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ABSTRACT

Due to the rapid growth of new wireless communication services and applica-
tions, much attention has been directed to frequency spectrum resources. Con-
sidering the limited radio spectrum, supporting the demand for higher capacity
and higher data rates is a challenging task that requires innovative technolo-
gies capable of providing new ways of exploiting the available radio spectrum.
Cognitive radio (CR), which is among the core prominent technologies for the
next generation of wireless communication systems, has received increasing at-
tention and is considered a promising solution to the spectral crowding problem
by introducing the notion of opportunistic spectrum usage. Spectrum sensing,
which enables CRs to identify spectral holes, is a critical component in CR
technology. Furthermore, improving the efficiency of the radio spectrum use
through spectrum sensing and dynamic spectrum access (DSA) is one of the
emerging trends. In this thesis, we focus on enhanced spectrum sensing tech-
niques that provide performance gains with reduced computational complexity
for realistic waveforms considering radio frequency (RF) impairments, such as
noise uncertainty and power amplifier (PA) non-linearities.

The first area of study is efficient energy detection (ED) methods for spec-
trum sensing under non-flat spectral characteristics, which deals with relatively
simple methods for improving the detection performance. In realistic commu-
nication scenarios, the spectrum of the primary user (PU) is non-flat due to
non-ideal frequency responses of the devices and frequency selective channel
conditions. Weighting process with fast Fourier transform (FFT) and analysis
filter bank (AFB) based multi-band sensing techniques are proposed for over-
coming the challenge of non-flat characteristics. Furthermore, a sliding window
based spectrum sensing approach is addressed to detect a re-appearing PU that
is absent in one time and present in other time. Finally, the area under the re-
ceiver operating characteristics curve (AUC) is considered as a single-parameter
performance metric and is derived for all the considered scenarios.

The second area of study is reduced complexity energy and eigenvalue based
spectrum sensing techniques utilizing frequency selectivity. More specifically,
novel spectrum sensing techniques, which have relatively low computational
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complexity and are capable of providing accurate and robust performance in
low signal-to-noise ratio (SNR) with noise uncertainty, as well as in the presence
of frequency selectivity, are proposed. Closed-form expressions are derived for
the corresponding probability of false alarm and probability of detection under
frequency selectivity due the primary signal spectrum and/or the transmission
channel. The offered results indicate that the proposed methods provide quite
significant saving in complexity, e.g., 78% reduction in the studied example
case, whereas their detection performance is improved both in the low SNR
and under noise uncertainty.

Finally, a new combined spectrum sensing and resource allocation approach
for multicarrier radio systems is proposed. The main contribution of this study
is the evaluation of the CR performance when using wideband spectrum sensing
methods in combination with water-filling and power interference (PI) based re-
source allocation algorithms in realistic CR scenarios. Different waveforms, such
as cyclic prefix based orthogonal frequency division multiplexing (CP-OFDM),
enhanced orthogonal frequency division multiplexing (E-OFDM) and filter bank
based multicarrier (FBMC), are considered with PA nonlinearity type RF im-
pairments to see the effects of spectral leakage on the spectrum sensing and
resource allocation performance. It is shown that AFB based spectrum sensing
techniques and FBMC waveforms with excellent spectral containment proper-
ties have clearly better performance compared to the traditional FFT based
spectrum sensing techniques with the CP-OFDM.

Overall, the investigations in this thesis provide novel spectrum sensing
techniques for overcoming the challenge of noise uncertainty with reduced com-
putational complexity. The proposed methods are evaluated under realistic
signal models.

ii
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CHAPTER 1
INTRODUCTION

1.1 Background and Motivation

Wireless communications have been growing exponentially, and in spite of in-
tensive research and development efforts for more effective technologies, the
scarcity of available radio spectrum is considered as a critical issue for further
advancement of the field. Opportunistic dynamic spectrum access (DSA) and
cognitive radio (CR) techniques have received increasing attention as poten-
tial solutions to the spectrum shortage issue for the next generation of wireless
communication systems namely, fifth generation (5G) [2,32, 33,106, 124, 125,
136,170,185,191,198]. A CR is defined by Federal Communications Commis-
sion (FCC) as: "A radio or system that senses its operational electromagnetic
environment and can dynamically and autonomously adjust its radio operating
parameters to modify system operation, such as maximize throughput, mitigate
interference, facilitate interoperability, access secondary markets." [54].

Due to global availability, the 2.4 GHz industrial, scientific and medical
(ISM) band is a popular frequency band suitable for low cost wireless sys-
tems, such as wireless local-area-networks (WLAN) and wireless personal-area-
networks (WPAN). One important problem is that users operating in the same
radio environment may cause significant interferences to each other. For the
multitude of systems operating in the ISM bands, no effective coordination or
radio resource management functions exists, which leads to inefficient utiliza-
tion of these frequency bands. As a solution to these challenges, advanced CR
and signal processing techniques have been recently considered [2,28,106,124,
125,170,184,191,198].

One of the main tasks of a CR is to find non-interfered spectrum for commu-
nication. In the current CR developments, the geolocation database based ap-
proach is greatly emphasized due to its reliability. In this approach, secondary
user (SU) devices obtain spectrum availability information from a database
which contains information about the primary user (PU) activity in the geo-
graphical area where the SU intends to operate [170,185,191]. Nevertheless,
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there is great interest on spectrum sensing based techniques, as a possible fu-
ture evolution path and as a complementary element in database based CR
networks, especially in short-range communication. This thesis focuses on the
concept where the CR devices sense the local spectrum utilization through
the spectrum sensing functionality in order to find spectrum access opportu-
nities. Due to varying channel conditions, repeated monitoring and cooper-
ation with other users is required for robust, high-sensitivity spectrum sens-
ing [2,32,33,106,118,136,170,185,191,198|.

Energy detection (ED) is among the most popular spectrum sensing meth-
ods thanks to its decent performance and very simple practical realization
[69,191]. Most of the studies on ED based spectrum sensing utilize simple
signal models, where the whole frequency band under sensing includes either
noise, or noise in addition to a PU signal, both having constant power spectral
density (PSD). A Neyman-Pearson type binary hypothesis testing problem is
commonly used to formulate ED that is typically modeled by the well-known
chi-square, Gaussian or gamma type statistical distributions [19,69,132,165].

The main shortcoming of ED is its sensitivity to the information of the
noise variance [158]. Small variations and unpredictability of the noise variance
estimation is a critical issue, which is called noise uncertainty [158]. In most
of the studies, the noise variance is assumed to be exactly known according to
previous measurements.

Wideband multichannel based sensing brings various possibilities for cali-
brating the noise spectral density of the sensing receiver. Hence, we focus on fast
Fourier transform (FFT) and analysis filter bank (AFB) based sensing solutions
in some parts of this thesis [P1] and [38,39,45]. One of the alternative solutions
is to consider the spectral slot(s) with the lowest observed PSD as candidate(s)
for white space, and use the corresponding PSD level as a reference for noise.
It is also possible to generalize this method by searching for time-frequency
zones with minimum PSD levels, and then using them as noise reference. A
reappearing PU can be observed through an increase in the energy level of the
corresponding time-frequency zone [P1]. We focus on refining the analytical
tools related to ED methods beyond the simplistic signal models and sensing
scenarios that are commonly considered in the literature [2,106,170,191,198].

Multi-antenna sensing based spectrum sensing techniques can be considered
as alternative methods to provide robustness against noise uncertainty by ex-
ploiting the spatial correlation properties of the received energy [76, 156, 167,
172-174,176-180]. However, this solution brings increased hardware complex-
ity and size, which often renders it impractical for several applications. Hence,
single-antenna sensing is purely the focus of this thesis [P1]-[P4], but the results
can be extended to multi-antenna schemes and/or cooperative sensing, which
is an effective way to ensure spectrum sensing robustness in realistic wireless
communication scenarios.

Receivers are commonly assumed to have an ideal frequency response due
to the consideration of always flat wireless channels. Based on this idea, numer-
ous investigations have been reported in the context of additive-white-gaussian-
noise (AWGN), fading channels, diversity techniques and collaborative detec-
tion (see [3,4,37,59,60,72,73,98,140,153] and the references therein). Neverthe-
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less, the sensing receiver has non-ideal frequency response in realistic commu-
nication scenarios in which the transmitted PSD is non-flat and the frequency-
selective multipath channel has an effect on the received PU PSD. Motivated by
these effects, another direction of this thesis is to propose optimized ED based
spectrum sensing solutions for non-flat spectral characteristics [P1] and [38,45].

Several advanced methods such as eigenvalue [97,196] and autocorrela-
tion [76,197] based methods, which are robust to noise uncertainty, are also
considered as alternative solutions to the noise uncertainty challenge utiliz-
ing the frequency selectivity. However, these algorithms have much higher
computational complexity and it is not possible to reach the sensing perfor-
mance of ED under modest noise uncertainty and practical PU signal-to-noise
ratio (SNR) levels [97,196,197]. Hence, developing reduced complexity eigen-
value based spectrum sensing solutions is an important direction to investi-
gate [117,130, 131, 175,176,195, 199], and it is addressed in this thesis and
in [43,44]. Furthermore, we propose an alternative subband energy based de-
tection scheme utilizing the variability of the energy spectral density (ESD),
which can effectively remove the noise floor, resulting in the elimination of the
noise uncertainty effects [40,41]. Additionally, our proposed scheme is concep-
tually simple compared to the eigenvalue based spectrum sensing methods since
it is achieved by the replacement of the calculation of the covariance matrix and
its eigenvalues by blockwise FFT or AFB processing [40,41].

Combining spectrum sensing with resource allocation is the final direction
of this thesis [P3], [P4] and [42,154]. Most spectrum sensing studies have been
done without considering any kind of resource allocation algorithms for effi-
ciently using spectral holes [2,106, 170, 191, 198], whereas resource allocation
studies commonly assume ideal information about the spectral holes without
considering the limitations of the sensing methods [7-9,80,96,135,150,183,200].
Additionally, cyclic prefix based orthogonal frequency division multiplexing
(CP-OFDM) based signal models are considered as the PU and CR signal
models for spectrum allocation techniques in [7-9, 80, 96, 135, 150, 183, 200],
and filter bank based multicarrier (FBMC) has been considered for the CR
only in [146,147]. Our studies can be applied to any realistic multicarrier PU
and CR systems utilizing the receivers’ FFT or AFB processing for spectrum
sensing purposes. In our case studies, the PU waveform is based on a 802.11g
standard CP-OFDM, an enhanced orthogonal frequency division multiplexing
(E-OFDM) [P4], or a 802.11g -like FBMC waveform with similar parameteriza-
tion [P3]. Furthermore, most of the existing spectrum sensing studies assume
ideal radio frequency (RF) receiver model, especially when the impact of practi-
cal power amplifier (PA) non-linearity and inphase-quadrature (IQ) imbalance
have not been considered. In this thesis, a basic RF nonlinearity model, so-
called the Rapp PA model [137] is included for the PU in order to obtain a
realistic model for the PU spectrum [P3], [P4] and [42,154]. To the best of
our knowledge, this aspect has not been considered in any earlier work. The
effects of the PU spectral characteristics on the SU capacity can be quantified in
this way. In addition, the effects of IQQ imbalance on ED and eigenvalue based
spectrum sensing in both single-channel and multi-channel direct-conversion
receiver scenarios have also been analyzed in our previous studies [61-63].
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The described three issues form the main motivation and focus of this thesis.

1.2 Objectives and Scope of the Thesis

The main objective of this thesis is to study and analyze certain important
spectrum sensing techniques and to develop enhanced spectrum sensing algo-
rithms that can enable the design and practical implementation of CR based
transceivers. A novel combined spectrum sensing and resource allocation ap-
proach is also proposed for multicarrier radio systems. However, the topic of
enhanced spectrum sensing techniques is too vast to be covered fully in a sin-
gle thesis. The scope is thus limited to focus on the efficient non-cooperative,
single-antenna spectrum sensing methods which have reduced computational
complexity and are robust to noise uncertainty conditions.

1.3 Outline and Main Contributions of the Thesis

In achieving the above objectives, the study of the enhanced spectrum sensing
techniques covers both a reliable theoretical analysis and development of novel
spectrum sensing methods with reduced computational complexity under noise
uncertainty and very low SNR challenges. The structure of the thesis can be
summarized as follows:

1. Chapter 2 briefly discusses the spectrum sensing methodology in CR ap-
plications at an overview level.

2. Chapter 3 focuses on wideband multichannel spectrum sensing techniques
utilizing FFT or AFB based methods for spectrum analysis [P1]. Pro-
posed sensing schemes can be tuned to the spectral characteristics of the
target PU signals, allowing simultaneous sensing of multiple target PU
signals with low additional complexity. The corresponding false alarm
and detection probabilities are derived as novel analytic expressions with
weighting process for non-flat spectral characteristic. The overall per-
formance of the proposed spectrum sensing algorithms and scenarios are
introduced with the concept of the area under the receiver operating char-
acteristics curve (AUC). Furthermore, the specific scenario of detecting a
reappearing PU during secondary transmission is considered. The results
are also validated extensively through comparisons with corresponding
results from computer simulations and are subsequently employed in the
evaluation of each technique, providing meaningful insights that are an-
ticipated to be useful in the future deployment of CR systems.

3. Chapter 4 focuses on the reduced complexity spectrum sensing solutions
in the presence of noise uncertainty. The effects of channel frequency se-
lectivity, in combination with noise uncertainty, in case of energy detector
and eigenvalue based detection are explained at the beginning of this chap-
ter [P2]. The last part of this chapter proposes a subband energy based
approach denoted as Max-Min ED. The proposed sensing techniques have
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relatively low computational complexity while they are capable of provid-
ing accurate and robust performance under noise uncertainty conditions,
as well as in the presence of frequency selectivity. The corresponding false
alarm and detection probabilities are derived as novel expressions under
different communication scenarios. The validity of the offered expressions
is justified extensively through comparisons with results from respective
computer simulations and are subsequently employed in evaluating the
corresponding sensing performance.

4. Chapter 5 studies the dynamics of spectrum sensing and resource alloca-
tion functions within a CR context using very practical signal models for
the PU, including the effects of power amplifier nonlinearities. ED based
wideband multichannel spectrum sensing algorithm and optimal resource
allocation are applied for the spectrum sensing and utilization, respec-
tively. In this chapter, effects of spectral regrowth due to the inevitable
power amplifier nonlinearities of the PU transmitters are also studied.
Frequency selective block-fading channel models for both secondary and
primary transmissions are also considered in the signal models. Filter
bank based wideband spectrum sensing techniques are applied for detect-
ing spectral holes, and FBMC modulation is selected for transmission as
an alternative multicarrier waveform to avoid the disadvantage of lim-
ited spectral containment of orthogonal frequency-division multiplexing
(OFDM) based multicarrier systems. The optimization technique used
for the resource allocation approach considered in this study utilizes the
information obtained through spectrum sensing, as well as knowledge of
spectrum leakage effects of the underlying waveforms, including a prac-
tical power amplifier model for the PU transmitter. This study utilizes
a computationally efficient algorithm to maximize the SU link capacity
with power and interference constraints. The contents of this chapter are
mainly based on the publications [P3] and [P4] .

5. Chapter 6 summarizes the thesis and draws the conclusions.

1.4 Author’s Contribution to the Publications

Altogether, most parts of this thesis are based on the works reported in pub-
lications [P1]-[P4] which were all carried out at the Department of Electronics
and Communications Engineering, Tampere University of Technology, Finland.
The author of the thesis is the first author and main contributor in all these
publications and novel contributions reported in Chapter 4. The thesis supervi-
sor Prof. Markku Renfors is a co-author of all publications and made valuable
contributions regarding the technical contents and presentation. The part of
the research related to efficent ED methods using weighting process [P1] were
carried out mostly in collaboration with Prof. Mikko Valkama, Dr. Paschalis
C. Sofotasios and Dr. Tero Thalainen. The idea, analysis, simulations and writ-
ing in [P2] were done only with Prof. Markku Renfors. Regarding [P3], the
technical contents and presentation were equally contributed by the Author and
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M.Sc. Sudharsan Srinivasan, and this publication is likely to be included also in
Mr. Srinivasan’s thesis. Assoc. Prof. Faouzi C. Bader and Dr. Musbah Shaat
shared their expertise and participated in detailed discussions on resource allo-
cation. M.Sc. AlaaEddin Loulou contributed related to E-OFDM issue in [P4].
Prof. Mikko Valkama and Dr. Paschalis C. Sofotasios provided many insightful
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1.5 Basic Mathematical Notations

Throughout the thesis, the following mathematical notations are used exten-
sively. The operators that return the real and imaginary parts of a complex
variable are denoted as R{.} and {.}, respectively. The vectors and matrices
are written in bold and =, T, T in the superscript returns the complex-conjugate,
transpose and Hermitian (complex conjugate transpose) of the associated vari-
able. The forward Fourier, Discrete Time Fourier and N-point Discrete Fourier
transforms are defined and denoted as

X(f) = FT{z(t)} == / ()12t gy
X(f) =DTFT{z(t n)e J2m/n

X (k) = DFT{z(t)} )e~2mkn/N

)} =l
= Zx(n

whereas the corresponding inverse transforms are defined and denoted as

o(t) = IF{X (1)} = [ X(Hel'as

z(n) = IDTFT{X ()} := /X(f)ej%rftdf
z(n) = IDFT{X (k)} == >_ X (k)el?™n/N
k



CHAPTER 2

SPECTRUM SENSING METHODS
FOR COGNITIVE RADIO

2.1 Overview of Spectrum Sensing for Cognitive Ra-
dios

Wireless communication systems have been growing exponentially, with more
spectrum resources needed due to this rapid growth. Most of the spectrum
bands are allocated to specific licensed services in the current spectrum frame-
work. However, a large portion of licensed bands such as TV bands remains
underutilized [54]. In recent years, FCC has been considering to open the li-
censed bands to unlicensed users [1,69,83,113,114].

On the other hand, an increasing number of companies are making products
that use unlicensed bands. Due to its global availability, 2.4 GHz ISM band
is a suitable frequency band for low cost radio solutions such as WLAN and
WPAN. One important problem is that a large number of non-coordinated
users that operate in the same environment may lead to severe interference
effects. Increasing traffic rates, limited system capacity, and low coverage range
of base stations are other major challenges to reliable communication in such
environments. In solving these challenges, the idea of CR and related signal
processing techniques have been proposed [69,113,114].

CR is the key enabling technology that arises as a tempting solution to
the spectral congestion challenge by introducing opportunistic usage of the fre-
quency bands that are not extensively occupied by the PUs [113]. CR is based
on the concept of software defined radio (SDR), which provides a flexible radio
architecture that allows changing the radio personality in real-time; the same
hardware can be used to implement different waveform processing at differ-
ent times. CR has some additional vital characteristics compared to the SDR
such as radio scene analysis, channel identification and transmit power control.
While radio scene analysis includes estimation of the interference temperature
of the radio environment and detection of spectrum holes, the channel identifi-
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cation part has tasks such as the estimation of the channel-state and prediction
of channel capacity for use by the transmitter. Another task in a CR terminal,
after selecting the frequency slot for transmission, is the transmit power control,
or more generally the dynamic spectrum management process. While the CR
system works in the same band of frequencies with PU networks, significantly
high interference between different PUs and CRs is unavoidable.

Spectrum sensing is a critical part of CR applications. CRs may sense the
local spectrum utilization either though a dedicated sensor or using a configured
SDR receiver channel as shown in Figure 2.1. With this spectrum information,
it may find out spectrum access opportunities. Hence, the main task of a CR is
to obtain non-interfered spectrum for robust communication of the secondary
system. Due to variant channel conditions, repeated monitoring and coopera-
tion with the other users is required for effective spectrum sensing approaches.

Due to the importance of spectrum sensing, several spectrum sensing tech-
niques have been studied in the literature [2,106,170,191,198]. The most useful
ones of these spectrum sensing techniques can be chosen according to the sens-
ing performance and implementation complexity. While energy detectors are
the most commonly studied spectrum sensing technique due to low implemen-
tation complexity [2,106,170,191,198], the performance of energy detectors is
largely vulnerable to noise uncertainty effects [37,73,140,158,165]. Eigenvalue
sensing methods have been proposed to overcome noise uncertainty challenges,
but they have substantially higher computational complexity. Furthermore, the
performance of these detectors significantly decrease when even small adjacent
channel interference is present [97,196,197]. Cyclostationary spectrum sensing
techniques, which can reject the effects of adjacent channel interference, are
robust against noise variance uncertainty [89,90,92,102,139,141, 148,149, 166].
However, these algorithms have high computational complexity and a large
number of samples is needed to obtain the cyclostationary behavior of the sig-
nal. Furthermore, they are sensitive to cyclic frequency mismatch. Waveform
based sensing is more robust than energy detector due to the coherent pro-
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cessing that comes from deterministic signal component [78,143,159,167]. The
main drawback of the waveform sensing is the requirement of the a priori in-
formation about the characteristics of the PU. Matched filtering is the opti-
mum technique for detection of primary users when the transmitted signal is
known [13,81,87,108,115,133,142,157,201]. Recently, subband based ED meth-
ods have been studied as alternative methods to overcome the above challenges
[P1], [P3], [P4] and [38,42,45,154].

Most common spectrum sensing techniques, which are listed in Figure 2.2,
will be briefly explained in this chapter.

2.2 Energy Detection Based Spectrum Sensing

ED based spectrum sensing techniques can be classified as traditional and sub-
band energy detectors as follows:

2.2.1 Traditional Energy Detection

Traditional ED, also known as radiometry, is commonly used due to its low
computational complexity and hardware simplicity [37,73,140,165]. Addition-
ally, ED, which requires no prior information about the PU, is more generic
compared to many advanced spectrum sensing techniques. The signal is de-
tected by comparing the measured energy with the threshold value, which is
determined according to the assumed noise variance and desired false alarm
probability [165].
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ED can be formulated as a binary hypothesis testing problem [37,73, 140,
165],

Ho : y[n] = w(n]
x[n] (2.1)
—_———
Hi : y[n] = s[n] ® h[n] +wn].

Here, y[n] is the signal observed by the sensing receiver with s[n| and w[n]
denoting the PU information signal and the zero-mean, complex, circularly
symmetric, AWGN, respectively. Furthermore, h[n| denotes the channel im-
pulse response and z[n] is the received PU signal with channel effects. Under
hypothesis Ho, y[n] consists only of w[n| in the absence of the PU whereas the
PU signal z[n] is present along with w[n| under hypothesis H;. The corre-
sponding test statistic is obtained as, T'(y) = % ZnN;()l |y[n]|2, where N is the
length of the observation sequence.

It has been extensively shown that in practical cases the test statistics can
be accurately assumed to follow the Gaussian distribution, A(-,-), since the
central limit theorem (CLT) conditions are satisfied by the large number of
the involved samples [23,160,161]. As a result, the following expressions are
obtained,

4
Ty ~ N (a%;, ‘j;") (2.2)
and ) -
T ~N («ﬁi +au, “*ﬁ) , (2:3)

where 02 and o2 denote the variance of the received PU signal with channel
effects and AWGN process, respectively. The hypothesis testing problem is
illustrated in Figure 2.3. Based on this, and defining the instantaneous SNR
by v = Jg / 03], the corresponding Pr4 and Pp can be formulated as follows:

Pra = Pr(T(y) > MHo) = Q (;;jﬁ) (2.4)

A—opn(1+7) )
(1 +7)/VN)’

where Q(-) is the standard Gaussian complementary cumulative distribution
function and A is the predefined energy threshold.

In practice, the power (variance) of the PU information signal is unknown
to the CR, and thus the value of A is commonly calculated by the assumed noise
variance and desired Pp4, namely, A\ = o2, (1 + QY (Pra)/VN ) There is no
possibility to know the exact noise variance in practice, hence the Pr4 and Pp
results are highly dependent upon the accuracy of the noise variance estimate.
Therefore, small noise power estimation variabilities cause significant loss in
the detection performance. In practice, the noise variance can be expected
to lie within the range o2 € [(1/p)o2, po2], where p > 1 is a parameter that

Pp =Pr(T(y) > A[H1) = Q ( (2.5)

10
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.
>

Figure 2.3: Illustration of the binary hypotesis testing of the test statistics and
examples of probability distribution with assumed Gaussian approximation.

quantizes the size of the corresponding uncertainty. It is noted that the noise
uncertainty is usually expressed in dB as z = 10log;yp, which is chosen between
0.1 dB and 1 dB values in practice and under its effect Pr4 and Pp can be
straightforwardly formulated as follows [158],

A—o2 A\ — po? )
Pry = max — Y| = o Prn )
T se[lotp) ¢ (03;/\/N> ¢ ((W%)/\/N 20

P

and

_ , )\—ai(l—l—fy))_ ( A—a2((1/p) +7) )
Pp = min _— | = , .
P aae[;aﬁ,poa]Q<0?u(1+v)/\/ﬁ Newn+yvr) @D

respectively.

2.2.2 Subband Based Energy Detection

Spectrum analysis techniques make it possible to identify rapidly the spectral
holes in a wide frequency band and allocate the most feasible parts of the
band for CR operation. The most basic and computationally effective approach
for spectrum analysis is block-wise FFT processing of the observed signal and
measuring the power of each subband [120]. However, due to spectrum leakage
effects, FFT has serious limitations in this task. Among various alternative
spectrum analysis methods, AFB has been found to be particularly interesting
for CRs [30,31,51,52,110]. From the sensing point of view, the main benefits of
AFB are found in high-dynamic range scenarios, when performing the sensing
in the presence of strong transmissions at nearby frequencies. Our proposed
filterbank methods have been reported in [P1], [P3], [P4] and [38,42,45,154],
and they will be explained in Chapter 3 and Chapter 5 in details.

11



SPECTRUM SENSING METHODS FOR COGNITIVE RADIO

2.3 Eigenvalue Based Sensing

Eigenvalue based spectrum sensing techniques, which need no noise variance
information, have been reported as potential solutions to the challenging and
problematic noise uncertainty conditions [97,196,197]. Since the knowledge
of the noise variance is not required in the eigenvalue and covariance based
spectrum sensing methods, small changes or uncertainty on the noise variance
have only a small effect on the sensing performance, as also seen in our stud-
ies [P2]. The changes are just due to changes in SNR, if PU signal power is
assumed to be constant. The main drawback of the eigenvalue spectrum sens-
ing techniques is their high computational complexity. Largest eigenvalue and
trace based approaches have been presented in [117,130,131,195]. Additionally,
power iteration algorithms for efficient eigenvalue computation are proposed to
obtain less computational complexity in [82,193]. With our modified eigenvalue
sensing techniques [41,43,44], relatively low computational complexity can be
obtained, as will be discussed in Chapter 4. To avoid the calculation of both
covariance matrix and eigenvalues, alternative ESD based spectrum sensing
techniques were proposed in [40,41] and will be explained in Chapter 4.

2.4 Waveform-Based Sensing

Known patterns, such as preambles, transmitted pilot patterns, and spreading
sequences are commonly used for synchronization in wireless communication
devices. Correlation between the received signal and a known copy of the
pattern can help to reach better detection performance in spectrum sensing [78,
143,159,167]. The main drawback of this approach is that it is only applicable
to systems with known signal patterns. Using the same signal model as in (2.1),
the waveform sensing metric can be expressed as

N
M=% [Z y(n)s*(n)] . (2.8)
n=1

In the absence of the primary user, the metric value can be obtained as

N
M=% [Z w(n)s*(n)] . (2.9)

n=1
Similarly, the sensing metric can be obtained in the presence of the primary
signal as

N
M= |s(n)] +R
n=1

N
Z w(n)s*(n)] . (2.10)

n=1

The decision can be obtained by comparing the decision metric M against a
fixed threshold 7. It should be mentioned that this is an idealized model, e.g.,
assuming perfect frequency synchronization, and that the channel effect is not
included.

Cyclic prefix correlation method, which is a specific case of waveform sens-
ing approach, is introduced as a simple and computationally efficient sensing
technique for CP-OFDM signals in [15,24].

12
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2.5 Cyclostationary Feature Based Sensing

Cyclostationary feature detection is an effective sensing method to detect pri-
mary signals by exploiting the cyclostationary features of the received sig-
nal [18,55,75,89-92,99,102,121,122,134,139,141,148,149,166]. Since the noise
is wide-sense stationary and modulated signals are cyclostationary with spec-
tral correlation, the PU signal can be differentiated from noise. Additionally,
distinguishing among different types of transmissions and primary users can be
obtained by cyclostationary feature detection [107].

The cyclic spectral density function of the received signal can be obtained
as [56],

S(f,e)= Y Ro(r)e T, (2.11)
where '
Ry(r)=E [y(n +7)y*(n — T)szﬂ-om} : (2.12)

Here, Ry(7) is the cyclic autocorrelation function (CAF) and « is the cyclic
frequency. When the cyclic frequency is equal to one of the fundamental fre-
quencies of the transmitted signal z(n), the peak values can be obtained by the
cyclic spectral density (CSD) function.

2.6 Matched Filtering Based Detection

Matched filtering, which is also a non-blind spectrum sensing method, is known
as the optimum technique when the transmitted signal is known at the receiver
[13,81,87,108,115,133,142,157,201]. While the main advantage of matched filter
detection is the short sensing time to achieve a desired detection performance, it
requires perfect knowledge of the primary signal such as bandwidth, modulation
type, etc. The sensing receiver should also be able to synchronize to the received
PU signal, which is an unreasonable assumption in typical spectrum sensing
scenarios. The sensing receiver should also implement most of the specific
waveform processing functions of the corresponding PU receiver, which would
lead to high complexity. For these reasons, matched filter based detection is
not consider as a relevant choice in CRs.

2.7 Cooperative Spectrum Sensing

Noise uncertainty, multipath fading and shadowing, which are characteristics of
practical wireless channels, limit the detection performance in spectrum sensing
significantly. As an alternative solution to overcome the challenges of practical
environments, cooperative sensing has been widely studied in the literature
[6,29,36,49,66,67,94,112,116,127,151,161,169,172,175,194, 202] as a method
to improve the sensing performance. Hidden PU problem, which appears when
the PU is not detectable by the sensing station, e.g., due to shadowing, can
be solved, and the sensing time can be considerably reduced by cooperative
sensing.

13



SPECTRUM SENSING METHODS FOR COGNITIVE RADIO

The main challenge of cooperative spectrum sensing is that it requires de-
veloping an efficient information sharing network between CRs. This is often
referred to as cognitive control channel, and it should not introduce more than
a limited amount of delay [17,128].

Another challenge in the cooperative sensing is the performance degradation
due to the correlated shadowing [59, 126]. Hence, the most effective way of
the cooperative sensing can be reached when the collaborating radios observe
independent fading and shadowing [19,103]. It is obvious that better sensing
performance can be obtained with the same amount of users collaborating over
a reasonably large area than a small area.

Cooperation can be performed by CRs equipped with the sensing function
or external sensors can be used to establish a cooperative spectrum sensing
network [1]. In general, the sensing decisions can be done either in a centralized
manner by a fusion center, or the decision making can be distributed among
the sensing devices in various alternative ways [181].

2.8 Multiantenna Based Sensing

Multiantenna sensing methods utilizing spatial correlations of PU signals have
been widely studied and their efficiencies have been shown in different aspects
[76, 156, 167,172-174,176-180]. Furthermore, multi-antenna sensing has also
been recently studied as an alternative method to provide robustness against
the noise uncertainty effects [76,167,172-174,176-180]. However, the main
disadvantage of the multiantenna sensing techniques is their increased hardware
and computational complexity [76,156,167,172-174,176-180].

