48 research outputs found

    Investigation of coding and equalization for the digital HDTV terrestrial broadcast channel

    Get PDF
    Includes bibliographical references (p. 241-248).Supported by the Advanced Telecommunications Research Program.Julien J. Nicolas

    Enhanced Spectrum Sensing Techniques for Cognitive Radio Systems

    Get PDF
    Due to the rapid growth of new wireless communication services and applications, much attention has been directed to frequency spectrum resources. Considering the limited radio spectrum, supporting the demand for higher capacity and higher data rates is a challenging task that requires innovative technologies capable of providing new ways of exploiting the available radio spectrum. Cognitive radio (CR), which is among the core prominent technologies for the next generation of wireless communication systems, has received increasing attention and is considered a promising solution to the spectral crowding problem by introducing the notion of opportunistic spectrum usage. Spectrum sensing, which enables CRs to identify spectral holes, is a critical component in CR technology. Furthermore, improving the efficiency of the radio spectrum use through spectrum sensing and dynamic spectrum access (DSA) is one of the emerging trends. In this thesis, we focus on enhanced spectrum sensing techniques that provide performance gains with reduced computational complexity for realistic waveforms considering radio frequency (RF) impairments, such as noise uncertainty and power amplifier (PA) non-linearities. The first area of study is efficient energy detection (ED) methods for spectrum sensing under non-铿俛t spectral characteristics, which deals with relatively simple methods for improving the detection performance. In realistic communication scenarios, the spectrum of the primary user (PU) is non-铿俛t due to non-ideal frequency responses of the devices and frequency selective channel conditions. Weighting process with fast Fourier transform (FFT) and analysis filter bank (AFB) based multi-band sensing techniques are proposed for overcoming the challenge of non-铿俛t characteristics. Furthermore, a sliding window based spectrum sensing approach is addressed to detect a re-appearing PU that is absent in one time and present in other time. Finally, the area under the receiver operating characteristics curve (AUC) is considered as a single-parameter performance metric and is derived for all the considered scenarios. The second area of study is reduced complexity energy and eigenvalue based spectrum sensing techniques utilizing frequency selectivity. More specifically, novel spectrum sensing techniques, which have relatively low computational complexity and are capable of providing accurate and robust performance in low signal-to-noise ratio (SNR) with noise uncertainty, as well as in the presence of frequency selectivity, are proposed. Closed-form expressions are derived for the corresponding probability of false alarm and probability of detection under frequency selectivity due the primary signal spectrum and/or the transmission channel. The offered results indicate that the proposed methods provide quite significant saving in complexity, e.g., 78% reduction in the studied example case, whereas their detection performance is improved both in the low SNR and under noise uncertainty. Finally, a new combined spectrum sensing and resource allocation approach for multicarrier radio systems is proposed. The main contribution of this study is the evaluation of the CR performance when using wideband spectrum sensing methods in combination with water-filling and power interference (PI) based resource allocation algorithms in realistic CR scenarios. Different waveforms, such as cyclic pre铿亁 based orthogonal frequency division multiplexing (CP-OFDM), enhanced orthogonal frequency division multiplexing (E-OFDM) and filter bank based multicarrier (FBMC), are considered with PA nonlinearity type RF impairments to see the effects of spectral leakage on the spectrum sensing and resource allocation performance. It is shown that AFB based spectrum sensing techniques and FBMC waveforms with excellent spectral containment properties have clearly better performance compared to the traditional FFT based spectrum sensing techniques with the CP-OFDM. Overall, the investigations in this thesis provide novel spectrum sensing techniques for overcoming the challenge of noise uncertainty with reduced computational complexity. The proposed methods are evaluated under realistic signal models

    Superimposed training for single carrier transmission in future mobile communications

