′ = {1, . . . , |N |+ 1} represents each ordered node in tour y∗, where |N | + 1 is a duplicate

of the first node. The set of arcs A′ = A′1 ∪ A′2 comprises two kinds of arcs. Arcs in A′1 =

{(i, i+ 1) | i ∈ N ′, i ≤ |N |} correspond to arcs in the original tour y∗. Accordingly, we define their

cost as c′ij = cv(i)v(j)
and delay for a given attack x as d′ij = dv(i)v(j)

xv(i)v(j)
, for all (i, j) ∈ A′1. Arcs

in A′2 = {(i, j) | ∀i = 1, . . . , |N | − 2, j = i+ 3, . . . , |N |+ 1} represent a 2-opt swap as illustrated in

Figure 4.1. For arc (i, j) ∈ A′2 the cost and delay for a given attack x are defined as:

c′ij = cv(i)v(j−1)
+ cv(i+1)v(j)

+

j−1∑
k=i+2

cv(k)v(k−1)
∀(i, j) ∈ A′2 (4.2)

d′ij = dv(i)v(j−1)
xv(i)v(j−1)

+ dv(i+1)v(j)
xv(i+1)v(j)

+

j−1∑
k=i+2

dv(k)v(k−1)
xv(k)v(k−1)

∀(i, j) ∈ A′2, (4.3)

respectively. Note that the third term in equations (4.2) and (4.3) accounts for the arcs traversed

from v(i+1) to v(j−1) in the original tour, though in the reverse direction.
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v(i) v(i+1) . . . v(j−2) v(j−1) v(j)

v(i) v(i+1) . . . vq v(q+1) . . . v(j−1) v(j)

1

Figure 4.1: Graphical representation of a 2-arc swap for the symmetric case

Every path from 1 to |N |+1 in G′ corresponds to a TSP tour in the original graph G. These

paths encode the original tour y∗ along with all solutions that can be obtained via disjoint 2-opt

swaps from that tour.

Remark 9. For the asymmetric case, arcs in A′1 are given as before. Arcs (i, j) ∈ A′2 represent

a 3-arc swap that replaces arcs (v(i), v(i+1)), (v(q), v(q+1)), and (v(j−1), v(j)) with arcs (v(i), v(q+1)),

(v(j−1), v(i+1)), and (v(q), v(j)) in the original tour, where

q ∈ argmin
i+1≤q̄≤j−2

{cv(i)v(q̄+1)
+ cv(j−1)v(i+1)

+ cv(q̄)v(j)
− cv(i)v(i+1)

− cv(q),v(q+1)
− cv(j−1)v(j)

}. (4.4)

Note that q is chosen in (4.4) so that the perturbed route corresponding to arc (i, j) ∈ A′2 is as close

to optimal as possible with respect to the uninterdicted graph. An alternative implementation might

create j − i− 3 parallel arcs that connect i and j, one corresponding to each possible choice of q in

the set {i+1, . . . , j−2}. This transformation expands the recourse solution space, but at the expense

of creating a much larger graph G′.

Cost and delay attributes are defined analogous to the symmetric case:

c′ij = cv(i)v(q+1)
+ cv(j−1)v(i+1)

+ cv(q)v(j)
+

j−2∑
k=q+1

cv(k)v(k+1)
+

q−1∑
k=i+1

cv(k)v(k+1)
∀(i, j) ∈ A′2

d′ij = dv(i)v(q+1)
xv(i)v(q+1)

+ dv(j−1)v(i+1)
xv(j−1)v(i+1)

+ dv(q)v(j)
xv(q)v(j)

+

j−2∑
k=q+1

dv(k)v(k+1)
xv(k)v(k+1)

+

q−1∑
k=i+1

dv(k)v(k+1)
xv(k)v(k+1)

∀(i, j) ∈ A′2.

Figure 4.2 illustrates the 3-arc swap represented by arc (i, j) ∈ A′2 for the asymmetric case.
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v(i) v(i+1) . . . v(j−2) v(j−1) v(j)

v(i) v(i+1) . . . vq v(q+1) . . . v(j−1) v(j)

1

Figure 4.2: Graphical representation of a 3-arc swap for the asymmetric case

We also consider a second restriction that constrains the defender to solve the recourse

problem using the Lin-Kernighan heuristic (LKH) [Lin and Kernighan, 1973], which is one of the

best performing TSP heuristics. Note that the first restriction is modeled as a network flow problem,

which can then be solved using existing network interdiction and fortification algorithms [Cappanera

and Scaparra, 2011, Bayrak and Bailey, 2008, Fulkerson and Harding, 1977, Golden, 1978, Held et al.,

2005, Israeli and Wood, 2002]. On the other hand, the second restriction will most likely yield a

stronger upper bound given the success of the LKH in obtaining near-optimal TSP solutions, but

the restriction cannot practically be modeled as a linear program.

4.5 Two-Phase Approach

We devise a two-phase approach that first solves a restriction of the TSPIF to identify a

set of covering constraints, an initial sample of tours, and an upper bound on z∗. This first phase is

based on the solution of a heuristic TSP restriction, and provides a warm start to exactly solve the

problem using Algorithm 7 in a second phase.

Algorithm 8 describes our proposed two-phase approach. Line 1 solves a restriction of the

TSPIF using a variation of Algorithm 7 in which one of the proposed restrictions in Section 4.4

is used to compute recourse solutions. We record an optimal solution, (w0,x0,y0), and the set of

all critical attacks explored, X̂ , solving this restricted problem. Note that even though attacks in

X̂ are critical for the restricted problem, they are not necessarily critical for the original (exact)

problem. Line 2 solves to optimality the interdiction problem corresponding to w0 (using our inner

sampling-based algorithm) and line 3 updates the upper bound and incumbent solution accordingly.

Lines 5–11 explore all attacks x̂ ∈ X̂ to generate the initial sample and possibly identify covering

constraints. For every x̂ ∈ X̂ , line 6 solves a TSP to find an optimal recourse tour ŷ∗ and calculates

zR(x̂). Line 7 adds ŷ∗ into the initial sample. Line 8 determines if attack x̂ is critical by checking

if zR(x̂) ≥ z̄. If so, then line 9 adds a covering constraint to the fortification problem. Finally, line
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12 continues solving the TSPIF using Algorithm 7, starting with an initial sample Ŷ1, a covering

constraint set C, and an upper bound z̄.

Algorithm 8 Two-phase algorithm for the TSPIF

1: Obtain an optimal solution (w0,x0,y0) to a restriction of the TSPIF and let X̂ be the set of all
critical attacks identified in the solution process . Begin phase one

2: Obtain an optimal solution (x∗,y∗) to Q(w0)
3: Set z̄ = zI(w0) and update the incumbent solution (w̄, x̄, ȳ)← (w0,x∗,y∗)
4: Initialize sample Ŷ1 = ∅ and covering constraints set C = ∅ . Begin phase two
5: for x̂ ∈ X̂ do
6: Solve zR(x̂) = min

y∈Y

∑
(i,j)∈A

(cij + dij x̂ij)yij and obtain an optimal tour ŷ∗

7: Add ŷ∗ into Ŷ1

8: if zR(x̂) ≥ z̄ then . A critical attack has been identified
9: Add the covering constraint wᵀx̂ ≥ 1 to C

10: end if
11: end for
12: Solve the TSPIF using Algorithm 7 warm-started with Ŷ1, C, and z̄

4.6 Computational Results

We coded our algorithm in Java, using Eclipse SDK version 4.4.2, and executed all compu-

tational experiments on a machine having an Intel Core i7–3537U CPU (two cores) running at 2.00

GHz with 8 GB of RAM on Windows 8. We solve the TSP instances using CONCORDE [Applegate

et al., 1998], all other optimization problems using Gurobi 5.6.0, and use the LKH implementation

provided by [Helsgaun, 2000].

Our set of test instances consists of 100 instances derived from 10 networks (5 symmetric and

5 asymmetric) from TSPLIB [Reinelt, 1991]. In every instance the cost coefficient for arc (i, j) ∈ A

corresponds to the distance between nodes i and j in the original network. The delay coefficient for

arc (i, j) ∈ A is initially taken to be a random integer uniformly distributed between [1, cij ]. We

generate 10 instances with random arc delay coefficients for each of the original networks.

We define the defender’s feasible region as W ≡
{
w | eᵀw ≤ Q, w ∈ {0, 1}|A|

}
, which en-

forces a cardinality constraint on the number of fortified arcs and ensures that the variables are

binary. We also define X (w) ≡
{
x | eᵀx ≤ B, xij ≤ 1− wij , ∀(i, j) ∈ A, x ∈ {0, 1}|A|

}
, which en-

sures that a maximum of B unfortified arcs are interdicted, and forces the x-variables to be binary.

In Section 4.6.1 we examine the performance of four versions of our proposed algorithm. In
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Section 4.6.2 we assess our proposed restrictions both as heuristic approaches for the TSPIF and

within the exact two-phase approach given in Algorithm 8. In Section 4.6.3 we study the effect of

varying the defender’s budget, the attacker’s budget, and the delay coefficients on the performance

of the algorithm.

4.6.1 Solving the TSPIF

We compared four versions of the proposed algorithm. The first one (one-tour sampling)

initiates the sample as a single tour that optimizes the TSP when no arcs have been interdicted. The

second one (GA sampling) implements the proposed GA sampling scheme. The third one (two-phase

2-opt) implements the two-phase algorithm in Section 4.5 with the 2-opt restriction, and the fourth

one (two-phase LKH) implements the two-phase algorithm with the LKH restriction. We solve each

instance three times with different budget configurations (Q,B) in {(3, 3), (5, 4), (4, 5)}.

Table 4.1 shows the results for these experiments. The first five rows present results for

symmetric instances and the last five rows for asymmetric instances. The first two columns present

the name of the network (which includes the number of nodes) and the number of arcs, respectively.

Columns 3 and 4 show the defender and attacker budget. The remaining columns present the average

CPU time in seconds obtained over 10 instances derived from the same network (Avg), the largest

CPU time obtained over those runs (Max), and the number of instances solved within a four-hour

time limit (# solved) for the four versions of the algorithm. We calculate the average CPU time

only among the instances solved within the time limit and report an overall CPU time average for

the symmetric and asymmetric instances. For each row, the best average and maximum CPU times

are highlighted in bold.
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Table 4.1 shows that two-phase LKH outperforms the other algorithms both in terms of the

average and maximum CPU times. For the symmetric instances, two-phase LKH is on average about

40% faster than one-tour sampling and two-phase 2-opt, and about 65% faster than GA sampling.

However, there is one instance from network gr96 that none of the algorithms solve within the time

limit. For the harder asymmetric instances, two-phase LKH is on average more than two times faster

than the other algorithms. The maximum CPU times follow a similar behavior.

Comparing the one-phase algorithms, one-tour sampling outperforms GA sampling on the

symmetric instances, while on the asymmetric instances their performance is roughly the same.

These results suggest that for the TSPIF, it is preferable to use a simple sampling scheme having a

small sample size rather than an elaborate one that leads to larger sample sizes.