2.9 Other Sensing Techniques

Several other spectrum sensing methods are proposed in literature. Some of
them will be briefly introduced in this section.

e Quickest Detection

An agile and robust detection can be obtained by utilizing the theory of
quickest detection that makes a statistical test to detect the change of
the distribution as quickly as possible [93,100]. When a PU appears, the
unknown parameters can be estimated using the successive refinement,
which combines both generalized likelihood ratio and cumulative test.

e Learning and Reasoning Based Detection

The optimal detection idea which is reinforcement based approach for
the detection of spectral resources in multi-band CR can be obtained
by using a Markov decision process [12]. Hence, with knowledge based
reasoning [171], a medium access control (MAC) layer sensing algorithm
can perform the detection through proactive fast sensing and channel
quality information.

14
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e Measurement Based Sensing and Modeling

Unique statistics of the cellular primary usage can be obtained with huge
number of collected data over a long period at many base stations [5,182].
With the long period of measurement, spectrum usage patterns can be
found and this helps to find the spectral holes in both time and spatial
domains. Hence, dynamic access protocols can be improved based on
these results [5,182].

e Teager-Kaiser Energy Detector Based Sensing

Kaiser has proposed a simple and fast method [85] to estimate the energy
of a signal, when the restriction related to the bandwidth of the signal
is respected. The Teager-Kaiser sensing is applied to measure the energy
activity of the observed sequence in [35, 46,47, 84] instead of using the
conventional energy detector. Teager-Kaiser ED has also been used to
detect wireless microphone signals as it’s practical application, see [57,58],
and the references therein.

e Compressed Spectrum Sensing

Compressed sensing which is also known as the theory of compressive
sampling is a novel sensing paradigm that one can recover certain signals
from far fewer samples or measurements than the number of samples used
in traditional methods. Compressed sensing approach is dependent upon
two principles: sparsity, which pertains to the signals of interest, and
incoherence, which pertains to the sensing modality. Several studies have
investigated this idea so far [20,50,53,86,89,91,95,101,109,111,119, 186,
187].

e High-order Statistics Based Sensing

Higher-order statistics based spectrum sensing algorithms have been re-
cently studied in the CR context [11,14,21,74]. High-order statistics rep-
resent the third and higher order statistics, in which there are two basic
statistics as moment and cumulant. While the first-order and second-
order statistics are used to detect the signals in most of the CR appli-
cations, certain kinds of PU waveforms can be identified, for example
through the relations of the second and fourth-order statistics. There-
fore, high-order moment based detectors have been considered as alter-
native solutions to obtain better detection performance compared to the
traditional first and second-order statistics based methods [11,14,21,74].
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CHAPTER 3

EFFICIENT SUBBAND BASED
ENERGY DETECTION METHODS

FOR SPECTRUM SENSING

In this chapter, efficient subband based ED methods are proposed for spectrum
sensing under non-flat spectral characteristics [P1]. The aim of the study is
to investigate the effects of non-flat characteristics and frequency selectivity
on the energy detector performance and quantify the corresponding deviations
from the ideal model. Specifically, we wish to study:

Wideband multichannel based spectrum sensing techniques utilizing FFT
or AFB based spectrum analyzer are introduced.

The case of non-flat PU spectrum is analyzed, focusing on a realistic Blue-
tooth signal model as an indicative example. Analytic expressions of the
optimum weights are found for FFT and AFB based sensing where the PU
signal band is divided into approximately flat subbands. In this context,
simple numerical methods for evaluating the performance of practical and
optimum sensing filters are provided.

Performance analysis for the case where the sensing window in time-
frequency domain contains both a zone where the PU signal is present
and a zone where the PU signal is absent is presented. The idea of sliding
window is an effective method to detect a re-appearing PU, which is an
important specific scenario in practical spectrum sensing.

The effects of a stationary frequency selective channel are quantified.

Novel analytical expressions of AUC are derived for all considered spec-
trum sensing scenarios.

The main idea of this chapter is to provide a toolbox of FFT and/or AFB
based energy detectors in the form of easy-to-use analytical or semi-analytical
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METHODS FOR SPECTRUM SENSING

Threshold
calc.
- . Weighted ..
Receiver | Ch_annel | apc 1l FET/AFB | |-|2 L .Tlme | e L DECIS.IOI"I
front end filter integ. i device

Figure 3.1: Block diagram for energy detection with FFT/AFB based spectrum
analysis.

expressions for performance analysis. On the one hand, the presented ideas pro-
vide significant gains in terms of sensing performance compared to the existing
traditional ED methods, while on the other hand they facilitate the comparison
of suboptimal/simplified schemes with respect to the optimal methods.

3.1 FFT and AFB based schemes for multiband sens-
ing

CP-OFDM based multicarrier techniques, which are characterized by the sim-
plicity and robustness of the receiver signal processing techniques, are the dom-
inating multicarrier technology. FBMC based waveforms, which have demon-
strated various potential benefits in the field of CR communication [10,52,138,
152], are alternative techniques for next generation wireless communications,
such as 5G. As a transmission technique, FBMC has been shown to reach higher
spectral efficiency compared to CP-OFDM. The concept of FBMC includes syn-
thesis filter bank (SFB) and AFB as it’s core elements on the transmitter and
receiver sides, respectively [10,138,152]. The FFT processing in OFDM or the
AFB processing in FBMC on the receiver side can also be used for sensing the
spectrum for the CR based transmission. For the spectrum sensing purpose,
AFB has significant benefits due to much better spectral containment of the
subbands [10,52,138,152]. These properties also assist in improving the inter-
ference control in CR transmission links, particularly in scenarios where users
are not precisely synchronized to each other. Detailed analysis of OFDM and
FBMC based systems in terms of false alarm probability is given in Chapter 5.

A block diagram of FFT or AFB based energy detector is illustrated in
Figure 3.1. Wideband multichannel based spectrum sensing, where ED is per-
formed at subband level at the output of an FFT or AFB, is our focus. The
output of these blocks is expressed as yx[m|, where k = 0,..., K — 1 is the
subband index and m is the subband sample index. In the context of spectrum
sensing the subband signals can be expressed as follows:

Yk [m] = wWg [m] Ho
yk[m] = $k[m] + u}k[m] Hy (31)

where x1,(m) = Hysp(m) is the PU information signal at the m™ FFT or AFB
output sample in subband k, Hy, is the complex gain of subband k, and wy[m]
is the corresponding noise sample. Furthermore, it is assumed that wy[m]| ~
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N(O’o-%u,k) and xi[m| ~ N(0,0’%k), with Jik denoting the PU signal variance
in subband k. Since a uniform filter bank or FFT is used for spectrum analysis,
the subband noise variances can be assumed to be the same, 02 /K ~ ai’k,
while the channel noise is assumed to be white. The integrated test statistics

over multiple subbands and certain observation time can be formulated as

k0+(Nf/2}—1 mo

Tlmor) = 5y > 2 bl (32)

fk:k'O*I\Nf/2J m=mo—N¢+1

where Ny and N; are the averaging filter lengths in the frequency and time
domain, respectively. Based on Parseval’s theorem, FFT/AFB based subband
integration and full-band time-domain integration over the same time interval
yield the same test statistics when a spectral component is entirely captured
by the subband integration range.

When the PU spectrum is assumed to be flat over the sensing band, the
probability distribution of the test statistics can be expressed as

4
g, 7]C
T(:Umo,ko)"Ho ~N <Jz2u,k7 N:UNf)

3.3
2 2 (U;%,k + Ugj,k)Q (3.3)
T Yo ko )1 ~ N Ok T 0wk T]Vf
which yields,
Ppa = Pr(T AH A= T
ra =Pr(T(y) > AHo) = Q W
o (3.4
Pp = Pr(T(y) > \H1) = Q A~ w4 )
v ' or (1 +m)//Ni N
where )
Q (Pra)
! ( VN, &9)

Here, v, = aik /qu,k is the subband-wise SNR. FFT/AFB based processing
makes it possible to tune the sensing frequency band to the expected band
of the PU signal, as well as sensing multiple PU bands simultaneously. The
tradeoffs in choosing the integration range in the time-frequency domain are il-
lustrated in Figure 3.2. Several candidate PUs, which can have different spectral
characteristics and possibly overlapping spectra, can be sensed simultaneously
in the optimized ways.

3.2 Energy Detection in the Presence of Frequency
Variability

Spectrum sensing is fundamentally performed to assist opportunistic access for
SUs and also for monitoring the spectrum during SU operation for a possible
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Figure 3.2: Illustration of various integration zones in time-frequency domain.

reappearance of a PU. The aim of this section is to develop tractable models for
ED in cases where the PU signal and/or noise are non-white within the sensing
frequency band or the PU transmission is not constant within the sensing win-
dow in time and/or frequency directions, e.g., due to a possible reappearance
of a PU [77]. The spectrum of the PU signal is determined by the spectrum of
the transmitted waveform, channel frequency response and the sensing receiver
filter, whereas the spectrum of the channel noise only depends on the receiver
filter frequency response.

3.2.1 Band Edge Detection and Transmission Burst Detection

It is commonly assumed that the PU is either absent or active for accounting
of the test statistic during the whole sensing interval. However, in practical
communication scenarios, it is often the case that either a PU re-activates during
the measurement period or the sensing frequency band fails to match the band
of the PU signal [77]. Therefore, only some fraction of the integration window
matches the time-frequency zone of the PU activity. This transient scenario in
time or frequency direction is illustrated in Figure 3.3 with the associated test
statistic distributions.

The distribution of the transient phase test statistics, T(y)]T R can be ex-
pressed by virtually splitting the integration window into two distinct sub-
windows such that the first one contains the observation samples before PU is
active, N — N; samples, whereas the other one contains the remaining N7 sam-
ples. According to this idea, the distributions corresponding to the sample sub-
sets within these virtual sub-windows can be written as', N (¢2, o1 /(N — Ny))
and N (02 + 02, (02 + 02)?/N1), respectively. The distribution of the overall
sequence of N samples can be interpreted as a linear combination of these in-

1For the sake of notational simplicity, Sections 3.2.1 and 3.2.2 are formulated in a basic
single-band ED setting.
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Figure 3.3: Distribution analysis of the transient phase test statistic.

dependent normal random variables using relative weights of (N — N;)/N and
Ny /N. Hence, X1 ~ N(p1,0%) and Xo ~ N(p2,03) and with the aid of the
standard property of the normal distribution, a X1 +bXs ~ N (au1 +busa, a®c? +
b%02), the following mixture-distribution is deduced,

TW)|pp~N <012U + % RE

The detection probability of the presence of a PU signal during the tran-
sient phase is calculated by the tail probability towards 4oco over the mix-
ture distribution in (3.6), namely, Pprr = Pr(T(y)lrr > A). Hence, the
probability of false alarm and probability of detection can be expressed as
Pra = Pr(T(y)|n, > A) and Pp = Pr(T(y)|n, > A), respectively. After
algebraic manipulations, the Pr4 becomes identical to (2.4) whereas the Pp is
expressed as,

PD:Q< ANoz2 — N — Nivy >:Q< VNQ~Y(Ppa) — 7N, ) (3.7)

\/N—N1+N1(1—|-"}/)2 \/N—N1+N1(1+’Y)2

3.2.2 Sliding Window Based Spectrum Sensing

Sliding window energy detection (SW-ED) is another alternative solution to
detect a reappearing PU signal. For simplicity, it is assumed that the sensing
receiver is able to monitor the target frequency channel continuously. For in-
stance, when the secondary system leaves a slot of the frequency channel unused
for spectrum sensing purposes, this could be reached [77]. The test statistic for
a time instant n + 1 is obtained effectively with a sliding window of constant
length N as follows:

[yln+ 11° — yln+1 - NJI*

Toy1(y) = Tu(y) + N

(3.8)

SW-ED under action is shown in Figure 3.4. It is noted that while the test
statistic at any particular time instance follows the statistical model adequately,
the probability of exceeding the decision threshold within a time interval grows
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Figure 3.4: Sliding window energy detection in action: 100 instances of SW-ED
processing with block length of N = 640 for -5.5 dB PU SNR (left) and -3 dB SNR
(right). The horizontal lines indicate the thresholds for Pr4 = 0.01 in basic single-shot
energy detection (dotted) and in SW-ED with 12800 samples (solid). Time instant 0
corresponds to the beginning of the PU transmission and the vertical line indicates the
first time instance (N7) when Pp = 0.99 is reached.

with the length of the interval. Hence, the decision threshold has to be in-
creased, compared to the basic single-window sensing, to reach reasonable Pr 4.
The specific case of multiple (B) non-overlapping ED windows is rather conve-
nient to handle. In this case, the probability of not exceeding the threshold in
any of the sensing windows can be expressed as:

L P = e (maxf ) < 3) = T Pr (10 < 2) = (1- ).
k=1
(3.9)

However, for the presented SW-ED model, no analytical models that address
this scenario exist while consecutive outputs are strongly correlated. Therefore,
a numerical approach for analyzing the performance of this idea is proposed
[P1].

3.2.3 Effects of non-flat primary user spectrum

As seen in the flexible multiband sensing illustration of Figure 3.1, FFT or
AFB is used to split the signal into relatively narrow subbands, after the receiver
front-end and analog-to-digital converter (ADC). According to the bandwidth of
possible PU, a number of consecutive subbands is combined with an optimized
weighting process for enhancing the sensing performance. Two different ideas
can be applied to obtain better performance with the weighting process: a) If
the PU signal is with flat spectrum, constant weights are optimal solution, and
they may also provide a good approximation with properly selected number
of subbands for non-flat spectral characteristics. When there is no knowledge
about the PU signal, this method is naturally the best approach. b) If there
is prior knowledge about the PU signal, optimized weights can be applied for
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optimal solution. When the channel is frequency selective, the spectrum of the
received signal is affected, but the channel characteristics can not be assumed
to be known. Anyway, the optimized weighting process based on knowledge of
the transmitted spectrum may be considered, especially if the channel is not
severely frequency selective within the PU bandwidth.

The test statistics are approximated as a sum of independent Gaussian
variables with different variances under Hy and H;. Hence, the probability dis-
tribution of the test statistic T} for center frequency k and arbitrary weighting
coefficients can be expressed as follows,

k+Ny k+Nj glot
k9w, k
f(Tk)‘HO ~N Z gkagu,k? Z Nt-;:/vf
k=k—Ny k=k—N; (3 10)
k+Ny k+Ns '
T N "okt onn T (ofntonn)
STy, ~ Y Y TNNo 2
n:k—N7f Ik n:k—Nif tV 1 9k

where N = N;N; is the overall sample complexity. To simplify the notation, it
is assumed that the value of the window size in frequency domain is odd, i.e.,
Ny =2N;+1. The integration in frequency domain takes the weighted average
of the time filter outputs, with g; denoting the real-valued weight for subband
k with PU signal power Ug,k' Next, the problem of optimizing the subband
weights is addressed.

For arbitrary weight values, the corresponding Pra4 and Pp is given by,

E+Ny k+Ny 91%04k
Pra=Q||A= > gkai,k/ > Tw

n:kaif Ii:kaif
k+Ny k+N; 2 4 2
950w k(1 + V%)
Prh=Q| [ - Z gkoiyk (1 + %) / Z = N
n:k—Nif n:k—Nif

(3.11)

Using Pra and Pp expressions, the corresponding energy threshold A can
be expressed,

4
A=Q ' (Pra),| X THE+ X grony
k=k—Npy k=k—Ny (312)
KNG a2 +Ny
=Q(Pp),| ¥ WL, oy L
k=k—N; w,k k=k—N; 7k “wk
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The minimum required sample complexity, N = N;Ny, can be calculated as
follows,

- 2
k+Ny k+Ny )
> g > gr(1+ )
A - k=k—N - k=k—N
N = |Q ' (Pra) ——— —-Q ' (Pp) — 5
k+Nf k-‘er
( ng%) ( ng%)
i k=k—Np w=k—Ny _
(3.13)

which is expressed as a function of Pra, Pp, gr and ;. The required time
record length IV; is determined according to the targeted minimum detectable
PU power level in practice. When optimum weighting coefficients are used,
the frequency block length Ny should be chosen to include all subbands that
essentially contribute to the test statistics.

It is assumed that the weights are normalized for constant noise power level
i.e., 3 g7 =1, the first term of (3.13) is maximized by choosing:

7

2 2

o o
g = ——k ok Tk (3.14)

k+Ny ) (o Y
Zi Uz,kz
k=k—Ng¢
In any realistic case, with Pp > 0.5 also the second term is positive and it is
k+Ny
maximized by choosing g = W Here, S = szzzﬁf (1:%)2.

The proofs are provided in [P1] in detail. Also, additional numerical results
for the example case of Bluetooth are shown in Section 3.4.

3.2.4 Effects of fading frequency selective channel

A vast majority of the spectrum sensing studies have been focused on the
AWGN channel case so far, while the channel is frequency selective and fading
in most CR scenarios. Hence, we analyze and discuss the selectivity issue in
this sub-section. It is recalled that v = 02/02 and 7, = 02, /02 , denote the
overall PU SNR and the subband-wise SNR’s, respectivelyf The channel fre-
quency response, represented by the subband gains Fj, is assumed to satisfy
the relationship Zivzf 1 B ,3 = Ny, which basically indicates that the received PU
signal power is assumed to be constant. Naturally, any fading channel would
introduce temporal variations of the total received power, but our idea is to
analyze the effects of time and frequency selectivity separately. Based on this
and given that v, = Fj7, the test statistics in (3.3) can be extended for the
case of frequency selective channels as follows,

g,

4
2 w
T(y)ly ~ N <aw, Ny )

(3.15)

Ben
Ty~ (o7 4 2 o2 4 2
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where,
N N
By = & i (ot our)® 1 i 1+ Fe-a)f (3.16)
TNy (02402)2 Ny K2(147)?

The corresponding Pr4 and Pp are similar to (3.4), and can be straightfor-
wardly deduced by making the necessary change of variables yielding,

(VNN A= (1 +)] ([ QN (Pra) — /N
PD‘Q< 2L+ ) )‘Q< G+ 1V ) (3:17)

It is clear that the variance of the test statistic is affected by the channel fre-
quency response only under H;. The effect of the frequency selectivity on the
ED performance can not be significant under the low PU SNR regime. On
the other hand, equations (3.16) and (3.17) can assist in quantifying this and
evaluate whether the effect is significant when operating with highly frequency
selective channels at relatively high SNR levels. Numerical results that demon-
strate this effect are presented in Section 3.4.

3.3 Area Under the Receiver Operating Character-
istics Curve

AUC, which is used in different areas of science as a performance metric, is
considered here as an alternative measure to assess the performance of ED
based spectrum sensing. The performance of a basic ED is commonly analyzed
in terms of two parameters, Pry and Pp. Based on this, the most common
method to analyze the performance is to fix one of the two measures and vary
the other one. On the country with AUC model, there is only one parameter
involved, which provides a better insight on the overall performance of the
detector. While the AUC approaches ideally the value of 1, in which case
Pp = 1 for any given value of Pra, the useful values of the AUC are those
that are greater than 0.65 with those greater than 0.85 considered acceptable
in practice.
In the presence of AWGN, AUC is expressed as [4]:

8PF A(N)
o\
Analytic expressions for the AUC of each proposed spectrum sensing sce-

nario are summarized now in the form AUC = Z(a,b,c,d) = \ﬁ Jo° Qlax

(cx—d)= d)

be~ dz. The AUC for the traditional ED can be expressed as follows,

AUC |ED:I< (*{: )\F VN f) (3.19)

For the specific scenario of re-appearing PU, the AUC can be formulated
as,

AUC = A(y / Pp(y, \) ZEA) gy (3.18)

02N —N+N(1+7)2 /N —N + N (1+7)2 o2’

AUC |pp=1T (
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For the case of the weighting process, AUC can be expressed as,

K+N7f
VN Y g2(+w)
\/N k:fchf
— — g e e
N+Nf K+Nf
> ghon c(4+m)? > gh(4m)?
AUC|pignis = 7| V= R
VN Y %
\/ﬁ k:anf
HJer H+Nf
2. 9Kk 2 9
k:mfo k:anf

Finally, under the frequency selectivity, AUC can be obtained as

VNiNso,?2 [NyN; /NN
AUC |86l:I LT ) : f? é fa\/Nth :
V /Bch(l + 7) Bch (%)

Detailed derivations of these expressions are given in [P1]. To the best of
the authors’ knowledge, these expressions are novel.

3.4 Numerical Results

(3.21)

(3.22)

In this section, the main simulation results of our proposed spectrum sensing
analysis methods and algorithms are presented. First, the ED performance in
the case of a re-appearing PU and AWGN is demonstrated and subsequently
the results of our proposed algorithms under frequency selectivity are given
with the indicative example of the non-flat spectrum of the Bluetooth signal.
Figure 3.5 shows the overall ED performance for the re-appearing PU case in
terms of the corresponding receiver operating characteristics (ROC) and AUC
for N = 1000. Particularly, the AUC results indicate that ED can achieve
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Figure 3.5: AUC and ROC with v = —8 dB, N = 1000 and different values of N; for

the transient phase ED.
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Figure 3.6: ROC and AUC curves for frequency selective channels at v = 0 dB, for
different values of 3., and NyNy = 20 x 2 for the ROC case.

robust performance in the re-appearing PU scenario as its value exceeds 0.95 as
N increases. Figure 3.5 provides an indicative connection on the behavior be-
tween Pp and AUC. According to this figure, it is evident that such transient
situations, i.e., unknown PU channel band edges and/or transmission burst
timing, can be handled effectively through the sliding window processing. Slid-
ing window processing can be performed with FFT or AFB based ED in time
and/or frequency domain. Hence, the PU transmission can be located in time
or frequency direction, respectively.

The theoretical -values are found with (3.16) to be in the range [1.13,2.47]
for the noise-free case, whereas the corresponding range of 8.;,-values is [1.03, 1.37]
for 0 dB SNR and [1.01,1.06] for —6 dB SNR for the International Telecommu-
nication Union (ITU)-R Vehicular A channel. Here ITU-R Vehicular A channel
with 20 MHz bandwidth is considered and 1024 subbands are used in the anal-
ysis. Figure 3.6 shows the ROC and AUC curves for three cases with v = 0 dB,
i.e., Ben € {1.03,1.20,1.37}. We assume that Ny = 20 and Ny = 2 for the ROC
case, while the AUC is shown as a function of N = N;N;. Evidently, the effect
of frequency selectivity on the performance of the ED is significant at relatively
high SNR values, beyond 0 dB. However, our numerical results related 3. val-
ues clearly indicate the effects of frequency selectivity on ED performance are
practically negligible in the low SNR regime and the performance is determined
by the temporal variations of the received PU signal power [37]. It is enough
to model the variation of the total received power, while the multipath effects
on frequency selectivity are not essential in the low SNR regime [37,140, 153]
in ED based spectrum sensing.

In the majority of wireless communication scenarios in practice, wireless
channels are frequency selective and hence, one cannot realistically assume
knowledge of the observed PU signal spectrum. However, channel models are
commonly assumed to be flat for certain short range applications, such as IEEE
802.15 based Bluetooth wireless technology, which has 1 MHz nominal band-
width with 1600 hops per second hopping rate [71]. We mostly consider a
simplified scheme with continuous Bluetooth signal at the 33" channel as seen
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Figure 3.7: Bluetooth signal spectrum in 2.4 GHz ISM band.

in Figure 3.7. The performance of the multiband spectrum sensing scheme
with weighting process in sensing a Bluetooth information signal and the cor-
responding spectral holes is analyzed. The differences between filter bank and
FFT based sensing in the absence of strong PUs at adjacent frequencies are
insignificant. Hence, the results are shown only for the FFT case. We assume
83.5 MHz sampling rate and that the ISM band consists of 1024 subbands. The
sensing window comprises of 11 subbands corresponding to the 1 MHz sensing
bandwidth of the Bluetooth signal. In this scenario, we target at v+ = —5 dB in
spectrum sensing, Pr4 = 0.1 and Pp = 0.9.

The required sample complexity for the target SNR, Pp and Pp4 is de-
termined with (3.14) as N = 89 under non-frequency-selective model. If the
Bluetooth power was equally distributed among the 11 subbands, 8 samples
from each of these subbands would be sufficient for reaching the target require-
ments. Also, when sensing is performed only by utilizing the center subband,
N = 89 is a lower bound for the time record length. Table 3.1 depicts the
number of required subband samples needed with the BT signal for different
sensing bandwidths and with optimized and constant weights. When the op-
timum weight values are used for all 11 subbands of the Bluetooth signal, the
required number of subband samples is 45, which corresponds to a lower time
record length than the respective 50 samples hoping interval as an example
case. It can be also observed that almost the same time recording length can
be used when sensing a single subband at the Bluetooth center frequency as
when sensing the entire 1 MHz Bluetooth band with constant weights. For
the case of constant weights, 3 subbands constitutes the optimum choice for all
considered SNR values. On the contrary, using optimum weights reduces the
sensing time by about 10%.

Figure 3.8 shows the Pp with constant and optimum weight values as a
function of the active Bluetooth SNR with: a) AWGN, b) ITU-R Vehicular and
¢) Indoor channel. Constant and optimum weight cases use 3 and 11 subbands,
respectively. The Vehicular A channel has 6 taps and its maximum delay spread
is about 2.5 us [79]. A 16-tap model with 80 ns root mean square (RMS) delay
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Table 3.1: Required time record length in subband samples for different weighting
schemes in Bluetooth sensing.

Bluetooth | Weight 11 5 3 1
SNR Factors subbands subbands | subbands | subband
0dB Const. 12 8 8 15
Opt. 7 7 8

-3dB Const. 39 25 23 41
Opt. 21 21 23

-4 dB Const. 60 37 34 60
Opt. 31 31 33

-5dB Const. 92 56 51 89
Opt. 45 46 49

-6 dB Const. 143 84 77 132
Opt. 68 69 73

-7dB Const. 223 131 117 200
Opt. 104 105 111

spread is also applied as a realistic Indoor channel model [79,192]. Highest
detection probability performance is achieved with optimum weight values using
11 subbands, but the benefit over the constant weight case is relatively small.
It is also evident that the Pp is not substantially different between FFT and
AFB in this low dynamic range case. It is also clearly seen that the optimum
weighting scheme derived for the flat-fading model gives the best results also
with frequency-selective channels. The difference is most noticeable with the
ITU-R Vehicular A channel.

The previous discussion did not consider the frequency hopping character-
istic of the Bluetooth system. A critical issue is that if the time window for
calculating the test statistics is not aligned with the received Bluetooth burst,
the detection performance degrades significantly, as discussed earlier in this
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Figure 3.8: Detection probability of Bluetooth signal with Pra4 = 0.1 using time
record length of 50 for constant and optimum weight values under (a) AWGN, (b)
ITU-R Vehicular A channel, (¢) Indoor channel including both FFT and AFB based

sensing.
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section. Notably, this issue can be ultimately avoided by determining the test
statistics with the aid of the sliding window approach.

3.5 Chapter Summary

The effect of misaligned time-frequency window on the test statistics was in-
vestigated in a generic way by means of a mixed statistical model based on
Gaussian approximation. The effects of the frequency selectivity on ED per-
formance were also analyzed. Sliding window processing for re-appearing PU
detection was studied as an extended method to search for the best match in
cases where the frequency range or burst timing of the PU signal is unknown
to the sensing receiver.

Next, non-flat PU spectral characteristics, considering Bluetooth as an ex-
ample case was addressed. Optimum weights were derived for FFT or AFB
based sensing and an analytical model was developed to quantify the effect of
channel frequency selectivity on the sensing performance.

Finally, novel analytic methods with AUC as a single-valued performance
metric were developed for the proposed ED scenarios. The offered results were
subsequently employed in analyzing extensively the corresponding detectors’
performance.

In our discussions, the central tool was splitting a wideband multichannel
signal into relatively narrow subbands and then combining subbands samples
within a proper time-frequency zone with optimized weighting. This can be
regarded as a very useful tool for the next generation CRs. While there is no
major difference between FFT and AFB based spectrum sensing in terms of
detection performance in low dynamic range scenarios, AFB based algorithms
provide clearly better false alarm performance in the presence of strong spectral
components in the sensing band due to better control of spectral leakage, as
demonstrated in [38] and Chapter 5.
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CHAPTER 4

REDUCED COMPLEXITY
SPECTRUM SENSING BASED ON
ENERGY AND EIGENVALUE
DETECTORS

In this chapter, reduced complexity eigenvalue based and subband energy based
sensing algorithms are introduced. They are capable of overcoming the noise
uncertainty problem with relatively low computational complexity compared to
the existing spectrum sensing techniques such as traditional eigenvalue based
sensing.

ED is widely used in CR context due to its relatively simple practical real-
ization and low computational complexity [69,191]. Hence, numerous methods
have been reported in the context of AWGN channels, fading channels and
cooperative sensing [4, 59, 60, 72, 73]. However, it is well known that perfor-
mance of ED is largely vulnerable to very low SNR levels and noise uncertainty
effects in practical wireless communications scenarios [158]. Since multipath
fading and shadowing phenomena cause power fluctuations of the received sig-
nal, the need to operate under very low PU SNR is unavoidable in many CR
systems [4,59,60,72,73].

FEigenvalue-based spectrum sensing techniques which have been shown to
perform adequately even at the problematic low SNR detection [P2] and [97,
196, 197] are alternative spectrum sensing techniques to overcome the noise
uncertainty challenges. However, this type of advanced spectrum sensing tech-
niques have high computational complexity due to calculation of the covariance
matrix of the received signal and its corresponding eigenvalues.

Alternative eigenvalue based approaches, which only require the largest
eigenvalue and trace of the covariance matrix, have been presented to decrease
the computational complexity in [117, 130, 131, 176, 195, 199]. However, the
largest eigenvalues are still calculated using the traditional methods in these
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studies. Possible solutions to solve complexity issue are reported in [43,82,193],
where the power iteration algorithm is proposed to obtain the largest eigen-
value of the covariance matrix with relatively low computational complexity.
On the other hand, the most commonly considered eigenvalue based spectrum
sensing methods in [43, 82, 193] still require the information of the smallest
eigenvalue, leading to higher computational complexity. In fact, to the best of
our knowledge, careful analysis and comparison of the computational complex-
ity of different eigenvalue based methods is missing in the literature. Another
alternative solution is ESD based spectrum sensing techniques which utilize
the order statistics of subband energy differences in frequency domain [25-27].
These methods are able to remove the involved noise floor which results in the
elimination of the corresponding uncertainty effects.

Motivated by the above, we investigate here Max-Min ED approaches, which
show highly accurate spectrum sensing performance and reduced computational
complexity [40,41,44]. Specifically, the contributions of this chapter are sum-
marized below:

e We evaluate the performance and complexity of the EMaxE, which uses
the maximum eigenvalue over energy as the decision statistic (which is
equivalent to the ratio of the largest eigenvalue and trace of the covari-
ance matrix used in [117,130,131,176,195]) and calculates the maximum
eigenvalue using the power iteration method. We consider this as the
computationally most effective form of eigenvalue based sensing and use
it as a reference algorithm in the complexity evaluation of the proposed
subband energy based detectors.

e The proposed Max-Min ED algorithm has significantly lower complexity
than EMaxE, and in most cases it reaches or exceeds the performance of
eigenvalue based methods.

e The proposed techniques are analyzed to see the effects of the transmit-
ted spectral shape and multipath channel. Detection performance and
computational complexity are evaluated under different scenarios.

4.1 Traditional Eigenvalue Based Spectrum Sensing

Before starting to explain the reduced complexity based eigenvalue detection
methods, the traditional eigenvalue based spectrum sensing approach is briefly
explained as a reference model.