    Get PDF
    The amount of wireless devices and wireless traffic has been increasing exponentially for the last ten years. It is forecasted that the exponential growth will continue without saturation till 2020 and probably further. So far, network vendors and operators have tackled the problem by introducing new evolutions of cellular macro networks, where each evolution has increased the physical layer spectral efficiency. Unfortunately, the spectral efficiency of the physical layer is achieving the Shannon-Hartley limit and does not provide much room for improvement anymore. However, considering the overhead due to synchronization and channel estimation reference symbols in the context of physical layer spectral efficiency, we believe that there is room for improvement. In this thesis, we will study the potentiality of superimposed training methods, especially data-dependent superimposed training, to boost the spectral efficiency of wideband single carrier communications even further. The main idea is that with superimposed training we can transmit more data symbols in the same time duration as compared to traditional time domain multiplexed training. In theory, more data symbols means more data bits which indicates higher throughput for the end user. In practice, nothing is free. With superimposed training we encounter self-interference between the training signal and the data signal. Therefore, we have to look for iterative receiver structures to separate these two or to estimate both, the desired data signal and the interfering component. In this thesis, we initiate the studies to find out if we truly can improve the existing systems by introducing the superimposed training scheme. We show that in certain scenarios we can achieve higher spectral efficiency, which maps directly to higher user throughput, but with the cost of higher signal processing burden in the receiver. In addition, we provide analytical tools for estimating the symbol or bit error ratio in the receiver with a given parametrization. The discussion leads us to the conclusion that there still remains several open topics for further study when looking for new ways of optimizing the overhead of reference symbols in wireless communications. Superimposed training with data-dependent components may prove to provide extra throughput gain. Furthermore, the superimposed component may be used for, e.g., improved synchronization, low bit-rate signaling or continuous tracking of neighbor cells. We believe that the current systems could be improved by using the superimposed training collectively with time domain multiplexed training