4.6.2 Assessing the Effectiveness of the Proposed Restrictions

Table 4.2 compares algorithms two-phase 2-opt and two-phase LKH when Q = 4 and B = 5,

which was the most difficult budget configuration in Table 4.1. We omitted the one gr96 instance

not solved to optimality. Column “z∗” presents the average optimal objective value obtained over

the instances derived from the same network. The remaining columns show the average upper

bound obtained at the end of phase one (z̄), the average objective function value gap, calculated as

(z̄ − z∗)/z∗ × 100 (% Gap), the average CPU time in seconds for phase one (I), the average CPU

time for phase two (II), the average total CPU time (Total), and the number of covering constraints

added at the end of phases one and two (Cuts).
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Table 4.2: Comparing the performance of the proposed restrictions within the two-phase approach

Two-phase 2-opt Two-phase LKH

Instance z∗ z̄ % Gap Time (s) Cuts z̄ % Gap Time (s) Cuts

I II I II I II I II

bayg29 1702 1722 1.20 17 84 9 21 1702 0 80 2 23 0

hk48 12,057 12,140 0.68 60 137 5 25 12,057 0 136 4 26 0

brazil58 26,349 26,477 0.49 49 110 6 22 26,349 0 112 6 29 0

eli76 560 563 0.70 44 401 1 36 560 0 365 13 39 0

gr96 56,951 57,183 0.41 749 2643 4 26 56,951 0 2157 92 28 0

Overall average 0.69 184 675 5 26 0 570 24 29 0

Asymmetric instances

br17 40 41 1.75 2 8 1 15 40 0 5 2 16 0

p43 5625 5630 0.08 107 499 1 19 5626 0.01 72 257 19 2

ry48p 14,884 14,991 0.72 1188 6198 1 23 14,885 0.01 610 2148 21 2

ft53 7185 7243 0.81 78 407 3 28 7185 0 167 32 27 0

ftv64 1921 1929 0.41 140 843 2 34 1922 0.05 47 381 37 1

Overall average 0.75 303 1591 2 24 0.01 180 564 24 1

Table 4.2 shows that for symmetric instances, two-phase 2-opt quickly obtains near-optimal

heuristic solutions with an objective function gap less than 1% on average. However, the total time

to find an optimal solution by two-phase 2-opt is larger than the time required by two-phase LKH,

which finds an optimal solution for every instance at the end of phase one. The 2-opt restriction

identifies only a small number of covering constraints compared to the LKH restriction.

We conclude that for symmetric instances the 2-opt restriction is the best choice for a stand-

alone heuristic, and the LKH restriction is better when embedded in our two-phase exact algorithm.

For the asymmetric instances, the LKH restriction outperforms the 2-opt restriction both as a stand-

alone heuristic and within our exact algorithm, finding heuristic solutions with a smaller average

gap in less computational time. Both algorithms require considerably more time for phase two on

the asymmetric instances, due to the increased difficulty in solving asymmetric TSPs.

4.6.3 Sensitivity Analysis

We conduct additional sensitivity analysis experiments related to the defender’s budget, Q,

the attacker’s budget, B, and the range of the arc delay coefficient. For this purpose, we select

a subset of 10 symmetric instances based on network eli76 and 10 asymmetric instances based on

network ftv64, and begin by solving each instance with intermediate values of Q = 4 and B = 4. We
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then vary B and Q to determine the impact that these parameters have on computational time and

objective function value. For this experiment we use the two-phase LKH algorithm since it is the

best performer among the proposed algorithms. Table 4.3 presents the results of this experiment.

The first two columns show the value of Q and B, respectively. Columns 3–6 present results for

symmetric instances and columns 7–10 for asymmetric instances. As before, the “Avg” column

shows the average CPU time in seconds, computed only among the instances solved within the time

limit, “Max” presents the maximum CPU time over ten runs, “# solved” shows the number of

instances solved within the four-hour time limit, and z∗ refers to the average optimal objective value

obtained over the instances derived from the same network.

Table 4.3: Measuring the effect of Q and B on execution time and objective

Q B eli76 (symmetric) ftv64 (asymmetric)

Avg Max # solved z∗ Avg Max # solved z∗

0 4 20 57 10 560 21 43 10 1933

2 4 63 134 10 558 95 238 10 1915

4 4 133 382 10 556 242 467 10 1907

6 4 276 699 10 554 454 723 10 1899

8 4 352 486 10 553 676 1087 10 1892

10 4 679 1127 10 552 1004 1501 10 1887

4 2 14 18 10 547 67 130 10 1875

4 4 132 381 10 556 241 464 10 1907

4 6 2193 5874 10 563 594 832 10 1935

4 8 5823 >14,400 6 570† 1641 3354 10 1959

†: Average optimal objective value computed only among the instances solved within

the time limit.

Table 4.3 shows that increasing the attacker’s budget has a dramatic effect on the execution

time of the algorithm. For the symmetric instances, the computational times increase from 14

seconds to over 2000 seconds as B grows from 2 to 6, and only six out of ten instances are solved to

optimality when B = 8. For the asymmetric instances the computational time increases by roughly

a factor of three when increasing B by two units. On the other hand, increasing the defender’s

budget has a less pronounced effect on the computational time.

Regarding the optimal objective value, increasing the defender’s budget by ten units de-

creases z∗ by about 1.5% for the symmetric instances and 2.4% for the asymmetric instances. In-

creasing the attacker’s budget by six units results in an objective value increase of roughly 4% for
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both the symmetric and the asymmetric instances. Note that in the experiments depicted in Table

4.3, the average value for z∗ is a convex decreasing function of Q, and a concave increasing function

of B. However, this behavior is not reflected by each individual instance, and so no general claim of

convexity or concavity follows.

We also conduct experiments to measure the effect of increasing the arc delay coefficient

range on the execution times. For this purpose, we generate new instances based on symmetric

network bayg29 and asymmetric network p43. We generate 20 instances (10 symmetric and 10

asymmetric) having random arc delay coefficients uniformly distributed between [1, 2cij ], 20 in-

stances having delay coefficients between [1, 3cij ], and 20 instances having delay coefficients between

[1,M ], where M = 10 max(i,j)∈A{cij}. The latter delay configuration models the case in which

an arc may become unavailable when interdicted. Table 4.4 presents results over this new set of

instances. As before, we use intermediate values of Q = 4 and B = 4.

Table 4.4: Measuring the effect of varying the delay coefficient range on execution time

Delay configuration bayg29 (symmetric) p43 (asymmetric)

Avg Max # solved z∗ Avg Max # solved z∗

[1, cij ] 25 46 10 1686 185 363 10 5624

[1, 2cij ] 119 173 10 1712 214 357 10 5624

[1, 3cij ] 344 875 10 1722 225 337 10 5626

[1,M ] >14,400 >14,400 0 - 749 1505 10 5633

Table 4.4 shows that for the symmetric instances, the computational time increases by

roughly a factor of 15 as the delay range increases from [1, cij ] to [1, 3cij ], and none of the instances

for which the delay coefficients are between [1,M ] terminate within the four-hour time limit. On the

contrary, for the asymmetric instances the computational time exhibits a moderate increase with

respect to the delay coefficient range and the instances having delay coefficients between [1,M ] are

solved on average in about 12 minutes. The increased difficulty of solving symmetric instances as the

range of the d-parameters grows may be due to the amount of similar tours that exist in the sample,

which we expect to be considerably greater for symmetric instances than for asymmetric instances.

The attacker can therefore interdict all tours in the sample, significantly increasing their costs due

to the comparatively large delay coefficients. This results in poor upper bounds from solving the

attacker’s problem, which ultimately leads to increased computational times.

To mitigate the extent to which similar tours are included in the sample, we modify the
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objective function in phase one of our algorithm to include a penalty function based on sample

diversity. Let uij be the number of tours in the sample that use arc (i, j). For a given attack x̂, we

set the third-stage objective function in phase one as

min
y∈Y

∑
(i,j)∈A

(cij + dij x̂ij)yij + Puijyij , (4.5)

where P is an arbitrary constant penalty. Table 4.5 presents results of this experiment. After

fine-tuning the two-phase LKH algorithm, we set P equal to 1/2.

Table 4.5: Imposing a penalty on the number of times an arc is used in the sample

Delay configuration bayg29 (symmetric) p43 (asymmetric)

Avg Max # solved z∗ Avg Max # solved z∗

[1, cij ] 39 65 10 1686 346 607 10 5624

[1, 2cij ] 122 184 10 1712 455 645 10 5624

[1, 3cij ] 250 520 10 1722 462 553 10 5626

[1,M ] 5180 6826 10 1759 1562 1886 10 5633

Table 4.5 shows that including the penalty in the objective function greatly reduces the

computational time for solving the symmetric instances having delay coefficients between [1,M ],

which are now solved in less than 2 hours. The variation in the execution times is almost negligible

when the delay coefficients lie between [1, cij ] and [1, 2cij ], and there is roughly a 1.4 speedup when

the delay coefficients lie between [1, 3cij ]. On the other hand, including the penalty in the objective

function has a negative effect on the execution time for the asymmetric instances, which in the

worst case increases by roughly a factor of 2. This behavior illustrates the importance of achieving

a balance between tour quality and diversity in the sample.
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Chapter 5

A Binary Decision Diagram Based

Algorithm for Solving a Class of

Integer Two-Stage Stochastic

Programs

5.1 Problem Statement

Two-stage stochastic programming is an approach for solving optimization problems under

uncertainty in which a decision maker sequentially selects two sets of variables. In the first stage, the

decision maker selects a vector of decisions before the realization of the uncertain parameters. In the

second stage (or recourse problem), the decision maker determines the remaining variable values in

response to the first-stage variables and to the realization of the uncertain parameters. The goal is to

minimize the first-stage cost plus the expected second-stage cost. We examine two-stage stochastic

programs of the following form:

z∗ = min cᵀx + Eω∈Ω [Q(x, ω)] (5.1a)

s.t. Ax ≥ b (5.1b)
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x ∈ {0, 1}n1 , (5.1c)

with Q(x, ω) defined as the optimal objective function value to the following problem:

SP(x, ω) : Q(x, ω) = min f(ω)ᵀy (5.2a)

s.t. W (ω)y ≥ h(ω)− T (ω)x (5.2b)

y ∈ {0, 1}n2 , (5.2c)

where x is an n1-dimensional vector of first-stage variables and y is an n2-dimensional vector of

recourse variables. Here, ω is a random vector from a probability space (Ω,F ,P), A ∈ Rm1×n1 ,

f(ω) ∈ Rn2 , W (ω) ∈ {0, 1}m2×n2 , and all other data has conforming dimensions. In addition to

assuming that W (ω) is binary, we assume that h(ω) ∈ {0, 1}m2 and T (ω) ∈ {0, 1}m2×n1 is a matrix

such that
∑n1

j=1 T (ω)ij ≤ 1 for all i = 1, . . . ,m2, ω ∈ Ω, and
∑m2

i=1 T (ω)ij ≤ 1 for all j = 1, . . . , n1,

ω ∈ Ω. The latter assumption ensures that at most one first-stage variable interacts with any given

second stage constraint, and vice versa.

We adopt the following assumptions:

1. For all x ∈ X = {x | Ax ≥ b, x ∈ {0, 1}n1} and ω ∈ Ω, there exists a feasible solution to

SP(x, ω).

