9 research outputs found

    Evidence Based Development of a Novel Lateral Fibula Plate (VariAx Fibula) Using a Real CT Bone Data Based Optimization Process During Device Development

    Get PDF
    Development of novel implants in orthopaedic trauma surgery is based on limited datasets of cadaver trials or artificial bone models. A method has been developed whereby implants can be constructed in an evidence based method founded on a large anatomic database consisting of more than 2.000 datasets of bones extracted from CT scans. The aim of this study was the development and clinical application of an anatomically pre-contoured plate for the treatment of distal fibular fractures based on the anatomical database

    Capturing the Multiscale Anatomical Shape Variability with Polyaffine Transformation Trees

    Get PDF
    International audienceMandible fractures are classified depending on their location. In clinical practice, locations are grouped into regions at different scales according to anatomical, functional and esthetic considerations. Implant design aims at defining the optimal implant for each patient. Emerging population-based techniques analyze the anatomical variability across a population and perform statistical analysis to identify an optimal set of implants. Current efforts are focused on finding clusters of patients with similar characteristics and designing one implant for each cluster. Ideally, the description of anatomical variability is directly connected to the clinical regions. This connection is what we present here, by introducing a new registration method that builds upon a tree of locally affine transformations that describes variability at different scales. We assess the accuracy of our method on 146 CT images of femurs. Two medical experts provide the ground truth by manually measuring six landmarks. We illustrate the clinical importance of our method by clustering 43 CT images of mandibles for implant design. The presented method does not require any application-specific input, which makes it attractive for the analysis of other multiscale anatomical structures. At the core of our new method lays the introduction of a new basis for stationary velocity fields. This basis has very close links to anatomical substructures. In the future, this method has the potential to discover the hidden and possibly sparse structure of the anatomy

    The Development And Application Of A Statistical Shape Model Of The Human Craniofacial Skeleton

    Get PDF
    Biomechanical investigations involving the characterization of biomaterials or improvement of implant design often employ finite element (FE) analysis. However, the contemporary method of developing a FE mesh from computed tomography scans involves much manual intervention and can be a tedious process. Researchers will often focus their efforts on creating a single highly validated FE model at the expense of incorporating variability of anatomical geometry and material properties, thus limiting the applicability of their findings. The goal of this thesis was to address this issue through the use of a statistical shape model (SSM). A SSM is a probabilistic description of the variation in the shape of a given class of object. (Additional scalar data, such as an elastic constant, can also be incorporated into the model.) By discretizing a sample (i.e. training set) of unique objects of the same class using a set of corresponding nodes, the main modes of shape variation within that shape class are discovered via principal component analysis. By combining the principal components using different linear combinations, new shape instances are created, each with its own unique geometry while retaining the characteristics of its shape class. In this thesis, FE models of the human craniofacial skeleton (CFS) were first validated to establish their viability. A mesh morphing procedure was then developed to map one mesh onto the geometry of 22 other CFS models forming a training set for a SSM of the CFS. After verifying that FE results derived from morphed meshes were no different from those obtained using meshes created with contemporary methods, a SSM of the human CFS was created, and 1000 CFS FE meshes produced. It was found that these meshes accurately described the geometric variation in human population, and were used in a Monte Carlo analysis of facial fracture, finding past studies attempting to characterize the fracture probability of the zygomatic bone are overly conservative

    人工股関節全置換術を受ける患者の大腿骨形態計測と応力分布力学的検証

    Get PDF
    筑波大学 (University of Tsukuba)201
    corecore