The signal model of (2.1) is also valid in this case. We consider L consec-
utive symbol intervals with each of them consisting of M samples and highly
correlated signals. The sequences of the received and primary signals are defined
as

ly(n) y(n—1) y(n—2) ... y(n — ML+ 1)|" (4.1)

<>
Il

and
[s(n) s(n—1) s(n—2)...s(n— ML+1)]" (4.2)

w
Il
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respectively, whereas the sequence of the noise is given by
W = [w(n) wn —1) wn —2) ..wn - ML +1))T. (4.3)

The statistical covariance matrices of the transmitted signal, the received signal
and the corresponding noise are defined as: Ry, = E(3§7), Rss = F(887) and
R, = E(WWwT). Furthermore, the covariance matrix of the received signal can
be further expressed as, Ry, = HR,.H' + R, where the channel matrix H
and eigenvalues of Ry, and HR,.H' are defined as A\; > Ay > ... > Ay and
p1 > p2 > ... > pyL , respectively [P2].

In practice, the statistical covariance matrix can only be calculated with a
limited number of samples. The sample auto-correlations of the received signal
are defined as follows:

1 NM-1
5(1):W > ym)y(m—1), 1=0,1,...,ML-1, (4.4)
m=0

The statistical covariance matrix can be approximated by the sample covariance
matrix defined as

5(0) 0(1)... (ML —1)
Ryy = 5(:1) 5(0) 5(ML =2 (4.5)
(5(ML—1) (ML —2) 5('0)

Note that the sample covariance matrix is symmetric and Toeplitz. In the
Max/Min eigenvalue based detector, the ratio of A4 and A\, is compared
with the threshold which is calculated according to the distribution of the co-
variance matrix of noise, when the signal is absent. The detailed analytical
model is explained in [P2].

4.2 Reduced Complexity Spectrum Sensing Based
on Maximum Eigenvalue and Energy Detector

The EMaxE algorithm which requires only the largest eigenvalue and average
energy is illustrated in Figure 4.1. Power iteration algorithm is used to ap-
proximate the maximum eigenvalue of a matrix by exploiting its Hermitian or
Toeplitz structure [168,193].

Firstly, the average energy of the corresponding received signal which is
used in the calculation of the test statistics is computed like in the traditional
ED methods as follows:

1 NM-1
n=0

The sample covariance matrix Ry, and its largest eigenvalue A\yax are calcu-
lated from an observed sequence of M N samples [43,44]. The covariance matrix
estimate is calculated using a block length of L symbols, where L is the smooth-
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Figure 4.1: Block diagram of the modified maximum eigenvalue / energy based spec-
trum sensing.

ing factor and its dimension is M L x M L. The largest eigenvalue of a symmetric
positive definite matrix is obtained with the power iteration method [82]. The
involved computational complexity is of the order of O(kM L), with k denoting
the number of iterations depending on the error threshold.
In the EMaxE algorithm, the signal is assumed to be present if (Amax/7'(N)) >

v, otherwise it is expected that the band of interest consists only of noise. The
threshold value v can be determined with the aid of the random matrix theo-
rem [196]. While analytical expressions for this algorithm exist in the literature,
more straightforward derivations of the threshold, false alarm and detection
probabilities are given in the Appendix A.

4.3 Connection between Subband Energy and Eigen-
value Based Spectrum Sensing

While the EMaxE algorithm has lower computationally complexity than com-
monly used eigenvalue based detection, the complexity is still higher than that
of the traditional ED, which is significantly effected by the noise uncertainty.
Hence, the connection between PSD and eigenvalue based methods has critical
importance to decrease the computational complexity while trying to overcome
the noise uncertainty issue.

The eigenvalues of the covariance matrix are bounded by the minimum and
maximum values of the PSD [70]. By letting A\; denote the eigenvalues of the
ML x ML covariance matrix of Ry, of a discrete-time stochastic process y(n)
and q;, ¢t = 1,2,...M L, present their associated eigenvectors, one obtains

HR q:
No= By o ML (4.7)
q; di
By expanding the numerator of (4.7), it follows that

ML ML

quRyy(Ii = Z Z gl —k)qa (4.8)
k=11=1

where ¢}, is the kt" element of the row vector q, r(l — k) is the kIt element
of the matrix Ry,, and g; is the [ element of the column vector q;. With the
Einstein-Wiener-Khintchine theorem [70], one obtains

r(l—k) = % /_ S(w)e?™ R du. (4.9)
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Thus, the numerator of (4.7) can be re-written as

ML ML

1 . ™ w(l—
Q' Ry = 5= 30 3 i [ S(w)e P, (4.10)
k=11=1 T

Finally, the i*} eigenvalue of the covariance matrix Ry, in terms of the PSD
S(w) is formulated as

™ 1w 2
afq; S |Qi(e7) | duw

where, Q%(e/V) = ZkM:Ll q;‘ke_jwk. Thus, the \; eigenvalues are bounded by
the maximum and minimum values of the associated PSD, i.e. Spin(w) <
Ai < Smax(w), i =1, 2, ..., M L. Likewise, the eigenvalue spread is bounded as

follows: \ \ S (10)
w

R, )= ~max _ Al Pmax{F) 4.12

X< yy) >\min )\ML o Smin(w) ( )

The relation between spectral density and eigenvalue based sensing is also
shown in [64, 88,167].

4.4 Proposed Maximum—Minimum Energy Detec-
tion Based Spectrum Sensing

A new Max-Min ED method, which is less complex and robust to noise uncer-
tainty, is proposed as illustrated in Figure 4.2. This is achieved by using the
difference of maximum and minimum energies of the subbands as the decision
statistic. The proposed method can be summarized with the following main
steps:

e Subband energy detector (SED)
e Quantification of the maximum and minimum energy levels
e Threshold calculation and decision device

It is noted that the ordering and differentiation blocks are considered in [25-27]
as follows, but they are removed from our simplified method:

* Ordering of the determined subband energies

x Differentiation of the ordered subband energy sequence

Subband Energy Detector: The Ngprr point FFT operation on rectan-
gularly windowed sets of Nppp samples is applied in the first stage. (Alterna-
tively, an AFB with the same number of subbands can be used and is preferred
in high dynamic range scenarios.) The subband signals are formulated as

(W, H
Youlh] _{ SllH, + Walkl, o (4.13)
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Figure 4.2: Block diagram of the subband energy detection methods.

where W,,[k| is the corresponding channel noise sample under #Hy hypothe-
sis and S,,[k]H}, is the received PU signal in the m!® FFT output sample in
subband k under H; hypothesis. The channel frequency response is modeled
through the subband gains Hi. The AWGN can be modeled as a zero-mean
Gaussian random variable with variance J?U,k, ie., Wplk] ~ N(0, 0'121),]4). The
subband noise variances are assumed to be equal, such that afu’k = 0121, /NFpr.
Furthermore, Sy, [k] ~ N(0,0%) with o7 denoting the power at subband k under
‘H1 hypothesis in the absence of the channel effect. The overall subband ED
process can be summarized as U = L%Zant:l Y [k]\Q, where Ly = N/Nppp.
At this point, it is possible to make the following approximations with the aid
of the CLT:

U N (o £romi) o (4.14)
k= 2 ’
N (ot + o 2 (1P +02,)) . %

Finding of Maximum and Minimum Subband Energies: In this
stage, maximum and minimum energy values of subbands are determined as
seen in Figure 4.2.

Threshold Calculation and Decision Device: The test statistic, which
is obtained as the difference between the maximum and minimum energy values,
is compared with a predetermined threshold that can be obtained from the
target Pr4 with the aid of Gumbel distribution. If Unaz—min = Umaz — Umin >
v, the signal is assumed to be present; otherwise only noise is assumed to be
present in the band of interest. Detailed analysis of the threshold calculation
will be given later in Section 4.5.1.

Differential Subband Energy based Scheme: The original subband
energy based scheme from [25,27] utilizes the following additional steps after
obtaining the subband energies:

x Ordering : This step requires placing of the subband energies by the
order of magnitude. This has no effect on the statistical properties of the
ordered sequence, Uy, which follows the distribution in (4.14).
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x Differentiation : The ordered subband energy sequence is differentiated
such that Dy = Ugy1 — Ug. This operation can be interpreted as a sub-
traction of two normally distributed random variables, as shown in (4.14),
yielding

4 4
N (O, EJ ) 5 HO

w,k
~ ~ 2
N (B - B0l (10 +02,)) .

Under the Hy, the above expression yields a normal distribution with zero mean
and twice the corresponding variance in (4.14). It can be noted that when the
spectrum of the PU is white, the mean value becomes zero and all subband
energies follow zero-mean Gaussian distribution also under H; and and the
algorithm fails to sense the PU.

The threshold + is calculated in the same way as in the simplified method.
Finally, if Doz — Dmin > 7, the signal is assumed to be present; otherwise
only noise is assumed to be present.

Dy ~ (4.15)

4.5 Analytical Models for Max-Min ED based Sens-
ing

Novel analytic expressions are formulated and derived for the Max-Min ED
detector in this section. Our analytical results are much better matching with
the simulation results compared to the previous studies in the literature [25,26].

4.5.1 Probability of False Alarm and Energy Threshold

It is recalled that the test statistics depend on the maximum and minimum
values of Uy in (4.14). Furthermore, the Von Mises theorem can be used in
order to characterize the statistics of both maximum and minimum distribution
[22,34,65,68]. Based on this, the extreme values of an arbitrary distribution
can be efficiently represented by the Gumbel distribution, namely,

Juin(7) = e P e*e' (4.16)

and

fmax(x) = ;8 .B e ¢ g (417)

where o« and 8 denote the location and scale parameters of the distribution.
With the aid of (4.16) and (4.17), it is primarily essential to derive the expected
value and standard deviation of the difference of maximum and minimum val-
ues. In what follows, we derive novel closed-form analytic expressions for these
important measures which are subsequently used in deriving a comprehensive
analytical framework for the proposed detector. It is firstly recalled that the nt*
moment of a continuous distribution with probability density function f(z) is
defined as E[z"] = [} 2" f(x)dz and the corresponding mean value is readily
obtained for n = 1, i.e. pu = E[z]. As a result, the mean value of (4.16) and
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(4.17) is given by E[Umin) = /o @ fmin(2)dz and E[Unax] = [Zo, 2 fmax(2)dz,
respectively, which yields pmin = E{Umin] = —a + C and pimee = E[Unax] =
a — BC, where C' = 0.577215665 is the Euler’s constant. Consequently, the ex-
pected value of the difference of the maximum and minimum values is expressed
as,

Mmazx—min = E[Umaxfmin] =2a — 2/8C7 (418)

and the location parameter can be determined by
a = (E[Umnax—min] + 2CB)/2. (4.19)

Likewise, the corresponding variances are determined by

1 [ B
02— Var[Umin] = — / (@ — E[Umn])? S dar (4.20)
ﬁ —00 eeB
and .
2 L[ g e 7
02— Var[Umas] = — / (& — E[Unad)? S der (4.21)
BJ-x e P

which, unlike the mean values, are equivalent to each-other, i.e.,

7T2,82
6

Var[Umin| = Var[Unax| = (4.22)
By recalling that Var(X £Y) £ Var(X) + Var(Y), when X and Y are mutu-

ally independent, it immediately follows that Var[Umpax — Umin] = Var[Unax] +
Var[Upin], which yields

7T2ﬂ2

o2 = 2Var[Umax] = 3

max—1imin

(4.23)

and the scale parameter can be determined by

6 = \/ 30—lz]max7min/7r. (424)

Using the already mentioned parameter representation of the Gumbel distribu-
tion with mean and variance values of Uy, in (4.14) for the Hg hypothesis, one
obtains

Umax—m1n|'Ho ~ Qg a‘Hovﬁ’HO

w,k w,k 6ka (425)
~os (G reE 1)

where Qg(a, 3) denotes the Gumbel distribution. The standard Gumbel com-

-«

plementary distribution function is given by G (%) —1—e¢€ 7 [34,65].

In practical environment, noise uncertainty must be considered in the ex-
pressions of Pry and Pp. It is recalled that the noise distribution can be sum-
marized in the range by o2 , € [(1/p)o? ., po? ], where p is the corresponding
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noise uncertainty parameter. As a result, the worst-case false alarm probability
is expressed as follows:
k 2 k
()
g

Pry = max
FA o2 ke[;gz 002 k] (2)1/40@7;6
w, p mn, n, L: ﬁ
(4.26)
pan pan
v - < L4 Oy Lt k)
- 1/4
6
()" Vo
Based on (4.26), the energy threshold can be determined by,
6\ /4 p po, 2 6 po TQLk
= P - C —_— 4.27
1= e (1) Bonat T o[ 2R wan)

4.5.2 Probability of Detection

Using the distribution parameters o and § with mean and variance values of
Ui in (4.14) as in the case of Pr4, the H; hypothesis can be expressed as:

Umax—mln"Hl ~ Qg a’H176|'H1

6 K 6 K (4.28)
afieefE 2

where xk = EmaX—Emin+O'121)7k, Frax = max (|Hk|2Ek>, B = mkin (|Hk|2Ek>,
Hy is the PU channel gain in subband k, and Ej is PU signal energy in sub-
band k. For analytical convenience/tractability and without loss of generality,
the PU subband energies are assumed to be constant and independent of the
transmitted symbol sequence. Then the worst case probability of detection with
noise uncertainty can be expressed as:

(4.29)

where & = Epax — Emin + aﬁ}k/p.

When the observed primary signal PSD is frequency dependent and the
noise is additive white Gaussian, the proposed method can effectively remove
the noise floor, resulting in the elimination of the noise uncertainty effects.
Hence, under noise uncertainty the degradation of the detection performance
is negligible in the proposed Max-Min ED compared to traditional ED. The
performance of both traditional ED and simplified Max-Min ED is analyzed in
Section 4.7.
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To the best of our knowledge, equations (4.26), (4.27) and (4.29) have not
been previously reported in the open technical literature. We have observed
that this model provides clearly better match with the simulated sensing per-
formance than the model presented in [25, 26]

Regarding the choice of the number of subbands in Max-Min ED, the fol-
lowing effects are essential:

e With fixed sample complexity and increasing number of subbands, the
number of samples per subbands reduces. This increases the variance of
the test statistic, thus degrading the sensing performance.

e With low number subbands, it may happen that (i) the subband reaching
the maximum energy contains also frequency slots with relatively low PU
PSD, and/or (ii) the minimum energy subband may partly overlap the
PU transmission band.

Analytical characterization of this tradeoff remains as a topic for future studies.

4.6 Computational Complexity Evaluation

Computational complexity is a critical parameter in the spectrum sensing al-
gorithms. Here computational complexity is defined as the number of real
multiplications needed in the sensing process. The computational complexi-
ties of the proposed and the traditional spectrum sensing methods, shown in
Table 4.2, are summarized now.

4.6.1 Complexity Analysis of EMaxE

Computational complexities of the traditional and the eigenvalue based spec-
trum sensing techniques are summarized for comparison as follows,

e Computational complexity of the calculation of the covariance matrix
is MLN for both methods. The energy of the observation sequence is
obtained as a by-product without additional computations.

e The main difference between the traditional and the modified eigenvalue
based spectrum sensing methods is in the calculation of the eigenvalues.
Complexity of maximum and minimum eigenvalues is O(M3L3) on the
traditional eigenvalue method, whereas the complexity of only maximum
eigenvalue is O(kM L) on the eigenvalue method using the power iteration
algorithm.

e The overall complexity can be decreased from M LN+O(M3L3) to MLN+
O(kML) using the EMaxE algorithm compared to the traditional one.

4.6.2 Complexity Analysis of Max-Min ED

The major complexity of the proposed Max-Min ED scheme is due to the fol-
lowing elements:
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e Nppr—point FFT requires to O(Nppr log(Nppr)) operations.

e O(Nppr) complexity is required to find the required maximum and min-
imum energy values.

It is noted that the ordering and differentiation of Ng gy values require extra
complexity of O(Nppr) in the differential based approach.

4.7 Numerical Results

The performance of the traditional ED, the traditional Max/Min eigenvalue
based detectors [P2] along with the modified EMaxE, Max-Min ED with dif-
ferentiator, and the proposed simplified Max-Min ED are shown in this sec-
tion. These methods are realized for three different signal cases, namely, non-
oversampled, partially oversampled for observing the transition band during
sensing, and 2x-oversampled. These scenarios are analyzed in the context of
three different channel models: Indoor, ITU-R Vehicular A and SUI-1 frequency
selective channels [79,192]. The 1 dB noise uncertainty case is considered as
the worst-case scenario in terms of noise variance estimation. Furthermore,
the desired Pry is chosen as Pry = 0.1 in all addressed cases and the time
record length is 10240 complex samples. 1000 Monte Carlo simulations are ap-
plied for reliable detection probability evaluation. Non-oversampled, partially
oversampled (covering also the transition bands of the transmitted spectrum)
and 2x-oversampled signal models are used under 20 MHz, 24 MHz and 40
MHz sensing bandwidths for quantifying the correlation effects in the eigen-
value based detector case, and the PSD variability in the Max-Min ED case. In
the non-oversampled case, the correlations and PSD variability are introduced

1

Probability of detection
o

—&— Diff. Max-Min ED 32 FFT ||

06 —+— Diff. Max-Min ED 8 FFT
04 ~O— " Max-Min ED 32 FFT
~+- Max-Min ED 8FFT
02 . © " Max/Min ED 32 FFT I
8 +  MaxMinED 8 FFT
0 1 1 1 1
-25 -20 -15 -10 -5 0

Signal-to—noise ratio (dB)

Figure 4.3: Simulated detection probabilities for differential Max-Min ED, Max-Min
ED and Max/Min ED with N = 10240 under Indoor channel for QPSK signal.
a) Without oversampling (upper) b) 2x-oversampling (lower).
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Figure 4.4: Analytical and simulated detection probabilities for traditional ED and
Max-Min ED with 2x-oversampling N = 10240 under Indoor channel for QPSK signal.

1
0.9 |
0.8 |
0.7 |
S
30.6 —— Trad. ED without NU
3 —s— Trad. ED with 0.1 dB NU
505 —A— Trad. ED with 1 dB NU
E —©— Prop. Max-Min ED 32 FFT sim.
g04r ~O— Prop. Max-Min ED 32 FFT ana.
2 03 —+— Prop. Max-Min ED 8 FFT sim.
' —%*— Prop. Max-Min ED 8 FFT ana.
WA A A A A AAAAF K A A L L
-30 -25 —20 -15 -10 -5 0 5

Signal-to—noise ratio (dB)

Figure 4.5: Analytical and simulated detection probabilities for traditional ED and
Max-Min ED with 2x-oversampling N=10240 under Indoor channel for OFDM signal.

only by the multipath channel, whereas they are introduced both by the chan-
nel and the shape of the transmitted spectrum in the oversampling case. Single
carrier waveform with quadrature phase shift keying (QPSK) with 22% roll off
factor and OFDM signal with 64 subcarriers and QPSK subcarrier modulation
are considered as PU signal models. Different FFT lengths have been tested
for Max-Min ED and it was found that the two lengths of Nppp = {8,32}
illustrate well the performance-complexity trade-offs for this algorithm. For
eigenvalue based approaches, the smoothing factor L = 16 was selected. Gen-
erally, while the performance would be slightly improved with higher smoothing
factors, the complexity would grow quite significantly. In practice, also L = 8
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Figure 4.6: Receiver Operating Characteristics of traditional ED and Max-Min ED
without oversampling under Indoor channel with QPSK signal, SNR=—12 dB, and
N = 10240.
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Figure 4.7: Receiver Operating Characteristics of traditional ED and Max-Min ED
with 2x-oversampling under Indoor channel with OFDM signal, SNR=—14 dB, and
N =10240.

might provide interesting trade-off between complexity and performance. The
choice of L = 16 means that the size of sample covariance matrix is 16 x 16
in the non-oversampled case whereas this size is 32 x 32 in the oversampled
case [P2]. The optimum number of iterations & is chosen as 100 in the EMaxFE
method to obtain similar detection probability performance compared to the
traditional eigenvalue based methods. Indoor channel model has 16 taps and
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Table 4.1: Required SNR values for the detection probability of 90% and 99% with
sample complexity of N = 10240 and Pr4 = 0.1. QPSK PU signal and Indoor channel.

Non-oversampled Partially oversampled 2x-oversampled
Required SNR values N
q Tl P,=09 | P,=099 P,=09 | P,=099 | P,=09 | P, =099
Traditional ED ideal - -16 dB -14dB -16dB -14dB -17dB -16dB
Traditional ED with 0.1 dB NU -115dB -11dB -115dB -11dB -13dB -125dB
Trag, | Traditional ED with 1 dB NU - -5dB -5dB -5.dB -5d8 -5.dB -5dB
Alg. —
Max/Min Eig. (L=16) -12dB -10dB -13dB -12dB 145d8 | -135dB
(max. eig. / min eig.)
EMaxE (L=16) -11dB -9dB 125dB -105dB 145d8 | -135dB
Max eig. /average
8 -13dB -11dB -14dB -12dB -15dB -135dB
Prop. Max-Min ED
Alg. (max-min energy without diff.)
32 -125dB -11dB -13dB -115dB -14dB -13dB

80 ns RMS delay spread whereas Vehicular A channel has 6 taps with about
2.5 pus maximum delay spread. SUI-1 channel model has 3 Ricean fading taps
and 0.9 us delay spread [79].

The simulated detection probabilities of differential Max-Min ED, Max-Min
ED and Max/Min ED! based sensing methods which are applied for QPSK
without oversampling and 2x-oversampling under Npppr = {8,32} are shown
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Figure 4.8: Variation of the threshold of the proposed Max-Min ED for different noise
uncertainty values.

1This method uses the alternative test statistic as the ratio of the maximum and minimum
subband energies instead of subband energy difference. This approach is difficult to treat
analytically, and is considered only in this simulation study.
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Figure 4.9: Detection probabilities using eigenvalue based an Max-Min energy based
detectors without oversampling with N = 10240 under ITU-R Vehicular A channel.
a) QPSK signal (upper) b) OFDM based signal (lower).
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Figure 4.10: Detection probabilities using eigenvalue based an Max-Min energy based
detectors with small oversampling (just passband and transition band) with N = 10240
under ITU-R Vehicular A channel. a) QPSK signal (upper) b) OFDM based signal

(lower).

in Figure 4.3. In all the cases, the simplified Max-Min ED provides better
sensing performance than both the differential Max-Min ED and Max/Min ED
under Indoor channel.

The analytical and simulated detection probabilities of the sensing tech-
niques are shown for QPSK and OFDM signals in Figure 4.4 and Figure 4.5,
respectively. It can be seen from these figures that the simulation results match
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Figure 4.11: Detection probabilities using eigenvalue based an Max-Min energy based
detectors with 2x-oversampling with N = 10240 under ITU-R Vehicular A channel.
a) QPSK signal (upper) b) OFDM based signal (lower).
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Figure 4.12: Detection probabilities using eigenvalue based an Max-Min energy based
detectors without oversampling with N = 10240 under SUI-1 channel. a) QPSK signal
(upper) b) OFDM based signal (lower).

well with the theoretical results. Two different noise uncertainty cases of 0.1 dB
and 1 dB are considered in the traditional ED. Max-Min ED simulations were
done with 1 dB noise uncertainty. In practice, when the PU power is fixed,
noise uncertainty would have an effect on the SNR. However, in the following
simulations it is assumed the PU SNR is fixed to the given value. The numerical
results show that the Max-Min ED sensing techniques are able to overcome the
noise uncertainty issues compared to the traditional ED based approach.
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Figure 4.13: Detection probabilities using eigenvalue based an Max-Min energy based
detectors with small oversampling (just passband and transition band) with N = 10240
under SUI-1 channel. a) QPSK signal (upper) b) OFDM based signal (lower).

Receiver Operating Characteristics curves for the proposed Max-Min ED
and the traditional ED with/without noise uncertainty under —12 dB and —14
dB SNR values are shown in Figure 4.6 and Figure 4.7. These results reflect
a fundamental tradeoff between Pr4 and Pp. Small noise uncertainty, such
as 0.1 dB effects the detection performance significantly in the traditional ED,
whereas the proposed Max-Min ED based approach provides robust detection
performance even under high noise uncertainty values, such as 1 dB.

Detailed comparison of the required SNR values of traditional and proposed
spectrum sensing methods for the detection probability of 90% and 99% is
given in Table 4.1. Proposed Max-Min ED and EMaxE algorithms provide
significantly better performance under noise uncertainty than the traditional
energy detector. While the detection performance of EMaxE almost reaches
the performance of max/min eigenvalue detector (especially with oversampling),
Max-Min ED slightly exceeds the performance of all eigenvalue based methods.

Figure 4.8 shows the variation of the threshold of the proposed Max-Min
ED for non-oversampled, partially oversampled and 2x-oversampled cases under
different noise uncertainty values between 0.1 dB and 1 dB. It is observed that
the proposed Max-Min ED is robust to noise uncertainty challenges.

Figures 4.9—4.14 show the detection probabilities of the studied algorithms,
with traditional eigenvalue based approach as a reference, under Vehicular
A and SUI-1 channels for QPSK and OFDM signal models. While modified
EMaxE performs adequately in all cases of oversampling under Vehicular and
with 2x-oversampling case under SUI-1 channels, it is notable that EMaxE
performs poorly in cases with no or small oversampling under SUI-1 channel.
Furthermore, the detection performance of the Max-Min ED methods is rather
similar to that of the Max/Min eigenvalue detector. It is also shown that 8 sub-
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Figure 4.14: Detection probabilities using eigenvalue based an Max-Min energy based
detectors with 2x-oversampling with N = 10240 under SUI-1 channel. a) QPSK signal
(upper) b) OFDM based signal (lower).

channels (8-point FFT) is sufficient in all oversampled cases as well as in the
non-oversampled ITU-R Vehicular A channel cases. It was additionally verified
that employing 32 subbands constitutes an upper bound for the detection per-
formance as increasing the number of subbands beyond that does not provide
any performance improvements in any considered case.

The EMaxFE based sensing technique is a rather promising alternative solu-
tion for the noise uncertainty challenge, requiring less computational complexity
compared to the commonly used eigenvalue based sensing methods as seen in
the figures. Small changes or uncertainty of noise variance have no effect on the
sensing performance, because knowledge of the noise variance is not needed in
the sensing process. The main drawback of this detector is its poor performance
in cases with no or small oversampling and mildly frequency selective channel,
like SUI-1. As an alternative solution, the proposed Max-Min ED using the or-
der statistics exploits the frequency selectivity gain, which is naturally imposed
over wireless channels during signal transmission. Furthermore, the proposed
Max-Min ED method appears to provide similar performance as the best eigen-
value based methods and clearly better performance compared to traditional
energy detector under noise uncertainty conditions.

Detailed comparison of the computational complexities of the Max/Min
eigenvalue detector, modified EMaxE and the Max-Min ED variants is given
in Table 4.2, Table 4.3 and Table 4.4. As Table 4.3 shows the computational
complexity for the non-oversampled case, the corresponding complexity for the
2x-oversampled case is shown in Table 4.4. Depending on the values of L, M,
N and Nppr, significant reduction in the computational complexity is demon-
strated. For instance, Table 4.4 indicates that when the number of samples is
10240 with L = 16 and M = 2, the overall computational complexity (number
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of real multiplications) of the conventional max/min eigenvalue based algorithm
is 360448, contrary to the 122880 and 81920 counterparts for the Max-Min ED
with differentiation and without differentiation, respectively, for Nppp = 8.
Therefore, it is evident that using the Max-Min ED algorithm results in a com-
plexity reduction by about 78%.

4.8 Chapter Summary

Proposed simplified Max-Min ED based spectrum sensing techniques were pre-
sented in this chapter. The proposed sensing methods are able to overcome the
noise uncertainty problem in the case of channels with sufficient frequency selec-
tivity. The performance of the Max-Min ED is shown to be comparable to the
performance of the best eigenvalue based detectors. Additionally, the simplified
Max-Min ED approach reaches or exceeds the performance of the differential
Max-Min ED approach in all oversampled and non-oversampled cases with high
frequency selectivity.

Even though the proposed simplified scheme is quite simple compared to the
differential Max-Min ED approach, the computational complexities of these two
methods are rather similar, and substantially smaller than the computational
complexity of the eigenvalue based detector. Indicatively, the overall complex-
ity can be decreased from O((ML)*) + MN(1+ L) to O(Nppr log(Nrpr)) +
O(Nrrr).
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REDUCED COMPLEXITY SPECTRUM SENSING BASED ON
ENERGY AND EIGENVALUE DETECTORS

Table 4.2: Computational complexity of traditional and proposed energy and eigen-
value based spectrum sensing

Eigenvalue Decomposition Subband Energy Detection
ALGORITHMS . Total
Cov. max min DFT Sort Diff.
matrix
MaxMin Eig. 3 78 378
(max. eig. / min. eig.) MLN O(M*L?) - MLN + O(M*L?)
Trad. EMaxE X y X
Alg. (max. sig. / energy) MLN | O(kML) - MLN + O(kML)
Max-Min ED i
(maxv'v?::]n d?gergy) . . - O(Nppr 10gy(Npep)) | OWppp)| OWN )| O gy 108(Nppp)) + 20(Nr)
P90 | (i ineneray) O(N gy logy(N oW,
max-min enerf - - - ! o 10g, " - (] J
Alg. ithout diff. Werr 108,(Nerr)) | OWper) O(Ngpy 108(Ngp)) + ONppr)

Table 4.3: Some numerical values of computational complexities (number of real
multiplications) for traditional and proposed sensing methods (Non-Oversampled)

Number of samples (N)
ALGORITHMS Neer
512 1024 4096 10240
MaxMin Eig.
(max. eig. / min. eig.) - 12288 20480 69 632 167 936
L=16, M=1
EMaxE
(max eig. / average) - 9792 17984 67136 165 440
Trad. L=16, M=1
Alg.
8 3072 6144 24576 61 440
Max-Min ED 16 3584 7168 28672 71680
(max-min energy)
with differentiation 32 4096 8192 32768 81920
64 4608 9216 36 864 92 160
8 2048 4096 16 384 40960
Pro Max-Min ED 16 2560 5120 20480 51200
Al P (max-min energy)
9: without differentiation 32 3072 6144 24576 61440
64 3584 7168 28672 71680

Table 4.4: Some numerical values of computational complexities (number of real
multiplications) for traditional and proposed sensing methods (2x-Oversampled)

Number of samples (N)
ALGORITHMS Neer
512 1024 4096 10240
MaxMin Eig.
(max. eig. / min. eig.) - 49 152 65536 163 840 360 448
L=16, M=2
EMaxE
(max eig. / average) - 19 656 35968 134 272 330880
Trad. L=16, M=2
Alg.
8 6144 12288 49 152 122 880
Max-Min ED 16 7168 14336 57344 143 360
(max-min energy)
with differentiation 32 8192 16 384 65536 163 840
64 9216 18432 73728 184 320
8 4096 8192 32768 81920
Prop Max-Min ED 16 5120 10 240 40960 102 400
Al . (max-min energy)
9. without differentiation 32 6144 12288 49 152 122 880
64 7168 14336 57344 143 360
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CHAPTER 5

SPECTRUM SENSING AND
RESOURCE ALLOCATION FOR
MULTICARRIER COGNITIVE
RADIO SYSTEMS

In this chapter, combined spectrum sensing and resource allocation approach
for realistic multicarrier cognitive radio system under interference and power
constraints is proposed [P3], [P4]. The main contributions of this chapter are
summarized below.

e Various realistic multicarrier CR systems are considered in this study.
Only CP-OFDM signal models have been considered as the PU and
CR signal models for spectrum allocation algorithms in [7-9, 80,96, 135,
150, 183, 200]. Likewise, FBMC has been considered for the CR only
in [146,147]. In our study, the 802.11g standard CP-OFDM, the E-
OFDM [P4] and the 802.11g like FBMC [P3] with similar parameteriza-
tion are considered as PU waveforms. Furthermore, most of the existing
spectrum sensing studies ignore the impacts of RF imperfections, such
as IQ-imbalance in the sensing receiver and PA nonlinearity of the PU
transmitter. Energy detection and eigenvalue based spectrum sensing in
both single-channel and multi-channel direct-conversion receiver scenarios
impaired by IQ imbalance have also been analyzed in our previous stud-
ies [61-63]. In this study, a basic PA nonlinearity model, so-called Rapp
PA model [137], is included in the PU signal model in order to obtain a
realistic model for the PU spectrum. This aspect has not been consid-
ered earlier in the literature. This allows us to quantify the effects of the
PU spectral characteristics on the SU capacity in more precise way then
earlier. Furthermore, effects of frequency selectivity are also considered
in terms of the performance of spectrum sensing and resource allocation
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MULTICARRIER COGNITIVE RADIO SYSTEMS

while the flat fading model has only been considered in the previous stud-
ies [7-9, 80,96, 150, 183, 200].

e Combined spectrum sensing and resource allocation algorithms are consid-
ered for the CR transceiver. The sensing aspects have not been considered
previously in the context of resource allocation and a constant number of
available subbands has been assumed. Basically, a fixed predetermined
width has been assumed for the spectrum hole so far. However, spectrum
sensing plays a crucial and enabling role for the spectrum utilization pro-
cess.