    Opportunistic communications in large uncoordinated networks

    Get PDF
    (English) The increase of wireless devices offering high data rate services limits the coexistence of wireless systems sharing the same resources in a given geographical area because of inter-system interference. Therefore, interference management plays a key role in permitting the coexistence of several heterogeneous communication services. However, classical interference management strategies require lateral information giving rise to the need for inter-system coordination and cooperation, which is not always practical. Opportunistic communications offer a potential solution to the problem of inter-system interference management. The basic principle of opportunistic communications is to efficiently and robustly exploit the resources available in a wireless network and adapt the transmitted signals to the state of the network to avoid inter-system interference. Therefore, opportunistic communications depend on inferring the available network resources that can be safely exploited without inducing interference in coexisting communication nodes. Once the available network resources are identified, the most prominent opportunistic communication techniques consist in designing scenario-adapted precoding/decoding strategies to exploit the so-called null space. Despite this, classical solutions in the literature suffer from two main drawbacks: the lack of robustness to detection errors and the need for intra-system cooperation. This thesis focuses on the design of a null space-based opportunistic communication scheme that addresses the drawbacks exhibited by existing methodologies under the assumption that opportunistic nodes do not cooperate. For this purpose, a generalized detection error model independent of the null-space identification mechanism is introduced that allows the design of solutions that exhibit minimal inter-system interference in the worst case. These solutions respond to a maximum signal-to-interference ratio (SIR) criterion, which is optimal under non-cooperative conditions. The proposed methodology allows the design of a family of orthonormal waveforms that perform a spreading of the modulated symbols within the detected null space, which is key to minimizing the induced interference density. The proposed solutions are invariant within the inferred null space, allowing the removal of the feedback link without giving up coherent waveform detection. In the absence of coordination, the waveform design relies solely on locally sensed network state information, inducing a mismatch between the null spaces identified by the transmitter and receiver that may worsen system performance. Although the proposed solution is robust to this mismatch, the design of enhanced receivers using active subspace detection schemes is also studied. When the total number of network resources increases arbitrarily, the proposed solutions tend to be linear combinations of complex exponentials, providing an interpretation in the frequency domain. This asymptotic behavior allows us to adapt the proposed solution to frequency-selective channels by means of a cyclic prefix and to study an efficient modulation similar to the time division multiplexing scheme but using circulant waveforms. Finally, the impact of the use of multiple antennas in opportunistic null space-based communications is studied. The performed analysis reveals that, in any case, the structure of the antenna clusters affects the opportunistic communication, since the proposed waveform mimics the behavior of a single-antenna transmitter. On the other hand, the number of sensors employed translates into an improvement in terms of SIR.(Catal脿) El creixement incremental dels dispositius sense fils que requereixen serveis d'alta velocitat de dades limita la coexist猫ncia de sistemes sense fils que comparteixen els mateixos recursos en una 脿rea geogr脿fica donada a causa de la interfer猫ncia entre sistemes. Conseq眉entment, la gesti贸 d'interfer猫ncia juga un paper fonamental per a facilitar la coexist猫ncia de diversos serveis de comunicaci贸 heterogenis. No obstant aix貌, les estrat猫gies cl脿ssiques de gesti贸 d'interfer猫ncia requereixen informaci贸 lateral originant la necessitat de coordinaci贸 i cooperaci贸 entre sistemes, que no sempre 茅s pr脿ctica. Les comunicacions oportunistes ofereixen una soluci贸 potencial al problema de la gesti贸 de les interfer猫ncies entre sistemes. El principi b脿sic de les comunicacions oportunistes 茅s explotar de manera eficient i robusta els recursos disponibles en una xarxa sense fils i adaptar els senyals transmesos a l'estat de la xarxa per evitar interfer猫ncies entre sistemes. Per tant, les comunicacions oportunistes depenen de la infer猫ncia dels recursos de xarxa disponibles que poden ser explotats de manera segura sense induir interfer猫ncia en els nodes de comunicaci贸 coexistents. Una vegada que s'han identificat els recursos de xarxa disponibles, les t猫cniques de comunicaci贸 oportunistes m茅s prominents consisteixen en el disseny d'estrat猫gies de precodificaci贸/descodificaci贸 adaptades a l'escenari per explotar l'anomenat espai nul. Malgrat aix貌, les solucions cl脿ssiques en la literatura sofreixen dos inconvenients principals: la falta de robustesa als errors de detecci贸 i la necessitat de cooperaci贸 intra-sistema. Aquesta tesi tracta el disseny d'un esquema de comunicaci贸 oportunista basat en l'espai nul que afronta els inconvenients exposats per les metodologies existents assumint que els nodes oportunistes no cooperen. Per a aquest prop貌sit, s'introdueix un model generalitzat d'error de detecci贸 independent del mecanisme d'identificaci贸 de l'espai nul que permet el disseny de solucions que exhibeixen interfer猫ncies m铆nimes entre sistemes en el cas pitjor. Aquestes solucions responen a un