2. ω follows a distribution with finite support Ω = {ω1, . . . , ωK} with P(ω = ωk) = pk.

Our first assumption ensures relatively complete recourse, which along with the binariness of x and y,

requires that the recourse problem has a finite optimum. This assumption is not limiting, because

binary artificial variables can be added to the formulation to ensure the existence of a feasible

solution for any x and ω. Our second assumption states that we will employ discrete probability

distributions, as common in the literature. These assumptions lead to the following deterministic

equivalent monolithic formulation, in which expectation is represented by a weighted sum over all

possible realizations of ω, known as scenarios.

min cᵀx +

K∑
k=1

pkf(ωk)ᵀyk (5.3a)

s.t. Ax ≥ b (5.3b)
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W (ωk)yk ≥ h(ωk)− T (ωk)x ∀k = 1, . . . ,K (5.3c)

x ∈ {0, 1}n1 (5.3d)

yk ∈ {0, 1}n2 ∀k = 1, . . . ,K. (5.3e)

Note that problem (5.3) is a large block-angular integer programming problem having complicating

variables x.

Problems of the form (5.3) can be seen as a type of stochastic set covering formulation.

Constraints (5.3c) represent the stochastic set-covering conditions that must be satisfied in each

scenario. By setting certain x-variables equal to 1 in the first stage, however, the constraints corre-

sponding to those x-variables do not need to be satisfied within the second-stage problem. Noting

that constraints (5.3b) and (5.3d) constrain the first-stage variables, the problem is to determine

which of the set-covering constraints to satisfy before uncertainty is realized (using x), and in each

scenario, how to satisfy the remaining constraints by using the second-stage variables y. Later in

this chapter, we will consider a stochastic vertex covering problem. In this problem, we can remove

some edges in the first stage with costs given by the c-vector, and then solve a weighted vertex

covering problem (with scenario-dependent weights) in the second stage over edges that still need

to be covered.

The contributions we make in this chapter are as follows. One, we provide a modeling mech-

anism for this class of problems that reformulates the second-stage integer program as a shortest-path

problem using binary decision diagrams (BDDs), albeit at the expense of an exponential number of

nodes. Two, we show how to limit the size of these reformulations based on variable-ordering strate-

gies within the BDD, relating the size of the resulting shortest-path problems to the branchwidth

of an associated hypergraph. Three, we investigate methods for strengthening Benders’ inequalities

stemming from our reformulation, and show their effectiveness on stochastic vertex cover instances.

The remainder of this chapter is organized as follows. Section 5.2 presents our proposed

second-stage problem reformulation. Section 5.3 describes our Benders’ decomposition algorithm

along with strengthening strategies for the optimality cuts. Section 5.4 presents our computational

experiments on stochastic vertex cover problems.
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5.2 Reformulating the Recourse Problem

The algorithm we describe in this chapter is based on a transformation of the recourse

problem into a linear program parameterized by first-stage decision variables. We then develop a

Benders’ decomposition approach for the equivalent transformed problem. Section 5.2.1 presents

the proposed recourse problem reformulation. Section 5.2.2 describes how to limit the size of the

reformulation using a branch decomposition heuristic.

5.2.1 Formulating the Recourse Problem via Binary Decision Diagrams

5.2.1.1 Dynamic Programming Formulation

We consider a dynamic programming (DP) formulation for problem SP(x̂, ω), which consists

of a state space, a set of transition functions, and a set of cost functions. A dynamic program

sequentially determines values for decision variables in a series of stages. The outcome of these

decisions is modeled by states that, at a given stage i, store information about the state of the

system after assigning values for variables 1, . . . , i− 1. The state space is the set of all admissible

states, which for our problems includes an initial (or root) state, a terminal state, and an infeasible

state. Transition functions determine how the system transitions between states. Cost functions

establish the cost incurred for any given transition.

We define states as m2-dimensional binary vectors in which each component corresponds

to one of the structural constraints in (5.2b). A state component j ∈ {1, . . . ,m2} equals 1 if

the corresponding constraint has not been satisfied using the variables chosen so far, and equals 0

otherwise. For a given scenario ωk ∈ Ω, let S(ωk) be the state space, where r(ωk) = h(ωk) is the

root state, t = 0 is the terminal state, and {} is the infeasible state. We denote by si the state of

the system at stage i, i.e., before assigning a value to variable i. For modeling purposes, we consider

both x- and y-variables in our DP formulation, even though x-variables are fixed parameters in

the second-stage problem. (Including x as fixed decision variables will ultimately allow us to gain

sensitivity information about SP(x, ωk) with respect to x.) Let γ be an ordering of x- and y-

variables. The system transitions from a given state si ∈ S(ωk) to a new state according to the

following transition functions:

si+1 = φi(s
i, γi, ω

k), ∀i = 1, . . . , n1 + n2, (5.4)
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where γi denotes the ith variable in ordering γ, the initial state s1 = r(ωk) is given, and φi(s
i, γi, ω

k)

is defined below. Let t(ωk)q and w(ωk)q be the qth column of matrices T (ωk) and W (ωk), respec-

tively. Also, let px(q) be the position of xq in the ordering γ, ∀q = 1, . . . , n1, define py(q) as the

position of yq in γ, ∀q = 1, . . . , n2, and let sij be the jth component of state vector si. Let

U ij =
∑

q∈{1,...,n1}:px(q)>i

T (ωk)jq +
∑

q∈{1,...,n2}:py(q)>i

W (ωk)jq (5.5)

denote the sum of coefficients corresponding to undecided variables, other than the variable corre-

sponding to γi, in constraint j at stage i. Defining (•)+ = max{0, •}, the state transition functions

are defined as follows.

φi(s
i, γi, ω

k) =



{} if si = {}

{} if there exists a constraint j ∈ {1, . . . ,m2} such that:

if γi = xq, for q ∈ {1, . . . , n1}, then sij − T (ωk)jqxq − U ij = 1

if γi = yq, for q ∈ {1, . . . , n2}, then sij −W (ωk)jqyq − U ij = 1

(si − t(ωk)qxq)
+ if γi = xq, for q ∈ {1, . . . , n1}

(si −w(ωk)qyq)
+ if γi = yq, for q ∈ {1, . . . , n2}

(5.6)

The first case of (5.6) corresponds to the event in which si is already infeasible, while the second

case occurs when there is no longer any way of finding a feasible solution for some constraint j, even

if all remaining variables in γ are set to 1. The third case updates si after setting an x-variable, and

the fourth case updates si after setting a y-variable.

Each transition associated with a variable yq incurs a cost f(ωk)qyq, where f(ωk)q is the

qth component of the second-stage cost vector f(ωk). Transitions associated with x-variables do not

incur any cost since x-variables are decided in the first stage.

We illustrate our DP formulation using the following second-stage problem:

SP(x, ωk) : Q(x, ωk) = min y1 + y2 + y3 (5.7a)

s.t. y1 + y2 ≥ 1− x1 (5.7b)

y1 + y3 ≥ 1− x2 (5.7c)
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y2 + y3 ≥ 1− x3 (5.7d)

y ∈ {0, 1}3, (5.7e)

where first-stage decisions belong to set X = {0, 1}3. Let γ = [y1, y2, x1, y3, x2, x3]. This ordering

leverages the fact that y1, y2, and x1 are the only variables having nonzero coefficients in constraint

(5.7b), y3 and x2 have nonzero coefficients in constraint (5.7c), and x3 has a nonzero coefficient in

(5.7d). Figure 5.1 shows the proposed state transition graph. Dashed arcs represent assigning a

value of 0 to the current variable and solid arcs represent assigning a value of 1 to that variable.

[1, 1, 1]

[1, 1, 1] [0, 0, 1]

[1, 1, 1] [0, 1, 0] [0, 0, 0][0, 0, 1]

{} [0, 1, 1] [0, 1, 0] [0, 0, 1] [0, 0, 0]

{} [0, 1, 1] [0, 1, 0] [0, 0, 1] [0, 0, 0]

{} [0, 0, 1] [0, 0, 0]

{} [0, 0, 0]

y1

y2

x1

y3

x2

x3

1

Figure 5.1: State transition graph for problem (5.7)

Although our proposed DP formulation is valid for problem SP(x̂, ωk), it could in the worst

case contain one state for each possible combination of values for variables x and y, i.e., an order

of 2n1+n2 states. However, we can attempt to exploit the structure of the problem to limit the size

of the state space. (Section 5.2.2 further explores this idea by using a branch decomposition of an

associated hypergraph to derive a variable ordering that ensures an upper bound on the size of the

state space.)

For a given first-stage decision x̂ ∈ X , the transition graph can be naturally simplified

by fixing the arcs corresponding to the choice of x-variables, albeit at the expense of no longer

parameterizing the state transition graph as a function of x. Figure 5.2 shows the reduced state
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transition graph for first-stage decisions [x̂1, x̂2, x̂3] = [0, 0, 0] and [x̂1, x̂2, x̂3] = [1, 0, 0]. Each path

[1, 1, 1]

[1, 1, 1] [0, 0, 1]

{} [0, 1, 0] [0, 0, 0][0, 0, 1]

{} [0, 0, 0]

y1

y2

y3

1

(a)

[1, 1, 1]

[1, 1, 1] [0, 0, 1]

[0, 1, 1] [0, 1, 0] [0, 0, 0][0, 0, 1]

{} [0, 0, 0]

y1

y2

y3

1

(b)

Figure 5.2: (a) Simplified state transition graph for [x̂1, x̂2, x̂3] = [0, 0, 0] (b) Simplified state
transition graph for [x̂1, x̂2, x̂3] = [1, 0, 0]

from the root node to the terminal node in Figure 5.2 represents a feasible solution to problem

(5.7). Note that for [x̂1, x̂2, x̂3] = [0, 0, 0] the transition from state [1, 1, 1] in the second stage, when

assigning y2 = 0, leads to the infeasible state. For [x̂1, x̂2, x̂3] = [1, 0, 0] the same transition results

in state [0, 1, 1]. As a result, setting x1 = 1 allows an additional second-stage feasible solution

[y1, y2, y3] = [0, 0, 1].

5.2.1.2 Reduced BDD Representation Using Capacitated Arcs

Our next goal is to create a simplified version of the state transition graph, in which the

availabilities of arcs in the transition graph are still given as a function of the x-variables. This

representation is smaller (as in Figure 5.2), but allows us to parameterize our optimal DP solutions

as a function of x, which becomes critical in using decomposition techniques for scenario-based

stochastic programs.

Accordingly, we transform problem SP(x̂, ωk) into a shortest-path problem using a BDD

based on the proposed DP formulation. Some arcs in this shortest path problem are available only

when certain x-variables equal one, and so we refer to those arcs as capacitated. For each scenario

ωk ∈ Ω we propose the generation of a single BDD, which is a layered directed acyclic graph

G′k = (N k,Ak) whose nodes and arcs correspond to states and transitions in the state transition

graph, respectively. The set of nodes N k is partitioned into layers Lk1 , . . . ,Lkn1+n2
corresponding to

variables in ordering γ, plus an additional terminal layer Lkn1+n2+1 that contains only the terminal
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node. We refer to arcs emanating from nodes in Lki as belonging to layer i. We explain the process

of generating this graph in two phases.