In this chapter, 802.11g standard CP-OFDM, E-OFDM and 802.11g like
FBMC signal models are considered for PU and FBMC for CR in order to see
the performance of the sensing and resource allocation during CR transmission.

5.1 Signal Models and Problem Definition

The PU and CR systems work in the same band of frequencies as seen in Fig-
ure 5.1. While PRTX and CRTX define the PU and CR transmitters, PRRX
and CRRX are denoted as the PU and CR receivers, respectively. Hg, Hi,
H, and Hj are considered as frequency-selective channels between the PU and
CR stations. It is assumed that the CR system is operating in a spectrum
gap next to relatively strong on-going primary communications on either or
both sides of the gap. Hence, interference is unavoidable between different PUs
and CRs which are assumed to use the time-division multiplexing/duplexing
(TDMA/TDD) principles. Detection of possible other transmissions or reap-
pearing PUs within the spectrum gap is the main purpose of the spectrum
sensing. One assumption is that the stations of the CR system have means to
exchange control information with each other, e.g., using a cognitive control
channel [155].

CRTX

Figure 5.1: System model for spectrum sharing in CR.
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Figure 5.2: Effects of the Rapp Power Amplifier Model on (a) OFDM and (b) FBMC
based primary users’ spectra.

5.1.1 Signal Models for Primary Users

Two active primary radio systems which operate in the 2.4 GHz ISM band are
considered in our scenario. 802.11g CP-OFDM based WLANs or 802.11g like
FBMCs spectra both with the Rapp PA non-linearity model [137] are considered
at 3rd and 8th channels, as illustrated in Figure 5.2. Between the active PU’s
there is a spectrum gap of 8 MHz nominal width.

The amplitude function at the PA output using the complex IQ baseband
model is given as:

ga = - 2p\1/2p (5-1)
(1 +[xA/Ao]™)

where A is the input amplitude, x is small signal gain, Ay is the saturated
amplitude and p is the amplitude smoothness factor. Figure 5.2 shows no
regrowth (ideal case) and the Rapp PA non-linearity with two different back-
off values of 15 dB (modest case) and 5 dB (worst case). Parameters of the
Rapp model in [P3] are chosen according to the practical model for PU signals
based on [48].

We have also considered a third alternative signal model for PUs, which is
based on applying sidelobe suppression techniques for CP-OFDM. In particular,
the combination of edge windowing [144, 145] and cancellation carrier scheme
[16,104, 105,123, 188, 189] is applied to improve the spectrum localization of
PU transmissions. With this approach, the cancellation carrier element targets
to suppress the close spectrum sidelobes whereas edge windowing suppresses
the far sidelobes. Detailed explanation of this enhanced OFDM (E-OFDM)
scheme is given in [P4]. While the computational complexity of such E-OFDM
schemes approaches or exceeds the complexity of FBMC, such approaches are
interesting to consider due their high commonality /compatibility with existing
CP-OFDM based systems.
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5.1.2 Signal Model for Cognitive Radio

We consider a spectrally well-contained FBMC as the waveform for the CR
systems, as well as an alternative waveform candidate for the future radio access
techniques, which would be considered as PUs in the CR scenarios. In other
words, the idea is to explore the possible gain in the efficiency of spectrum
utilization, if also the PU waveforms were well-localized in spectrum. In FBMC,
offset quadrature amplitude modulation (OQAM) needs to be used as subcarrier
modulation to reach orthogonality [10,77,129]. The FBMC signal and system
models are explained in more details in [P3].

In the system model of Figure 5.1, Hy and H; are the channels from a CR
transmitter to a PU receiver and a CR receiver, respectively. Ho and Hj are
from two different PU transmitters to the CR receiver. H; is estimated by usual
channel estimation procedure of the CR system whereas the knowledge of Hy
could be obtained through the channel reciprocity in time division duplexing
(TDD) operation assumed for the PU system.

5.1.3 Definition of the Interference Problem

The CR and PU systems communicate in the same geographical location as seen
in Figure 5.1, and cause interference to each other through spectrum leakage
effects. The interference model is illustrated in Figure 5.3.

PU 1 o Ngap PU 2
Ik(Pk) = Pka

\/

-~ e »
dPUl dPUZ

Figure 5.3: Interference model between primary and secondary users.

Even though FBMC based SU system is assumed in our specific studies, in
our generic model, the secondary system operating in the spectrum hole may
use any multicarrier transmission technique, with Ny, subcarriers and Af as
the subcarrier spacing. The effects of intercarrier interference (ICI) between
subcarriers can be ignored due to the low mobility of the SU transmitter and
the receiver. The interference from the CR to each of the primaries is required
to be lower than the maximum tolerable interference by the primary, I;;. Fixing
the origin of the frequency axis at the direct current subcarrier of the CR, the
interference is given by:

kAf+B/2 )

R = [ (DR ~ EANY(S ~ dpu)df = P (5.2
kAf—B/2

Here, the spectral distance dpy of a PU is defined as the frequency separation

from the direct current subcarrier of the CR to the center frequency of the
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5.2 Filter Bank Energy Detector Based Spectrum Sensing
Algorithms

PU. The interference to the primary transmission due to the & CR subcarrier
depends on the CR subcarrier power Py, and dpy [20]. Ho(f) is the channel
frequency response between the CR transmitter and a primary receiver. ®(f)
represents the subcarrier power spectral density of the underlying multicarrier
technique employed by the CR. ¥(f) denotes the PU sensitivity mask charac-
terizing the effects of the PU receiver filtering. B denotes the CR subcarrier
bandwidth which is considered significant for the interference estimation. Fi-
nally, O, represents the combined interference factor for the k** CR subcarrier.

The other part of interference modeling is the interference from PU to SU.
The signal-to-interference ratio (SINR) due to interference introduced by pri-
mary signal to the k" subcarrier at the receiving CR is developed in similar
manner in [P3].

5.2 Filter Bank Energy Detector Based Spectrum
Sensing Algorithms

Subband based energy detector utilizing FFT or AFB for spectrum analysis is
focused in this study. Figure 5.4 illustrates a block diagram of alternative FFT
and AFB based spectrum sensing algorithms. The subband sampling rate is
equal to the ADC sampling rate divided by the number of FFT/AFB frequency
bins. As already discussed in Section 3.1, with subband-wise spectrum sensing
method, the subband signals can be expressed as:

) W(m, k) H
Y(m, k) _{ S(m, k)Hy + W (m, k) H? }

where S(m, k) is the transmitted OFDM, E-OFDM or FBMC based PU signal
as seen in subband k during the m!* symbol interval, and assumed to have zero
mean and variance UJQDUJg. Under hypothesis Hg, the noise samples W (m, k)

(5.3)

are modeled as AWGN with zero-mean and variance o2, whereas under Hj,
the signal can be modeled with zero-mean Gaussian distribution with variance
obukt T

The test statistics which can be obtained using time and frequency averaging
[190] for more reliable detection performance can be obtained as follows,

- 1 Ic+[Lf/2 1-1
T(m, k) = LthZ L] Zu g Y ( l)\ (5.4)

where Ly and L; are the window lengths in frequency and time domains. The
T(m, k) is passed to a decision device to determine the possible occupancy of
the corresponding frequency band at the corresponding time interval.

As Y (m, k) has Gaussian distribution, the probability density function of
T (m, k) can be approximated as Gaussian distribution under both Ho and H;.
With Gaussian approximation, the effects of the spectral leakage of PU trans-
mitter are easily modeled on the actual false alarm probability ]5F A as:

. A = (0% + Lagi(k))
Pralk) =Q . 5.5
ral®) ( o (% +Iadj(’€))) )

95



SPECTRUM SENSING AND RESOURCE ALLOCATION FOR
MULTICARRIER COGNITIVE RADIO SYSTEMS

| 2 Time and Frequency Decision

FET =1 1E Filter 7 Device

WEAN Ti dF Decision
N 2 ime and Frequency

FBMC [ARB e Filter ] Device

Figure 5.4: Block diagram of energy detector with AFB and FFT based spectrum
analysis.

Here, the following expression:

f2 9
Lgi (k) = /f " E()PUpa(P). (5.6)

is the leakage power from the adjacent PU transmitter to the sensing frequency
band between frequencies f; and fo. Ha(f) is the channel frequency response
from a primary transmitter the CR receiver. Zero-mean circular Gaussian
model is assumed for I,4i(k). Then the threshold A value can be obtain as
follows,

A=Q ' (Ppa(k)) (o2 + Lagi (k) + (07, + Tagi (K)). (5.7)

1
LiLy
The detection probability Pp can be expressed as follows,

A— ((o—?v + Lagj (k) + UJQDU,k)

Po(k) = Q
? 2 (03 + L) + 0%

(5.8)

Due to the spectral leakage effects of PU and statistical nature of the spec-
trum sensing process, different number of empty subbands, Ny, are detected
under different SNR conditions, which is taken into consideration in resource
allocation.

5.3 Resource Allocation

With the knowledge of non-active subbands in the spectral hole, which is ob-
tained by the spectrum sensing part, resource allocation gains an important
role for the overall efficiency of the CR transmission. The main functions of the
resource allocation part are shown in Figure 5.5.

In the multicarrier case, the maximum rate at which transmission can take
place is given by the Shannon capacity,

Ngap Pk:
Rer = Y Af -logy (1 + 2). (5.9)
k=1 Tk
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Figure 5.5: Block diagram of spectrum utilization with alternative AFB and FFT
based spectrum analysis schemes.

Here, 07 = 02 + Y. J,; and J, , is the effective interference power contributed
i=1 '

by i*" primary to the k" CR subcarrier. Npy is the number of PUs contributing
to the interference at the receiving CR station. In our case study, Npy = 2, i.e.,
there is one adjacent PU to the lower and upper edges of the white space. In
practice, the model could be simplified by assuming that these PUs affect only
the lower and upper half of the subcarriers, respectively. P is the transmit
power used by the CR for subcarrier k. It is assumed that the channel changes
slowly so that the channel gains, and consequently Jj, ;, will be approximately
the same during each transmission frame. There is no ICI in the CR reception,
due to low mobility, as mentioned before.

The main objective is to maximize the capacity as given in (5.9). Detailed
derivation of the optimization problem is shown in [P3] and the final equations
can be expressed as follows:

Ngap Pk
Rcr = max Aflogy |14+ — |, 5.10
CR (P ];1 2 ( U]%) ( )

Nga Nga
subject to 3. Py < Pr, S PyQy < I, and P, > 0,Vk € {1,2, ..., Ngap}. This
k=1 k=1

is a convex optimization p?oblem and the Lagrangian can be written as:

Ngap P Ngap Ngap
Genr = kz AflOgQ (1 + Ug) — Ao kz (Pk — PT) — Al(Pka — Ith) + Ao kz P
=1 =1 =1
(5.11)

With the Karush-Kuhn-Tucker (KKT) conditions, which are derived in details
in [P3], the optimum solution can be written as:

1 o2 1"
P=|— k| 5.12
g [/\091@4-/\1 ‘hk‘] (5:12)

where [y]t = max(0,y). A lower complexity algorithm called the power inter-
ference (PI) divides the problem into stages [147]. Here, the PI algorithm is
applied to find optimal solution with lower computational complexity. In the
development of this algorithm, the interference constraint is first ignored keep-
ing only the total power constraint, and this leads to the classical water filling
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solution:

2 7+

g

P, = |v—- %] | (5.13)
[P

where v is the water filling level. When the total power is ignored the solution

[147] becomes:
1 o2 17
P, = l ’f} . (5.14)

M |l

The value of A’y can be obtained by substituting (5.14) into the constraint
Ngap ,

Z Pk Qk = Ith to get:

k=1

Ao = —x |N9‘“’7l|2 —. (5.15)
"™ + (/i)

Only when the total power is greater or equal to the power under the interference
constraint, the above solution can be optimal. In practice, this condition is not
true and this is the motivation for the PI algorithm which has four stages as
maximum power determination, power constraint, power budget distribution
and power level re-adjustment [147].

5.4 Numerical Results

In our test scenario, we assume that the spectrum sensing function of CR has
determined a potential spectral hole between two relatively strong PUs, as seen
in Figure 5.2. It is assumed that there is no additional signal in the spectral
hole, but the spectrum sensing gives false alarms due to the spectral leakage of
PA nonlinearity on PU. This effect is dependent upon the SNR values of the
PUs. We use a smaller subband spacing of 81.5 kHz for the spectrum sensing
and the CR transmissions, instead of the 325 kHz subcarrier spacing of WLAN,
in order to reduce the effects of frequency selective channels. The required
sample complexity is around 250 samples while targeting at —5 dB SNR with
false alarm probability of 0.1 and detection probability of 90% in the sensing.
The time and frequency averaging lengths are chosen as 50 and 5, respectively.

The actual false alarm probabilities in the spectral gap are shown as a
function of the PU SNR for different levels of spectral regrowth in Figure 5.6.
We consider the combinations of two PU waveforms, OFDM and FBMC based
WLANS, as well as two spectrum sensing techniques, based on FFT or AFB.
The CR waveform is always considered as FBMC.

Similarly, Figure 5.7 shows the false alarm probabilities for E-OFDM based
PU. Similar performance can be seen with FBMC based PU. As expected,
spectrally well-contained PU waveforms would make the CR system operation
more effective.

A number of subbands, which is determined with FFT or AFB based spec-
trum sensing, are left empty in the spectrum utilization phase. The power of
these occupied subchannels is reallocated to the other subbands that can be
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Figure 5.6: Actual Pry for OFDM and FBMC primaries with target Pr4 = 0.1, time
record length of 50 and sensing bandwidth of 5 subbands under frequency selectivity
for (a) ideal model, (b) Rapp PA with 15 dB backoff as modest case, (¢) Rapp PA with
5 dB backoff as worst case.
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Figure 5.7: Actual Prps for OFDM and E-OFDM primaries with target Pra =
0.1, time record length of 50 and sensing bandwidth of 5 subbands under frequency
selectivity for (a) ideal model, (b) Rapp PA with 15 dB backoff as modest case, (¢)
Rapp PA with 5 dB backoff as worst case.

used by the CR. The power allocation is done by utilizing the PI algorithm,
and the resulting capacity, in terms of bits/s/Hz, is shown in Figure 5.8 for
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Figure 5.8: Capacity of a CR in a spectral gap between two OFDM or FBMC type
PUs versus PU SNR when using PI algorithm for power allocation. The SNR of the
CR is 10 dB. (a) Ideal model, (b) Rapp PA with 15 dB backoff as the modest case, (c)
Rapp PA with 5 dB backoff as the worst case.
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Figure 5.9: Capacity of a CR in a spectral gap between two OFDM or E-OFDM type
PUs versus PU SNR when using water-filling algorithm for power allocation. The SNR
of the CR is 2 dB or 5 dB. (a) Ideal model, (b) Rapp PA with 15 dB backoff as the
modest case, (¢) Rapp PA with 5 dB backoff as the worst case.

OFDM and FBMC primaries. The interference threshold is chosen to be 6
dB below the thermal noise level to get rid of significant performance loss in
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case the primary receiver is operating close to the sensitivity level. Detailed
information related to interference threshold value is given in [P3].

Similarly, the achievable data using water-filling algorithm in the spectral
hole between two OFDM or E-OFDM type primary channels is shown in Fig-
ure 5.9. Detailed information related to parameters of water-filling algorithm
is given in [P4].

Regarding the transmission waveform, FBMC and E-OFDM have clear ben-
efit due to better spectral containment, if the effects of power amplifier nonlin-
earities can be kept at a modest level.

5.5 Chapter Summary

Combined spectrum sensing and utilization method with realistic signal model
under frequency selective channel conditions was analyzed in this chapter. The
FFT and AFB based sensing methods were evaluated for determining a spectral
hole with OFDM, E-OFDM and FBMC based PU signal models. Then, water-
filling or PI resource allocation methods were applied with available number of
empty subbands, which were obtained from the spectrum sensing part.

In terms of the sensing performance, FFT and AFB based sensing perfor-
mance depends greatly on the level of spectral regrowth due to the PA nonlin-
earity of PU. AFB has clear benefits due to much better spectral containment of
the subbands. One important benefit of E-OFDM and FBMC as transmission
techniques in CR systems is that these can utilize the narrow spectral gaps in
an effective and flexible way, even in the presence of strong primaries at the
adjacent spectral slots.

With water-filling and PI algorithms, the utilization of the sensed spectrum
can be optimized. Water-filling algorithm is the simplest one and the PI algo-
rithm improves the capacity of the CR system as compared to the simple water
filling based spectrum allocation. According to the results of this study, the PI
algorithm can be directly utilized with the developed highly enhanced and real-
istic CR system model. Due to the above features, E-OFDM and FBMC based
CR systems achieve higher capacity in comparison to the traditional OFDM
based systems.
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CHAPTER 6

SUMMARY

In this thesis, we have dealt with enhanced spectrum sensing techniques to
overcome low SNR and noise uncertainty challenges with low computational
complexity. The study does not limit itself to any specific receiver architecture
or communication waveform. The algorithms were applied to both single- and
multi-carrier type of signals. On the waveform side, the main focus was on
wideband multicarrier type OFDM, E-OFDM and FBMC signal models but
also single-carrier waveforms were included in the study. There are various
contributions in the studied areas which were presented in detail in [P1]-[P4]
and shortly summarized below.

Chapter 3 summarized the studies of [P1] on novel, analytic techniques for
various energy detection scenarios, that have not been sufficiently covered in
the open literature. We investigated the effects of misaligned time frequency
window on the test statistics. We proposed sliding window processing as a
technique to find the best match in cases where the frequency range or burst
timing of the PU signal is unknown to the sensing receiver. Additionally, the
problem of known, non-flat PU spectrum was studied, considering Bluetooth as
an example case. An expression of the optimum subband weights was derived
for subband based sensing. An analytical model was developed for quantifying
the effect of channel frequency selectivity on the sensing performance. The effect
was found to be highly dependent upon the corresponding SNR level, and to
have minor significance in low SNR scenarios. The AUC was employed as a
single-valued performance metric for evaluating the different spectrum sensing
algorithms in the different communications scenarios.

Chapter 4 reported our studies on spectrum sensing methods [P2], [41] which
utilize the correlations of the received PU signal, or equivalently its non-flat
power spectrum, which effects are due to the non-flat transmitted spectrum
and/or the frequency selective channel. We presented the simplified Max-Min
ED scheme, which is achieved by the replacement of the calculation process
of covariance matrix and its eigenvalues by blockwise FFT processing. This
scheme is conceptually quite simple compared to eigenvalue based approaches,
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SUMMARY

but was found to perform equally well. These sensing methods do not rely
on knowledge of the noise power and, consequently, they are able to overcome
the noise uncertainty problem under sufficient frequency selectivity of the PU
signal.

Chapter 5 summarized the studies of [P3] and [P4] on combined spectrum
sensing and resource allocation for FBMC or E-OFDM based CR with real-
istic signal models under frequency selective fading channel conditions. The
performance of energy detection was analyzed using FF'T and AFB based spec-
trum analysis methods with both OFDM and FBMC signal models for the PUs.
Then, the utilization of dynamically identified spectral holes with spectrum allo-
cation algorithms was investigated. This study highlighted the interdependence
of spectrum sensing and resource allocation parts of CRs.

All the spectrum sensing techniques introduced in this thesis are applicable
almost any type of realistic PU signal models, such as single carrier or multi-
carrier waveforms. On the other hand, our focus in this thesis is purely on
single-antenna sensing due to less complex hardware implementation, but the
results can be easily applied to multi-antenna sensing as well. They can also be
extended to cooperative sensing scheme, which is an efficient method to ensure
sensing robustness in realistic wireless communication environments.

Overall, the thesis contributes in various different areas of emerging radio
communications disciplines which enables better understanding and handling
of the spectrum sensing techniques in CR systems. These contributions are
expected to provide a useful tools for the design and implementation of flexible,
reconfigurable, power /size/cost efficient, and multi-standard capable modern
CR transceivers.
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APPENDIX A

APPENDIX: ANALYTICAL
MODEL FOR MAXIMUM
EIGENVALUE OVER ENERGY
BASED DETECTOR

A.1 Probability of False Alarm and Threshold

The false alarm probability (Ppy4) of the EMaxE detection can expressed as,

2
Ppa = P(Amax > 7T,) = P <i\}”)\max(wa) > ﬂ;,) (A1)

where Ryw = NRuyw / a?u. Based on this, it immediately follows that,

~ N
PFA =P (Amax(wa) > ’YTyO_2>

_p (/\maX(wa) — Y > ’YTyN/Ugu - N) _

14 1%

(A.2)

With the aid of the Wishart random matrix theorem [162-164] one obtains,

p=(VN-1+VML) (A.3)
and
v=(VN-1+VML) <\/Nl_1 + W\lu)l/g' (A.4)
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Based on this, the corresponding Pr 4 is given as,

_1
PFA:1—F1<WL>:1_F1 (X/Mi\/]@NLL}/VN) P
: vt (5] |
D

where Fi(-) denotes the CDF of the Tracy-Widom distribution of order one
[163]. It is recalled that the Tracy-Widom distribution has been used in numer-

ous studies in wireless communications, and generally in natural sciences and
engineering, [117,130,131,176,195] and is defined as,

Fi(t) = exp (—; / (q(u) + (u— t)qZ(U))dU) (A.6)

t

where ¢(u) is the solution of the nonlinear Painleve II differential equation
q" (u) = ug(u) + 2¢°(u). It is noted that the proposed algorithm is very robust
against noise uncertainty because it is not dependant upon knowledge of the
noise variance. Based on this and using (A.5), the energy threshold is given by

Flfl(l — PFA)I/O'Z, + /LO'?U

= T(N)N
(A7)
. (WML+VN)s IML ML
=1+ NEQIL)! Fi'(1— Pra) +2 ~ vt N

which is seen to be a function of ML, N and Pp4.

A.2 Probability of Detection

When a signal is present, the sample covariance matrix Ry, is no longer a
Wishart matrix [162-164]. As a consequence, the distributions of the eigen-
values of the sample covariance matrix become unknown and thus, it becomes
analytically intractable to derive an exact closed-form expression for the corre-
sponding Pp. As an effective alternative, we employ a tight empirical model
that allows the derivation of a particularly accurate analytic expression for the
Pp for the proposed algorithm. To this end, it is recalled that R, is accurately
approximated by o211, yielding,

)\max(Ryy) ~ pP1 + )\maX(wa)- (AS)

Hence, the corresponding average energy can be expressed as,

B Tr(Ryy) N Tr(R.z) N Tr(Ryw)

Ty = ML ML ML (A-9)

Based on (A.9), it follows that the Pp of the proposed algorithm is given as,

Pp = P()\max > 'yTy) = P(pl + )\max(wa) > ’YTy) (A]-O)
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which can be re-written as,

Amax (wa ) O’,?U

PD:P< N

> (T, — p1)> ) (A.11)

After some algebraic manipulations, following closed-form expressions can be
written as

>
14 v

(A.12)

nyTr(Rmz)‘f‘Tr(wa)_M —
Ph=1-F ( P . ' (A.13)

and

v
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Abstract—Cognitive radio is an emerging wireless technology
that is capable of coordinating efficiently the use of the currently
scarce spectrum resources and spectrum sensing constitutes its
most crucial operation. The present work proposes wideband
multichannel spectrum sensing methods utilizing fast Fourier
transform or filter bank based methods for spectrum analysis.
Fine-grained spectrum analysis facilitates optimal energy detec-
tion in practical scenarios where the transmitted signal, channel
frequency response, and/or receiver frequency response do not
follow the commonly assumed boxcar model which typically
assumes, among others, narrowband communications with flat
spectral characteristics. Such sensing schemes can be tuned to
the spectral characteristics of the target primary user signals,
allowing simultaneous sensing of multiple target primary signals
with low additional complexity. This model is also extended for
accounting for the specific scenario of detecting a reappearing
primary user during secondary transmission, as well as in
spectrum sensing scenarios where the frequency range of a
primary user is unknown. Novel analytic expressions are derived
for the corresponding probability of false alarm and probability
of detection in each case while the useful concept of the area
under the receiver operating characteristics curve is additionally
introduced as a single scalar metric for evaluating the overall
performance of the proposed spectrum sensing algorithms and
scenarios. The derived expressions have a rather simple alge-
braic representation which renders them convenient to handle
both analytically and numerically. The offered results are also
validated extensively through comparisons with respective results
from computer simulations and are subsequently employed in
evaluating each technique analytically which provides meaningful
insights that are anticipated to be useful in future deployments
of cognitive radio systems.

Index Terms—Cognitive radio, spectrum sensing, non-flat
spectral characteristics, signal detection, radiometer, wideband
communications, multichannel communications, AUC.
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I. INTRODUCTION

OGNITIVE radio (CR) is among the core prominent

wireless technologies for the next generation of wireless
communication systems namely, 5G. Its distinct feature is
the capability to remarkably increase the utilization of the
currently scarce spectrum resources by allowing unlicensed
users to access unused licensed frequency bands opportunisti-
cally. This is achieved by identifying the presence or absence
of unknown deterministic signals and deciding, accordingly,
whether a primary licensed user (PU) is in active or idle
state, respectively. Based on this decision, the corresponding
secondary unlicensed user (SU) either remains silent, or pro-
ceeds in utilizing the unoccupied band [1], [2]. Therefore, it is
evident that spectrum sensing (SS) constitutes the most critical
operation in CR communications.

Energy detection (ED), also known as radiometry, has been
the most popular SS method in both radar and CR systems
thanks to its adequate performance and relatively simple prac-
tical realization [3], [4]. The majority of ED analyses typically
employ simplistic scenarios and signal models where the entire
frequency band under sensing contains either noise, or noise
in addition with a PU information signal, both having constant
power spectral density (PSD). Furthermore, ED is commonly
formulated as a Neyman-Pearson type binary hypothesis test-
ing problem, which is commonly modeled by the well-known
chi-square, Gaussian or, in some cases, gamma type statistical
distributions, see, e.g., [1]-[5] and the references therein.

It is widely known that the main limitation of basic ED is
its inherent sensitivity to the knowledge of noise variance in
the case of absent primary transmissions [6]. Multi-antenna
sensing has been shown to provide robustness against noise
uncertainty by exploiting the spatial correlation properties of
the received energy [7], [8]. However, this approach has the
drawback of increased hardware complexity and size, which
often renders it impractical for several applications. Motivated
by this, the present work focuses on proposing highly efficient
SS techniques in the context of single-antenna sensing for
ensuring that the involved complexity is kept at minimal level,
thus achieving a rather adequate balance between performance
and complexity. Furthermore, the offered results can be readily
extended to cooperative sensing based applications, which is
a highly effective method for ensuring acceptable SS per-
formance and robustness in realistic wireless communication
scenarios.

It is also recalled that several sensing methods which are
shown to be robust against noise uncertainty effects, including



eigenvalue [9]-[13] and autocorrelation [8], [14] based meth-
ods, have substantially higher computational complexity and in
most cases fail to reach the sensing performance of ED under
moderate noise uncertainty and practical PU signal-to-noise
ratio (SNR) levels [9]-[14]. Wideband multichannel sensing
is capable of bringing various possibilities for calibrating the
noise spectral density of the sensing receiver [15]-[19]. In
this context, one obvious choice is to consider the spectral
slot(s) with the lowest observed PSD as candidate(s) for white
space, and use the corresponding PSD level as a reference for
noise. This method can be generalized by searching for time-
frequency zones with minimum PSD levels for using them
as noise reference. For these reasons, we consider important
to refine the analytical tools related to ED methods beyond
the simplistic signal models and sensing scenarios that are
commonly considered in the literature.

It is noted that receivers are commonly assumed to have
an ideal frequency response while flat wireless channels are
usually considered. Based on these models, numerous inves-
tigations have been reported in the context of additive-white-
gaussian-noise (AWGN), fading channels, diversity techniques
and collaborative detection, see, e.g., [20]-[34] and the refer-
ences therein. Nevertheless, in realistic communication scenar-
ios the sensing receiver has non-ideal frequency response, the
transmitted PSD is not flat, the frequency-selective multipath
channel has an effect on the received PU PSD and the sensing
time window does not necessarily coincide with the frequency
channel and time period of the PU transmission. Furthermore,
it is often the case that a PU re-appears during SU transmission
while the frequency range of a PU might be unknown. Moti-
vated by these, the aim of the present work is to thoroughly
investigate the aforementioned effects on the performance of
energy detection and quantify the corresponding deviations
from the ideal model. Specifically, the technical contributions
of the paper are summarized below:

e We address the case where the sensing window in time-
frequency domain contains both a zone where the PU
signal is present and a zone where the PU signal is
absent. This accounts for the critical scenarios where a
PU re-appears and the analysis is performed by means
of mixed test statistics which are subsequently employed
in quantifying the corresponding effects in the detector’s
performance. Sliding window based SS is also addressed
as an effective method for detecting a re-appearing PU. A
semi-analytical performance analysis method for sliding
window based ED is developed and the involved tradeoffs
between sensing delay and sensitivity are highlighted.

e We analyze the case of non-flat PU spectrum focusing on
a realistic Bluetooth based communication scenario as
an indicative case study. Optimum weights are derived
for fast Fourier transform (FFT) and filter bank based
sensing where the PU signal band is divided into approx-
imately flat subbands. Subsequent analysis reveals that
using constant weights can practically achieve a similar
performance when the subbands are selected optimally.
In this context, we provide a simple numerical method
for evaluating the performance of practical vs. optimum

sensing filter. We also demonstrate how to utilize the de-
veloped analytical methods for evaluating and optimizing
time-domain filters for SS relating applications.

o We quantify the effect of a stationary frequency selective
channel. It is shown that in the low SNR regime, such
as in the range between —5 dB and —15 dB, frequency
selectivity creates a minor effect on the sensing perfor-
mance, which is primarily dependent upon the temporal
variations of the total received signal power. On the
contrary, it is shown that for SNR values above 0 dB, the
frequency selectivity characteristics play a non-negligible
role in the performance of ED.

e We propose a useful single-parameter performance metric
for evaluating the proposed SS algorithms based on
the concept of the area under the receiver operating
characteristics (ROC) curve (AUC) [25]. Novel analytical
expressions for the AUC are derived for all considered
spectrum sensing scenarios. These expressions are val-
idated extensively through comparisons with respective
results from computer simulations and have a tractable
algebraic representation that renders them convenient to
handle both analytically and numerically.