criteri de m脿xima relaci贸 de senyal a interfer猫ncia (SIR), que 茅s 貌ptim en condicions de no cooperaci贸. La metodologia proposada permet dissenyar una fam铆lia de formes d'ona ortonormals que realitzen un spreading dels s铆mbols modulats dins de l'espai nul detectat, que 茅s clau per minimitzar la densitat d鈥檌nterfer猫ncia indu茂da. Les solucions proposades s贸n invariants dins de l'espai nul inferit, permetent suprimir l'enlla莽 de retroalimentaci贸 i, tot i aix铆, realitzar una detecci贸 coherent de forma d'ona. Sota l鈥檃bs猫ncia de coordinaci贸, el disseny de la forma d'ona es basa 煤nicament en la informaci贸 de l'estat de la xarxa detectada localment, induint un desajust entre els espais nuls identificats pel transmissor i receptor que pot empitjorar el rendiment del sistema. Tot i que la soluci贸 proposada 茅s robusta a aquest desajust, tamb茅 s'estudia el disseny de receptors millorats fent 煤s de t猫cniques de detecci贸 de subespai actiu. Quan el nombre total de recursos de xarxa augmenta arbitr脿riament, les solucions proposades tendeixen a ser combinacions lineals d'exponencials complexes, proporcionant una interpretaci贸 en el domini freq眉encial. Aquest comportament asimpt貌tic permet adaptar la soluci贸 proposada a entorns selectius en freq眉猫ncia fent 煤s d'un prefix c铆clic i estudiar una modulaci贸 eficient derivada de l'esquema de multiplexat per divisi贸 de temps emprant formes d'ona circulant. Finalment, s鈥檈studia l'impacte de l'煤s de m煤ltiples antenes en comunicacions oportunistes basades en l'espai nul. L'an脿lisi realitzada permet concloure que, en cap cas, l'estructura de les agrupacions d'antenes tenen un impacte sobre la comunicaci贸 oportunista, ja que la forma d'ona proposada imita el comportament d'un transmissor mono-antena. D'altra banda, el nombre de sensors emprat es tradueix en una millora en termes de SIR.(Espa帽ol) El incremento de los dispositivos inal谩mbricos que ofrecen servicios de alta velocidad de datos limita la coexistencia de sistemas inal谩mbricos que comparten los mismos recursos en un 谩rea geogr谩fica dada a causa de la interferencia inter-sistema. Por tanto, la gesti贸n de interferencia juega un papel fundamental para facilitar la coexistencia de varios servicios de comunicaci贸n heterog茅neos. Sin embargo, las estrategias cl谩sicas de gesti贸n de interferencia requieren informaci贸n lateral originando la necesidad de coordinaci贸n y cooperaci贸n entre sistemas, que no siempre es pr谩ctica. Las comunicaciones oportunistas ofrecen una soluci贸n potencial al problema de la gesti贸n de las interferencias entre sistemas. El principio b谩sico de las comunicaciones oportunistas es explotar de manera eficiente y robusta los recursos disponibles en una red inal谩mbricas y adaptar las se帽ales transmitidas al estado de la red para evitar interferencias entre sistemas. Por lo tanto, las comunicaciones oportunistas dependen de la inferencia de los recursos de red disponibles que pueden ser explotados de manera segura sin inducir interferencia en los nodos de comunicaci贸n coexistentes. Una vez identificados los recursos disponibles, las t茅cnicas de comunicaci贸n oportunistas m谩s prominentes consisten en el dise帽o de estrategias de precodificaci贸n/descodificaci贸n adaptadas al escenario para explotar el llamado espacio nulo. A pesar de esto, las soluciones cl谩sicas en la literatura sufren dos inconvenientes principales: la falta de robustez a los errores de detecci贸n y la necesidad de cooperaci贸n intra-sistema. Esta tesis propone dise帽ar un esquema de comunicaci贸n oportunista basado en el espacio nulo que afronta los inconvenientes expuestos por las metodolog铆as existentes asumiendo que los nodos oportunistas no cooperan. Para este prop贸sito, se introduce un modelo generalizado de error de detecci贸n independiente del mecanismo de identificaci贸n del espacio nulo que permite el dise帽o de soluciones que exhiben interferencias m铆nimas entre sistemas en el caso peor. Estas soluciones responden a un criterio de m谩xima relaci贸n de se帽al a interferencia (SIR), que es 贸ptimo en condiciones de no cooperaci贸n. La metodolog铆a propuesta permite dise帽ar una familia de formas de onda ortonormales que realizan un spreading de los s铆mbolos modulados dentro del espacio nulo detectado, que es clave para minimizar la densidad de interferencia inducida. Las soluciones propuestas son invariantes dentro del espacio nulo inferido, permitiendo suprimir el enlace de retroalimentaci贸n sin renunciar a la detecci贸n coherente de forma de onda. En ausencia de coordinaci贸n, el dise帽o de la forma de onda se basa 煤nicamente en la informaci贸n del estado de la red detectada localmente, induciendo un desajuste entre los espacios nulos identificados por el transmisor y receptor que puede empeorar el rendimiento del sistema. A pesar de que la soluci贸n propuesta es robusta a este desajuste, tambi茅n se estudia el dise帽o de receptores mejorados usando t茅cnicas de detecci贸n de subespacio activo. Cuando el n煤mero total de recursos de red aumenta arbitrariamente, las soluciones propuestas tienden a ser combinaciones lineales de exponenciales complejas, proporcionando una interpretaci贸n en el dominio frecuencial. Este comportamiento asint贸tico permite adaptar la soluci贸n propuesta a canales selectivos en frecuencia mediante un prefijo c铆clico y estudiar una modulaci贸n eficiente derivada del esquema de multiplexado por divisi贸n de tiempo empleando formas de onda circulante. Finalmente, se estudia el impacto del uso de m煤ltiples antenas en comunicaciones oportunistas basadas en el espacio nulo. El an谩lisis realizado revela que la estructura de las agrupaciones de antenas no afecta la comunicaci贸n oportunista, ya que la forma de onda propuesta imita el comportamiento de un transmisor mono-antena. Por otro lado, el n煤mero de sensores empleado se traduce en una mejora en t茅rminos de SIR.Postprint (published version