The first phase creates a large shortest-path problem having capacitated arcs. We first

remove nodes corresponding to the infeasible state. Next, for each arc a ∈ Ak we define a set of

indices Uka ⊆ {1, . . . , n1} such that the flow on arc a cannot be positive unless x̂q = 1, for all q ∈ Uka .

Hence, for a given first-stage solution x̂, x̂q imposes an upper bound on flow on arc a, ∀q ∈ Uka . The

arc upper bounds imposed by Uka ensure that each path from r(ωk) to t represents a feasible solution

to SP(x̂, ωk). In the first phase of our BDD construction, we set Uka = {q} if arc a corresponds to

setting xq = 1, and Uka = ∅ otherwise (either because a corresponds to setting xq = 0, or because a

corresponds to a y-variable). We define arc-cost vector gk as follows:

gka =


f(ωk)i if arc a corresponds to setting yi = 1

0 otherwise.

(5.8)

Figure 5.3 shows our proposed BDD for the example second-stage problem (5.7). Nonempty sets

Uka are displayed alongside the arcs. In the second phase of our process, we reduce the size of our

[1, 1, 1]

[1, 1, 1] [0, 0, 1]

[1, 1, 1] [0, 1, 0] [0, 0, 0][0, 0, 1]

[0, 1, 1] [0, 1, 0] [0, 0, 1] [0, 0, 0]

[0, 1, 1] [0, 1, 0] [0, 0, 1] [0, 0, 0]

[0, 0, 1] [0, 0, 0]

[0, 0, 0]

y1

y2

x1

y3

x2

x3

{x1} {x1} {x1} {x1}

{x2}
{x2}

{x2} {x2}

{x3} {x3}

1

Figure 5.3: Proposed BDD for problem (5.7) after phase one

proposed BDD by adding long arcs [Bryant, 1986] that skip one or more layers corresponding to

x-variables. Consider layers i and j such that j ≥ i+ 2, layer i corresponds to a y-variable, and all
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layers in [i+ 1, . . . , j − 1] correspond to x-variables xψ(i+1), . . . , xψ(j−1), respectively. For each node

u ∈ Lki , we create a long arc to node v ∈ Lkj if there exists a path from u to v in the BDD from

the first phase. For each such long arc a, we include ψ(q) in Uka if and only if the path from u to v

corresponding to a uses an arc for which xψ(q) = 1. Observe that parallel long arcs can now exist

between node pairs in this network. The number of layers is now reduced to n2 + 1.

To simplify this network, we eliminate unnecessary long arcs. Definition 1 aids us toward

this goal by introducing the concept of dominance for long arcs.

Definition 1. Consider long arcs a′ and a′′ having the same origin and destination nodes. If a′

and a′′ correspond to setting a y-variable to the same value, and Uka′ ⊂ Uka′′ , then a′ dominates a′′.

To finish the second phase of our graph simplification, we reduce the size of our BDD by re-

moving dominated long arcs that do not encode additional second-stage solutions. Figure 5.4 presents

all long arcs emanating from state [0, 1, 1] in the fourth layer of our BDD for problem (5.7). Long arcs

[0, 1, 1]

[0, 0, 0]

{x2, x3} {x2} {x3} {x2, x3}

y3

1

Figure 5.4: Long arcs emanating from state [0, 1, 1] in our proposed BDD

from left to right correspond to assignments [y3, x2, x3] ∈ {[0, 1, 1], [1, 0, 0], [1, 1, 0], [1, 0, 1], [1, 1, 1]},

respectively. Note that the last three arcs are dominated by the second arc and can be removed

from the BDD. Figure 5.5 presents our reduced BDD for problem (5.7) after removing all dominated

long arcs. The long arc from state [1, 1, 1] to state [0, 1, 1] corresponds to assigning y1 = 0. This

assignment is feasible only if x1 = 1; thus, its upper bound set includes x1. There are two long

arcs from state [0, 1, 1] to state [0, 0, 0]. The dashed arc corresponds to assigning y3 = 0, which

is a feasible assignment only if x2 = 1 and x3 = 1; thus, its upper bound set includes x2 and x3.

The solid arc corresponds to assigning y3 = 1, which is a feasible assignment no matter the choice

of x2 and x3; thus, its upper bound set is empty. Note that for a given first-stage decision vector

x̂ ∈ X = {0, 1}3, upper bounds imposed by sets Uka admit only paths that represent feasible so-

lutions to SP(x̂, ωk). For example, if [x̂1, x̂2, x̂3] = [0, 0, 0], then feasible paths from the root node
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[1, 1, 1]

[1, 1, 1] [0, 0, 1]

[0, 1, 1] [0, 1, 0] [0, 0, 0][0, 0, 1]

[0, 0, 0]

{x1}

{x2, x3}
{x2} {x3}

y1

y2

y3

1

Figure 5.5: Reduced BDD for problem (5.7) after phase two

to the terminal node encode second-stage solutions [y1, y2, y3] ∈ {[1, 1, 1], [1, 1, 0], [1, 0, 1], [0, 1, 1]}.

However, for any vector x̂ such that x̂1 = 1 there is an additional feasible path corresponding to

second-stage solution [y1, y2, y3] = [0, 0, 1].

Remark 10. The size of network G′k can be further reduced by removing arcs whose associated upper

bound index set Uka corresponds to an infeasible first-stage solution x 6∈ X . �

The final BDD we construct exhibits the following two structural properties. First, there is

a feasible path from any node i to the terminal node t. This is true because every node different

from t has at least one uncapacitated outgoing arc that corresponds to setting a y-variable to one.

Second, a first-stage variable xq is included in sets Uka1
,Uka2

, . . . ,Ukam only if long arcs a1, a2, . . . , am

belong to the same layer. As a result, Uka ∩ Uka′ = ∅ for any two long arcs a, a′ ∈ Ak belonging to

different layers.

5.2.1.3 Recourse Problem Reformulation

For a given scenario ωk ∈ Ω and first stage decision x̂ ∈ X , we reformulate SP(x̂, ωk) as the

following shortest-path problem defined over a BDD given by G′k = (N k,Ak), where v is a vector of

arc-flow variables.

LSP(x̂, ωk) : min
∑

(i,j)∈Ak

gkijvij (5.9a)
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s.t.
∑

{j|(i,j)∈Ak}
vij −

∑
{j|(j,i)∈Ak}

vji =


1, for i = r(ωk)

0, for i ∈ N k\{r(ωk), t}

−1, for i = t

(5.9b)

vij ≤ x̂q ∀(i, j) ∈ Ak, q ∈ Ukij (5.9c)

vij ≥ 0 ∀(i, j) ∈ Ak. (5.9d)

The objective function (5.9a) minimizes the total cost of traversing the arcs, which corresponds to

the cost of assigning values to second-stage variables y. Constraints (5.9b) ensure flow conservation.

Constraints (5.9c) impose the arc upper bounds defined by Ukij , and (5.9d) require the v-variables

to be nonnegative.

Lemma 7. For a given scenario ωk ∈ Ω and first stage decision x̂ ∈ X , LSP(x̂, ωk) is equivalent

to SP(x̂, ωk).

Proof Every feasible solution to SP(x̂, ωk) corresponds to exactly one feasible path from r(ωk) to

t in graph G′k having the same objective, and vice versa. �

5.2.2 Variable Ordering Based on a Branch Decomposition Heuristic

The variable ordering γ influences the number of nodes and arcs in the corresponding BDD.

We explore this relationship in this subsection by first determining where to place the x-variables

in γ given a fixed ordering of the y-variables. Then, we determine how to order the y-variables in γ

(with positions of the x-variables now implied) to limit the size of the BDD.

5.2.2.1 Placement of x-Variables Within γ

Our first goal is to place the x-variables in γ relative to the y-variables in a way so that the

resulting BDD has at most two nondominated long arcs emanating from any node. Let γy be an

ordering of only the y-variables and define py(q) as the position of yq in γy, ∀q = 1, . . . , n2. Consider

a first-stage variable xq having a nonzero coefficient in constraint j ∈ {1, . . . ,m2}. Because of the

special structure of matrix T (ωk), there is at most one constraint j for which xq has a nonzero

coefficient. We place xq in between y-variables in positions i and i + 1 of γy for the position i
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satisfying

i = min{ı̂ | W (ωk)jh = 0, ∀h ∈ {1, . . . , n2} : py(h) > ı̂}. (5.10)

That is, the y-variable in position i is the last y-variable in γy that has a nonzero coefficient in

constraint j. Variable xq is used to repair feasibility for those states in which constraint j is not

satisfied after assigning a value to the y-variable in position i. As a result, a node in the BDD has

at most two long nondominated arcs, which correspond to assigning a value of 0 and a value of 1 to

the y-variable associated with the node layer defined by (5.10).

5.2.2.2 Impact of y-ordering on BDD Size

Now, we consider the problem of ordering the y-variables in γ. Unfortunately, the problem

of finding an ordering of the y-variables that minimizes the size of the resulting BDD is generally

NP-hard [Bryant, 1986]. We investigate a key feature that determines the breadth of our BDD,

which we define as the maximum number of nodes that exist at any layer of the BDD.

Clearly, the breadth of a BDD is never more than 2m2 , and the number of nodes in layer j

of the BDD cannot exceed 2j−1, for j = 1, . . . , n2. To obtain an alternative bound, define µj as the

set of all state elements that take a value of zero at some node in layer j of the BDD and a value

of one at another node in layer j. Layer j thus contains no more than 2|µj | nodes. For instance, in

Figure 5.5 we have that |µ1| = 0, |µ2| = 2 (due to the first and second state elements), and |µ3| = 2

(due to the second and third state elements). The number of nodes at layer j of the Figure 5.5 BDD

is given by 2min{j−1,|µj |}, for j = 1, 2, 3. The breadth of a BDD is thus bounded by the largest value

of 2min{j−1,|µj |} over all j. However, this bound is potentially weak, and so we examine a strategy

for variable orderings that yield tighter bounds on the breadth of the BDD.

In order to aid us in determining an ordering γy that yields small BDDs, we turn to the

notion of branch decompositions over hypergraphs. For each recourse problem, we generate an

associated hypergraph G = (V, E), omitting the scenario index for notational ease, where V is a

set of vertices and E is a set of hyperedges. Let V = {1, . . . , n2}, where each vertex corresponds

to a y-variable. Define E = {E1, . . . , Em2
}, where each hyperedge corresponds to a second-stage

constraint and Ej = {i ∈ {1, . . . , n2} | W (ωk)ji > 0} for all j = 1, . . . ,m2. Vertices contained in

subset Ej correspond to all y-variables that have a nonzero coefficient in constraint j and are said to
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be incident to hyperedge Ej . We illustrate our proposed hypergraph using the following second-stage

problem:

SP(x, ωk) : Q(x, ωk) = min y1 + y2 + y3 + y4 + y5 (5.11a)

s.t. y1 + y2 + y3 ≥ 1− x1 (5.11b)

y3 + y4 + y5 ≥ 1− x2 (5.11c)

y2 + y4 ≥ 1− x3 (5.11d)

y1 + y3 ≥ 1− x4 (5.11e)

y3 + y5 ≥ 1− x5 (5.11f)

y4 + y5 ≥ 1− x6 (5.11g)

y ∈ {0, 1}5. (5.11h)

The hypergraph associated with problem (5.11) is given by set of vertices V = {1, 2, 3, 4, 5} and set

of hyperedges E = {{1, 2, 3},{3, 4, 5},{2, 4}, {1, 3},{3, 5},{4, 5}}. Observe that every second-stage

variable appears in at least two constraints in this example. If, for instance, the last constraint were

revised to y4 + y5 + y6 ≥ 1 − x6, then y6 is said to be an isolated variable. More formally, yi is an

isolated variable in scenario ωk if
∑m2

j=1W (ωk)ji = 1. For now, we assume that no isolated variables

exist, but discuss how we can handle isolated variables in Remark 11.