The aforementioned contributions are proposed in the con-
text of wideband, multimode sensing employing FFT or filter
bank methods for the required spectrum analysis procedures.
This corresponds to wideband heterogeneous dynamic spec-
trum use scenarios, where different types of PUs may coexist.
It is noted that the present work extends substantially earlier
analyses in [35]-[37] by representing them in the context of
a unified framework which consists of significant elaborations
and strengthening by deriving novel closed-form expressions
for the corresponding probabilities of false alarm (Pr4) and
probabilities of detection (Pp). It is also noted that the pro-
posed approach for analyzing the case of non-flat PU spectrum
is based on the same foundations as the Spectral Feature De-
tector in [7], [38]. However, it is considered that the proposed
model is relatively more straightforward and provides rather
simple analytical expressions that relate the required sample
complexity with the sensing performance parameters (Pr4,
Pp) for optimal or suboptimal SS schemes. In addition, the
autocorrelation based scheme of [8] is the time-domain equiv-
alent of these methods and a remarkable benefit of frequency
domain methods is their flexibility in sensing multiple PU
types alternatingly, or simultaneously in the case of multiband
sensing. On the contrary, time-domain methods require flexible
channelization filtering schemes which in case of multiband
sensing increases significantly the corresponding complexity.
It is also noted that the required calculation of a sizeable
sample covariance matrix for autocorrelation based methods
has significant computational complexity, which tends to be
rather high compared to the complexity involved in FFT or
filter bank based processing in frequency domain methods.
Therefore, the present work provides meaningful insights in
ED based SS methods as well as useful enhancements in the
form of easy-to-use analytical or semi-analytical expressions
for straightforward analytic performance evaluation. Further-
more, the proposed contributions result to several worthwhile



performance gains in certain scenarios and they facilitate the
comparison of suboptimal/simplified sensing schemes with
respect to their optimal counterparts.

The remainder of the paper is organized as follows: Section
IT revisits the ED model and the foundations of wideband,
multi-mode sensing utilizing FFT or analysis filter bank (AFB)
for spectrum analysis. The effects of various forms of fre-
quency dependency in ED based SS are analyzed in Section
IIT where analytic expressions for the corresponding Pr 4
and Pp measures are derived in closed-form. The concept
of AUC is introduced in Section IV as a useful analytical tool
for evaluating the performance of each proposed SS method.
Finally, numerical results and detailed discussions are provided
in Section V while closing remarks are given in Section VI.

II. BASIC ENERGY DETECTION SCHEMES
A. Analytical model

Spectrum sensing is typically formulated by the following
binary hypothesis testing problem,

Ho @ yln] = wln]
2ln] (1)
—
Hi ¢ y[n] = s[n] ® hn] +w[n]

where y[n] is the complex signal observed by the sensing
receiver with s[n], h[n] and w[n| denoting the PU information
signal, the channel impulse response and the zero-mean,
complex, circularly symmetric, wide-sense stationary white
Gaussian noise, respectively [1]. Therefore, under hypothesis
Ho, the PU is considered absent and y[n] consists only of
wln]. On the contrary, under hypothesis #; the transmitted
wireless signal z[n] is also present along with w[n]. Based on
this, the test statistic for the energy detector is expressed as,

() = 3 |yl @

with N denoting the length of the observation sequence, which
is also referred to as sample complexity.

The distribution of the test statistic can be modeled by the
Gaussian distribution, which has been shown extensively to be
a rather tractable and accurate approach [6], [39]-[41]. To this
end, the following formulation is straightforwardly deduced,
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where 02 and o2 denote the variance of the transmitted signal
and AWGN process, respectively, which are assumed to be
statistically independent. Based on this and given that the
instantaneous SNR is v = 02/02, the corresponding false
alarm probability Pr 4 and detection probability Pp measures
can be expressed as follows:

Pra = Pr(T(y) > AlHo) = Q (%) )

and

o3 (1+7)/VN

respectively, where Q(-) is the Gaussian Q—function and A
denotes the predefined energy threshold. The variance of the
PU information signal is practically unknown and thus, the
value of X is determined by the assumed noise variance and
targeted false alarm probability as follows,

_ 2 Q_l(PFA))
A=o2 (1 I 7

where Q7! (-) denotes the inverse Gaussian ()—function [44].
Furthermore, the sample complexity N is determined under
the constraint of acceptably low missed detection probability,
Pyp = 1 — Pp, at the minimum PU power level. Based
on this and after some algebraic manipulations, the required
sensing time in samples can be expressed in terms of Prg4,
Pyp =1— Pp and v, as [5],

. “L(Ppa) — Q1(Pp)(1 2
N— [Q (Pra) Q2 (Pp)( +'7)] (8)
Y
which is evaluated numerically rather straightforwardly.

B. FFT and filter bank based schemes for multiband sensing

It is recalled that the majority of SS methods are proposed
assuming narrowband communication scenarios. Nevertheless,
in realistic communication systems wireless channels are often
wideband and this is particularly the case in emerging wireless
technologies which are expected to satisfy substantially in-
creased quality of service requirements. As a result, developing
effective techniques for wideband SS scenarios is undoubtedly
useful for future CR deployments and services. To this end,
efficient and robust wideband multiband ED based methods
are proposed in this sub-section as alternative solutions for
effective SS in CR communications. Furthermore, it is shown
that the proposed methods allow PU signals and multiple
potential spectral gaps to be tested simultaneously in an
efficient and flexible manner by averaging the output samples
of an FFT or AFB based spectrum analyzer.

Most emerging broadband wireless technologies are based
on multicarrier modulation such as, cyclic prefix based or-
thogonal frequency division multiplexing (CP-OFDM). Mul-
ticarrier techniques are characterized by the simplicity and
robustness of the receiver signal processing functions. How-
ever, alternative multicarrier techniques have been considered
increasingly in recent developments. In this context, filter bank
multicarrier (FBMC) techniques have demonstrated various
potential benefits particularly in the field of CR communica-
tions [42], [43]. One important feature of multicarrier systems
is that existing signal processing blocks, i.e. the FFT of an
OFDM receiver or the AFB of an FBMC receiver, can be also
exploited for SS purposes. A block diagram for FFT or AFB
based ED algorithms with weighting process is depicted in
Fig. 1. It is also recalled that the main benefits of FBMC
waveforms over OFDM are the good spectral localization
of the transmitted signal spectrum and the high frequency
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Fig. 1: Block diagram for energy detection with FFT/AFB based spectrum analysis.
selectivity of receiver signal processing. These features assist can be modeled as follows,
in improving the interference control, particularly in scenarios ol
where users are not precisely synchronized to each other. T (Yo ko) 70 ~ N o k, w,k (12)
In CR systems, the benefits of AFB are prominent in high- NNy
dynamic-range scenarios, such as in SS in the presence of . 4
strong transmissions at nearby frequencies. This is a critical ) 5 2
scenario since the spectrum leakage of basic FFT processing T N o2 2 (Uz,k + Uw,k) 13

. . . ymo,ko)|7'[1 ~ O-z,k + O—u}Jg? ( )
appears to degrade significantly the sensing performance [35], NNy
[42], [43]. o .

The present analysis focuses on SS in a wideband mul- which yields straightforwardly,
tichannel receiver, where ED is performed at subband level P PH(T(y) > AHo) = A—an (14)
h f an FFT or AFB, which i for split- Fa = r{d{y) > Al7to

at the output of an or , which is used for split o2, k/\/m

ting the received signal into relatively narrow signal bands.
The output of these blocks is expressed as yj[m], where
k=0,...,K —1 is the subband index and m is the subband
sample index. Typically, the sampling rate of the subbands is
equal to the analog-to-digital converter (ADC) sampling rate
over the number of subbands in the filter bank, K. However,
in FBMC/OQAM (offset quadrature amplitude modulation)
systems, 2x oversampling of the subband signals is commonly
considered [45], [46]. In the context of SS the subband signals
can be expressed as follows,

Ho €))

yk[m] = wi[m]

and

yr[m] = z[m] + wi[m] Hy (10)

where xi(m) = Hysi(m) is the PU information signal at the
m*" FFT or AFB output sample in subband k, H), is the com-
plex gain of subband k, and wy[m] is the corresponding noise
sample. Furthermore, as in conventional ED, it is assumed
that wy[m] ~ N'(0,02, ;) and zx[m] ~ N'(0,02 ), with o2
denoting the PU signal variance in subband k. Thus, it follows
that o7, /K =~ o7, ;.. The integrated test statistic over multiple
subbands and over certain observation time is expressed as,

ko+[Ny/2]1-1 mo

DD
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T(ymoyko) = |yk[m]|2 (11)

where Ny and IV, are the averaging filter lengths in frequency
domain and time domain, respectively. According to Parseval’s
theorem, when a spectral component is entirely captured by the
subband integration range, FFT based subband integration and
full-band time-domain integration over the same time interval
yield the same test statistics.

Assuming that the PU spectrum is flat over the sensing band,
the corresponding probability distribution of the test statistic

and

A — 1+
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(15)
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Furthermore, 7;, = 02 /o7, , denotes the subband-wise SNR.
FFT/AFB processing allows tuning the sensing frequency band
to the expected band of the PU signal, as well as sensing
multiple PU bands simultaneously. It is subsequently shown
that the subband integration process can be optimized to
the PU characteristics. In addition, several candidate PU’s,
with different spectral characteristics and possibly overlapping
spectra, can be optimally sensed simultaneously.

III. ENERGY DETECTION IN THE PRESENCE OF
FREQUENCY VARIABILITY

In CR based communications, SS is fundamentally per-
formed for both assisting opportunistic access to SUs and
monitoring the spectrum during SU operation for accounting
robustly for a possible reappearance of a PU. In this con-
text, multicarrier transmission techniques have a high degree
of commonality between receiver processing and SS, since
selected time-frequency zones can be dedicated to spectral
monitoring purposes irrespectively of conventional data trans-
mission [36].

However, in spite of its operational importance and per-
formance effects, the specific case of a re-appearing PU has
not been analyzed in the open technical literature. Motivated
by this, this section first proposes band edge detection and
transmission burst detection. In this context, we address the
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Fig. 2: Distribution analysis of the transient phase test statistic.

realistic mixed statistics case where the sensing window in
time-frequency domain includes both a zone where the PU
signal plus noise are present and a zone where only the
noise is present. Then, sliding window based spectrum sensing
(SW-ED) is proposed for handling such sensing situations
effectively.

Furthermore, in this section we also develop novel generic
tractable models for ED in cases where the PU information
signal and/or noise are non-white within the sensing frequency
band. More specifically, it is clear that the spectrum of a PU
signal is affected by the spectrum of the transmitted waveform,
channel frequency response and the sensing receiver filter,
whereas the spectrum of the channel noise is only dependant
upon the receiver filter frequency response.

A. Band Edge Detection and Transmission Burst Detection

It is recalled that a typical assumption in the vast ma-
jority of SS investigations is that the PU is strictly either
absent or active during the sensing period and that the center
frequency and bandwidth of the PU information signal are
known. Nevertheless, in realistic communication scenarios it
is often the case that either the PU re-activates during the
measurement period or the sensing frequency band fails to
match the band of the PU signal [47]. As a consequence,
only a fraction of the integration window matches the time-
frequency zone of the PU activity. Motivated by this, band
edge detection and transmission burst detection is proposed
as an effective method for detecting re-appearing PU signals.
The corresponding analysis is performed by means of mixed
text statistics which are subsequently employed in quantifying
the corresponding effects in the performance of the energy
detector.

The considered transient scenario, in time or frequency
direction, is depicted in Fig. 2 along with the associated test
statistic distributions [36]. The distribution of the transient
phase test statistic can be obtained by virtually splitting the
integration window into two distinct sub-windows; the one
contains the observation samples corresponding to the idle
state of the PU, NV — N; samples, whereas the other contains
the remaining N; samples. Based on this, the distributions
of the corresponding sample subsets within these virtual sub-

windows can be expressed as follows'

N (o2, —To (17)
N — Ny
and
2 212
N(anggfm(Uf—'_]\[lJ“’)) (18)

respectively. It is noted that the overall sequence of N samples
can be interpreted as a linear combination of these independent
normal random variables using relative weights of (N —
Np)/N and Ni/N, respectively. Therefore, X1 ~ N (uy1,0%)
and X5 ~ N (2, 02) and with the aid of the standard property
of the normal distribution,

aXi + bXy ~ N(apy + buz, a®o? + b?o3) (19)
the following mixture-distribution is deduced,
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(20)
The probability of detecting the presence of a PU signal during
the transient phase is obtained by the tail probability towards
400 over the mixture distribution in (20), namely,

Pprr=Pr(T(y)lrr > M)

To this effect, the probability of false alarm and probability of
detection can be expressed as

Prpa=Pr(T(y)la, > A)

2

(22)

and

Pp = Pr(T'(y)la, > A) (23)

respectively. Notably, after some algebraic manipulations the
Pr4 becomes identical to (5) whereas, the Pp is given by,
Pp =Pr(T(y)|rr > A)
—0 ANo, %2 — N — Nyy
\/N*Nl +N1(1 +"}/)2
o YNQ (Pra) M
\/N*Nl +N1(1 +"}/)2

It is noted that v = o2/02 denotes the overall PU SNR
and to the best of the Authors’ knowledge (24) has not been
previously reported in the open technical literature.

(24)

B. Sliding Window-Based Spectrum Sensing

This subsection is devoted to proposing SW-ED as an
effective solution for detecting a re-appearing PU signal. To
this end, a semi-analytical performance evaluation technique
for SW-ED is developed along with a detailed analysis on the
respective tradeoffs between detection delay and sensitivity.

For simplicity, it is assumed that the sensing receiver is ca-
pable of monitoring the target frequency channel continuously.
This could be reached, for example, if the secondary system
leaves a slot of the frequency channel unused for spectrum

IFor the sake of notational simplicity, Sections III-A and III-B are formu-
lated in a basic single-band energy detection setting.



sensing purposes [36]. It is recalled that SW-ED uses a sliding
window of constant length N. Therefore, for a time instant
n + 1 the test statistic is obtained effectively as follows:

lyln+ 11° — lyln+1 - NI”

N

Figure 3 illustrates SW-ED in action. It is important to notice
that even though the test statistic at any particular time instance
follows the corresponding statistical model adequately, the
probability of exceeding the decision threshold within a time
interval grows with the length of the interval. Therefore,

Tri1(y) = Taly) + (25)

Test statistic value

-1000 0
Time in samples
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Test statistic value

\
-1000 0
Time in samples

I
-2000 2000

Fig. 3: Sliding window energy detection in action: 100 in-
stances of SW processing with block length of N = 640
for -5.5 dB PU SNR (upper) and -3 dB SNR (lower). The
horizontal lines indicate the thresholds for Pry, = 0.01 in
basic single-shot ED (dotted) and in SW-ED with 12800
samples (solid). Time instant O corresponds to the beginning
of the PU transmission and the vertical line indicates the first
time instance (N1) when Pp = 0.99 is reached.

the decision threshold has to be increased, in comparison
to basic single-window sensing, in order to reach reasonable
probability of false alarm. The special case of multiple (3)
non-overlapping ED windows is rather convenient to handle,
since the probability of not exceeding the threshold in any of

the sensing windows can be expressed as,

(26)

In SW-ED, consecutive outputs are strongly correlated, and
to the best of the Authors’ knowledge, no sufficient analytical
models that address this scenario exist. Based on this, we
present a numerical approach for analyzing the performance of
this method by assuming the following simplistic scenario and
sensing principles: (¢) There are no on-going PU transmissions
in the beginning of the sensing process; (#4) The channel
is deemed to be occupied once the SW-ED output exceeds
the threshold, even for a single sample; (i74) The detection
delay is defined as the time duration from the beginning
of the PU transmission to the time that the instantaneous
detection probability exceeds the target value. An estimate for
the sensing delay (/N7 in Fig. 3) for a given block length N
and SNR ~ is determined semi-analytically with the aid of
(24) as follows:

o For a given Pr 4, determine the threshold Ay g so that
the experimental probability of SW-ED exceeding the
threshold over the whole frame of BN input samples
equals the target Pr4.

o With A = Ay p in (24), find the minimum N; such that
the target Pp is reached. This value of Vi, i.e. sensing
delay, can be obtained form (24) as a root of a second
order polynomial.

In Section V-B, it is shown that sliding window based SS is
an effective method for detecting PUs with unknown time of
appearance.

C. Effects of non-flat primary user spectrum

Novel optimum and constant weighting process based multi-
band spectrum sensing techniques are proposed for reducing
the involved complexity and required number of samples under
non-flat spectral characteristics.

After the receiver front-end and ADC in the flexible multi-
band sensing scheme of Fig. 1, FFT or AFB is performed for
splitting the signal into relatively narrow subbands. Depending
on the bandwidth of the candidate PU signal, a number of
consecutive subbands is combined in the sensing process,
typically after weighting, for optimizing the energy detection
performance for non-flat PU signals. The weighting process
can be performed in two manners: ¢) Constant weights are
optimal for a PU signal with flat power spectrum and upon
effective selection of the number of subbands, they may also
provide a good approximation for a non-flat spectrum. This
is also the standard selection when no prior information of
the PU spectrum is available; i4) Optimized weights can be
determined in case of prior knowledge of the PU power
spectrum. Naturally, a frequency selective channel affects the
spectrum of the received signal, but it is not realistic to assume
knowledge of the channel characteristics. On the contrary, if



the wireless channel is assumed flat, the shape of the power
spectrum of the received signal is identical to that of the
transmitted signal and optimized weighting process can be
considered realistically.

Under both Hy and 4, the test statistics are represented
as a sum of independent Gaussian variables with different
variances. Based on this, the probability distribution of the
test statistic T}, for center frequency k and arbitrary weighting
coefficients can be expressed as follows,

k+Ny k+N; o ot

90w,k
FThy ~ N D gromi D 27)
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k=k—Ny r=k— N
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Pl ~N | Y0 = )0 N,N;g;2
n:k—Nif gk n:k—Nif ¢ fgk
(28)

where N = N;N; is the overall sample complexity, as in
Section II-B. For the sake of notational simplicity, we assume
that the value of the window size in frequency domain is odd,
ie.,, Ny = 2Ny + 1. It is recalled here that the integration in
frequency domain takes the weighted average of the time filter
outputs, with g, denoting the real-valued weight for subband
k with PU signal power o2 ;. In what follows, we address the
problem of optimizing the subband weights.

For arbitrary weight values, the corresponding false alarm
probability Pr 4 is given by [35],

k+Ny
2
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In the same context and recalling that vy, = az o/ ow x the

probability of detection Pp with arbitrary Welght values can
be expressed as follows,
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By equating A in (29) and (30), the corresponding energy
threshold A can be determined by,
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Likewise, the minimum required sample complexity, N =
N¢Ny, can be determined with the aid of (32) (top of the

next page) which is expressed as a function of Pra, Pp, wy
and ~g.

It is noted that the required time record length N; is
determined according to the targeted minimum detectable PU
power level. When employing optimum weighting coefficients,
the frequency block length N should be selected to include
all subbands that essentially contribute to the test statistics.
Including extra subbands increases the involved complexity,
yet it should not harm the sensing performance as the corre-
sponding weights become rather small.

By also assuming that the weights are normalized for
constant noise power level > ¢g; = 1, i.e., the first term is

maximized by choosing

2
Ok o
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(33)

In any realistic case, with Pp > 0.5 also the second term is
positive and it is maximized by choosing

Tk
9k =—""""73 (34)
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denotes a normalization coefficient. The proofs are provided
in Appendix I. Depending on the values of Pp and Pr4, the
optimum weighting coefficients are between these two cases.
For Pry << 1 — Pp the first term dominates, whereas for
Pr 4 >> 1—Pp second term dominates. It can be numerically
verified, that both (33) and (34) are very tight approximations
for the optimum weights. Henceforth, equation (33) is used
for simplicity. As an example, we consider the case of Raised
Cosine and Square Root Raised Cosine filters, with different
roll-off factors (10 % to 100 %), Pp = 0.999 and Pryq =
0.1, and PU SNR between 0 and -10 dB. In this case the
right hand side term of (32) clearly dominates. Using weights
based on (33), the required sample complexities obtained from
(32) are no more than 3% higher than when using weights
obtained from (34). Additional numerical results are presented
subsequently for the Bluetooth scenario in Section V-D.

Evidently, the proposed expressions can be considered as
approximations of matched filtering [48] in the sense that the
squared magnitude response of the sensing filter is ideally the
same as the transmitted power spectrum [5]. Alternatively, this
can be viewed as maximum ratio combining of statistically
independent variables since both models result to the maxi-
mization of the SNR in the presence of PU. This model is also
consistent with the optimal spectral feature detection model in
[38].

It is also meaningful to consider the resulting gain when
using optimum weights instead of constant weights, which
would be a conceptually simpler approach even though the
difference in implementation complexity is minor. In case of
constant weights, it is important to select the optimum number
of subbands as subbands with small PU power affect the noise
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variance under g, but can also decrease the SNR under
‘H, and thus, reduce the corresponding sensing performance.
Given the PSD of the PU, the optimum number of subbands
can be determined numerically with the aid of (32) for target
values of Pr4, Pp, and PU SNR.

D. Frequency selectivity effects

It is widely known that the majority of SS techniques
focus on the AWGN scenario assuming a flat wireless chan-
nel. Nevertheless, frequency selective channels are usually
encountered in communication scenarios and thus, they need
to be adequately considered. Based on this, novel analytical
expressions are derived for multiband ED based SS techniques
under frequency selective channels. Capitalizing on this, the
frequency selectivity effects are subsequently quantified and
the corresponding detection performance is evaluated in detail
for different SNR values. To this end, it is firstly recalled that
v =o02/oy and v, = 02 /or, ;. denote the overall PU SNR
and the subband-wise SNR’s, respectively. Then, we assume
that the channel amplitude responses of the subbands, Fj,
satisfy the following relationship,

Ny
> PP =Ny
k=1

which basically indicates that the received PU signal power is
assumed to be constant. Based on this and given that v, =
Fiy, the test statistics in (12) can be extended for the case of
frequency selective channels, namely,
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The corresponding Pr 4 is identical to (14); likewise, the cor-
responding Pp is similar to (15) and can be straightforwardly
deduced by making the necessary change of variables yielding,
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Evidently, the channel frequency response affects only the
variance of the test statistic under ;. Hence, when SS is
performed in the low PU SNR regime, the effect of the
frequency selectivity on the energy detection performance
tends to be insignificant. However, equations (39) and (40)
can assist in quantifying this and evaluate whether the effect
is significant when operating with highly frequency selective
channels at relatively high SNR levels. Numerical results that
demonstrate this effect are presented in detail in Section V.

IV. AREA UNDER THE ROC CURVE

The Area Under the ROC Curve (AUC) is an alternative
measure for assessing the performance of a detector and it
has been used extensively in various areas of natural sciences
and engineering. Its usefulness over the Pr4 and Pp is that it
constitutes a single-parameter measure that provides a better
view of the overall detector performance. Specifically, using
the conventional approach, the performance of energy detector
based spectrum sensing techniques depends on the value of
the corresponding Pp and Pr,4. Based on this, the most
typical method to analyze the performance is to fix one of
the two measures and vary the other one. This provides useful
insights on the detectors performance which are, yet, specific
and do not always extend readily to additionally account for
the overall performance of the detector. On the contrary, in
the case of AUC there is only one parameter involved, which
provides a better insight on the overall performance of the
detector. Ideally, AUC approaches the value of 1, in which
case Pp = 1 for any given value of Pr4. Practically, the
useful values of the AUC are those that are greater than 0.65
with those greater than 0.85 considered good/acceptable.



The AUC in the presence of AWGN is defined as [25],
OPp ()
o\

In what follows, we derive novel analytic expressions for the
AUC of each proposed SS method.

AUC = A(y) & - /Oo Pp(y,\) dA. 1)
0

A. AUC for the Conventional ED

It is firstly noticed that the algebraic representation of (5)
and (6) is identical as they are both expressed in terms of the
Gaussian (Q—function with shifted arguments. Based on this,
the corresponding AUC has the following algebraic form,

o 0 —d
AUC = — / Qlaz — b)de (42)
0 ox
where a, b, ¢ and d are arbitrary reals. The derivative in (42)
can be determined with the aid of the standard properties of
the Gaussian (Q—function, namely,
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Therefore, upon substituting accordingly in (42) one obtains
the following generic expression,
dx.

c oo
- [ Qe
(44)

Evidently, determining AUC is subject to analytic evaluation of
the above integral. To this end, the analytic expression in (45)
is deduced (top of the next page), where x! is the increasing
factorial whereas I'(xz) and 1Fj(a,b,z) denote the Euler
gamma function and the Kummer’s confluent hypergeometric
function, respectively [44].

(cz— d)

AUC =Z(a,b,c,d)

Proof. The proof is provided in Appendix II. O

As a result, by making the necessary variable transformation
and substituting in (45), the AUC for the conventional ED can

be expressed as follows,
VN VN, — \ﬁ VN ) (46)

AUC =7
e < EATERN

which to the best of the Author’s knowledge, it has not been
previously reported in the open technical literature.

B. AUC for the Proposed ED Techniques

Starting with the FFT and filter bank ED methods for
multiband channels, it is observed that the algebraic forms of
(14) and (15) are similar to those of (5) and (6), respectively.
Hence, an analytic expression for the corresponding AUC can
be readily obtained by setting N = NN, in (46), yielding,

AUC |wp= I( \/7 gf /NN

47)
Likewise, for the specific scenario of a re-appearing PU, the
AUC can be deduced for

a= N 48)
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and
N + Nyvy
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as well as ¢ = VN /o2 and d = +/N, which yields (50), at
the top of the next page.

In the same context, by following the same procedure, the
corresponding AUC for the ED in (29) and (30) is given by
(51) (at the top of the next page). For the case of frequency
selective channels, the following expression is deduced,

NNy ,/ \/W) '

(49)

AUC |sa=1Z

| : < Bch
To the best of the Authors’ knowledge, the proposed expres-
sions are novel.

V. NUMERICAL RESULTS

A. Basic Energy Detection

This Section is devoted to the analysis of the behavior and
performance of the proposed ED methods starting with basic
single-band AWGN scenario. To this end, Fig. 4 illustrates
the AUC for a conventional ED under different values of the
sample complexity V. It is shown that AUC is rather sensitive
to variations of N while, as expected, the performance of the
ED improves substantially as N increases. In the same context,
the behavior of the multiband ED techniques is depicted in
Fig. 5 and Fig. 6 in terms of the ROC and AUC measures,
respectively. In the former, it is observed that the behavior of
the ED is significantly dependent upon Ny and particularly by
Ny. In the latter, it is noticed that the overall performance
of the multiband ED is quite adequate in the positive and
near-positive SNR regimes; yet, substantial increase of Ny
and V; is required, as expected, for achieving a similar result
at moderately low SNR values. In all these comparisons, the
analytical results match very well the simulations.
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Fig. 4: Analytical and simulated AUC for the conventional ED
for different values of sample complexity V.
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Fig. 5: Multiband ED ROC for v = —5 dB and different values
of Ny and N;.
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Fig. 7: Analytic and experimental transient phase detection for
Pra =0.1, N =1000 and 10000 independent trials.

B. Re-Appearing PU Case

The ED behavior in the case of a re-appearing PU and
AWGN channel is demonstrated in Fig. 7 where it is shown
that the proposed statistical model is in excellent agreement
with the experimental transient phase ED performance. Evi-
dently, the overall performance of the ED appears to reduce
dramatically as the ratio N1 /N decreases and particularly in
the case that N3 /N < 0.5. On the contrary, when N;/N >
0.75, the performance of the ED is in general quite acceptable.
The overall ED performance for this specific scenario is also
illustrated in Fig. 8 and Fig. 9 in terms of the corresponding
ROC and AUC, respectively, for N = 1000. Particularly the
latter indicates that ED can achieve robust performance in the
re-appearing PU scenario at non-negative SNR values as its
value is higher than 0.95 as N; increases. Since N is common
in all considered scenarios, Fig. 8 and Fig. 9 provide an
indicative connection on the behavior between Pp and AUC.
By recalling that AUC is a single-parameter performance



measure, its usefulness is inherently in the areas of values
approaching unity as this provides an overall performance of
the detector, for various SNR levels, regardless of the value of
Pr 4. As a result, it is evident that such transient situations,
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Fig. 8: ROC for the transient phase ED with v = —8 dB,
N = 1000 and different values of Vj.
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Fig. 9: AUC for the transient phase ED with N = 1000 and
different values of V.

i.e., unknown PU channel band edges and/or transmission
burst timing, can be handled effectively with the aid of the
sliding window processing. In FFT or AFB based ED, sliding
window processing can be performed in time and/or frequency
domain so that the PU transmission is located in terms of time
or frequency measures, respectively.

In the case of sliding window based energy detection,
Fig. 10 demonstrates the detection delay as a function of the
PU SNR for different ED block lengths. Here the target values
are: Pp = 0.99 and Pr4 = 0.01 for the frame length of 12800
samples. The performance of ED with repeated overlapping
windows (denoted as NO-ED), following (26) is also shown
for comparison. For this scheme, the worst case sensing delay
is considered; this approaches 2N when the SNR approaches

the sensitivity limit and N at high SNR values. Basic ED,
using a single sensing window, is also illustrated for reference.
Depending on the used window length, there is a clear tradeoff
between the sensing delay and sensitivity of the sensing
process. The SW-ED approach allows to rapidly detect PUs
with power levels above the targeted detection sensitivity.
Compared to the non-overlapping ED scheme with the same
block length, SW-ED appears to have a sensitivity loss, but
no more than 1 dB in this example case.
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Fig. 10: Detection delay in sliding window energy detection
(SW-ED) and non-overlapping repeated energy detection (NO-
ED) as a function of SNR for different block lengths N. Target
Pry =0.01 and Pp = 0.99. Also the minimum block length
for these target values in basic (single-shot) ED is shown, but
this is applicable only if the time of possible reappearance of
PU is predetermined.

C. Effect of Frequency Selectivity

The numerical results are also extended for calculating the
Ben-values in (39) for the ITU-R Vehicular A channel. It was
found that the theoretical 5-values are in the range [1.13,2.47]
for the noise-free case, whereas the corresponding range of
Ben-values is [1.03,1.37] for 0 dB SNR and [1.01,1.06] for
—6 dB SNR. In the same context, a more generic scenario
is depicted in Fig. 11 with respect to ROC and AUC curves.
For both cases we assume a moderate SNR value of v = 0
dB, i.e., B, € {1.03,1.20,1.37}. Furthermore, for the ROC
case we assume N; = 20 and Ny = 2, while the AUC is
illustrated as a function of N = N;N;. It is evident that in this
scenario the effect of frequency selectivity on the performance
of the ED is significant. Importantly, regarding the commonly
considered low SNR regime (e.g., v < —3 dB), one can safely
conclude that the performance of ED based SS is not affected
by frequency selectivity and the performance is determined
by the temporal variations of the received PU signal power
[21]. Tt also follows that in ED analysis over fading channels,
it is sufficient to model the total received power, while the
multipath effects on frequency selectivity are not essential in
the low SNR regime [21]-[23]. This is in contrast to certain



other SS techniques, such as the eigenvalue based methods,
that exploit the non-whiteness of the received power spectrum,
which may be due to the transmitted spectrum and/or channel.
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Fig. 11: ROC and AUC curves for frequency selective channels
at v = 0 dB, for different values of 5., and N;N; = 20 x 2
for the ROC case.