    Opportunistic communications in large uncoordinated networks

    Get PDF
    (English) The increase of wireless devices offering high data rate services limits the coexistence of wireless systems sharing the same resources in a given geographical area because of inter-system interference. Therefore, interference management plays a key role in permitting the coexistence of several heterogeneous communication services. However, classical interference management strategies require lateral information giving rise to the need for inter-system coordination and cooperation, which is not always practical. Opportunistic communications offer a potential solution to the problem of inter-system interference management. The basic principle of opportunistic communications is to efficiently and robustly exploit the resources available in a wireless network and adapt the transmitted signals to the state of the network to avoid inter-system interference. Therefore, opportunistic communications depend on inferring the available network resources that can be safely exploited without inducing interference in coexisting communication nodes. Once the available network resources are identified, the most prominent opportunistic communication techniques consist in designing scenario-adapted precoding/decoding strategies to exploit the so-called null space. Despite this, classical solutions in the literature suffer from two main drawbacks: the lack of robustness to detection errors and the need for intra-system cooperation. This thesis focuses on the design of a null space-based opportunistic communication scheme that addresses the drawbacks exhibited by existing methodologies under the assumption that opportunistic nodes do not cooperate. For this purpose, a generalized detection error model independent of the null-space identification mechanism is introduced that allows the design of solutions that exhibit minimal inter-system interference in the worst case. These solutions respond to a maximum signal-to-interference ratio (SIR) criterion, which is optimal under non-cooperative conditions. The proposed methodology allows the design of a family of orthonormal waveforms that perform a spreading of the modulated symbols within the detected null space, which is key to minimizing the induced interference density. The proposed solutions are invariant within the inferred null space, allowing the removal of the feedback link without giving up coherent waveform detection. In the absence of coordination, the waveform design relies solely on locally sensed network state information, inducing a mismatch between the null spaces identified by the transmitter and receiver that may worsen system performance. Although the proposed solution is robust to this mismatch, the design of enhanced receivers using active subspace detection schemes is also studied. When the total number of network resources increases arbitrarily, the proposed solutions tend to be linear combinations of complex exponentials, providing an interpretation in the frequency domain. This asymptotic behavior allows us to adapt the proposed solution to frequency-selective channels by means of a cyclic prefix and to study an efficient modulation similar to the time division multiplexing scheme but using circulant waveforms. Finally, the impact of the use of multiple antennas in opportunistic null space-based communications is studied. The performed analysis reveals that, in any case, the structure of the antenna clusters affects the opportunistic communication, since the proposed waveform mimics the behavior of a single-antenna transmitter. On the other hand, the number of sensors employed translates into an improvement in terms of SIR.(Catal脿) El creixement incremental dels dispositius sense fils que requereixen serveis d'alta velocitat de dades limita la coexist猫ncia de sistemes sense fils que comparteixen els mateixos recursos en una 脿rea geogr脿fica donada a causa de la interfer猫ncia entre sistemes. Conseq眉entment, la gesti贸 d'interfer猫ncia juga un paper fonamental per a facilitar la coexist猫ncia de diversos serveis de comunicaci贸 heterogenis. No obstant aix貌, les estrat猫gies cl脿ssiques de gesti贸 d'interfer猫ncia requereixen informaci贸 lateral originant la necessitat de coordinaci贸 i cooperaci贸 entre sistemes, que no sempre 茅s pr脿ctica. Les comunicacions oportunistes ofereixen una soluci贸 potencial al problema de la gesti贸 de les interfer猫ncies entre sistemes. El principi b脿sic de les comunicacions oportunistes 茅s explotar de manera eficient i robusta els recursos disponibles en una xarxa sense fils i adaptar els senyals transmesos a l'estat de la xarxa per evitar interfer猫ncies entre sistemes. Per tant, les comunicacions oportunistes depenen de la infer猫ncia dels recursos de xarxa disponibles que poden ser explotats de manera segura sense induir interfer猫ncia en els nodes de comunicaci贸 coexistents. Una vegada que s'han identificat els recursos de xarxa disponibles, les t猫cniques de comunicaci贸 oportunistes m茅s prominents consisteixen en el disseny d'estrat猫gies de precodificaci贸/descodificaci贸 adaptades a l'escenari per explotar l'anomenat espai nul. Malgrat aix貌, les solucions cl脿ssiques en la literatura sofreixen dos inconvenients principals: la falta de robustesa als errors de detecci贸 i la necessitat de cooperaci贸 intra-sistema. Aquesta tesi tracta el disseny d'un esquema de comunicaci贸 oportunista basat en l'espai nul que afronta els inconvenients exposats per les metodologies existents assumint que els nodes oportunistes no cooperen. Per a aquest prop貌sit, s'introdueix un model generalitzat d'error de detecci贸 independent del mecanisme d'identificaci贸 de l'espai nul que permet el disseny de solucions que exhibeixen interfer猫ncies m铆nimes entre sistemes en el cas pitjor. Aquestes solucions responen a un criteri de m脿xima