Branch decompositions were first introduced by Robertson and Seymour [1991]. Let T be

a tree with |E| leaves and edge set ET . Additionally, every non-leaf node in T has degree three. Let

v be a bijection from the hyperedges of G to the leaves of T . The pair (T , v) is called a branch

decomposition of G. Removing edge e from T partitions the hyperedges of G into two subsets Ae and

Be. Let V(Ae) and V(Be) denote the set of vertices that are incident to hyperedges in Ae and Be,

respectively. The load of edge e, denoted by Γ(e), is given by V(Ae)∩V(Be). The width of a branch

decomposition (T , v) is the maximum load cardinality among all edges in T . The branchwidth of G

is the minimum width among all branch decompositions of G. A branch decomposition whose width

is equal to the branchwidth is called an optimal branch decomposition. Figure 5.6 presents a branch

decomposition tree with the corresponding edge loads for the hypergraph associated with problem

(5.11).

The problem of finding an optimal branch decomposition of a hypergraph is NP-hard
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3
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4,5

2,
4

3,
5

1

Figure 5.6: Branch decomposition tree for problem (5.11)

[Seymour and Thomas, 1994]. Thus, we use the heuristic tree-building procedure of Hicks [2002].

However, we modify the procedure to generate a branch decomposition of G in which the resulting

tree has a special linear structure. We define a linear tree as a tree where every non-leaf node is

adjacent to at least one leaf node (e.g., as Figure 5.6). Note that a linear branch decomposition tree

has two endpoints, which are non-leaf nodes that are adjacent to exactly two leaf nodes.

Our next step is to show how y-variables can be ordered in γ, given a linear branch decom-

position tree. Let γy be our ordering of the y-variables.

We start by labeling the non-leaf nodes of the BDD as v1, . . . , v|E|−2, where v1 and v|E|−2 are

endpoints. We say that edge ei connects vi to vi+1. The leaf nodes in T correspond to hyperedges

in E , and hence with a slight abuse of notation we say that hyperedges connect to the non-leaf

nodes of T . Index the hyperedges so that E`1 and E`2 are connected to v1, E`i+1
is connected to

vi for i = 2, . . . , |E| − 3, and both E`|E|−1
and E`|E| are connected to v|E|−2. We order the variables

in γy according to the following groups, where multiple variables in a single group can be ordered

arbitrarily.

Group 0 consists of all variables in (E`1 ∪ E`2)\Γ(e1). Then, Group i consists of all variables

in Γ(ei) that have not appeared in Groups 0, . . . , i− 1, for i = 1, . . . , |E| − 3. Finally, Group |E| − 2

consists of variables in
(
E`|E|−1

∪ E`|E|
)
\ Γ(e|E|−3). Applying this procedure on the tree from Figure

5.6 implies that variable y1 is ordered first, followed by y2 and y3 in either order, then y4 and y5 in

that order.

Let w = maxi∈{1,...,|E|−3}{Γ(ei)} be the maximum load among non-leaf edges of the branch

decomposition we obtain using the modified approach of Hicks [2002]. The following proposition

bounds the breadth of our BDD as an exponential function of w.

Proposition 14. Consider a BDD generated according to the foregoing variable ordering scheme.
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The breadth of the BDD is no more than 2max{w,1}.

Proof We first introduce the following concepts. Consider a constraint j ∈ {1, . . . ,m2} and recall

that py(q) denotes the position of a variable yq in γy. We say that constraint j is irrelevant at layer

i if W (ωk)jq = 0, ∀q ∈ {1, . . . , n2} : py(q) ≥ i. That is, a constraint that is irrelevant at layer i

must have been satisfied by variables that correspond to layers 1, . . . , i − 1. Therefore, the state

element corresponding to an irrelevant constraint j takes a value of zero at every BDD node in every

layer j ≥ i. Also, we say that a variable yq is forgotten if it is incident only to hyperplanes that

correspond to irrelevant constraints.

We prove this result by induction. Let Lgi1 , . . . ,Lgiri denote the layers corresponding to

variables in Group i, and let |Lgih | denote the number of nodes in layer Lgih of the BDD. We begin

by showing that if Γ(e1) ⊂ Γ(e2), then Lg2
1
≤ 2Γ(e1), and if Γ(e1) 6⊂ Γ(e2), then Lg2

1
≤ 2|Γ(e1)∩Γ(e2)|+1.

Each variable in Group 0, if any, appears in both constraints `1 and `2 but do not appear in any

other constraints. As a result, there are at most two nodes in any layer Lg0
1
, . . . ,Lg0

r0
. Note that

after assigning a value to the last variable in Group 0, we generate layer Lg1
1
, which also contains at

most two nodes if Group 0 is nonempty. Let δ be a binary parameter that equals one if Group 0 is

nonempty, and zero otherwise.

After assigning a value to the first variable in Group 1 we have that |Lg1
2
| ≤ 21+δ, given by

the possible combinations of the one (if δ = 0) or two (if δ = 1) nodes in Lg1
1

and the two values

that the first variable in Group 1 can take. By the same argument we have that |Lg1
3
| ≤ 22+δ, . . . ,

|Lg1
r1
| ≤ 2|Γ(e1)|+δ−1. After assigning a value to the last variable in Group 1, we observe that no

layer indexed g2
1 or larger corresponds to a y-variable q that is incident to `1 or `2, and so constraints

`1 and `2 become irrelevant. The state elements corresponding to `1 and `2 take a value of zero at

every node in layer Lg2
1
. At this point we forget variables in Group 0.

We then generate layer Lg2
1
, for which we consider two cases.

Case 1. Γ(e1) ⊂ Γ(e2). In this case, |Lg2
1
| ≤ 2|Γ(e1)|, corresponding to the combination of values

that variables in Γ(e1) can take, and ignoring combinations of forgotten variables in Group 0.

Case 2. Γ(e1) 6⊂ Γ(e2). Thus, Γ(e1)\Γ(e2) 6= ∅. Variables in Γ(e1)\Γ(e2) appear only in constraint

`3 and in either `1 or `2 (or both). Also, the only non-irrelevant constraint incident to variables in

Γ(e1) \ Γ(e2) is `3. As a result, |Lg2
1
| is no greater than the number of combinations between the

state element corresponding to `3 and the values that variables in Γ(e1) ∩ Γ(e2) can take. Thus,
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|Lg2
1
| ≤ 2|Γ(e1)∩Γ(e2)|+1, which is less than or equal to 2|Γ(e1)| since |Γ(e1) ∩ Γ(e2)| < |Γ(e1)|. Note

that at this point, variables in Γ(e1)\Γ(e2) are not forgotten, but are completely represented by the

state element corresponding to `3.

We now show that if the above results for Cases 1 and 2 are true for Group i ∈ {1, . . . , |E|−4},

then they are also true for Group i+ 1. Assume for Group i that if Γ(ei) ⊂ Γ(ei+1), then |Lgi+1
1
| ≤

2|Γ(ei)|, and if Γ(ei) 6⊂ Γ(ei+1), then |Lgi+1
1
| ≤ 2|Γ(ei)∩Γ(ei+1)|+1. Now, consider Group i + 1. If

Γ(ei) ⊂ Γ(ei+1), then |Γ(ei)| < |Γ(ei+1)| and after assigning values to all but the last variable in

Group i + 1 we have that |Lgi+1
2
| ≤ 2|Γ(ei)|+1, . . . , |Lgi+1

ri+1
| ≤ 2|Γ(ei+1)|−1. Otherwise, we get that

|Lgi+1
2
| ≤ 2|Γ(ei)∩Γ(ei+1)|+2, . . . , |Lgi+1

ri+1
| ≤ 2|Γ(ei+1)|. After assigning a value to the last variable in

Group i + 1, constraint `i+2 becomes irrelevant, and all variables in Groups 0, . . . , i that do not

appear in Group i+ 1 are forgotten. We generate layer Lgi+2
1

, for which we consider two cases.

Case 1. Γ(ei+1) ⊂ Γ(ei+2). Because all variables in Groups 0, . . . , i have been forgotten, we have

that |Lgi+2
1
| ≤ 2|Γ(ei+1)|.

Case 2. Γ(ei+1) 6⊂ Γ(ei+2). Variables in Γ(ei+1) \ Γ(ei+2) appear in some constraints `h, h ≤ i+ 3.

Since constraints `1, . . . , `i+2 are irrelevant at layer Lgi+2
1

, we have that |Lgi+2
1
| is no greater than

the number of combinations between the state element corresponding to `i+3 and the values that

variables in Γ(ei+1) ∩ Γ(ei+2) can take. As a result, |Lgi+2
1
| ≤ 2|Γ(ei+1)∩Γ(ei+2)|+1, which is less than

or equal to 2|Γ(ei+1)|.

We conclude that layers corresponding to variables in Group i have at most 2|Γ(ei)| nodes for

i = 1, . . . , |E|−3. Moreover, we can strengthen the bound of |L
g
|E|−2
1
| ≤ 2|Γ(e|E|−3)| if |Γ(e|E|−3)| > 2.

Since at this point `|E|−1 and `|E| are the only non-irrelevant constraints, we get that |L
g
|E|−2
1
| ≤

2min{|Γ(e|E|−3)|,2}. Now, because variables in Group |E|− 2 appear in both constraints `|E|−1 and `|E|

but do not appear in any other constraints, we get that there are at most max
{

2min{|Γ(e|E|−3)|,2}, 2
}

nodes in any layer corresponding to variables in Group |E| − 2. This completes the proof. �

Remark 11. We now explain how to incorporate isolated variables into our proposed BDD. Assume

without loss of generality that for each constraint j ∈ {1, . . . ,m2} there is at most one isolated vari-

able q for which W (ωk)jq = 1. (Otherwise, we would eliminate all but the least-cost isolated variable

in constraint j.) Let S = {q ∈ {1, . . . , n2} |
∑m2

j=1W (ωk)jq = 1} be the set of all isolated variables.