D. The Bluetooth Test Case

In the majority of practical telecommunication scenarios,
wireless channels are frequency selective and thus, one can
not realistically assume knowledge of the received PU signal
power spectrum. However, for certain short-range and/or nar-
rowband cases, channel models are commonly assumed to be
flat and the Bluetooth (BT) wireless technology constitutes a
notable example of such systems [49]. The ISM band around
2.4 GHz is an unlicensed frequency band which is utilized by
various applications, including IEEE 802.15 based BT wireless
devices, cordless phones, WLAN signals and even microwave
ovens, which can introduce interference within this frequency
band. The frequency hopped frequency shift keying (FH-FSK)
based IEEE 802.15 BT signal has 79 different frequency
channels at center frequencies spanning between 2.402 GHz
and 2.480 GHz with 1 MHz spacing. The nominal bandwidth

of BT signal is 1 MHz whereas the corresponding hopping
rate is 1600 hops per second.

In the present analysis, we firstly consider a simplified
scheme with continuous BT signal at the 33"¢ channel with
the corresponding signal spectrum illustrated in Fig. 12.
Subsequently, we analyze the performance of the multiband
spectrum sensing scheme with weighting process in sensing a
BT information signal and the corresponding spectral holes.
Since we consider scenarios with small dynamic range, in the
absence of strong PUs at adjacent frequencies, the differences
between filter bank and FFT based sensing are insignificant.
Therefore, the present analysis is limited to analyzing the
corresponding results only for the FFT case. To this end,
we assume 83.5 MHz sampling rate and that the ISM band
consists of 1024 subbands. Furthermore, each 1 MHz sensing
bandwidth of the BT signal, the sensing window comprises 11
subbands. In the present scenario, SS is performed assuming
v = =5 dB with Pr4 = 0.1 and Pp = 0.9. With a
simplified, non-frequency-selective model, the required sample
complexity for the target SNR, Pp and Pr4 is determined
with the aid of (8) as N = 89. If the BT power was
equally distributed among the 11 subbands, 8 samples from
each of these subbands would be sufficient for reaching the
target requirements. Also, when sensing is performed only by
utilizing the center subband, N = 89 is a lower bound for the
time record length. Fig. 13 depicts the number of required
subband samples needed with the BT signal for different
sensing bandwidths and with optimized and constant weights.
For instance, when the optimum weight values are used for
all 11 subbands of the BT signal, the required number of
subband samples is 45, which corresponds to a lower time
record length than the respective 50 samples hoping interval. It
is also recalled here that most of the BT energy is concentrated
on the center subbands; therefore, only 3 or 5 subbands with
0.25 MHz or 0.42 MHz bandwidth, respectively, are sufficient
for sensing. The corresponding results are depicted in Fig. 13
both for optimum weighting and for constant weights and
different SNR values.
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It can also be observed that almost the same time record
length can be used when sensing a single subband at the BT
center frequency as when sensing the entire 1 MHz BT band
with constant weights. For the case of constant weights, 3
subbands constitutes the optimum choice for all considered
SNR values. On the contrary, using optimum weights reduces
the sensing time by about 10%. In the same context, Fig. 14
(a) shows the Pp with constant and optimum weight values
as a function of the active BT SNR with AWGN based on
simulations. The time record length is 50 samples, and the
constant weight case uses 3 subbands. In the case of optimum
weight values using 11 subbands, highest detection probability
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Fig. 14: Detection probability of Bluetooth signal with P4 =
0.1 using time record length of 50 for constant and optimum
weight values under (a) AWGN, (b) ITU-R Vehicular A
channel, (c¢) Indoor channel including FFT and AFB based
sensing.

performance is again achieved but the benefit over the constant
weight case is marginal. Hence, it is evident that in this
low dynamic range case the Pp is not substantially different
between FFT and AFB2. Fig. 14 (b) and Fig. 14 (c) show
the corresponding results for the ITU-R Vehicular A channel
and Indoor channel cases, respectively [50]. The Vehicular A
channel has 6 taps and its maximum delay spread is about 2.5
ps. 16-tap model with 80 ns rms delay spread is also applied
for realistic Indoor channel model as second channel model
[50], [51]. We can see that the optimum weighting scheme
derived for the flat-fading model gives the best results. The
difference is most noticeable with the ITU-R Vehicular A
channel. However, the benefits over constant weights with 3
subbands are marginal.

E. The TETRA Case

The developments of Section III-C, and (32) in particular,
can be used also for analyzing and optimizing traditional
time-domain filters for spectrum sensing purposes. The ex-
ample case considered here is the Terrestrial Trunked Radio
(TETRA) waveform used in Professional Mobile Radio (PMR)
context by safety and security personnel. The basic TETRA
waveform uses differential BPSK or QPSK modulation with
the roll-off factor 8 = 0.35, 18 kHz symbol rate, and 25
kHz bandwidth. When developing a coexisting broadband
PMR system, utilizing the same frequency band for broadband
data communications, it is important to be able to detect the
possible presence of legacy TETRA signals [52], [53].

Based on the results of Section III-D, a root raised cosine
(RRO) filter with 8 = 0.35 is the optimum choice for ED
based sensing. However, there are meaningful reasons for
considering other filter designs for the sensing task. As an
example, we consider sensing a TETRA signal with -10 dB
SNR using RRC filters and raised cosine (RC) filters with
different roll-off factors, assuming frequency flat channels. The
standard ED model indicates that for a coherent matched filter
solution, the required time record length is N =1475 symbol
intervals. However, this assumes synchronization, which is not
feasible in the spectrum sensing context. Based on (32), it is
easily found out that with 2x oversampled RRC filters, the
required values are N =1600 with 8 = 0.35 and N =1664
with 8 = 1. The corresponding values for 2x oversampled
RC filters are N =1632 with 8 = 0.35 and N =1710 with
£ = 1. Due to 2x oversampling, the actual sample complexities
are N = 2N. However, the differences between the required
sensing times with these solutions are rather small. Yet, a filter
with 8 = 1 is much easier to implement than a filter with
B = 0.35 and it may provide a significantly better stopband
attenuation, which is important in case of high dynamic range
scenarios. It is also well known that, in comparison to RRC
filters, RC filters of the same order provide clearly better
stopband attenuation. Thus, it is evident that is reasonable to

2The previous discussion did not consider the frequency hopping char-
acteristic of the BT system. A critical issue is that if the time record for
calculating the test statistics is not aligned with the received BT burst, the
detection performance degrades significantly, as discussed in Section III-A.
Notably, this issue can be ultimately avoided by determining the test statistics
with the aid of the sliding window approach.



consider sensing filter designs which are different from the
filters used for data reception and (32) provides an easy-to-
use tool for evaluating the sensing performance of different
filter designs.

VI. CLOSING REMARKS

We explored the effects of different forms of frequency se-
lectivity on energy detection performance. We also considered
the effect of misaligned time-frequency window on the test
statistics in a generic way by means of a mixed statistical
model based on Gaussian approximation. Then, we proposed
sliding window processing as a method to search for the best
match in cases where the frequency range or burst timing of
the PU signal is unknown to the sensing receiver. We analyzed
numerically the specific case of a re-appearing PU detection
using the sliding window approach, indicating significantly
reduced detection delay compared to existing methods. The
analytical elaboration of the sliding window approach remains
as a subject to future work.

Furthermore, we addressed the problem of known, non-
flat PU spectrum, considering Bluetooth as an example case.
Optimum weights were derived for FFT or filter bank based
sensing where the PU signal band is divided into approxi-
mately flat subbands. An analytical model was developed for
quantifying the effect of channel frequency selectivity on the
sensing performance, which is shown to be highly dependent
upon the corresponding SNR levels. It was also concluded
that, in the low SNR regime, the channel frequency selectivity
has a minor effect on the sensing performance, but at around
0 dB SNR the effect becomes significant enough to be taken
into consideration.

A central tool in our discussions has been the possibility to
split a wideband, multichannel signal into relatively narrow
subbands and then recombining subband samples within a
proper time-frequency zone with optimized weighting as a test
statistic. The required subband filtering can be realized using
plain FFT, windowed FFT, or analysis filter bank with the latter
providing the best possibilities to control the spectral leakage
between subbands. There is no major difference between
FFT and AFB based spectrum sensing with small spectral
dynamic range. However, when trying to identify spectral gaps
between strong and spectrally well-contained PU signals, the
AFB based algorithm provides clearly better performance, as
demonstrated in [35].

Finally, novel analytic methods were developed for the
proposed energy detection scenarios, that have not been suf-
ficiently covered in the open literature. The offered results
were subsequently employed in analyzing the corresponding
detectors’ performance. This was also the case for the concept
of the area under the receiver operating characteristics curve
(AUC), which was employed as an effective single-valued
performance metric for evaluating different SS algorithms in
different communication scenarios.

APPENDIX I
DERIVATION OF EQ. (33) AND EQ. (34)

(i) First term: Based on Schwartz inequality we obtain,
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However, by choosing gx = 75/ we obtain this minimum.
(i1) Second term: By replacing

gr = gr(1 =) (59)

the second term can take the same form as the first one.
Based on the above, (34) is deduced. It is also noted that
the minimum can be reached for,

g = (56)
— V&
or ~
k
gk = 7= 67
(1— )

which completes the proof.

APPENDIX II
DERIVATION OF EQ. (45)

The Q(x) function is mathematically linked to the comple-
mentary error function by the identity Q(z) £ lerfc(z/v2),
where erfc(x) £ 1 — erf(z). Thus, (44) can be re-written as,

_(cz—d)? 4)2

dxr
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By expanding the (cx — d)? term and with the aid of [44, eq.
(8.253.1)] one obtains,

Z(a,b,e,d) =

2\/%/ (58)

cda:dl,
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Importantly, since 1+ 2/ € N, the (ax — b)HQl term can be
expanded according to [44, eq. (1.111)] yielding,

(59)
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where (2) £ ﬁ denotes the binomial coefficient [44].

Importantly, the 77 integral can be expressed in closed-form
according to [44, eq. (3.322)]. Likewise, the 7> integral can
be expressed in closed-form in terms of the parabolic cylinder
function in [44, eq. (3.462)] which can be subsequently
expressed in terms of the Kummer’s hypergeometric function
with the aid of [44, eq. (9.240)]. Hence, after the necessary
variable transformation and substituting in (60) yields (45),
which completes the proof.
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Abstract— Detecting primary signals with very low Signal-to-
Noise Ratio (SNR) is a very important problem in cognitive radio
(CR) systems. Small parameter uncertainties are unavoidable in
any practical system, and especially the noise variance
uncertainty has great effect on the performance of the most basic
spectrum sensing method, energy detection. This has meotivated
the need for advanced spectrum sensing algorithms, like
eigenvalue based spectrum sensing, which can be used to
overcome the effects of parameter uncertainty in very low SNR
cases. In this paper we study the effects of channel frequency
selectivity, in combination with noise uncertainty, in case of
energy detector and eigenvalue based spectrum sensing. It is
demonstrated that channel frequency selectivity significantly
enhances the performance of eigenvalue based spectrum sensing
techniques.

Keywords-component; Energy detector based spectrum sensing,
eigenvalue based spectrum sensing, AWGN, frequency selective
channel and noise uncertainty

1. INTRODUCTION

Increasing traffic rates, limited system capacity and
inefficient spectrum utilization are very important

challenges in the future development of wireless
communications [1]. In solving these challenges, cognitive
radio (CR) and advanced signal processing techniques have
recently been studied extensively [2, 3, 4, 5, 6]. Spectrum
sensing is a fundamental component of CR systems. Hence,
different spectrum sensing algorithms have been developed
with different characteristics regarding detection sensitivity
and tolerance against various imperfections which are
unavoidable in practical sensing devices.

There are many problems which affect the performance of
spectrum sensing in practice. The first problem is that reliable
sensing has to be achieved with very low signal-to-noise ratio
(SNR). Secondly, the multipath fading and shadowing cause
power fluctuation of the received signal [7]. Variation and
unpredictability of the precise noise level at the sensing device
is another critical issue, which is called “noise uncertainty”. In
many studies, the noise variance is assumed to be exactly
known according to previous measurements [8], but in
practice it is often very difficult to estimate the noise level
accurately. Especially, the performance of the traditional
energy detector based spectrum sensing methods significantly
decreases under noise uncertainty [7].

Alternative  spectrum sensing methods have been
investigated to overcome these challenges. Eigenvalue and
covariance based spectrum sensing techniques are very
interesting alternative solutions for the noise uncertainty case,
in spite of relatively high computational complexity. While the
noise variance knowledge is not required for eigenvalue and
covariance based spectrum sensing techniques, small changes
or uncertainty on noise variance have no effect on the
spectrum sensing performance [9,10].

So far, most of the spectrum sensing studies have focused
on the AWGN channel model. While most of CR systems
work under frequency selective channel, investigation of
frequency selective channel effects on spectrum sensing
algorithms is a very important topic.

The goal of this paper is to investigate the effects of
frequency selective channel, considering also the noise
uncertainty effects, using traditional energy detector and
eigenvalue based spectrum sensing. We consider a simplified
signal scenario, where only Gaussian signal model is used
under Indoor, SUI-1 and ITU-R Vehicular A multipath delay
profiles [11]. The applications of cooperative sensing
approaches, which are very essential for reliable overall
spectrum sensing schemes, are left as topics for future studies.

The rest of the paper is organized as follows. In Section 2,
signal models are given for different frequency selective
channels and analysis of energy detector and eigenvalue based
spectrum sensing are summarized. Section 3 gives simulation
results for the channel models considered, and finally, some
concluding remarks are given about the performance of these
methods and about the effects of channel frequency selectivity
on the performance of eigenvalue based spectrum sensing

II.  SPECTRUM SENSING TECHNIQUES

A. Energy detector based spectrum sensing with noise
uncertainty

The analysis of energy detector based spectrum sensing,
considering also the effects of noise uncertainty, is given in
this section based on [7]. The two hypotheses regarding the
absence or presence of a primary transmission in the received
signal, can be expressed as



HO: y(n)=w(n) ~ N(0,02)
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When the AWGN only is present, the white noise is modeled
as a zero-mean Gaussian random variable with VarlanceO'f ,
i.e, w=N(0,07). Signal can also be modeled as a zero-mean
Gaussian variable x =N (0,07) where, ois the variance
(power) of the received primary user 51gnal, including the
effects of the channel fading and frequency selectivity.

For this case, the decision statistics can be obtained as [3]

_ Ly Iy[n]l 2)

n=0

As y has complex Gaussian distribution, the probability
distribution functions (PDF) of the outputs of test statistic T,
can be approximated as Gaussian distributions under H,and
H,[7]. Hence, the probability distribution of test statistic 7',
can be modeled as

1
T| ~N@l—~ol)
YIHO N

3)
T| ~N(o? +0'w,—(0'f+0'j,)2)

Y

There are two vital probabilities, the probability of detection
P, and probablllty of false alarm P., . When there is a signal
in the sensing spectrum interested, P is considered and it can
be defined as

=P(T,>y| H,) (4)

where A is the threshold value for detection. The false alarm
probability P, gives the probability for the event that the
primary signal is absent, but the decision device decides
incorrectly that there is a signal. It can be formulated as [3]

P, =P(T,>y|H,) (5)

The threshold value can be obtained according to the target
false alarm probability and noise variance assumed. The
threshold value and the actual false alarm and detection
probabilities can be expressed as follows

7 =0 (B0t +o? ©6)

2 L,
B =P, >y H)=0(y —0.,)/y7700) (7

y=(o +0})

1 ) ®)
(ol

The optimum threshold value A is calculated according to
the noise and primary signal variances information. It is very
difficult to actually know the signal variance due to the
channel environment characteristics. Hence, threshold value
always is calculated from the noise variance which is assumed
to be known according to the previous measurements or
special noise calibration techniques possibly applied in the

B, =P, >y |H)=0

receiver. In practice, the estimation of exact noise variance is
not possible. The detection and false alarm probabilities as
functions of the SNR depend critically on the accuracy of
noise variance estimate. In practlce the noise Varlance can be
expected to be in the rangeo. € [(1/ p)o’,pc’] where p>1
is a parameter that quantizes the size of the uncertainty. The
noise uncertainty is usually expressed in dB units as
x=10log, p. In the presence of noise uncertainty, the
expressions for £, and £, are modified as follows [7]

P, = max f((? a’)/ (G ")

o'e a'po'

©)
=Q((7—pai)/,/ﬁ(pai)z)

B, = {mm }Q((V (ol+0° ))/1/—(0 +0’)")
’ (10)

_ o 71—(6,3+(1/p)6i) )
\ N(G‘z +(1/p)o)

The noise uncertainty introduces the so-called SNR wall: with
a given uncertainty p there is a minimum SNR value under

which a primary signal cannot be reliably detected, no matter
how long time record is used.

B. Eigenvalue based spectrum sensing

Eigenvalue based spectrum sensing algorithms can be
applied for different kind of signals without noise variance
knowledge. Hence, these algorithms are very robust,
overcoming the noise uncertainty problem, and can even
perform better than energy detection when the signals to be
detected are highly correlated. In the following we review the
eigenvalue based algorithms based on [9,10].

The signal model of eq. (1) is valid also in this case. We
considering L consecutive symbol intervals with M samples
within each interval. Within each symbol interval, the signal is
highly correlated. M is called the oversampling factor. Now
the sequences of received signal, primary signal, and noise are
defined as

¥ =) y(n-1) y(n-2)..y(n-ML+D)]",
$ s(n=1)s(n-2)..s(n—ML+D]", (11)
w=[w(n) wn-1) wn-2)..wn—ML+1)]"

The statistical covariance matrices of the signal and noise
are defined as

R, = EG§")
R, = E(s§
(ss) (12)
R,, = EGWW)
R =HR| H +R,
Eigenvalues of R and HR, HT are defined as

AZA 224, and pl >p2 2. >pML, respectively.



1) Algorithm 1:
(MME)

Compute the maximum and minimum eigenvalues
(A sAs,) of the covariance matrix R, (N). The covariance
matrix is obtained by averaging N sample covariance matrices
(here n indicates the first sample used in the calculation of
each covariance estimate)

Max-Min eigenvalue based sensing

R, (V) —% Z $n3(n)’ (13)

The ratio of 4,4, is compared with the threshold ¥,
which is calculated according to the distribution of covariance
matrix of noise, when the signal is absent

1L2+V

D> W(mw(n)

n=ML-1
R, (N) is nearly a Wishart random matrix [12]. The
distribution of the eigenvalues has been investigated to define
the threshold value. In [13, 14] the Tracy-Widom distributions
were studied and F;, the cumulative distribution function
(CDF) of the Tracy-Widom distribution of order 1 was derived
to get closed form expression

R (N)= (14)

R =exp[—% | (q(u)+(u—t)q2<u»du] (15)

where ¢(u) is the solution of the nonlinear Painleve II
differential equation

3
q"(u) = uq(u) +2q" (u) (16)
Table 1 gives the values of F at some points. Also F '
can calculated using same table
TABLEI
NUMERICAL TABLE FOR THE TRACY-WIDOM DIST. OF ORDER 1

318 [ 278 [ -1.91 [ -1.27 | -0.59 [ 045 [ 098 [ 2.02

t [ -3.90 ]
|

F(® [ 001 [ 005 [ 010 [ 030 [ 050 [ 070 | 090 | 095 | 0.99

Utilizing the table or numerical method for calculating the
values forF , together with values of N andL, the
threshold %, can be formulated as

_ (N +mLy [ LN MR
"= (\/N—M)z (NML)"

When (4, /
present, otherwise it is assumed that there is no signal in the
band of interest.

It is very intractable mathematically to get theoretical

detection probabilities for the max/min eigenvalue based
spectrum sensing algorithm. Hence, approximated value has

Fo(- PFA)] (17)

Auin)>7,, the primary signal is deemed to be

been obtained using an empirical mode [9]. This
approximation is given for Algorithml as follows
R, = HR H'+R, =HR H'+5’I (18)

A (R (N)) = py+ A, (R (N))
Zwin(R (NN = p,, +0,
P, =P(A, (R _(N))>74,, (R _(N))
% P(Apo (R, (N)) > 7, (pyy +00) = P,
zl_Fl[y1N+N(y1pML -p)lol —#]

In equation (20), according to the ra \?Q_m_m theorem
[12], mand vare -calculated as and
(\/ “1+JML )((1/\/ 1)+ (1/~/ML )

2) Algorithm 2: Energy with min eigenvalue based sensing
(EME)

(19)

Compute the minimum eigenvalue A ;, of the covariance
matrix R (N) in the same way with Algorithm 1. Then,
compute average power of the received signal as

NM -1

T(N)=— 2 |y(m)|

Threshold value 7}, is calculated w1th the inverse gq-function
O as follows

/ 1 N
= |—o™(P _— 21
7 [ MNQ ( FA)+1] (VN —~ML)* el

When (T(N)/A_)>7¥,, the signal is assumed to be
present, otherwise it is expected that there is no signal in the
band of interest.

While the thresholds can be pre-computed based only on N
, Land F,, , there is no need to estimate noise variance
according to the previous measurements. Hence, it can be seen
that these two algorithms are very robust to noise uncertainty.

Similar theoretical difficulties are encountered when
calculating the probability of detection for Algorithm 2.
However, the following numerical expression has been
established [9]

=AT(N)> 7,4, (R (V)
TR (V) 7 TR H)
z}{T >7, [pm +TV(\/N_M)]_[TJJ (22)

oy )50}

JIN
Jie

Due to the approximation, there are some differences
between theoretical and simulation results of the two
algorithms.

(20)

The effects of channel frequency selectivity appear into the
detection probability expressions (20) and (23) through the
eigenvalues. The eigenvalue spread is a metric for the
correlatedness of the sample sequence used in detection.
Naturally, flat signal or noise spectra correspond to
uncorrelated sample sequences, in which case the covariance
matrix approaches a scaled unit matrix and the eigenvalues are



identical. Correlations are introduced to the possible primary
signal spectrum through the characteristics of the transmitted
waveform, e.g., by pulse shaping or channelization filtering.
Additionally, frequency selective channel introduces
correlations (i.e., a non-flat power spectrum) to the received
sample sequence. With non-oversampled signal model, the
waveform generation related correlations disappear if the
signal spectrum is flat within the used signal band. Still the
channel frequency selectivity based correlations may be
sufficient for detecting the primary signal. This idea is tested
in the following through numerical examples.

III. SIMULATION RESULTS

Simple Gaussian signal models which includes both non-
oversampled and 2x-oversampled signal are shown as seen
figure 1. In this figure, the signals are shown for the ITU-R
Vehicular A channel case [11]. In our signal model, the
bandwidth is chosen as 20 MHz. The Vehicular A channel
model has 6 taps the maximum delay spreads is about 2.5 ps.

Power Spectrum Magnitude (dB)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Frequency x10"
Figure 1. Examples non-oversampled and 2x-oversampled spectral models

under Vehicular A channel and AWGN noise.

For realistic Indoor channel model, we use the 16-tap
model with 80 ns rms delay spread such as from [15]. The
third channel model used in this study is the SUI-1 model [11].
This model has 3 Ricean fading taps and 0.9 us delay spread,
and it is clearly less frequency selective than the other two.
These different cases are presented in the following
subsections. Theoretical results with channel effects are
obtained using the model of egs. (9) and (10) for energy
detection with noise uncertainty and eqs. (20) and (23) for
eigenvalue based spectrum sensing. The simulation results, as
well as theoretical results are averaged over 1000 channel
instances.

A. Indoor channel case for both non-oversampled and
oversampled Gaussian signal model

Figure 2 shows detection probabilities of traditional energy
detector and eigenvalue based spectrum sensing with Indoor
channel [15] in the non-oversampled case. The 1 dB noise

uncertainty case is considered as the worst-case scenario in
terms of channel noise variance estimation. The time record
length is 10000 complex samples. With this number of
samples and 1 dB noise uncertainty, eigenvalue based
spectrum sensing has still better performance compared to the
energy detector based spectrum sensing with frequency
selective channel. Similar results are shown for 2x -over-
sampled signal using the same channel instances as in figure 3.
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Figure 2. Detection probability of energy detector and eigenvalue based

spectrum sensing under 1 dB uncertainty using Indoor channel with non-
oversampled signal.
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Figure 3. Detection probability of tenergy detector and eigenvalue based

spectrum sensing under 1 dB uncertainty using Indoor channel with 2x-
oversampled signal.

The actual false alarm probabilities of eigenvalue based
spectrum sensing for both non-oversampled and oversampled
signals are given in figure 4. We notice that the false alarm
probability is independent of SNR, as expected [9, 10]. While
the simulated false alarm probability in the non-oversampled
signal case becomes quite significant, the actual false alarm
probability under oversampled signal model becomes very



small. Very similar performance is obtained also for SUI-1
and Vehicular A channel cases, as can be seen from the
‘floors’ of the detection performance curves. Thus the actual
false alarm probability is not related to channel effects in
eigenvalue based spectrum sensing. The same detection
threshold is used in non-oversampled and oversampled cases.
Based on these results, there is the possibility to reduce the
detection threshold in the oversampled case to improve the
detection performance, while maintaining a realistic false
alarm probability.
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0 i i i i i i i
30 25 20 15 10 -5 0 5 10
SNR for signal

Figure 4. Actual false alarm probability of eigenvalue based spectrum
sensing techniques.

B. Vehicular A channel case for both non-oversampled and
oversampled Gaussian signal model

Vehicular A channel model [11] is applied for both non-
oversampled and oversampled signal models in figure 5 and
figure 6, respectively. The same signal parameters are used as
in the Indoor channel case. Significant performance
differences can be seen due to the difference of channel
models.
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Figure 5.  Detection probability of energy detector and eigenvalue based
spectrum sensing under 1 dB uncertainty using Vehicular A channel with
non-oversampled signal.
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Figure 6. Detection probability of energy detector and eigenvalue based
spectrum sensing under 1 dB uncertainty using Vehicular A channel with
oversampled signal.

C. SUI-1 channel case for both non-oversampled and
oversampled Gaussian signal model

In figures 7 and 8§, the channel model is chosen as SUI-1 [11]
for both non-oversampled and oversampled signal models,
respectively. Comparing the results of non-oversampled and
oversampled signal cases, significant difference of detection
probability can be seen with eigenvalue based spectrum
sensing. In the oversampled signal case, the correlation
between consecutive samples is increased. In case of
traditional energy detector, the detection performance is
somewhat reduced with oversampling due to increased noise
bandwidth.
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Figure 7. Detection probability of energy detector and eigenvalue based
spectrum sensing under 1 dB uncertainty using SUI-1 channel with non-
oversampled signal.
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IV. CONCLUSIONS

We have analyzed the performance of the traditional energy
detector and eigenvalue based spectrum sensing techniques
under different frequency selective channels, the Indoor, ITU-R
Vehicular A and SUI-1 channel models in particular. Actually,
the frequency selective channel can help to increase detection
probability when using eigenvalue or covariance based
spectrum sensing algorithms.

It was seen that max/min eigenvalue approach gives
consistently better detection performance that energy/min
eigenvalue approach. Especially, in simulation based results
with oversampling the difference is significant.

We have seen that eigenvalue based spectrum sensing
clearly exceeds the performance of energy detector with 1 dB
noise uncertainty with Indoor and Vehicular-A channel models,
whereas with SUI-1, the difference is rather small. Using
oversampled signal model in detection clearly reduces the false
alarm probability with eigenvalue based sensing. With SUI-1,
also the detection performance is significantly improved when
oversampled signal is used in eigenvalue based detection,
whereas with Indoor and Vehicular-A channel models, the
detection performance is slightly degraded in the oversampled
case.

The above observations are explained by the fact that SUI-1
is much less frequency selective than the other channel models
used. Thus in this case the channel creates less correlations to
the received signal, and the correlations due to the spectral
shaping of the transmitted signal are much more important in
the eigenvalue based detection than in the more frequency
selective cases.

One related general aspect regarding spectrum sensing is
the following: When the sensing station has a line-of sight
(LOS) connection, the channel can be expected to be mildly
frequency selective, but also the power level is high due to
lower path loss. When the sensing station does not have a LOS
connection, the signal level is lower, but also the channel can

be expected to be highly frequency selective. Thus, in case of
shadowing, the PU signal can be detected using the eigenvalue
based approach without essential limitations due to noise
uncertainty. In case of LOS channel, simple energy detection
based approach might be sufficient.

While Gaussian signal model is used in this study, similar
techniques and similar conclusions can be also applied for
spectrum sensing with other primary systems. In the future
work, to complete the picture, we will consider the effects of
the spectrum sensing using real-life signal models such as
WLAN and Bluetooth. It would be interesting also to quantify
analytically the correlations introduced by the waveform and
channel in different scenarios. Another topic is to apply low-
complexity covariance matrix based methods, instead of the
relatively complicated eigenvalue based approaches.
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Abstract

study using an 802.11-g WLAN scenario.

Multicarrier

Multicarrier waveforms have been commonly recognized as strong candidates for cognitive radio. In this paper, we
study the dynamics of spectrum sensing and spectrum allocation functions in cognitive radio context using very
practical signal models for the primary users (PUs), including the effects of power amplifier nonlinearities. We start
by sensing the spectrum with energy detection-based wideband multichannel spectrum sensing algorithm and
continue by investigating optimal resource allocation methods. Along the way, we examine the effects of spectral
regrowth due to the inevitable power amplifier nonlinearities of the PU transmitters. The signal model includes
frequency selective block-fading channel models for both secondary and primary transmissions. Filter bank-based
wideband spectrum sensing techniques are applied for detecting spectral holes and filter bank-based multicarrier
(FBMC) modulation is selected for transmission as an alternative multicarrier waveform to avoid the disadvantage of
limited spectral containment of orthogonal frequency-division multiplexing (OFDM)-based multicarrier systems. The
optimization technique used for the resource allocation approach considered in this study utilizes the information
obtained through spectrum sensing and knowledge of spectrum leakage effects of the underlying waveforms,
including a practical power amplifier model for the PU transmitter. This study utilizes a computationally efficient
algorithm to maximize the SU link capacity with power and interference constraints. It is seen that the SU transmission
capacity depends critically on the spectral containment of the PU waveform, and these effects are quantified in a case

Keywords: CR; OFDM; FBMG; Filter bank; Spectrum sensing; Energy detector; Spectrum utilization; Loading algorithms;

1 Introduction

One of the major challenges in cognitive radio (CR) op-
eration is to utilize the available whitespace with min-
imal interference to the primary or prioritized secondary
transmission systems [1]. Several spectrum sensing tech-
niques have been proposed, e.g., in [2-5] to facilitate CR
operation. Especially, energy detector-based spectrum
sensing algorithms have been widely considered due to
low computational complexity. On the other hand, the
fading channel capacity has already been studied from
an information theoretic perspective, e.g., in [6,7] in
terms of resource allocation. Recently, the secondary
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@ Springer

user (SU) capacity has been widely studied. The SU
channel capacity for additive white Gaussian noise
(AWGN) channels under different power constraint is
studied in [8]. The effect of various types of fading chan-
nels on the CR capacity has been studied in [9] under
optimal power allocation strategy for the CR and sub-
jected to an interference power constraint at the co-
existing primary. Further, [10] discusses the effects of
peak power and average interference power constraints
on the outage capacity. In [11], the ergodic capacity, the
delay-limited capacity, and the outage capacity of the CR
in block-fading channels under spectrum sharing are
discussed.