relaci贸 de senyal a interfer猫ncia (SIR), que 茅s 貌ptim en condicions de no cooperaci贸. La metodologia proposada permet dissenyar una fam铆lia de formes d'ona ortonormals que realitzen un spreading dels s铆mbols modulats dins de l'espai nul detectat, que 茅s clau per minimitzar la densitat d鈥檌nterfer猫ncia indu茂da. Les solucions proposades s贸n invariants dins de l'espai nul inferit, permetent suprimir l'enlla莽 de retroalimentaci贸 i, tot i aix铆, realitzar una detecci贸 coherent de forma d'ona. Sota l鈥檃bs猫ncia de coordinaci贸, el disseny de la forma d'ona es basa 煤nicament en la informaci贸 de l'estat de la xarxa detectada localment, induint un desajust entre els espais nuls identificats pel transmissor i receptor que pot empitjorar el rendiment del sistema. Tot i que la soluci贸 proposada 茅s robusta a aquest desajust, tamb茅 s'estudia el disseny de receptors millorats fent 煤s de t猫cniques de detecci贸 de subespai actiu. Quan el nombre total de recursos de xarxa augmenta arbitr脿riament, les solucions proposades tendeixen a ser combinacions lineals d'exponencials complexes, proporcionant una interpretaci贸 en el domini freq眉encial. Aquest comportament asimpt貌tic permet adaptar la soluci贸 proposada a entorns selectius en freq眉猫ncia fent 煤s d'un prefix c铆clic i estudiar una modulaci贸 eficient derivada de l'esquema de multiplexat per divisi贸 de temps emprant formes d'ona circulant. Finalment, s鈥檈studia l'impacte de l'煤s de m煤ltiples antenes en comunicacions oportunistes basades en l'espai nul. L'an脿lisi realitzada permet concloure que, en cap cas, l'estructura de les agrupacions d'antenes tenen un impacte sobre la comunicaci贸 oportunista, ja que la forma d'ona proposada imita el comportament d'un transmissor mono-antena. D'altra banda, el nombre de sensors emprat es tradueix en una millora en termes de SIR.(Espa帽ol) El incremento de los dispositivos inal谩mbricos que ofrecen servicios de alta velocidad de datos limita la coexistencia de sistemas inal谩mbricos que comparten los mismos recursos en un 谩rea geogr谩fica dada a causa de la interferencia inter-sistema. Por tanto, la gesti贸n de interferencia juega un papel fundamental para facilitar la coexistencia de varios servicios de comunicaci贸n heterog茅neos. Sin embargo, las estrategias cl谩sicas de gesti贸n de interferencia requieren informaci贸n lateral originando la necesidad de coordinaci贸n y cooperaci贸n entre sistemas, que no siempre es pr谩ctica. Las comunicaciones oportunistas ofrecen una soluci贸n potencial al problema de la gesti贸n de las interferencias entre sistemas. El principio b谩sico de las comunicaciones oportunistas es explotar de manera eficiente y robusta los recursos disponibles en una red inal谩mbricas y adaptar las se帽ales transmitidas al estado de la red para evitar interferencias entre sistemas. Por lo tanto, las comunicaciones oportunistas dependen de la inferencia de los recursos de red disponibles que pueden ser explotados de manera segura sin inducir interferencia en los nodos de comunicaci贸n coexistentes. Una vez identificados los recursos disponibles, las t茅cnicas de comunicaci贸n oportunistas m谩s prominentes consisten en el dise帽o de estrategias de precodificaci贸n/descodificaci贸n adaptadas al escenario para explotar el llamado espacio nulo. A pesar de esto, las soluciones cl谩sicas en la literatura sufren dos inconvenientes principales: la falta de robustez a los errores de detecci贸n y la necesidad de cooperaci贸n intra-sistema. Esta tesis propone dise帽ar un esquema de comunicaci贸n oportunista basado en el espacio nulo que afronta los inconvenientes expuestos por las metodolog铆as existentes asumiendo que los nodos oportunistas no cooperan. Para este prop贸sito, se introduce un modelo generalizado de error de detecci贸n independiente del mecanismo de identificaci贸n del espacio nulo que permite el dise帽o de soluciones que exhiben interferencias m铆nimas entre sistemas en el caso peor. Estas soluciones responden a un criterio de m谩xima relaci贸n de se帽al a interferencia (SIR), que es 贸ptimo en condiciones de no cooperaci贸n. La metodolog铆a propuesta permite dise帽ar una familia de formas de onda ortonormales que realizan un spreading de los s铆mbolos modulados dentro del espacio nulo detectado, que es clave para minimizar la densidad de interferencia inducida. Las soluciones propuestas son invariantes dentro del espacio nulo inferido, permitiendo suprimir el enlace de retroalimentaci贸n sin renunciar a la detecci贸n coherente de forma de onda. En ausencia de coordinaci贸n, el dise帽o de la forma de onda se basa 煤nicamente en la informaci贸n del estado de la red detectada localmente, induciendo un desajuste entre los espacios nulos identificados por el transmisor y receptor que puede empeorar el rendimiento del sistema. A pesar de que la soluci贸n propuesta es robusta a este desajuste, tambi茅n se estudia el dise帽o de receptores mejorados usando t茅cnicas de detecci贸n de subespacio activo. Cuando el n煤mero total de recursos de red aumenta arbitrariamente, las soluciones propuestas tienden a ser combinaciones lineales de exponenciales complejas, proporcionando una interpretaci贸n en el dominio frecuencial. Este comportamiento asint贸tico permite adaptar la soluci贸n propuesta a canales selectivos en frecuencia mediante un prefijo c铆clico y estudiar una modulaci贸n eficiente derivada del esquema de multiplexado por divisi贸n de tiempo empleando formas de onda circulante. Finalmente, se estudia el impacto del uso de m煤ltiples antenas en comunicaciones oportunistas basadas en el espacio nulo. El an谩lisis realizado revela que la estructura de las agrupaciones de antenas no afecta la comunicaci贸n oportunista, ya que la forma de onda propuesta imita el comportamiento de un transmisor mono-antena. Por otro lado, el n煤mero de sensores empleado se traduce en una mejora en t茅rminos de SIR.DOCTORAT EN TEORIA DEL SENYAL I COMUNICACIONS (Pla 2013

