1,120 research outputs found

    A Fusion Framework for Camouflaged Moving Foreground Detection in the Wavelet Domain

    Full text link
    Detecting camouflaged moving foreground objects has been known to be difficult due to the similarity between the foreground objects and the background. Conventional methods cannot distinguish the foreground from background due to the small differences between them and thus suffer from under-detection of the camouflaged foreground objects. In this paper, we present a fusion framework to address this problem in the wavelet domain. We first show that the small differences in the image domain can be highlighted in certain wavelet bands. Then the likelihood of each wavelet coefficient being foreground is estimated by formulating foreground and background models for each wavelet band. The proposed framework effectively aggregates the likelihoods from different wavelet bands based on the characteristics of the wavelet transform. Experimental results demonstrated that the proposed method significantly outperformed existing methods in detecting camouflaged foreground objects. Specifically, the average F-measure for the proposed algorithm was 0.87, compared to 0.71 to 0.8 for the other state-of-the-art methods.Comment: 13 pages, accepted by IEEE TI

    Coronal Mass Ejection Detection using Wavelets, Curvelets and Ridgelets: Applications for Space Weather Monitoring

    Full text link
    Coronal mass ejections (CMEs) are large-scale eruptions of plasma and magnetic feld that can produce adverse space weather at Earth and other locations in the Heliosphere. Due to the intrinsic multiscale nature of features in coronagraph images, wavelet and multiscale image processing techniques are well suited to enhancing the visibility of CMEs and supressing noise. However, wavelets are better suited to identifying point-like features, such as noise or background stars, than to enhancing the visibility of the curved form of a typical CME front. Higher order multiscale techniques, such as ridgelets and curvelets, were therefore explored to characterise the morphology (width, curvature) and kinematics (position, velocity, acceleration) of CMEs. Curvelets in particular were found to be well suited to characterising CME properties in a self-consistent manner. Curvelets are thus likely to be of benefit to autonomous monitoring of CME properties for space weather applications.Comment: Accepted for publication in Advances in Space Research (3 April 2010

    Automated Complexity-Sensitive Image Fusion

    Get PDF
    To construct a complete representation of a scene with environmental obstacles such as fog, smoke, darkness, or textural homogeneity, multisensor video streams captured in diferent modalities are considered. A computational method for automatically fusing multimodal image streams into a highly informative and unified stream is proposed. The method consists of the following steps: 1. Image registration is performed to align video frames in the visible band over time, adapting to the nonplanarity of the scene by automatically subdividing the image domain into regions approximating planar patches 2. Wavelet coefficients are computed for each of the input frames in each modality 3. Corresponding regions and points are compared using spatial and temporal information across various scales 4. Decision rules based on the results of multimodal image analysis are used to combine thewavelet coefficients from different modalities 5. The combined wavelet coefficients are inverted to produce an output frame containing useful information gathered from the available modalities Experiments show that the proposed system is capable of producing fused output containing the characteristics of color visible-spectrum imagery while adding information exclusive to infrared imagery, with attractive visual and informational properties

    Video surveillance systems-current status and future trends

    Get PDF
    Within this survey an attempt is made to document the present status of video surveillance systems. The main components of a surveillance system are presented and studied thoroughly. Algorithms for image enhancement, object detection, object tracking, object recognition and item re-identification are presented. The most common modalities utilized by surveillance systems are discussed, putting emphasis on video, in terms of available resolutions and new imaging approaches, like High Dynamic Range video. The most important features and analytics are presented, along with the most common approaches for image / video quality enhancement. Distributed computational infrastructures are discussed (Cloud, Fog and Edge Computing), describing the advantages and disadvantages of each approach. The most important deep learning algorithms are presented, along with the smart analytics that they utilize. Augmented reality and the role it can play to a surveillance system is reported, just before discussing the challenges and the future trends of surveillance

    Measuring Deformations and Illumination Changes in Images with Applications to Face Recognition