In this paper, we investigate two important features of
the cognitive radio. We begin with the spectrum sensing
function and later study the spectrum utilization

© 2014 Dikmese et al, licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.
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function implementing optimized resource allocation
under power and interference constraints. Instead of
elaborate spectrum sensing techniques, such as cyclosta-
tionary and eigenvalue-based methods [2,3], energy
detector-based spectrum sensing is utilized. This is moti-
vated by subband-based energy detector's capability to
implement the needed spectrum analysis functions for
identifying the available spectral slots and for estimating
the signal-to-interference-plus-noise (SINR) ratios at
subcarrier level for resource allocation purposes.

For a CR system, multicarrier modulation techniques
are generally better suited as they are spectrally more ef-
ficient than single carrier systems and have the flexibility
to allocate resources to the available spectral gaps and
among different users to maximize system throughput.
There are various ways of improving the spectral con-
tainment of multicarrier waveforms, including methods
to suppress the strong side lobes of the orthogonal
frequency-division multiplexing (OFDM) spectrum [12-14].
Filter bank multicarrier (FBMC) is another multicarrier
modulation scheme which has significantly reduced
spectrum leakage compared to the cyclic prefix-based
OFDM systems [15]. Also, the analysis filter bank (AFB)
module of an FBMC receiver can be easily used for
spectrum analysis purposes [15-22].

This paper includes a brief summary of our earlier
studies concerning simple energy detection-based wide-
band multichannel spectrum sensing techniques for
identifying the spectrum holes, considering the 2.4-GHz
ISM band as a case study. We apply an AFB-based
energy detector, which averages the subband sample en-
ergies. By this way, multiple center frequencies, band-
widths, and multiple spectral gaps can be identified
rapidly, efficiently, and flexibly for potential use by the
CR. A similar fast Fourier transform (FFT)-based scheme
is considered as a reference.

At the resource allocation stage, the transmit power of
the subcarriers must be adjusted according to the chan-
nel state information (CSI) and the location of subcar-
riers with respect to the primary user's (PU) spectrum.
In [23], an optimal and two sub-optimal power loading
algorithms are developed. These algorithms use La-
grange formulation which maximizes the downlink cap-
acity of the CR keeping the interference to the primary
transmission below a threshold, without considering the
total power constraint. In [23,24], the spectral hole and
the signal-to-noise (SNR) are fixed to simplify the model.
In [25], a low-complexity suboptimal algorithm is pro-
posed. The algorithm gives maximum power to each
subcarrier based on the results from conventional water
filling and then modifies these values by applying power
reduction algorithm in such a way that the interference
constraint is satisfied. In [23,25], the used signal models
are closer to the ideal signal model, e.g., assuming fixed
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spectral hole bandwidth, instead of a realistic system
model. In reality, the spectral hole bandwidth varies with
the SNR. A proper system model should include also a
practical power amplifier model. Our study focuses on
the missing aspects of these studies.

The optimal solution which maximizes the CR link
capacity under both transmission power and interference
constraints requires high computational complexity, and
it is unsuitable for the practical applications. Low com-
plexity algorithms are proposed in [25,26]. However, in
these methods, the interfered subcarriers are deactivated
without considering optimized power and bit loading
based on each subcarrier's SINR. Such optimization can
be carried out using the power interference (PI) algo-
rithm [27,28]. The resource allocation method utilizes
the results of spectrum sensing in an efficient way, so
there is interdependence between the spectrum sensing
and spectrum allocation functions, which has not been
addressed in earlier work. We study this interdepend-
ence, focusing on its effects on efficient utilization of the
sensed spectrum.

The main contributions of this study are listed as
follows:

e We have generalized the study for realistic signal
models which can be applied to any multicarrier CR
system.

Until now, simplistic CP-OFDM signal models have
been used as the PU and CR signal models for
spectrum allocation algorithms [23-26,29-32]. Except
for [27,28], CP-OFDM has also been used for the CR.
The primary knowledge we assume about the PU
waveform is its transmitted power spectral density
(PSD) and the receiver selectivity mask; otherwise,
there are no limitations regarding the PU signal
model. In our case study, we select the PU waveform
either as CP-OFDM following the 802.11-g standard
or an FBMC waveform with similar parameterization.
Furthermore, a nonlinear transmitter power amplifier
model (the so-called Rapp model [33]) is used for the
PU system in order to obtain a realistic model for the
PU spectrum. To the best of our knowledge, this
aspect has not been considered in earlier work. In this
way, we are able to quantify the effects of the PU
spectral characteristics on the SU capacity. It is seen
that the nonlinear power amplifier-induced spectral
leakage (regrowth) effect, which is present in any
radio communication system, has a significant impact
on the SU capacity. As for the SU waveform, we have
chosen the FBMC scheme for the case study because
it has the sharpest spectrum, reaching the maximum
spectral containment among the alternatives.
However, generic multicarrier model is included in
the overall system model, and the analysis and
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optimization methods are readily applicable for any
multicarrier waveform for the CR.
Furthermore, previous studies on CR resource
allocation in [23-25,27-32] consider only flat fading
channel models. However, the performance of
spectrum sensing and resource allocation is affected
significantly when frequency-selective fading channel
is assumed. In our study, all the links within/between
PU and SU systems associated with spectrum
estimation and spectrum utilization are modeled as
frequency selective block fading channels.

e Combined spectrum sensing and resource allocation
algorithms for cognitive radios.
There has been no previous work addressing the
combined spectrum sensing and resource allocation
algorithm in the literature. Especially, different types
of spectrum sensing algorithms have been applied
without considering any particular spectrum
utilization techniques to make efficient use of the
available spectral holes [1-5]. Similarly, resource
allocation algorithms have only been applied without
any spectrum sensing information so far
[27-32,34,35]. Constant number of available
subbands has been considered in the spectral hole.
However, the variation of the PUs' power level
affects the actual number of available subbands, and
this depends critically on the spectral characteristics
of the PUs. Hence, spectrum sensing plays a crucial
and enabling role for spectrum utilization process.
The sensing function identifies the frequency band
which is considered for allocation, but it is also
needed for detecting possible other PU's starting to
operate in the spectral gap during the SU operation.
For this purpose, we assume that there are gaps in
the CR transmission. In our study, efficient
spectrum utilization methods are investigated and
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applied for maximizing the cognitive radio's
throughput based on robust spectrum sensing
results. It turns out that the PI algorithm is
applicable in our scenario, with all the mentioned
generalizations of the system model. The main
contribution of this study is evaluating the SU
performance with the combination of energy
detection-based wideband sensing algorithm and the
PI algorithm for spectrum utilization in a realistic
cognitive radio scenario.

The rest of this paper is organized as follows. In
Section 2, the signal models for the CR and the primary
transmission system, along with the mutual interference
model between the CR and primary are explained. The
problem definition for this study is given in the same
section. In Section 3, FFT- and AFB-based wideband
spectrum sensing is reviewed considering the spectrum
analysis aspects related to the multicarrier techniques.
Section 4 develops the algorithms for spectrum alloca-
tion. Section 5 gives the numeric and graphic results ob-
tained through simulations. Finally, some concluding
remarks are given about the performance of these
methods, along with discussion of possible further stud-
ies in this area.

2 Signal models and problem definition

As shown in Figure 1, the CR system works in the same
band of frequencies with PU networks. Hence, there will
be some interference between different PUs and CRs.
The PU and CR systems are assumed to use the time-
division multiplexing/duplexing (TDMA/TDD) princi-
ples, i.e., each system is using a fixed frequency slot for
communications between all the stations. While the CR
system has the capability to operate in other parts of the
ISM band, we focus on the situation where the CR

Figure 1 System model for spectrum sharing in CR.
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system has identified a spectrum opportunity in the
mentioned frequency slot and is initiating communica-
tions in it. The primary purpose of the spectrum sensing
function is to detect possible other transmissions or
reappearing PUs in the spectrum gap. It is also assumed
that the stations of the CR systems have means to ex-
change control information with each other, e.g., using a
cognitive control channel [36].

2.1 Signal model for PU

In this study, we focus on a specific spectrum use sce-
nario with two active primary radio systems which are
operating in the 2.4-GHz ISM band, using either as
802.11 g-based WLAN waveforms or 802.11 g-like
EBMC signals. The WLAN and FBMC spectra consid-
ered here use third and eighth channels as illustrated in
Figure 2. The signals do not overlap each other, and an
8-MHz spectral hole is available between the two PU
spectra. Both active signals are assumed to have the
same power level, normalized to 0 dB in our scenario.
This means that the spectrum leakage effects on both
edges of the white space are equally critical for the CR
system performance.

The Rapp power amplifier (PA) nonlinearity model
[33] is considered as seen in Figure 2. Using the complex
I/Q baseband model, the amplitude function at the PA
output is given as follows:

KA
(1+ [xA/Al)?)

&4 = (1)

1/2p

where A is the input amplitude, « is the small signal gain,
Ag is the saturated amplitude, and p is the amplitude
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smoothness factor of the transition from linear to satu-
rated amplitude range. Three cases with respect to the PA
nonlinearity are considered in this study. No regrowth is
the ideal case, and the Rapp PA nonlinearity with two dif-
ferent back-off values of 15 dB (modest case) and 5 dB
(worst case) is illustrated in Figure 2. Parameters of the
Rapp model have been chosen according to the practical
model for PU signals based on [37]. In our study, we use
k=1, p=3, and Ap=1 as Rapp model simulation
parameters.

The 802.11-g-based WLAN signal specifications allow
the spectral regrowth in this scenario to be at the level
of about -20 dB, i.e., close to the worst case model. We
investigate how the CR system performance is affected
by improved spectral containment of the PU signal
through enhanced multicarrier waveform and/or im-
proved power amplifier linearity. These effects for both
sensing and utilization functions will be addressed in the
study.

2.2 Signal model for cognitive radio

In this work, the CR waveform is chosen as FBMC due
to its high spectral containment. Offset quadrature amp-
litude modulation (OQAM) is used for FBMC-based
CRs to achieve orthogonality of subcarriers, as discussed
in [18,19,38]. In Figure 1, the channels /1y and %, are the
channels from a cognitive transmitter to a primary re-
ceiver and a cognitive receiver, respectively. Channels /,
and /3 are from two different primary transmitters to
the cognitive radio receiver. The channel estimate for /1;
is made available by usual channel estimation procedure
of the CR system. The knowledge about channel %, can
be obtained through the channel reciprocity in TDD
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operation. Here, the channel amplitude response is suffi-
cient and the phase response is irrelevant. The ampli-
tude responses of channels /4, and /3 are first obtained
through the spectrum sensing function of the CR device
and later on, during secondary transmission, through the
SINR estimation function of the CR device. The effects
of primary spectral dynamics at the edges of the white
space play an important role both in spectrum sensing
and in spectrum allocation. This dependency is captured
by the analytical models and revealed by the simulations
to be presented later.

For FBMC/OQAM, a signal model with real valued
symbol sequence at twice the QAM symbol rate is ap-
plied, instead of complex symbols. The synthesis filter
bank (SFB) for transmitter and AFB for receiver is de-
signed with this idea in mind. The FBMC-based trans-
mitted signal can be expressed mathematically as

s(n) =D asg(n-lro)e* N (2)

k lez

where {k} is the set of active subbands, [ is the symbol
index belonging to the set of integers, g is the pulse
shape (prototype filter impulse response), and ¢, is a
phase term. The real symbol values, obtained alternat-
ingly as real and imaginary parts of complex QAM sym-
bols, are denoted as a;; and 7o, respectively, is the
corresponding half-symbol duration. Both the real and
imaginary parts of the QAM sequence have zero mean
and equal variances o? = 67 = ¢2/2. The PSD of the

FBMC based CR waveform can be written as

(x)

where G is the frequency response of the prototype fil-
ter with impulse response g(n) with n=0, 1 ..., L-1.
Here, L =KN is the prototype filter length and K is
the overlapping factor (length of each polyphase com-
ponent) while N is the number of subbands. The
prototype coefficients have even symmetry around the
(KN/2)th coefficient, and the first coefficient is zero
[13]. In our study, the prototype filter of the FBMC-
based CR is designed according to the PHYDYAS
model [38], with K=4. Then its frequency response
can then be expressed as

2 2

Pepmc(f) = % Z

k

(3)

L/2-1

IG() =glL/2] +2 Z g[L/2-r] cos(2nfr) (4)

Also, the nonlinear PA model can be straightforwardly
included in the CR signal model and the interference
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models developed below. However, in the numerical
studies of this paper, we consider an ideal FBMC wave-
form for the CR as the focus is on the SU capacity and
its dependency on the PU waveform characteristics.
Generally, good spectral containment is regarded as one
of the key requirements for the CR transmitter. Detailed
evaluation of the performance-complexity tradeoffs for
the CR implementation, including the PA linearity re-
quirements, is a rather complicated issue and is left as a
topic for future studies.

2.3 Definition of the interference problem

According to the above scenario, the CR system coexists
with the primary transmission system in the same geo-
graphical location. The CR transmitter causes some
interference to the primary transmission system, and
similarly, the secondary transmission between two active
PU spectra is exposed to some interference due to the
PUs. The secondary transmission system uses multicar-
rier transmission technique. There are Ng,, subcarriers
in the sensed spectrum hole and the subcarrier spacing
is Af. Since the transmitter and receiver are assumed to
be static or slowly moving, the effect of inter-carrier
interference (ICI) between subcarriers can be ignored.
The primary and secondary transmission systems occupy
contiguous frequency slots. The interference that the CR
produces to each of the primaries is required to be is
less than the maximum interference that can be toler-
ated by the primary, Ith. The spectral distance dpy of a
PU is defined as the frequency separation from the DC
subcarrier of the CR to the center frequency of the PU
(positive for a PU above the upper edge of the gap, nega-
tive for a PU below the gap). The interference to the pri-
mary transmission due to the kth CR subcarrier depends
on the CR subcarrier powers Py and dpy [20]. Fixing the
origin of the frequency axis at the DC subcarrier of the
CR, the interference is given by the equation

kAf+B/2 ,
, [Ho(f)|" Pe@(f ~kAf VY (f ~dpy)df = PrQy
" 2

I(Py) = J )
(5)

Here, Hy(f) is the channel frequency response be-
tween the CR transmitter and a primary receiver. @(f)
represents the subcarrier power spectral density of the
underlying multicarrier technique employed by the CR.
Y(f) denotes the PU sensitivity mask characterizing
the effects of the PU receiver filtering. B denotes the
CR subcarrier bandwidth which is considered signifi-
cant for the interference estimation. Finally, O repre-
sents the combined interference factor for the kth CR
subcarrier.



Dikmese et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:68

http://asp.eurasipjournals.com/content/2014/1/68

The signal-to-interference-plus-noise ratio due to inter-
ference introduced by primary signal to the kth subcarrier
at the receiving CR is given by

2
Pr|H x|
SINR; — . :
Tt | HA POk W (f-de)df
kAf-B/2
_ D
o %, + Jx

(6)
where H,(f) is the channel frequency response between
the primary transmitter and CR receiver. Hy; is the
channel gain between the CR transmitter and the CR re-
ceiver at the frequency of kth subcarrier. This channel
can be assumed to be flat-fading at the subcarrier level.
Ypa(f) is the power spectral density as seen at the output
of the PU's transmitter antenna. This depends on the PU
transmission power and its subcarrier spectrum, as well
as on the spectral regrowth due to the PU power ampli-
fier. O(f) is the CR receiver sensitivity mask characteriz-
ing the CR receiver subband filtering effects. o2, is the
variance of the additive white Gaussian noise.

The power amplifier effects of the secondary transmis-
sion are not considered in our numerical study as they
play no role in the spectrum sensing part and the effect
of PA-related spectrum leakage on the interference to the
PUs is expected to be relatively small. For this reason, the
same @(f) function can be used in (5) for the CR sub-
carrier spectrum and in (6) for the CR receiver sensitivity
mask. However, the developed generic signal model allows
to include also the CR transmitter PA effects by using dif-
ferent CR-related spectral functions in (5) and (6).

The interference models of (5) and (6) assume certain
knowledge about PU characteristics and the channels
between PUs and CRs. Regarding the interference from
an active PU transmitter to a CR receiver in (6), the joint
effect of transmitter power spectrum and the transmis-
sion channel can be estimated by the receiving CR sta-
tion by utilizing the spectrum sensing function. This
information can be communicated through the control
channel to the transmitting CR station for optimizing
the spectrum utilization. Regarding the channel from the
CR transmitter to PU receiver, the knowledge would be
available in a TDMA/TDD-based PU system (like a
WLAN) based on channel reciprocity, if the PU trans-
mission power is known. Of course, for a PU station
which is in idle mode over long periods, such informa-
tion is not available.

3 Filter bank energy detector-based spectrum
sensing algorithms

Energy detector, which is also known as radiometer, is
the most common method of spectrum sensing due to
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its low computational and implementation complexity
[2-5]. Furthermore, it is more generic compared to most
of the other methods as it does not need any informa-
tion about the PU waveform. Subband-based energy de-
tection, using FFT or AFB for spectrum analysis, is in
the focus of this study. Basically, the energy of the re-
ceived signal is compared with a threshold value which
is calculated according to noise variance and desired
false alarm probability in detecting spectral holes.

A block diagram of alternative FFT- and AFB-based
spectrum sensing algorithms is shown in Figure 3. The
subband sampling rate is equal to the ADC sampling
rate divided by the number of FFT/AFB frequency bins.
With subband-wise spectrum sensing method, the sub-
band signals can be expressed as [3]

W (m, k) Ho } )

Y(m, k) = {S(m,k)Hk LW (mk) Hy

where S(m, k) is the transmitted WLAN or FBMC based
PU signals as seen in subband k during the mth symbol
interval with zero mean and variance o%;. When there
are no PU signals (hypothesis H,), the noise samples W
(m, k) are modeled as AWGN with zero-mean and vari-
ance ¢2,. When a PU signal is present (hypothesis H,),
the WLAN- and FBMC-based PU signals can also be
modeled as zero-mean Gaussian distribution with variance
Thyk + O

Time and frequency averaging techniques can be ap-
plied to obtain more reliable decision statistic [3]. The
decision statistics at different frequencies can be ob-
tained with this idea as follows in [39]:

. 1 k+TLy /21-1x—=m 2
T(m k) = LLy I=k-1Ls/2) Zu:m—Lt+l|Y(u’l)|

(8)

In this formula, Lr and L, are the window lengths in
frequency and time domain averaging, respectively. The
output of T (m, k) is passed to a decision device to deter-
mine the possible occupancy of the corresponding fre-
quency band at the corresponding time interval. The
window length in frequency direction is selected based
on the expected minimum bandwidth of the PU signal
or spectrum hole, and then the required time domain
window length can be calculated from the target false

~

’ FFT >+ .12 [»| Timeand Frequency || Decis}on
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WLAN
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|| Time and Frequency |+ Decision
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Figure 3 Block diagram of energy detector with AFB- and
FFT-based spectrum analysis.
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alarm and missed detection probabilities. The basic ap-
proach would be to calculate (8) for a nonoverlapping
set of windows. However, using a sliding window in fre-
quency and/or time direction can also be done with rela-
tively small addition to complexity. Time-domain sliding
window helps to detect rapidly re-appearing PU [4,5]
whereas sliding window in the frequency direction helps
to locate spectrum gaps with unknown center frequen-
cies. Due to the Gaussian distribution of Y(m, k), the
probability distribution function (PDF) of T (m,k) be-
comes approximately Gaussian under H, and H;. [3].

Using Gaussian approximation, it is straightforward to
model the effect of PU transmitter's spectral leakage on
the actual false alarm probability Ppp as

A= (o}, + Lgi(K))

\/%( 0% + Log (k)

Pea(k) = Q

(©)

Here,

S

(k) = | 1H) Pyen e (10)
is the leakage power from the adjacent PU transmitter to
the sensing frequency band between frequencies f; and
fo. H(f) is the channel frequency response from a
primary transmitter the CR receiver. In (9), A is the deci-
sion threshold value which is calculated using a well-
known analytical model from the noise variance estimate
and target false alarm probability Ppa.

The detection probability Pp and threshold value A
can also be expressed as follows:

A- ((Uﬁ, + Iadi(k)) + O%U,k)

Pp(k) =Q
2 (02 + L) + o3y )

(11)

1
th( 02 + Lgi(k)) + (0% + Lg(k))

A= Q! (Pga(k))
(12)

In principle, if there is a reliable estimate of the PU
transmission power and reliable knowledge about its
spectrum shape, then the above analysis could be used
for improving the spectrum sensing at the frequencies
affected by the spectrum leakage. However, this would
be very challenging in practice due to the unpredictabil-
ity of the PA characteristics, and the above model is used
only for the purpose of performance analysis.

For different PU SNR values, different number of empty
subbands, Ng.p, will be detected due to the PU spectral
leakage effects and statistical nature of the spectrum sens-
ing process. The expression (9) can be used for evaluating
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the false alarm probability for different sensing band-
widths in different parts of the spectrum gap.

The spectrum sensing function identifies groups of L,
subbands which are deemed to be available for second-
ary transmissions. In the following stage, the spectrum
utilization function is employed to perform power and
bit allocation to those subcarriers.

4 Spectrum utilization
After nonactive spectrum has been identified, spectrum
utilization becomes an important consideration, when
considering the overall efficiency of the CR system. The
number of available nonactive subbands is the output of
the sensing algorithm, along with information about the
nonactive band edges.

In the multicarrier case, the rate at which transmission
can take place is given by Shannon's capacity

NEEIP Pk
Rer = Y Aflog, <1 + 02) (13)
k=1 k
Npy
op =00+ Y Jki (14)
i=1

where Ji; is the effective interference power contributed
by ith primary to the kth CR subcarrier as given by (6).
Npy is the number of PU's contributing to the interfer-
ence at the receiving CR station. In our case study, Npy =
2, ie., there is one PU adjacent to the lower and upper
edges of the white space. The model could be simplified
by assuming that these PUs affect only the lower and
upper half of the subcarriers, respectively. Py is the trans-
mit power used by the CR for subcarrier k. It is assumed
that the channel changes slowly so that the channel gains,
and consequently /i ;, will be approximately the same dur-
ing each transmission frame. Further, there is no ICI in
the CR reception due to low mobility. The main objective
here is to maximize the capacity as given in (13).

The block diagram of spectrum utilization is shown in
Figure 4. As seen in this block diagram, knowledge
which comes from sensing part is passed to spectrum
utilization part to obtain better capacity.

SNR & Spec. Power Spec. Bit Rate
4 éé’ edges (FFTy|_ Scaling (FFT) le Utili. |7] Dist.
0% 5 |SNR & Spec. Power P"W;er Spec. Bit Rate
=] edges (AFB)|__Scaling (AFB) Utili. Distr.

Figure 4 Block diagram of spectrum utilization with alternative
AFB- and FFT-based spectrum analysis schemes.
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The optimization problem can be formulated as fol-
lows [27]:

N€3P Pk
Rcr = max Aflo (1 + —> 15
e M o145 1
Subject to
Ngap
ZP]( < Pr (16)
k=1
Ngap
ZPka < Iy (17)
k=1
Pi 2 0,Vk € {1,2,....Ngyp } (18)

This is a convex optimization problem, and the La-
grangian can be written as

Ngap P](
Ger = Af log <1 + —)

Ngap Ngap (19)
_AOZ(Pk—PT)_Al (PeQu~Im) + /bzpk
k=1 k=1

The Karush-Kuhn-Tucker (KKT) conditions [27] can
be written as

P> 0,Vk €{1,2, ....,Ngp }, (20)
1 2 0,Vj €{0,1,2} (21)
NEaP
(Pe-Pr) 20 (22)
k=1
M (PeQp~I) = 0 (23)
Ngap
1) P20 (24)
k=1

The optimal solution to the problem above as given in
[27] is as follows:

1 21"
Pi=|— K 25
. LOQk +Mh hkd 25)
where [y]" = max(0, ). The optimal solution has high
computationally complexity; hence, a lower complexity
algorithm called the PI algorithm which divides the
problem into stages has been developed [27]. First, the
interference constraint is ignored, keeping only the total
power constraint and this leads to the classical water fill-
ing solution

27+
pk’:[ i}

] (26)
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where y is the water filling level. When the total power
is ignored the solution [27] becomes

, 1 27+
Pk = |: 7 _&:|
AoQy B

The value of 1y can be obtained by substituting (27)
Ngap

into the constraint ZP/(/QI( = Iy, to get
k=1
)l/o _ ’N gapJ’
==
I + (O oy /)
i

(27)

(28)

The above solution is optimal only when the total
power is greater than or equal to the power under the
interference constraint. Mostly, in practice, this condi-
tion is not true and this is the motivation for the PI al-
gorithm. Detailed discussion and its comparison to
various other algorithms for spectrum utilization are
available in [27].

In this study, the PI algorithm is found to be directly
applicable in case of the developed greatly enhanced sys-
tem model for the secondary usage scenario. PI algo-
rithm has four stages: maximum power determination,
power constraint, power budget distribution, and power
level re-adjustment [27].

5 Simulation results

In our test scenario, the CR's spectrum sensing function
has identified a potential spectral gap between two rela-
tively strong PUs, as illustrated in Figure 2. We should
also consider the possibility that there is another, rela-
tively weak PU signal, using one of the WLAN channels
4...7, and fully or partly occupying the gap between
channels 3 and 8. Thus, one purpose of spectrum sens-
ing is to secure that there are no other PUs active in the
considered gap. We assume that there are no additional
signals within the spectral gap, but the spectrum sensing
makes anyway false alarms. Especially close to the edges
of the gap, the spectrum leakage from the PUs raises the
false alarm probability. This effect depends on the power
level (SNR) of the PUs. In our case study, the spectrum
sensing and CR transmissions use a smaller subband
spacing of 81.5 kHz, instead of the 325-kHz subcarrier
spacing of WLANS, in order to reduce the effects of fre-
quency selective channels. Targeting at -5 dB SNR in
spectrum sensing, false alarm probability of 0.1, and de-
tection probability of 90%, the required sample complex-
ity is around 250 complex samples. The time and
frequency averaging lengths are chosen as 50 and 5, re-
spectively. The spectral hole starts from the side lobes of
WLAN 1 signal and ends at the side lobes of WLAN 2
spectrum. The available number of subbands/bandwidth
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of the spectrum is obtained after subband-based energy
detection, using FFT or AFB for spectrum analysis.
Then, the initial SINR estimation and spectrum allocation
is done based on the sensing results. Later on, the SINR
estimates are updated during SU system operation to track
the changing radio environment under frequency-selective
fading channel conditions. It is assumed that the spectrum
sensing is done in regular intervals during gaps in the CR
transmission and this helps in detecting reappearing PU
signals in the spectral gap.

It should be noticed that in the considered scenario,
there is no way for the CR system to determine the use-
ful received power level at the PU receiver. Therefore,
we choose the interference threshold to be 6 dB below
the thermal noise level, in order not to introduce signifi-
cant performance loss in case the primary receiver is op-
erating close to the sensitivity level (i.e., minimum
received power level expected to be detectable). To de-
termine the threshold value, we assume a simplified sce-
nario, where the path losses of channels /4, and /; are
normalized to 1, i.e., the average power gains of channels
ho and h;, denoted as Gy and G, are equal to one. Fur-
ther, we assume that the average SNR of the CR receiver
is 10 dB. Then, the interference threshold is -16 dB in
reference to the total CR transmission power Pg or Iy, =
P7/40. More generally, relaxing the normalization of ki,
and /1, this can be expressed as [y, = G P7/(40G).

The bandwidth of the detected spectral hole is shown
in Figure 5 as a function of the average PU SNR at the
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CR RX. The spectral leakage due to primary users' PA
nonlinearity is affecting significantly on the width of the
detected hole. In this respect, we consider three different
cases, as explained in Subsection 2.1: ideal PA, modest
PA nonlinearity with 15 dB back-off, and worst case
nonlinearity with 5 dB back-off. All PU and CR channels
ho, hy, hy, and h3 use frequency-selective channel models
with 90 ns delay spread and 16 taps [40]. We consider
the combinations of two PU waveforms, CP-OFDM- and
FBMC-based WLANS, as well as two spectrum sensing
techniques, based on FFT or AFB. The CR waveform is
always FBMC.

From Figure 5, it can be easily seen that AFB-based
spectrum sensing is able to detect the unoccupied
spectrum close to strong primary users much better
than FFT-based sensing. FBMC-based transmission re-
sults in much better spectral containment, which can be
effectively utilized by AFB-based sensing. However, even
with relatively modest power amplifier nonlinearity, this
benefit of FBMC waveform is compromised.

In Figure 6, the actual false alarm probability within
the spectral hole is shown as a function of the active
PU's SNR for different levels of spectral regrowth. The
results indicate the probability of the 5 subband groups
to be detected to be occupied.

The efficiency of the utilization of the 8-MHz white
space by SU in between two active PUs is shown in
Figure 7 versus the PU SNR. In this figure, perfect CSI is
considered for the CR channel, both for CR channel /;

Bandwidth of spectral hole (MHz)

—o— FFT, OFDM
—&— FFT, FBMC | ]

—O— - AFB, OFDM | |
—0- - AFB, FBMC

0 3 i i i

-20 -10 0 10 2 30 40 50 60

Primary User SNR

Figure 5 Average bandwidth of the detected spectral hole with target Pra = 0.1. Using sample complexity of 250 samples under frequency-
selective channel model for (a) ideal model, (b) Rapp PA with 15 dB back-off as the modest case, (c) Rapp PA with 5 dB back-off as the worst
case. Different combinations of FFT/AFB-based sensing and OFDM/FBMC based PU waveforms.
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False Alarm Probability

A T T T
—o— FFT, OFDM
—8— FFT, FBMC

-20 -10 0 10

\

Primary User SNR

Figure 6 Actual false alarm probability for target Py = 0.1. Time record length of 50 and sensing bandwidth of 5 subbands under frequency
selective channel model for (a) ideal model, (b) Rapp PA with 15 dB backoff as modest case, (c) Rapp PA with 5 dB backoff as worst case.
Different combinations of FFT/AFB based sensing and OFDM/FBMC based PU waveforms.

—O— AFB, OFDM
—O0- - AFB, FBMC

L L Il L

20 30 40 50 60

equalization and in the PI algorithm for resource alloca-
tion. Perfect knowledge of the amplitude response of
channel /1, is also assumed, while channels /1, and /3 are
known from spectrum sensing results. The subband-
wise noise + interference estimates are obtained using

time filtering length of 50. According to FFT- or AFB-
based spectrum sensing results, a number of subbands
are left empty in the spectrum utilization phase. The
power of these occupied subchannels is reallocated to
the other subbands that can be used by the CR. The

N w &>
T

Capacity (Bits/s/Hz)
N

0
4 : :

—o— FFT, OFDM
3t —&— FFT, FBMC ||
ol ~O— - AFB, OFDM ||

—0- - AFB, FBMC
i i
0 Il Il
-20 -10 0 10 20 30 40 50 60

Primary User SNR

Figure 7 Capacity of a CR in a spectral gap between two PUs versus PU SNR. Pl algorithm used for power allocation (a) Ideal model,
(b) Rapp PA with 15 dB backoff as the modest case, (c) Rapp PA with 5 dB backoff as the worst case. Different combinations of FFT/AFB-based

sensing and OFDM/FBMC-based PU waveforms.
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power allocation is done utilizing the PI algorithm, and
the resulting capacity, in terms of bits/s/Hz, is shown in
Figure 7. The limitations of FFT-based spectrum sensing
can again be clearly seen from the results, whereas AFB-
based sensing is able to identify gaps between relatively
strong PU signals. Regarding the transmission waveform,
FBMC has clear benefit due to better spectral contain-
ment, if the effects of power amplifier nonlinearities can
be kept at a modest level. As expected, the capacity is
proportional to the available bandwidth in the gap, i.e.,
there is a clear connection between the results of
Figures 5 and 6. The resource allocation algorithm (i)
optimizes the performance with frequency selective
channels in the presence of spectral leakage from the
strong PUs and (ii) secures that the interference leakage
from the CR transmission to the primaries is at an ac-
ceptable level.