Because
∑
q∈SW (ωk)jq ≤ 1 for all j = 1, . . . ,m2, isolated variables can be treated similarly to the

x-variables: We represent isolated variables with long arcs that skip one or more layers corresponding
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to isolated variables in the BDD. For each such long arc a we set Uka = ∅ and cost ga corresponding

to the sum of costs of the isolated variables that are set to 1 by traversing the arc. We place isolated

variables in γ in a similar way as we do for x-variables. Consider an isolated variable yq having a

nonzero coefficient in constraint j ∈ {1, . . . ,m2}. We place yq in between non-isolated y-variables

in positions i and i+ 1 for the position i satisfying

i = min{ı̂ | W (ωk)jh = 0, ∀h ∈ {1, . . . , n2} \ S : py(h) > ı̂}, (5.12)

where the y-variable in position i is the last non-isolated y-variable that has a nonzero coefficient in

constraint j. �

5.3 A Benders’ Decomposition Algorithm

We now present our proposed Benders’ decomposition algorithm based on problem refor-

mulation (5.9). Section 5.3.1 describes the main components of the approach and presents our

algorithm. Section 5.3.2 presents strategies to strengthen the optimality cuts used in our Benders’

decomposition algorithm.

5.3.1 Formulating a Benders’ Decomposition Approach

For a given scenario ωk ∈ Ω and first stage decision x̂ ∈ X , consider the dual problem

associated with LSP(x̂, ωk). Let π denote the dual variables associated with flow-balance constraints

(5.9b) and let −α be the dual variables associated with upper bound constraints (5.9c).

DSP(x̂, ωk) : max πr(ωk) −
∑

(i,j)∈Ak

∑
q∈Uk

ij

x̂qαijq (5.13a)

s.t. πi − πj −
∑
q∈Uk

ij

αijq ≤ gkij ∀(i, j) ∈ Ak (5.13b)

πi ≥ 0 ∀i ∈ N k (5.13c)

αijq ≥ 0 ∀(i, j) ∈ Ak, q ∈ Ukij . (5.13d)

We set πt = 0 because the flow balance constraint corresponding to node t is linearly dependent on

the remaining flow balance constraints.
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Let {(πhk,αhk), h = 1, . . . ,Hk} be the set of extreme points of the polyhedron defined by

(5.13b)–(5.13d) corresponding to scenario k. We formulate our master problem as follows:

MP : min cᵀx +

K∑
k=1

pkzk (5.14a)

s.t. Ax ≥ b (5.14b)

zk ≥ πhkr(ωk) −
∑

(i,j)∈Ak

∑
q∈Uk

ij

xqα
hk
ijq ∀k = 1, . . . ,K, h = 1, . . . ,Hk (5.14c)

zk unrestricted ∀k = 1, . . . ,K (5.14d)

x ∈ {0, 1}n1 . (5.14e)

Problem (5.14) is a standard Benders’ master problem, which is equivalent to the original problem

(5.1), due to the feasibility and boundedness of (5.9), and the fact that zk takes on the optimal

objective function value of (5.9) in any optimal solution to (5.14). We now describe our proposed

cutting-plane algorithm. Let C be a subset of optimality cuts (5.14c). For a given C we define

a relaxed master problem, RMP(C), which is defined exactly as MP but includes only optimality

cuts contained in C. We then generate new optimality cuts iteratively as described below. Let Lk

denote a finite lower bound on zk, which we can obtain as Lk =
∑n2

i=1 min{0, f(ωk)i}, noting that

yk ∈ {0, 1}n2 .

Step 0: Generate a BDD G′k = (N k,Ak) for every scenario ωk ∈ Ω. Set UB0 = ∞ and i = 0.

Initialize incumbent solution x̄ = ȳ = ∅ and the set of optimality cuts C as the bounding constraints

zk ≥ Lk.

Step 1: Set i = i + 1. Solve RMP(C). If the problem is infeasible, then terminate and conclude

that the original problem is infeasible. Otherwise, let LB i be the optimal objective function value

obtained for this relaxed master problem, and record the optimal solution (x̂, ẑ) found.

Step 2: Compute an optimal solution, ŷk, to LSP(x̂, ωk) for every scenario ωk ∈ Ω. An upper

bound on the objective function value is given by UB = cᵀx̂ +
∑K
k=1 p

kf(ωk)ᵀŷk. If UB < UB i−1,

then set UB i = UB and update incumbent (x̄, ȳ) = (x̂, ŷ). Otherwise, set UB i = UB i−1.

Step 3: If LB i = UB i, then terminate with an optimal solution (x̄, ȳ). Otherwise, compute

an optimal dual solution, (π̂k, α̂k), to DSP(x̂, ωk) for every scenario ωk ∈ Ω. If ẑk < π̂kr(ωk) −∑
(i,j)∈Ak

∑
q∈Uk

ij
x̂qα̂

k
ijq, then add the optimality cut derived from dual solution (π̂k, α̂k) to C.
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Return to Step 1.

The exactness and finiteness of our cutting plane algorithm follows from the fact that there

is a finite number of extreme points for each dual subproblem.

Remark 12. For a given scenario ωk ∈ Ω and first stage decision x̂ ∈ X , LSP(x̂, ωk) is a shortest-

path problem defined over a layered directed acyclic graph. As a result, we can obtain optimal primal

and dual solutions to LSP(x̂, ωk) in O(|Ak|) steps by means of a label-correcting algorithm as done

by Ahuja et al. [1993]. Because there are generally multiple optimal dual solutions to LSP(x̂, ωk),

and these dual solutions impact the form of the Benders’ inequality that we ultimately generate, we

briefly describe our process for recovering optimal solutions to (5.13).

We first compute values for the π-variables by setting πi equal to the shortest path length

from node i to node t in the shortest-path network. This step is possible because there exists a path

from every node to node t by construction of our shortest-path network. Next, we select α-variables

to satisfy
∑
q∈Uk

ij
αijq ≥ πi−πj−gkij for all (i, j) ∈ Ak. If πi−πj−gkij ≤ 0, then we set αijq = 0 for

all q ∈ Ukij. Otherwise, we set
∑
q∈Uk

ij :x̂q=0 αijq = πi − πj − gkij and αijq = 0 for all q ∈ Ukij : x̂q = 1.

Note that if πi − πj − gkij > 0, then at least one first-stage variable x̂q = 0 for q ∈ Ukij, or else there

would be a feasible path that traverses arc (i, j) and has length shorter than πi.

We exploit the fact that there may exist alternative optimal values for the α-variables in our

first strategy presented in Section 5.3.2. �

5.3.2 Strengthening the Cuts

We examine two strategies to strengthen the optimality cuts used in our Benders’ decompo-

sition algorithm. Henceforth, we will develop our strengthening strategies assuming a given scenario

ωk ∈ Ω, first-stage decision x̂ ∈ X , and optimal solution to DSP(x̂, ωk) denoted by (π,α), with the

scenario index omitted.

Our first strategy exploits the structural property of our BDD by which Uka ∩ Uka′ = ∅ for

any two long arcs a, a′ ∈ Ak belonging to different layers. Note that a path from r(ωk) to t traverses

exactly one arc from each layer. As a result, for each q ∈ {1, . . . , n1}, a path from r(ωk) to t traverses

at most one arc (i, j) for which q ∈ Ukij . Proposition 15 exploits this special structure to strengthen

the optimality cuts.

Proposition 15. For all q = 1, . . . , n1 define γq = max(i,j)∈Ak{αijq | q ∈ Ukij}. The following is a
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valid inequality that is at least as strong as optimality cut (5.14c).

zk ≥ πr(ωk) −
n1∑
q=1

γqxq. (5.15)

Proof For a given x ∈ X , let arc-flow vector v ∈ {0, 1}|Ak| be a feasible solution to LSP(x, ωk).

Multiplying both sides of constraints (5.13b) in DSP(x̂, ωk) by vij , (i, j) ∈ Ak, yields:

vij

πi − πj − ∑
q∈Uk

ij

αijq

 ≤ gkijvij ∀(i, j) ∈ Ak. (5.16)

Summing over all equations (5.16) yields the following,

πr(ωk) −
∑

(i,j)∈Ak

∑
q∈Uk

ij

vijαijq ≤
∑

(i,j)∈Ak

gkijvij , (5.17)

where
∑

(i,j)∈Ak vij(πi − πj) = πr(ωk) because v represents a path from r(ωk) to t, and because

πt = 0 by assumption. Constraints (5.9c) imply that vij = xqvij for all (i, j) ∈ Ak, q ∈ Ukij .

Replacing vij by xqvij in (5.17) yields

πr(ωk) −
∑

(i,j)∈Ak

∑
q∈Uk

ij

xqvijαijq ≤
∑

(i,j)∈Ak

gkijvij , (5.18)

which is equivalent to

πr(ωk) −
n1∑
q=1

∑
(i,j)∈Ak:q∈Uk

ij

xqvijαijq ≤
∑

(i,j)∈Ak

gkijvij . (5.19)

For any q ∈ {1, . . . , n1}, the path described by v traverses at most one arc (i, j) for which q ∈ Ukij .

Thus,
∑

(i,j)∈Ak:q∈Uk
ij
vij ≤ 1 for all q = 1, . . . , n1. As a result,

n1∑
q=1

∑
(i,j)∈Ak:q∈Uk

ij

xqvijαijq ≤
n1∑
q=1

γqxq, (5.20)
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and we get that

πr(ωk) −
n1∑
q=1

γqxq ≤
∑

(i,j)∈Ak

gkijvij . (5.21)

Note that (5.21) holds for any v feasible to LSP(x, ωk). Let v∗ be an optimal solution to LSP(x, ωk).

Lemma 7 implies that Q(x, ωk) =
∑

(i,j)∈Ak gkijv
∗
ij , and so

πr(ωk) −
n1∑
q=1

γqxq ≤ Q(x, ωk). (5.22)

Because (5.22) is valid for any x ∈ X , we conclude that (5.15) is also valid. To prove that (5.15) is

at least as strong as (5.14c), note that

πr(ωk) −
n1∑
q=1

γqxq ≥ πr(ωk) −
∑

(i,j)∈Ak

∑
q∈Uk

ij

xqαijq.

This completes the proof. �

As noted in Remark 12, after computing π-variables by setting πi equal to the shortest path length

from node i to node t in the shortest-path network, there may exist alternative feasible values for

the α-variables. We select these values by first considering arcs (i, j) ∈ Ak for which |Ukij | = 1 and

then considering arcs (i, j) ∈ Ak for which |Ukij | ≥ 2. Recall that we set αijq = 0, ∀q ∈ Ukij for arcs

such that πi − πj − gkij ≤ 0. We also set αijq = 0 for all (i, j) ∈ Ak and q ∈ Ukij : x̂q = 1. Let α′ be

an initial value assignment for the α-variables computed as

α′ijq =


πi − πj − gkij if πi − πj − gkij > 0 and |Ukij | = 1

0 otherwise.

∀(i, j) ∈ Ak, q ∈ Ukij . (5.23)

Note that if |Ukij | = 1 and πi − πj − gkij > 0, then x̂q = 0 for the only element q ∈ Ukij . For all

q = 1, . . . , n1 we define γ′q = max(i,j)∈Ak{α′ijq | q ∈ Ukij}. Our strategy is to keep the γ-vector as

small as possible in order to make (5.15) as strong as possible. Note that γ′ establishes a lower

bound on γ. Therefore, setting values for αijq in the range [0, γ′q] will not increase γq and hence will

not weaken (5.15).