    Nonlinear Distortion in Wideband Radio Receivers and Analog-to-Digital Converters: Modeling and Digital Suppression

    Get PDF
    Emerging wireless communications systems aim to flexible and efficient usage of radio spectrum in order to increase data rates. The ultimate goal in this field is a cognitive radio. It employs spectrum sensing in order to locate spatially and temporally vacant spectrum chunks that can be used for communications. In order to achieve that, flexible and reconfigurable transceivers are needed. A software-defined radio can provide these features by having a highly-integrated wideband transceiver with minimum analog components and mostly relying on digital signal processing. This is also desired from size, cost, and power consumption point of view. However, several challenges arise, from which dynamic range is one of the most important. This is especially true on receiver side where several signals can be received simultaneously through a single receiver chain. In extreme cases the weakest signal can be almost 100 dB weaker than the strongest one. Due to the limited dynamic range of the receiver, the strongest signals may cause nonlinear distortion which deteriorates spectrum sensing capabilities and also reception of the weakest signals. The nonlinearities are stemming from the analog receiver components and also from analog-to-digital converters (ADCs). This is a performance bottleneck in many wideband communications and also radar receivers. The dynamic range challenges are already encountered in current devices, such as in wideband multi-operator receiver scenarios in mobile networks, and the challenges will have even more essential role in the future.This thesis focuses on aforementioned receiver scenarios and contributes to modeling and digital suppression of nonlinear distortion. A behavioral model for direct-conversion receiver nonlinearities is derived and it jointly takes into account RF, mixer, and baseband nonlinearities together with I/Q imbalance. The model is then exploited in suppression of receiver nonlinearities. The considered method is based on adaptive digital post-processing and does not require any analog hardware modification. It is able to extract all the necessary information directly from the received waveform in order to suppress the nonlinear distortion caused by the strongest blocker signals inside the reception band.In addition, the nonlinearities of ADCs are considered. Even if the dynamic range of the analog receiver components is not limiting the performance, ADCs may cause considerable amount of nonlinear distortion. It can originate, e.g., from undeliberate variations of quantization levels. Furthermore, the received waveform may exceed the nominal voltage range of the ADC due to signal power variations. This causes unintentional signal clipping which creates severe nonlinear distortion. In this thesis, a Fourier series based model is derived for the signal clipping caused by ADCs. Furthermore, four different methods are considered for suppressing ADC nonlinearities, especially unintentional signal clipping. The methods exploit polynomial modeling, interpolation, or symbol decisions for suppressing the distortion. The common factor is that all the methods are based on digital post-processing and are able to continuously adapt to variations in the received waveform and in the receiver itself. This is a very important aspect in wideband receivers, especially in cognitive radios, when the flexibility and state-of-the-art performance is required