6 Conclusions

We have studied the effects of combined spectrum sens-
ing and spectrum utilization for FBMC-based cognitive
radios with realistic signal model under frequency-
selective fading channel conditions. Firstly, the perform-
ance of energy detection-based spectrum sensing
technique was analyzed using both the FFT and filter
bank-based spectrum analysis methods for both WLAN
and FBMC signal models. Then, the utilization of dy-
namically identified spectral holes with spectrum alloca-
tion algorithms, subject to power and interference
constraints, was investigated. Through this study, the ef-
fect of PU waveform's spectral containment on the CR
transmission capacity was revealed. Here, we considered
the choice between OFDM and FBMC primaries, to-
gether with the effect of spectral regrowth due to power
amplifier nonlinearity.

In terms of the spectrum sensing performance, AFB
has clear benefits due to much better spectral contain-
ment of the subbands. One important benefit of FBMC
as a transmission technique in CR systems is that it can
utilize narrow spectral gaps in an effective and flexible
way, even in the presence of strong primaries at the adja-
cent spectral slots. This is due to the excellent spectral
containment properties of the FBMC system. Additionally,
an FBMC receiver can use the AFB for high-performance
spectrum sensing with no additional complexity.

The utilization of the sensed spectrum can be opti-
mized by using proper spectrum allocation algorithms.
The PI algorithm has relatively low complexity, and it
improves the capacity of the CR system as compared to
the simple water filling-based spectrum allocation. One
of the main observations of this work was that the PI al-
gorithm can be directly utilized with the developed
highly enhanced and realistic CR system model. The sys-
tem model accommodates frequency-selective channel
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models for all the associated transmission links between
PUs and SUs, as well as arbitrary transmitted power
spectra and receiver frequency responses. Because of the
above features, a FBMC-based CR system achieves
higher capacity in comparison with traditional WLAN-
based system. This increase in capacity can be attributed
to the efficient use of the available spectrum and very
small interference introduced to the primary transmis-
sions at adjacent frequencies.

One of the important aims of this study was to under-
stand the interdependence of the spectrum sensing and
the spectrum utilization parts. It can be seen that in-
creased false alarm probability has a direct effect on the
available spectrum, and hence, it heavily influences the
spectrum utilization. The PU power amplifier nonlinearity
influences the sensed secondary spectrum introducing
false alarms, hence lowering the CR system's spectrum
utilization. It was demonstrated that, with heavy power
amplifier nonlinearity, the FBMC-based primary is no
better than the OFDM primary in what comes to the
available capacity for secondary usage in the nearby
frequencies.

In the numerical studies of this paper, we considered
an ideal FBMC waveform for the CR, without consider-
ing the PA nonlinearity effects, since the focus is on the
SU capacity and it dependency on the PU signal character-
istics. Generally, good spectral containment is regarded as
one of the key requirements for the CR transmitter. Also,
the nonlinear PA model can be straightforwardly included
in the developed interference models. Detailed evaluation
of the performance-complexity tradeoffs for the CR imple-
mentation, including the PA linearity requirements, is a
rather complicated issue and is left as a topic for future
studies.
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Abstract—Multicarrier waveforms have been commonly
proposed as strong candidates for cognitive radio (CR) due to
their high spectrum efficiency, flexibility in resource allocation
and commonality of signal processing for spectrum sensing and
spectrum utilization. OFDM based 802.11 Wireless Local Area
Network (WLAN) technologies are good candidates as CR
waveforms. However, the OFDM based systems have significant
limitations as CR due to their limited spectral containment,
which degrades the performance in determining the free spaces
and in coordinating the spectrum usage. Therefore, methods for
suppressing the spectral sidelobes of OFDM are considered in
this study. In particular, a combination of edge windowing and
cancellation carrier techniques is applied for sidelobe
suppression. In this study, such an enhanced OFDM scheme is
compared with traditional OFDM and filter bank based schemes
in spectrum sensing and spectrum allocation, considering also
the spectral leakage effects appearing in practical WLAN
devices due to power amplifier nonlinearity.

Index Terms— cognitive radio, FFT, filter bank, enhanced
OFDM, edge windowing, cancellation carrier, spectrum sensing,
spectrum utilization, loading algorithms.

L INTRODUCTION

The usage of wireless communication devices is growing
exponentially and they are widely produced all around the
world. One of the important challenges in maximizing the
efficiency of the spectrum use is to improve the interference
control between different systems/users [1] . Especially, the
2.4 GHz ISM band is freely available and hence used by
various kinds of wireless systems due to the global
availability. To reduce interference and better utilize the
spectrum, cognitive radio (CR) and advanced signal
processing techniques for efficient spectrum use have been
studied extensively [2], [3], [4] and [5].

Spectrum sensing is an important part of CR applications.
It is used for identifying spectrum holes in an efficient way.
With reliable spectrum information, a CR can provide a non-
interfered reliable communication. Repeated monitoring and
cooperation with other users is necessary to obtain reliable
spectrum information due to varying channel conditions and
radio scene [6].

Most of the recent wireless communication standards have
preferred to use cyclic prefix based CP-OFDM techniques due
to its reliable and robust performance and simplicity of the
signal processing functions on the transmitter and receiver
sides. CP-OFDM is the most well-known multicarrier
technology, since it is adopted in many popular standards,
e.g., WIMAX, 3GPP LTE, 802.11a/g/n, and DVB. However,
also alternative multicarrier techniques have been studied
increasingly in the literature to get rid of spectral leakage
which comes from the sidelobes. Especially, enhanced OFDM
based techniques have been realized to have various potential
benefits in the CR context. Hence, various enhancements are
suggested in the literature improving the spectral efficiency of
OFDM scheme. An interesting enhancement for OFDM
model is the combination of edge windowing technique and
cancellation carrier techniques [7], [8], [9], [10] and [11].

Wideband energy detector based multichannel spectrum
sensing techniques are considered in this paper. By averaging
the output samples of a filter bank based spectrum analyzer
simultaneously for multiple center frequencies and
bandwidths, multiple spectral gaps can be tested and
identified rapidly in an efficient and flexible way.

As a second step, efficient spectrum utilization is
important in maximizing the cognitive radio’s throughput
after the spectrum sensing process. The performance of the
spectrum utilization can be improved with proper loading
algorithms [12], [13] and [14]. Loading algorithms require
knowledge of the channel. The channel state information
(CSI) gives this information to the transmitter when there is a
feedback from the receiver. The transmit power and/or the
data rate can be adapted at the transmitter according to the
CSI. The adaptation algorithms use commonly the water-
filling principle. The water-filling solution can be thought of
as the curve of inverted channel signal to noise ratio (SNR)
being filled with energy to a constant line. There are two
different variations of these algorithms, rate adaptive and
margin adaptive [15]. While using these algorithms, it is
common to assume that the channel is quasi-static. Therefore
once the allocation of bits and energy is done at the beginning
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of the transmission, it can be maintained until a new set of
CSI is made available.

Here, we consider maximizing the data rate of a CR
operating in a spectral hole. The secondary transmission
power is controlled adaptively. Hence, the interference
towards the primary is kept to minimum. To meet this goal,
we choose the rate adaptive algorithm in this study. The total
data rate of the CR is maximized when the achievable rate for
each subband is maximized constraint on the total energy that
is allowed for the CR transmission symbols without causing
any substantial increase in the interference [15].

In Section 2, traditional and Enhanced OFDM based
WLAN signal models are given. FFT and analysis filter bank
(AFB) based spectrum sensing is reviewed, considering the
spectrum analysis aspects related to the multicarrier
techniques in Section 3. An efficient spectrum utilization
model will be presented in Section 4. Section 5 presents the
simulation results for the considered radio scene. Finally,
some concluding remarks are presented about the
performance of these methods.

IL. TRADITIONAL AND ENHANCED OFDM BASED
WLAN SIGNAL MODELS

Even though CP-OFDM is the most well-known multicarrier
technology, enhanced OFDM based WLAN signal model can
be used to overcome the spectral leakage problems. Basically,
each OFDM subcarrier is expressed mathematically by a
sinc function due to the rectangular shape of the CP-OFDM
symbol in time domain. Accordingly, the spectrum of the
OFDM symbol can be expressed as follows

s(=1"% xksinc{n (f —%H (1)

where {xo,xl, Xy } are the input samples to the IFFT
with the block of size N T 1is the useful symbol duration,

IFFT > “u
T. is the total CP-OFDM

sinc=sin(zx)/ 7x.

To improve the spectral efficiency of OFDM scheme, a
combination of two techniques is used. The combination
utilizes the edge windowing scheme, which is a special form
of time domain windowing [8]. Edge windowing divides the
subcarriers in several groups, usually two: edge group and
inner group. The edge group contains the subcarriers around
the edges where long window and short CP are utilized. Other
subcarriers are contained in the inner group, where short
window and long CP are applied. This technique introduces a
controllable Intercarrier Interference/Intersymbol Interference
(ICI/ISI), while providing efficient sidelobes suppression.
Edge windowing can be combined with the partial transmit
sequence (PTS) for peak to average power ratio (PAPR)
mitigation in computationally efficient way [11]. However,
time domain windowing technique has insufficient

symbol duration and

suppression performance on sidelobes close to active
subcarriers [7]. Hence, a simplified version of the cancellation
carrier scheme is used in the combination since cancellation
carrier technique has effective suppression performance on
sidelobes near the edges [9]. The simplified cancellation
carrier model reduces the computational complexity
significantly compared to the common cancellation carrier
scheme, especially in non-contiguous scenarios and power
limited cases [10]. The reduction in complexity is produced by
optimizing each edge separately. If the number of used
cancellation carrier on each edge is /' and the number of
optimization points is U, the optimization problem is
expressed in the following way

Q+Ce| )

where Q =[0,,0,,..,0, ] the sidelobes values at the chosen
optimization points and C=[C,,C,,..,C,]| contains the
sidelobes values of the inserted cancellation carriers in the
optimization points. Moreover, the column vector
C,=[C,,CyysCyy || represents the sidelobes values of the
un-weighted cancellation carrier at the optimization points,
and z = [zl,zz,...,zV]T are the cancellation carriers’ weights.
The solution of the problem in (2) is then [16]

min,

z=-C'P 3)

where C' = (CTC)-1 C" is the pseudo-inverse of the matrix
C. In figure 1, the implementation of the combination is
illustrated. The first block of the implementation evaluates the
weight vector z . It is critical to consider the edge windowing
effect in the evaluation of the matrices P and C . Otherwise,
the cancellation carrier technique will be inefficient.
Regarding edge windowing, two IFFTs and two CP&window
blocks are required. The division allows applying different CP
and window lengths on the two groups. The sum of the edge
group branch and the inner group branches results in the
required enhanced CP-OFDM signal.

The combination results in strong suppression of the
sidelobes since the cancellation carrier targets the close
subcarriers and edge windowing suppresses the farther
subcarriers. Nevertheless, the combination needs an extension
to CP-OFDM symbol in order to apply time windowing. To
reach sufficient sidelobe suppression performance, we use two
cancellation carriers at both edges, increasing the total
number of transmitted subcarriers by four.
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Figure 1. Block diagram of enhanced OFDM signal



In our numerical studies, we consider a scenario with two
active 802.11g type traditional or enhanced OFDM based
WLANS signals with similar parameters, as shown in figure
2. The two channels are assumed to have the same power
level, normalized to 0 dB. In this case, the traditional and
enhanced OFDM based WLAN1 and WLAN?2 signals use the
channels 3 and 8, out of the entire 11 different channels. The
channels don't overlap and there is 8 MHz spectrum hole
available in this scenario. Due to the transmitter power
amplifier (PA) non-linearity, spectral regrowth gets
introduced, raising the spectral density in the nearby
frequencies. Considering the worst case situation allowed by
the 802.11g specifications, the power spectrum density in the
gap between the two channels can be at about -20 dBr (20 dB
below the pass-band level) [4]. For realistic model of the
power amplifier effects, we use the Rapp model [17]. The
mentioned worst-case situation corresponds to 5 dB back-off.
We consider also 15 dB back-off for modest spectrum
regrowth, and also the ideal power amplifier case is included
as a reference. The specific enhanced OFDM based WLAN
design has at least 40 dB stop band attenuation. However,
depending on the linearity of the PA, some spectrum leakage
would be present also in the enhanced OFDM based WLAN
case.
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Figure 2. Two traditional and enhanced WLAN signals using 3rd and 8th
WLAN channels in the 2.4 GHz ISM band.

III. FFT AND AFB BASED SPECTRUM SENSING

The schemes of alternative FFT and AFB based spectrum
sensing algorithms are illustrated in figure 3.

FFT L |7 B Time and Frequency Dec1§1on
Filter Device
WLAN
&Enh. 2 Time and Frequency | . | Decision
AFB —r |. . .
WLAN —1 B Filter Device
Figure 3. Scheme of energy detector with AFB and FFT based spectrum

analysis

In the following analysis, it is assumed that the subband
sampling rate is equal to the ADC sampling rate divided by
the number of FFT/AFB frequency bins. With subband-wise
spectrum sensing, the subband signals can be expressed as [3]

W(m, k) H,
Y(m,k)= 4)
S(m,k)H, +W(m,k) H,
where W (m,k) is the channel noise, S(m,k) is the
transmitted primary user (PU) signal which is seen in

subband k of the m” FFT or AFB output block, and H, and
H, denote the absent hypothesis and present hypothesis of a
PU, respectively. When only AWGN noise is present, it can
be modeled as a zero-mean white Gaussian random variable
with variance o, i.e., W(m,k)=N(0, 62) The traditional or
enhanced WLAN 51gnals can also be modeled with a zero-
mean Gaussian variable S(m, k)= N(0,0, °) and G is the
variance (power) at subband & .

The test statistic, which is calculated as the absolute
square of the FFT or AFB output |Y (m, k)| is compared with
a threshold value to decide between H, and H,. The
threshold is calculated from the noise variance, which is
assumed to be known based on previous measurements, and
target false alarm probability. T1me and/or frequency
averaging of the observed |Y (m, k)| values are necessary to
get more reliable decision statistic [3]. Decision statistics at
different frequencies can then be calculated as

k+[L, /2]

8 1 2
Y(m,k)=EZ, wapy /ZJZM - L+1|Y(”’l)| ®)

where L, and L, are the filter lengths in frequency and
time, respectwely The output of Y(m,k) is passed to
threshold function for determining the possible occupancy of
the corresponding frequency band at the corresponding time
interval. Later on, the sensing time index m is dropped and
we use 7, . instead of Y(m,k) to simplify the notations.

The probability distribution functions (PDF) of the time
filter outputs Y, , can be approximated as Gaussian
distributions under H,and H, [3]. The threshold value A
can be calculated from the target false alarm probability and
estimated noise variance. The false alarm probability F., and
detection probability P, can be obtained as follows

i—(a:+a,f)

2 252 ) (6)
(o, +o,) /LL,

= A-o.
By =P, > A1 Hy) =0( -

T ()
Vo, /LL,

PD:PY(&>1|H1):Q(



Iv. SPECTRUM UTILIZATION

Figure 4 shows spectrum utilization process. Proper loading
of each subband maximizes the spectrum utilization by a CR.
As discussed earlier in the introduction part, rate adaptive
loading algorithms are better suited as they offer better control
of the interference from a CR to the PU receivers. By fixing
the energy constraint to a constant, the rate adaptive loading
algorithm maximizes the number of bits per symbol [15]. In
the following, 1/T is the symbol rate, b, is the number of bits
in subcarrier n, and e, is the nth subcarrier energy. Then the
total number of bits in the available set of N parallel
subcarrier symbols is b=y p, . The overall data rate is
R=b/T and the total enérgy of the N parallel subcarrier
symbols is constraint to §, _ ., Where Neyis the total

energy allowed in the systefii under consideration.
The largest data rate is achieved by maximizing the sum

1 I+e *g
b==>"log, | —2—=~
220g2[ T ]

n=1

®)
where g, = |H n|2 / (O’nz) is the subband SNR per unit energy

from the transmitter, |Hn|2is the channel gain of the nth
subband and T'is the gap formulation as given in [15]. anz is
the noise and interference variance in subbandrn, i.e., it
contains both the channel white noise and spectrum leakage

from the WLAN channels.
The optimum loading can be formulated as

N 1 *
max b = %Z log, [—+ e% £y ]
R )
subject :Ne_ =Y e,

n=1

The solution to this optimization problem leads to the water
filling constant K given below [15].

Spectrum Utilization Algorithm

The rate maximization algorithm from [15], which is used in
this work, is given below

1. Sort the sub-channels based on their gains
&1 >g2 >g3 >>gN

2. Find the largest i for which
ey_;=K—-T/gy_;<0with
1 N
K=——|Ne,+1"-> — (10)
N—i =18,

3. Eliminate the negative energies e, < 0and set
€ =0 and b, =0 for those subcarriers. Set
N = N—i,where [ is the number of subcarriers
with negative energies, ¢, = K —T'/ g; <0. The filling
constant is also recalculated for the new N .

4. Compute the water-filling energies e¢,=K-T'/g,
where n= 1,2~~,N*

5. Calculate the data rate for unsorted sub-channels
b, =logy(1+e,-g,)/2 Yn=12- N

The algorithm needs the channel estimate, in the form of
subband gains H,, as well as estimates of the noise and
interference powers onzof the subbands. The estimates are
done using subcarrier wise FFT based energy metric, i.e.,
using (5) with L, =1.

The most important issue in our discussion is the effect of
the spectral leakage in OFDM on the throughput of the CR
utilizing the spectral hole. Due to the good spectral
containment of the subbands in the enhanced OFDM method
proposed here, we expect the spectral leakage to be less
critical in this case.

@ o . SNR & Spec. Spectrum Bit Rate
” gp_ T 7| edges (FFT) || Utilization Distr.
S o8
5 g
" S ™ N SNR & Spect. Spectrum || Bit Rate
5 @ 7 edges (AFB) || Utilization | | Distr.

Figure 4. Block diagram of spectrum utilization with water filling after
spectrum analysis

V. SIMULATION RESULTS

The enhanced WLAN model uses 802.11g parameters.
However, some modifications are needed to apply the
enhanced scheme. Hence, enhanced OFDM appends
additional 0.8 ps to 802.11g symbol duration for applying the
time windowing. 10 subcarriers per edge are contained in the
edge group. In each edge group, the CP and window duration
are 0.4 us and 1.2 ps, respectively. In inner group, CP and
window durations are 1.2 ps and 0.4 ps, respectively.
Regarding the simplified cancellation carrier part, two
cancellation carriers and two optimization points are used on
each edge. Optimization points are located at the first
sidelobes next to cancellation carriers.

In figure 2, we consider a worst-case situation for
secondary transmissions using the spectral hole between the
two WLAN channels which are at equal power levels.
Otherwise the spectral leakage effects would be less critical on
the side of the weaker WLAN channel. Traditional and
enhanced WLAN systems are based on the 802.11g OFDM
standarts. We assume that the spectrum sensing and CR



transmissions use smaller subchannel bandwidth of 81.5 kHz.
The time and frequency filtering lengths are chosen as 50 and
5, respectively, in order to be able to detect other narrowband
systems, like Bluetooth [5] in the spectrum sensing part. For
the power amplifier, the Rapp model [17] is used with
different back-offs. Three cases are considered: no spectral
regrowth due to the PA, modest regrowth at the level of -30
dBr and worst-case regrowth at -20 dBr.

The number of empty subbands both for traditional and
enhanced OFDM based PUs are shown in figure 5 with
different levels of spectral regrowth. Pr4=0.1 is chosen as the
target false alarm probability in the scenario. The ITU-R
Vehicular A channel model is applied for the PU signals.
Enhanced OFDM based PU’s would allow a clearly higher
number of subchannels to be used by the CR system compared
to traditional OFDM-based WLAN, especially in the no-
regrowth and modest regrowth cases. Morever, AFB finds
higher number of empty subbands compared to FFT, in
reliable way due to the sharp subchannel filtering. With the
worst-case regrowth allowed by 802.11g, these differences
dissappear.
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Figure 5.  Number of empty subbands in the spectral hole between traditional
and enhanced WLANSs with target F,, = 0.1, time record length of 50 , sensing

bandwidth of 5 subbands for (a) no spectrum regrowth, (b) modest-case spectrum
regrowth, and (c) worst-case spectrum regrowth

The actual false alarm probabilities versus the active
primary systems’ SNR are illustrated in figure 6. This is
actually the probability that a group of 5 subchannels in the
center of the gap would be detected to be occupied due to
spectral leakage.
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Figure 6.  Actual false alarm probability with target F,, =0.1 with (a) no

spectrum regrowth, (b) modest-case spectrum regrowth, and (c) worst-case
spectrum regrowth

The achievable data rate in the spectral hole between two
active primary channels is seen in figure 7. The model gives
the theoretical maximum data rate, assuming ideal
multicarrier operation for the secondary user (SU)
transmission. The subband-wise signal to interference plus
noise ratio (SINR) estimates are obtained using time filtering
length of 50 samples.
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Figure 7. Available data rate as a function of the PU SNR with 10 dB and 3
dB SNR for the CR with (a) no spectrum regrowth, (b) modest-case spectrum
regrowth, and (c) worst-case spectrum regrowth.

It can be seen that under the high SNR case, the number
of subbands that can be used by the CR reduces in the
traditional OFDM case due to the spectral leakage. An
enhanced OFDM based primary with AFB based spectrum
sensing at the CR would maximize the CR system
performance, while AFB based sensing in the traditional
OFDM case shows significant benefit with low or modest
spectral regrowth.



The benefits of enhanced OFDM based WLAN and AFB
disappear under the worst case spectral regrowth. It can also
be seen that with the used parameters, the spectrum
sensing algorithm and the rate adaptive bit loading
algorithm (which can be applied after the spectrum has
first been detected to be available) end up in using about
the same number of sub bands.

VL CONCLUSION

The performance of energy detection based spectrum sensing
techniques using either FFT or filter bank based spectrum
analysis methods for both traditional and enhanced OFDM
based WLAN signal models were considered in this study.
Furthermore, utilizing the detected spectral holes with water
filling algorithms were analyzed in both scenarios.

The enhanced OFDM waveforms provide -effective
suppression to the spectral sidelobes, which makes it possible
for opportunistic users to make use of the nearby frequencies,
enhancing the effeciency of the overall spectrum usage.
However, a prerequisite for this is improved linearity of the
transmitter power amplifier to reduce the spectral regrowth
effects. Naturally, the same approach allows independent SU
systems to operate side-by-side with minimized guardbands.

The used simplistic SU system model gives the theoretical
maximum data rate, assuming ideal multicarrier operation for
the SU transmission. This model is justified, e.g., for
scenarios where the SU system is used for low-power short
range communication with power levels well below the
WLANSs at reasonable distances from the operating SUs. In
this case it can be safely assumed that the SU’s don’t
introduce interference significantly harming the PU operation,
and the exact SU system model is not critical. More
generally, also the interference introduced by the SU’s
towards the primary receivers should be taken into
consideration in the power allocation context. This is one
important topic for future studies.

In practice, also the SU’s are preferred to use waveforms
with well-contained spectrum, like enhanced OFDM or filter
bank based multicarrier (FBMC) [14]. In general, the
enhanced OFDM techniques result in certain losses of the
spectral efficiency, e.g., due to increased guard interval length
in case of time-domain windowing methods. FBMC schemes
provide  spectrally  well-contained  waveforms  with
minimimum overheads from the spectrum efficiency point of
view. However, an important benefit of enhanced OFDM
schemes, in comparison to FBMC, is high level of
compatibility with the existing OFDM based systems. In fact,
while the proposed spectrum sensing and allocation scheme is
completely independent of the actual waveforms of the
primaries, it makes it possible for the opportunistic users to
effectively exploit the enhanced spectral containment of the
on-going transmissions.

ACKNOWLEDGMENT

This work was partially supported by Tekniikan
Edistamissaation (TES), FP7-ICT project EMPhAtiC under
grant n0.318362, GETA Graduate School and the Finnish
Funding Agency for Technology and Innovation (Tekes)
under the project "Enabling Methods for Dynamic Spectrum
Access and Cognitive Radio (ENCOR2)" in the TRIAL
Program.
REFERENCES

[1]1 L Mitola, J. and J. Maguire, G. Q., “Cognitive radio: making
software radios more personal,” IEEE Personal Commun.
Mag., vol. 6, no. 4, pp. 1318, Aug. 1999.

[21 Y. Zeng, Y.C. Liang, A. T. Hoang, and R. Zhang, “A
Review on Spectrum Sensing for Cognitive Radio:
Challenges and  Solutions,” EURASIP  Journal. on
Advances. in Sig. Proc, vol. 2010, pp. 1-15, Jan. 2010.

[3] T. Yucek and H. Arslan, “A survey of spectrum sensing
algorithms for cognitive radio applications,” IEEE
Communications Surveys & Tutorials, vol. 11, no. 1, pp. 116—
130, March 2009.

[4] S. Dikmese, M. Renfors and H. Dincer, “FFT and Filter Bank
Based Spectrum Sensing for WLAN Signals,” in Proc.
ECCTD2011 conf., Linkoping, Sweden, August 2011.

[51 S. Dikmese and M. Renfors, “Optimized FFT and Filter Bank
Based Spectrum Sensing for Bluetooth Signal” in Proc.
Wireless Communications and Networking Conference
(WCNC 2012), Paris, France.

[6] S. M. Mishra, A. Sahai, and R. W. Broderson, “Cooperative
sensing among cognitive radios,” in Proc. ICC, Istanbul,
Turkey, Jun.11-15, 2006.

[71 T. Weiss, J. Hillenbrand, A. Krohn, and F. Jondral, “Mutual
interference in OFDM-based spectrum pooling systems” in
Proc. (VTC 2004), May 2004.

[8] A. Sahin and H. Arslan, “Edge Windowing for OFDM Based
Systems” Communications Letters, IEEE, vol. 15, no. 11, pp.
1208-1211, 2011.

[9] S. Brandes, I Cosovic, and M. Schnell, “Sidelobe
suppression in OFDM systems by insertion of cancellation
carriers” in Proc. (VTC 2005), September, 2005

[10] A. Loulou and M. Renfors, “Effective Schemes for OFDM
Sidelobe Control in Fragmented Spectrum Use” in Proc.
(PIMRC 2013, London, UK, Sep. 2013.

[11] A. Loulou, S. Afrasiabi Gorgani, and M. Renfors, “Enhanced
OFDM Techniques for Fragmented Spectrum Use” in Future
Netw., Lisbon. Portugal, July, 2013.

[12] J. Cioffi, “Digital Communication: Signal Processing” at
Standford University, Standford, California, USA, 2000.

[13] S. Dikmese, S. Srinivasan and M. Renfors, “FFT and Filter
Bank Based Spectrum Sensing and Spectrum Utilization for
Cognitive Radios” in Proc. (ISCCSP 2012), Rome, Italy, May
2012.

[14] S. Srinivasan, S. Dikmese and M. Renfors, “Spectrum
Sensing and Spectrum Utilization Model for OFDM and
FBMC Based Cognitive Radios” in Proc. (SPAWC 2012),
Izmir, Turkey, June 2012.

[15] K. Baamrani, A. Ouahmana, and S. Allakib, “Rate adaptive
resource allocation for OFDM downlink transmission” AEU —
Int. Jour. of Elec.and Comm.Vo. 61, Issue 1, 2 Jan. 2007.

[16] G. H. Golub and C. F. Van Loan , “Matrix computations (3rd
ed.)”. The Johns Hopkins University Press, 1996.

[17] C.Rapp “Effects of the HPA nonlinearity on 4-DPSK OFDM
signal for a digital sound broadcasting system” in Proc.Conf.
Rec. ECSC’91 Luettich Oct 1991.


http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DEl%2520Baamrani,%2520Khalid%26authorID%3D8840162300%26md5%3D890a3bd5184d8ab042c23e13f3a24e4d&_acct=C000049137&_version=1&_userid=950195&md5=7c89ca1432ad2417f597a5565fcca911
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DAit%2520Ouahman,%2520Abdellah%26authorID%3D12809503200%26md5%3De161bda3314a96e87f6ee6d02849f11c&_acct=C000049137&_version=1&_userid=950195&md5=ff4a0e0f629b6ad1e4d488fbcf1dcfc9
http://www.sciencedirect.com/science/article/pii/S143484110600029X#aff1
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DAllaki,%2520Said%26authorID%3D8840162200%26md5%3D2ffde65ad152ccd2a664abad8f50000b&_acct=C000049137&_version=1&_userid=950195&md5=4a809f4b13a5958f221ff62ff056260d
http://www.sciencedirect.com/science/article/pii/S143484110600029X#aff2
http://www.sciencedirect.com/science/journal/14348411
http://www.sciencedirect.com/science/journal/14348411
http://www.sciencedirect.com/science?_ob=PublicationURL&_hubEid=1-s2.0-S1434841106X00407&_cid=273242&_pubType=JL&view=c&_auth=y&_acct=C000049137&_version=1&_urlVersion=0&_userid=950195&md5=6abea8f22e87e7643df9caa84ab8c080




	Abstract
	Preface
	Contents
	List of Publications
	Abbreviations
	Introduction
	Background and Motivation
	Objectives and Scope of the Thesis
	Outline and Main Contributions of the Thesis
	Author's Contribution to the Publications
	Basic Mathematical Notations

	Spectrum Sensing Methods for Cognitive Radio
	Overview of Spectrum Sensing for Cognitive Radios
	Energy Detection Based Spectrum Sensing
	Traditional Energy Detection
	Subband Based Energy Detection

	Eigenvalue Based Sensing
	Waveform-Based Sensing
	Cyclostationary Feature Based Sensing
	Matched Filtering Based Detection 
	Cooperative Spectrum Sensing 
	Multiantenna Based Sensing 
	Other Sensing Techniques 

	Efficient Subband Based Energy Detection Methods for Spectrum Sensing
	FFT and AFB based schemes for multiband sensing
	Energy Detection in the Presence of Frequency Variability
	Band Edge Detection and Transmission Burst Detection
	Sliding Window Based Spectrum Sensing
	Effects of non-flat primary user spectrum
	Effects of fading frequency selective channel

	Area Under the Receiver Operating Characteristics Curve
	Numerical Results
	Chapter Summary

	Reduced Complexity Spectrum Sensing Based on Energy and Eigenvalue Detectors
	Traditional Eigenvalue Based Spectrum Sensing
	Reduced Complexity Spectrum Sensing Based on Maximum Eigenvalue and Energy Detector 
	Connection between Subband Energy and Eigenvalue Based Spectrum Sensing
	Proposed Maximum-Minimum Energy Detection Based Spectrum Sensing
	Analytical Models for Max-Min ED based Sensing
	Probability of False Alarm and Energy Threshold
	Probability of Detection

	 Computational Complexity Evaluation
	 Complexity Analysis of emaxe
	 Complexity Analysis of maxmin

	Numerical Results
	Chapter Summary

	Spectrum sensing and resource allocation for multicarrier cognitive radio systems
	Signal Models and Problem Definition
	Signal Models for Primary Users
	Signal Model for Cognitive Radio
	Definition of the Interference Problem

	Filter Bank Energy Detector Based Spectrum Sensing Algorithms
	Resource Allocation
	Numerical Results
	Chapter Summary 

	Summary
	Appendix: Analytical Model for Maximum Eigenvalue over Energy based Detector
	Probability of False Alarm and Threshold
	Probability of Detection

	Bibliography
	Publications