Accordingly, consider arcs (i, j) ∈ Ak for which |Ukij | ≥ 2 and πi − πj − gkij > 0. If
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∑
q∈Uk

ij :x̂q=0 γ
′
q ≥ πi − πj − gkij , then we set αijq = γ′q, ∀q ∈ Ukij : x̂q = 0. Otherwise, we de-

fine δij = πi−πj − gkij −
∑
q∈Uk

ij :x̂q=0 γ
′
q, and select any q̂ ∈ Ukij : x̂q̂ = 0. We set αijq̂ = γ′q̂ + δij , and

then αijq = γ′q, ∀q ∈ Ukij \ {q̂} : x̂q = 0.

Observe that by selecting the α-variables as described above, we get that γq̄ = γ′q̄ for all

q̄ ∈ {1, . . . , n1} such that
∑
q∈Uk

ij :x̂q=0 γ
′
q ≥ πi − πj − gkij for all (i, j) ∈ Ak : q̄ ∈ Ukij .

Our second strategy uses lower bounds on the second-stage objective function. We identify

the minimum achievable value of Q(x, ωk) when a given capacitated arc is traversed. To compute

the desired bounds, we solve the following optimization problem for every (̂ı, ̂) ∈ Ak such that

Ukı̂̂ 6= ∅:

lı̂̂ = min
∑

(i,j)∈Ak

gkijvij (5.24a)

s.t.
∑

{j|(i,j)∈Ak}
vij −

∑
{j|(j,i)∈Ak}

vji =


1, for i = r(ωk)

0, for i ∈ N k\{r(ωk), t}

−1, for i = t

(5.24b)

vij ≤ xq ∀(i, j) ∈ Ak, q ∈ Ukij (5.24c)

vı̂̂ = 1 (5.24d)

Ax ≥ b (5.24e)

vij ≥ 0 ∀(i, j) ∈ Ak (5.24f)

x ∈ {0, 1}n1 . (5.24g)

Constraint (5.24d) ensures that arc (̂ı, ̂) is traversed and in conjunction with constraint (5.24c)

implies that xq = 1 for all q ∈ Ukı̂̂. Constraints (5.24e) enforce the first-stage constraints.

The values computed from (5.24) enable us to strengthen our cutting planes due to the

following proposition.

Proposition 16. Define α
¯ ijq = min{αijq, (πr(ωk)− lij)+} for all (i, j) ∈ Ak such that Ukij 6= ∅. For

all q = 1, . . . , n1 define γ
¯ q

= max(i,j)∈Ak{α
¯ ijq | q ∈ Ukij}. The following is a valid inequality that is

at least as strong as (5.15).

zk ≥ πr(ωk) −
n1∑
q=1

γ
¯ q
xq. (5.25)
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Proof For a given x ∈ X , let v∗ be an optimal solution to LSP(x, ωk). If there exists an arc

(i, j) ∈ Ak and a first-stage variable xq̂ for which v∗ij = 1, q̂ ∈ Ukij , and α
¯ijq̂

= πr(ωk) − lij , then

πr(ωk)−α¯ijq̂ = lij and lij ≤ Q(x, ωk), because (v∗,x) is a feasible solution to problem (5.24) defined

for arc (i, j). Since γ
¯q̂
≥ α

¯ijq̂
, we have that

πr(ωk) − γ
¯q̂
≤ πr(ωk) − α¯ijq̂. (5.26)

Now, because γ
¯q
≥ 0 for all q = 1, . . . , n1 and v∗ij = 1 implies that xq̂ = 1, we get that

πr(ωk) −
n1∑
q=1

γ
¯q
xq ≤ πr(ωk) − γ

¯q̂
. (5.27)

We conclude that

πr(ωk) −
n1∑
q=1

γ
¯q
xq ≤ Q(x, ωk), (5.28)

and thus (5.25) is valid.

Otherwise, we have that α
¯ijq

= αijq for all (i, j) ∈ Ak : v∗ij = 1, q ∈ Ukij . Since∑
(i,j)∈Ak:q∈Uk

ij
v∗ij ≤ 1 for all q = 1, . . . , n1, we have that

πr(ωk) −
n1∑
q=1

γ
¯q
xq ≤ πr(ωk) −

n1∑
q=1

∑
(i,j)∈Ak:q∈Uk

ij

xqv
∗
ijγ

¯q
. (5.29)

Now, for any q ∈ {1, . . . , n1}, it holds that γ
¯q
≥ α

¯ijq
for all (i, j) ∈ Ak : q ∈ Ukij . This implies that

πr(ωk) −
n1∑
q=1

∑
(i,j)∈Ak:q∈Uk

ij

xqv
∗
ijγ

¯q
≤ πr(ωk) −

n1∑
q=1

∑
(i,j)∈Ak:q∈Uk

ij

xqv
∗
ijα¯ijq

. (5.30)

Replacing α
¯ijq

by αijq in the right-hand side of (5.30) yields

πr(ωk) −
n1∑
q=1

γ
¯q
xq ≤ πr(ωk) −

n1∑
q=1

∑
(i,j)∈Ak:q∈Uk

ij

xqv
∗
ijαijq. (5.31)
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Because of (5.19) we have that

πr(ωk) −
n1∑
q=1

∑
(i,j)∈Ak:q∈Uk

ij

xqv
∗
ijαijq ≤ Q(x, ωk), (5.32)

and we conclude that (5.25) is valid.

Since γ
¯q
≤ γq, for all q = 1, . . . , n1, we conclude that (5.25) is at least as strong as (5.15).

This completes the proof. �

Problems (5.24) are generally NP-hard due to (5.24e). However, they must be solved only once at a

preprocessing stage and would typically not constitute a bottleneck in the algorithm. Alternatively,

we could obtain lı̂̂ by solving a relaxation of (5.24), and use those bounds in lieu of lı̂̂ in (5.25).

5.4 Computational Experiments

This section presents computational results on a stochastic vertex covering problem (SVCP).

We formulate the SVCP in Section 5.4.1 and describe our set of test instances in Section 5.4.2. In

Section 5.4.3 we compare our algorithm’s performance with the deterministic equivalent monolithic

formulation presented in Section 5.1.

We coded our algorithm in Java using Eclipse SDK version 4.6.1. We executed all compu-

tational experiments on a machine having an Intel Core i7–3537U CPU (two cores) running at 2.00

GHz with 8 GB of RAM on Windows 8. All optimization problems were solved using Gurobi 5.6.0

with an imposed time limit of one hour (3600s).

5.4.1 Stochastic Vertex Cover Problem Formulation

The SVCP is a two-stage problem on an undirected graph G = (V, E), where V is the set

of vertices and E ⊆ V × V is the set of edges. The decision maker can remove up to B edges from

E in the first stage before solving a minimum weighted vertex cover problem in the second stage.

The cost of including a vertex in the cover is uncertain. Define f(ω)i as the cost of including vertex

i ∈ V in the cover under scenario ω. Let xij be a binary variable that takes a value of 1 if and only

if edge (i, j) ∈ E is removed from the graph in the first stage and let yi be a binary variable that

takes a value of 1 if and only if vertex i is included in the cover in the second stage. We formulate

126



the SCVP as:

z∗ = min Eω∈Ω [Q(x, ω)] (5.33a)

s.t.
∑

(i,j)∈E
xij ≤ B (5.33b)

x ∈ {0, 1}|E|, (5.33c)

with Q(x, ω) defined as the optimal objective function value to the following vertex cover problem:

Q(x, ω) = min
∑
i∈V

f(ω)iyi (5.34a)

s.t. yi + yj ≥ 1− xij ∀(i, j) ∈ E (5.34b)

y ∈ {0, 1}|V|. (5.34c)

The objective function (5.33a) minimizes the total expected second-stage cost. Constraint (5.33b)

imposes a cardinality constraint on the number of arcs that can be removed from the graph in the

first stage. Constraints (5.33c) ensure that the x-variables are binary. The second-stage objective

function (5.34a) minimizes the total cost of including vertices in the cover. Constraints (5.34b)

ensure that each edge is incident to at least one vertex in the cover, except for those edges removed

from the graph in the first stage. Constraints (5.34c) ensure that the y-variables are binary.

Note that the second-stage constraints remain the same across all the scenarios. As a result,

we only generate one BDD and consider scenario-dependent arc costs.

5.4.2 Stochastic Vertex Cover Problem Instances

Our set of test instances consists of 225 instances derived from 15 networks. These networks

belong to three different classes.

• The first class of networks are compiler instances obtained from control-flow graphs for C

compilations, taken from [Hicks, 2002].

• The second class of networks are grid networks taken from [Lozano and Smith, 2016].

• The third class of networks are planar TSP graphs obtained as Delaunay triangulations of

traveling salesman instances from the TSPLIB [Reinelt, 1991], taken from [Hicks, 2002].
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For each original network we generate five instances having random vertex cost coefficients following

a N(10, 1) distribution for each scenario, five instances having cost coefficients following a N(10, 2)

distribution, and five instances having cost coefficients following a N(10, 3) distribution, where

N(µ, σ) denotes a normal distribution with mean µ and standard deviation σ. We solve each instance

nine times with different B values in {2, 3, 5} and number of scenarios, K, in {100, 1000, 5000}. No

instance contains an isolated variable.

Table 5.1 presents the width for the branch decomposition trees obtained using the modified

approach of Hicks [2002] on the instances in our dataset. The first two columns show the network

class and name. Columns 3–4 present the number of nodes and arcs, respectively. Column 5 shows

the width of the branch decomposition tree. Note that instances derived from the same network

have equal width, because the width is independent from the vertex cost coefficients.

Table 5.1: Dataset description and average branch decomposition tree width

Class Network Nodes Arcs Width
nprio 17 22 3
bcndb 25 34 4

Compiler rffti1 67 89 4
bcnd 55 77 5
fmin 78 105 6

5×5 27 86 6
8×8 66 254 9

Grid 8×16 130 542 9
10×10 102 416 11
10×12 122 508 11

eil51 51 140 9
rat99 99 279 10

TSP pr76 76 218 11
eil76 76 215 12
rd100 100 285 14

Compiler networks have the smallest width values, followed by grid networks, and TSP

networks. Table 5.2 presents the number of nodes and arcs of the final BDD obtained after phase

two of our graph generation process. As noted in Remark 10, we remove from the BDD long arcs a

for which |Uka | > B, because those arcs correspond to an infeasible first-stage solution.
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Table 5.2: Number of nodes and arcs in the proposed BDD

Network B = 2 B = 3 B = 5

Nodes Arcs Nodes Arcs Nodes Arcs
nprio 96 188 96 190 96 190
bcndb 184 361 184 366 184 366
rffti1 570 1133 570 1138 570 1138
bcnd 508 1005 508 1014 508 1014
fmin 1062 2101 1062 2120 1062 2122

5×5 775 1231 857 1415 1030 1848
8×8 11,021 16,449 12,975 20,456 18,369 31,190
8×16 22,517 33,153 26,903 41,880 39,297 65,966
10×10 53,148 77,512 64,204 99,897 99,798 165,483
10×12 63,850 92,756 77,506 120,223 121,780 201,303

eil51 8417 13,109 10,382 17,375 12,094 22,354
rat99 19,407 30,073 23,937 39,885 27,720 51,150
pr76 21,513 33,198 27,229 45,017 32,472 59,456
eil76 49,223 74,827 66,391 107,498 85,439 153,239
rd100 140,411 211,494 201,581 321,475 289,471 506,530

Table 5.2 shows that the size of the BDDs is an exponential increasing function of the width

as proved in Proposition 14. The impact of removing infeasible long arcs, along with the resulting

disconnected nodes, is greater for the grid and TSP networks, for which there is a considerable

increase in the number of nodes and arcs for larger values of B.