    Orthogonal Generalized Frequency Division Multiplexing (OGFDM)

    Get PDF
    This thesis focuses on introducing a novel technique of the transmission waveform termed as orthogonal generalized frequency division multiplexing (OGFDM) for increasing the wireless channel capacity without the need for extra bandwidth (BW) size or power consumption. The new wireless waveform (OGFDM) tends to obtain a better BW efficiency which in turn can increase highly the wireless channel capacity in comparison with the generalized frequency division multiplexing (GFDM) and cyclic-prefix orthogonal frequency division multiplexing (CP-OFDM). The main feature of the OGFDM is developing the physical layer of future mobile networks by achieving the orthogonality between non-orthogonal filters, removing the interference between adjacent frequency subcarriers, and gaining a flexible bit loading scheme. Since the key downsides of the 4G waveform (CP-OFDM), several alternative transmission waveforms have been investigated for improving transmission techniques of the upcoming communication networks (5G and beyond). This, as a result, comes up with introducing the GFDM as the best candidate waveform for the 5G air interface. Nevertheless, due to ignoring the orthogonality with the GFDM, the BW efficiency is severely affected which in turn causes in extremely reducing the gained channel capacity (research gap). For this reason, the proposed OGFDM waveform aims to improve wireless channel capacity by investigating different levels of processing and carrier schemes. As such, three key levels called as filtration level, oversampling level, and modulation level are adopted for a variant range of OGFDM carriers like a single carrier, couple carrier, quadruple carrier, and multi-carrier system. Regarding the single carrier OGFDM system where the filtration level is developed, the orthogonality is attained between the non-orthogonal filters of the GFDM frequency subcarriers. The core idea behind this novel technique is increasing the efficiency of the applied BW which in turn can double the capacity of the channel at the acceptable level of the bit error rate (BER). Concerning the couple carrier OGFDM system where the oversampling level is developed, the double oversampling mode is applied side by side with the normal one. As a result, the OGFDM waveform can efficiently avoid the interference between adjacent frequency subcarriers improving the quality of service under bad transmission states. As regards the quadruple carrier OGFDM system where the modulation level is improved, a flexible modulation scheme is utilized rather than the fixed modulation formats. Consequently, multilevel modulation shapes are optimally assigned to gain an enhanced channel capacity in accordance with the realistic transmission state. To achieve a higher BW efficiency, the preliminary multi-carrier system that combines the three levels of processing in one uniformed physical platform is introduced. To demonstrate the main advantages of OGFDM waveform, the multicarrier system is further extended and compared with the GFDM (5G technology) and CP-OFDM (LTE Ericsson technology). Hence, the multi-carrier OGFDM can double, boost, and yet maximize the bit-rate of the transmission relative to the GFDM and CP-OFDM at the acceptable level of the BER. The MATLAB simulation and Visio tools are utilized to validate the results and represent them graphically

    Interference mitigation and awareness for improved reliability

    Get PDF
    Wireless systems are commonly affected by interference from various sources. For example, a number of users that operate in the same wireless network can result in multiple-access interference (MAI). In addition, for ultrawideband (UWB) systems, which operate at very low power spectral densities, strong narrowband interference (NBI) can have significant effects on the communications reliability. Therefore, interference mitigation and awareness are crucial in order to realize reliable communications systems. In this chapter, pulse-based UWB systems are considered, and the mitigation of MAI is investigated first. Then, NBI avoidance and cancelation are studied for UWB systems. Finally, interference awareness is discussed for short-rate communications, next-generation wireless networks, and cognitive radios.Mitigation of multiple-access interference (MAI)In an impulse radio ultrawideband (IR-UWB) communications system, pulses with very short durations, commonly less than one nanosecond, are transmitted with a low-duty cycle, and information is carried by the positions or the polarities of pulses [1-5]. Each pulse resides in an interval called frame, and the positions of pulses within frames are determined according to time-hopping (TH) sequences specific to each user. The low-duty cycle structure together with TH sequences provide a multiple-access capability for IR-UWB systems [6].Although IR-UWB systems can theoretically accommodate a large number of users in a multiple-access environment [2, 4], advanced signal processing techniques are necessary in practice in order to mitigate the effects of interfering users on the detection of information symbols efficiently [6]. 漏 Cambridge University Press 2011
    corecore