    Get PDF
    This thesis explores object deformation and lighting change in images, proposing methods that account for both variabilities within a single framework. We construct a deformation- and lighting-insensitive metric that assigns a cost to a pair of images based on their similarity. The primary applications discussed will be in the domain of face recognition, because faces provide a good and important example of highly structured yet deformable objects with readily available datasets. However, our methods can be applied to any domain with deformations and lighting change. In order to model variations in expression, establishing point correspondences between faces is essential, and a primary goal of this thesis is to determine dense correspondences between pairs of face images, assigning a cost to each point pairing based on a novel image metric. We show that an image manifold can be defined to model deformations and illumination changes. Images are considered as points on a high-dimensional manifold given local structure by our new metric, where costs are based on changes in shape and intensity. Curves on this manifold describe transformations such as deformations and lighting changes to connect nearby images, or larger identity changes connecting images far apart. This allows deformations to be introduced gradually over the course of several images, where correspondences are well-defined between every pair of adjacent images along a path. The similarity between two images on the manifold can be defined as the length of the geodesic that connects them. The new local metric is validated in an optical flow-like framework where it is used to determine a dense correspondence vector field between pairs of images. We then demonstrate how to find geodesics between pairs of images on a Riemannian image manifold. The new lighting-insensitive metric is described in the wavelet domain where it is able to handle moderate amounts of deformation, and allows us to derive an algorithm where the analytic geodesics between images can be computed extremely efficiently. To handle larger deformations in addition to changes in illumination, we consider an algorithmic framework where deformations are modeled with diffeomorphisms. We present preliminary implementations of the diffeomorphic framework, and suggest how this work can be extended for further applications

    Background Subtraction in Video Surveillance

    Get PDF
    The aim of thesis is the real-time detection of moving and unconstrained surveillance environments monitored with static cameras. This is achieved based on the results provided by background subtraction. For this task, Gaussian Mixture Models (GMMs) and Kernel density estimation (KDE) are used. A thorough review of state-of-the-art formulations for the use of GMMs and KDE in the task of background subtraction reveals some further development opportunities, which are tackled in a novel GMM-based approach incorporating a variance controlling scheme. The proposed approach method is for parametric and non-parametric and gives us the better method for background subtraction, with more accuracy and easier parametrization of the models, for different environments. It also converges to more accurate models of the scenes. The detection of moving objects is achieved by using the results of background subtraction. For the detection of new static objects, two background models, learning at different rates, are used. This allows for a multi-class pixel classification, which follows the temporality of the changes detected by means of background subtraction. In a first approach, the subtraction of background models is done for parametric model and their results are shown. The second approach is for non-parametric models, where background subtraction is done using KDE non-parametric model. Furthermore, we have done some video engineering, where the background subtraction algorithm was employed so that, the background from one video and the foreground from another video are merged to form a new video. By doing this way, we can also do more complex video engineering with multiple videos. Finally, the results provided by region analysis can be used to improve the quality of the background models, therefore, considerably improving the detection results

    Facial analysis in video : detection and recognition

    Get PDF
    Biometric authentication systems automatically identify or verify individuals using physiological (e.g., face, fingerprint, hand geometry, retina scan) or behavioral (e.g., speaking pattern, signature, keystroke dynamics) characteristics. Among these biometrics, facial patterns have the major advantage of being the least intrusive. Automatic face recognition systems thus have great potential in a wide spectrum of application areas. Focusing on facial analysis, this dissertation presents a face detection method and numerous feature extraction methods for face recognition. Concerning face detection, a video-based frontal face detection method has been developed using motion analysis and color information to derive field of interests, and distribution-based distance (DBD) and support vector machine (SVM) for classification. When applied to 92 still images (containing 282 faces), this method achieves 98.2% face detection rate with two false detections, a performance comparable to the state-of-the-art face detection methods; when applied to videQ streams, this method detects faces reliably and efficiently. Regarding face recognition, extensive assessments of face recognition performance in twelve color spaces have been performed, and a color feature extraction method defined by color component images across different color spaces is shown to help improve the baseline performance of the Face Recognition Grand Challenge (FRGC) problems. The experimental results show that some color configurations, such as YV in the YUV color space and YJ in the YIQ color space, help improve face recognition performance. Based on these improved results, a novel feature extraction method implementing genetic algorithms (GAs) and the Fisher linear discriminant (FLD) is designed to derive the optimal discriminating features that lead to an effective image representation for face recognition. This method noticeably improves FRGC ver1.0 Experiment 4 baseline recognition rate from 37% to 73%, and significantly elevates FRGC xxxx Experiment 4 baseline verification rate from 12% to 69%. Finally, four two-dimensional (2D) convolution filters are derived for feature extraction, and a 2D+3D face recognition system implementing both 2D and 3D imaging modalities is designed to address the FRGC problems. This method improves FRGC ver2.0 Experiment 3 baseline performance from 54% to 72%

    Advancements and Breakthroughs in Ultrasound Imaging

    Get PDF
    Ultrasonic imaging is a powerful diagnostic tool available to medical practitioners, engineers and researchers today. Due to the relative safety, and the non-invasive nature, ultrasonic imaging has become one of the most rapidly advancing technologies. These rapid advances are directly related to the parallel advancements in electronics, computing, and transducer technology together with sophisticated signal processing techniques. This book focuses on state of the art developments in ultrasonic imaging applications and underlying technologies presented by leading practitioners and researchers from many parts of the world
    • …
    corecore