5.4.3 Comparison with the Monolithic Formulation

We compare our Benders’ decomposition algorithm with the deterministic equivalent mono-

lithic formulation. Tables 5.3–5.5 present the results of this experiment for instances whose cost

coefficients follow an N(10, 1), N(10, 2), and N(10, 3) distribution, respectively. The first column

shows the original network name. The second column presents the number of scenarios. The re-

maining columns show the average CPU time in seconds (Avg), and the number of instances solved

within the one-hour time limit (# sol), for both algorithms. We record a time of 3600 seconds if the

instance is not solved within the time limit.
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Tables 5.3–5.5 show that our algorithm executes substantially faster than the monolithic

formulation over the compiler instances, consistently reducing computational time for the probability

distributions examined. Both algorithms solve the instances having 100 scenarios in a few seconds

on average. Over the instances having 1000 scenarios, the Benders algorithm exhibits speedups of

up to roughly 20 over the monolithic formulation (Table 5.3, bcnd network, and B = 5). Over

the instances having 5000 scenarios, the Benders algorithm dramatically outperforms the monolithic

formulation. Moreover, our algorithm solves all instances within the time limit, while the monolithic

formulation fails to solve 14 bcnd instances.

Increasing the value of B increases the computational time for both algorithms. For our

proposed Benders algorithm, the computational time increases from 17 seconds to almost 2000

seconds as B grows from 2 to 5 (Table 5.3, fmin network, and 5000 scenarios). Increasing the

standard deviation increases the computational time for our Benders algorithm and slightly decreases

the computational time for the monolithic formulation. Also note that our algorithm performance

is directly related to the width of the branch decomposition tree. Instances having a larger width

take considerably more time to solve, especially when B = 5.

Table 5.6 presents a summary of the results for the grid and TSP instances. When computing

the average CPU time, we again record a computational time of 3600 seconds for instances that reach

the time limit.
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Table 5.6 shows that overall, our algorithm outperforms the monolithic formulation over

the grid and TSP instances. When B = 2 our algorithm solves all instances having 100 scenarios in

less than a minute, more than half of the instances having 1000 scenarios in less than 30 minutes,

and one-fifth of the instances having 5000 scenarios in under 50 minutes. On the other hand, the

monolithic formulation only solves 39 instances having 100 scenarios and none of the instances having

1000 and 5000 scenarios. When B = 3 our algorithm solves 130 instances having 100 scenarios in less

than 20 minutes, 75 instances having 1000 scenarios, and 20 instances having 5000 scenarios, while

the monolithic formulation only solves 18 instances having 100 scenarios and none of the others.

When B = 5 our algorithm solves 45 instances derived from grid networks, while the monolithic

formulation solves 15. Both algorithms fail to solve any of the instances derived from TSP networks

when B = 5, which is explained by the fact that these are the instances having the largest widths

from the dataset.
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Chapter 6

Conclusions

In Chapter 2 we present an exact approach for solving bilevel mixed-integer programs under

the three assumptions listed in Section 2.1. Obtaining upper bounds for the BMIP is one of the major

challenges for devising solution approaches. Our proposed algorithm is built upon a relaxation that

imposes constraints generated from a sample of feasible follower responses. These relaxed problems

yield upper bounds, whose strength depends on the sample selected. Thus, our algorithm iteratively

updates the sample with the goal of obtaining tighter upper bounds, while discovering feasible

solutions that yield lower bounds. From a computational perspective, our algorithm outperforms

the current state-of-the-art algorithm for BMILPs, achieving speedups of up to 17 times. We also

present a featured study on competitive scheduling that illustrates the flexibility of our approach on

a nonlinear model that employs the pessimistic assumption.

One line of future research may seek to broaden the scope of problems that can be solved

within this framework. The strongest assumption we make is that the leader variables must all be

integer-valued. If some of the leader variables are continuous, and if they interact in constraints or

the objective with the follower variables, then our approach will not terminate finitely. It may be

possible to execute a continuous-variables branch-and-bound scheme for this purpose, but with the

caveat that new relaxations and restrictions will be needed to obtain valid bounds over these regions.

Another line of future research may entail a thorough study of an important application area, such

as the natural gas cash-out problem [Dempe et al., 2005, 2011, Kalashnikov et al., 2010]. Although

our research here contributes a promising new way to solve bilevel discrete optimization problems,

the implementation details for specific applications require a substantial amount of attention.
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Furthermore, as discussed in Section 2.1, there exist many algorithms that have been pro-

posed for the types of problems presented here. Many of these algorithms have varying assumptions

on variable integrality and function nonlinearities allowed, but there exist several problems (e.g.,

linear (pure) integer programs with bounded variables) on which these algorithms all produce opti-

mal solutions. A thorough computational study that compares these algorithms on various problem

classes would be of substantial value to the community. We leave these questions for further study.

In Chapter 3 we propose a novel framework for solving interdiction and fortification problems

having binary variables in the first two stages, which allows the third-stage problem to take any form.

Previous methods for solving these problems convert the second-stage (interdiction) problem to a

bilinear programming problem using the strong dual of the third-stage problem. However, when

a (polynomial-size) strong dual formulation cannot be found, this reformulation approach is not

appropriate. Even when dualization of the third-stage problem is practical, the resulting bilinear

interdiction program is usually converted to a large linear mixed-integer program that often exhibits

a weak linear programming relaxation and requires a substantial amount of time to solve.

Our approach obviates both of these difficulties by iteratively sampling feasible solutions

to the third-stage problem, and finitely converges to an optimal solution. Computationally, we

demonstrate that the approach significantly outperforms prior approaches to solving shortest-path

interdiction and fortification problems, and is also capable of solving the CLSIPF (in which the

third-stage problem is NP-hard) within reasonable computational times.

Future research will examine how this framework can be adapted in the context of more

difficult recourse problems. The shortest-path and lot-sizing problems demonstrate how a direct

application of the framework can be used to effectively solve very difficult problems, but a focused

study might yield new insights on how specific problem structures can be exploited within this

framework. Also, while three-stage problems in the literature almost exclusively contain only binary

variables in the first two stages, an interesting challenge would be to investigate how this approach

can accommodate fractional rather than binary attack and/or fortification actions.

In Chapter 4 we solve for the first time the traveling salesman problem with interdiction

and fortification, which is particularly challenging since its recourse problem is strongly NP-hard.

Previous approaches for interdiction problems from the literature usually rely on strong duality thus

requiring the recourse problem to be linear or convex. We circumvent this limitation by specializing

the sampling approach proposed in Chapter 3 and proposing a two-phase exact algorithm that is
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based on alternative restrictions for the TSP. Our approach is able to optimally solve moderate-

sized instances with up to 96 nodes for the symmetric case and 64 nodes for the asymmetric case

in reasonable computational times. The proposed TSP restrictions can be also used as stand-alone

heuristics that quickly find near-optimal solutions.

In Chapter 5 we focused on a class of two-stage stochastic integer programming problems

having set-covering constraints in the second stage. In order to allow the use of Benders’ de-

composition for these problems, we converted the second-stage integer programming problems into

shortest-path problems parameterized by the first-stage variables. This conversion employed binary

decision diagrams to create the shortest-path problem, and leveraged results from branch decompo-

sitions to limit the size of the shortest-path network. We demonstrated the efficacy of this approach

on stochastic vertex cover problems taken from instances appearing in the literature.

While many future research directions stem from the approach introduced here, the most

important one might be to expand this idea to handle broader classes of stochastic integer pro-

gramming problems. A naive extension of our approach could indeed handle problems in which the

assumptions on W (ωk), h(ωk), and T (ωk) are relaxed, but at the expense of second-stage shortest-

path problems that are too large to solve within reasonable computational limits. Research is thus

needed to possibly generate partial BDD networks for this case, which can be iteratively refined to

yield an optimal solution. Also, the formulations here do not allow for the presence of continuous

variables. Future research may examine methods to implicitly optimize over continuous variables,

given fixed integer variables selected within this process, using the proposed framework.
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S. Dempe, V. Kalashnikov, G. A. Pérez-Valdés, and N. I. Kalashnykova. Natural gas bilevel cash-out
problem: convergence of a penalty function method. European Journal of Operational Research,
215(3):532–538, 2011.

S. Dempe, B. S. Mordukhovich, and A. B. Zemkoho. Necessary optimality conditions in pessimistic
bilevel programming. Optimization, 63(4):505–533, 2014.
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D. Gade, S. Küçükyavuz, and S. Sen. Decomposition algorithms with parametric Gomory cuts for
two-stage stochastic integer programs. Mathematical Programming, 144(1):39–64, 2014.

B. Golden. A problem in network interdiction. Naval Research Logistics Quarterly, 25(4):711–713,
1978.

B. L. Gorissen and D. den Hertog. Robust counterparts of inequalities containing sums of maxima
of linear functions. European Journal of Operational Research, 277(1):30–43, 2013.

W. K. K. Haneveld and M. H. van der Vlerk. Stochastic integer programming: General models and
algorithms. Annals of Operations Research, 85(0):39–57, 1999.

W. K. K. Haneveld, L. Stougie, and M. H. van der Vlerk. Simple integer recourse models: convexity
and convex approximations. Mathematical Programming, 108(2):435–473, 2006.

P. Hansen, B. Jaumard, and G. Savard. New branch-and-bound rules for linear bilevel programming.
SIAM Journal of Scientific and Statistical Computing, 13(5):1194–1217, 1992.

H. Held and D. L. Woodruff. Heuristics for multi-stage interdiction of stochastic networks. Journal
of Heuristics, 11(6):483–500, 2005.

H. Held, R. Hemmecke, and D. L. Woodruff. A decomposition algorithm applied to planning the
interdiction of stochastic networks. Naval Research Logistics, 52(4):321–328, 2005.

K. Helsgaun. An effective implementation of the Lin-Kernighan traveling salesman heuristic. Euro-
pean Journal of Operational Research, 126(1):106–130, 2000.

M. Hemmati and J. C. Smith. A mixed-integer bilevel programming approach for a competitive
prioritized set covering problem. Discrete Optimization, to appear, 2016.

I. V. Hicks. Branchwidth heuristics. Congressus Numerantium, 159:31–50, 2002.

142



J. N. Hooker. Decision diagrams and dynamic programming. In C. Gomes and M. Sellmann,
editors, Lecture Notes in Computer Science: Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, volume 7874, pages 94–110. Springer
Berlin Heidelberg, 2013.

J. N. Hooker and G. Ottosson. Logic-based Benders decomposition. Mathematical Programming, 96
(1):33–60, 2003.

E. Israeli and R. K. Wood. Shortest-path network interdiction. Networks, 40(2):97–111, 2002.
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