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ABSTRACT

FACIAL ANALYSIS IN VIDEO: DETECTION AND RECOGNITION

by
Peichung Shih

Biometric authentication systems automatically identify or verify individuals using phys-

iological (e.g., face, fingerprint, hand geometry, retina scan) or behavioral (e.g., speaking

pattern, signature, keystroke dynamics) characteristics. Among these biometrics, facial

patterns have the major advantage of being the least intrusive. Automatic face recogni-

tion systems thus have great potential in a wide spectrum of application areas. Focusing

on facial analysis, this dissertation presents a face detection method and numerous feature

extraction methods for face recognition.

Concerning face detection, a video-based frontal face detection method has been

developed using motion analysis and color information to derive field of interests, and

distribution-based distance (DBD) and support vector machine (SVM) for classification.

When applied to 92 still images (containing 282 faces), this method achieves 98.2% face

detection rate with two false detections, a performance comparable to the state-of-the-art

face detection methods; when applied to video streams, this method detects faces reliably

and efficiently.

Regarding face recognition, extensive assessments of face recognition performance

in twelve color spaces have been performed, and a color feature extraction method defined

by color component images across different color spaces is shown to help improve the

baseline performance of the Face Recognition Grand Challenge (FRGC) problems. The

experimental results show that some color configurations, such as YV in the YUV color

space and Y/ in the YIQ color space, help improve face recognition performance. Based

on these improved results, a novel feature extraction method implementing genetic algo-

rithms (GAs) and the Fisher linear discriminant (FLD) is designed to derive the optimal

discriminating features that lead to an effective image representation for face recognition.



This method noticeably improves FRGC ver1.0 Experiment 4 baseline recognition rate

from 37% to 73%, and significantly elevates FRGC ver2.0 Experiment 4 baseline verifi-

cation rate from 12% to 69%. Finally, four two-dimensional (2D) convolution filters are

derived for feature extraction, and a 2D+3D face recognition system implementing both

2D and 3D imaging modalities is designed to address the FRGC problems. This method

improves FRGC ver2.0 Experiment 3 baseline performance from 54% to 72%.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Biometric authentication systems automatically identify or verify individuals using physi-

ological or behavioral characteristics [41]. Physiological biometrics generally refer to the

measurements of human body characteristics that do not change over a person's lifetime.

Face recognition [52], [57], [117], [6], fingerprint verification, [43], [48], [91], hand ge-

ometry measurement [81], and retina scan analysis [10] are examples of the utilization of

physiological biometrics. Behavioral biometrics, on the other hand, measure the actions

that humans take, which are difficult to copy from one person to another. Applications

using behavioral biometrics include speaker identification [8], signature verification [74],

and keystroke recognition [5].

Among aforementioned biometrics, facial patterns have the major advantage of being

the least intrusive and private. The acquisition of facial images requires very little coopera-

tion or modification of subjects' normal behavior. Instead of requiring people to place their

hand on a reader (e.g., finger print acquisition) Or precisely position their eyes in front of a

scanner (e.g., iris or retina scans), face recognition systems unobtrusively take pictures or

video streams containing people's faces when they enter a predefined area. Another advan-

tage is that facial image contains less private information. Since human faces are exposed

to the public everyday, a malicious breach to the stored data does not lead to a serious se-

curity threats like passwords and signatures would. As subjects do not feel like they are

under surveillance and the information is less sensitive, automatic face recognition systems

have great potential in a wide spectrum of application areas. Applications for which it is

well suited include security access control, video surveillance, human-computer interaction

(HCI), content-based face image retrieval [89], airport screening, security checkpoints, etc.

1
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1.2 Topics Overview

This dissertation focuses on facial analysis and addresses various aspects concerning face

detection and recognition. In particular, Chapter 2 presents a novel face detection systems,

Chapter 3 empirically assesses face recognition performance in twelve well-defined color

spaces, Chapter 4 designs a feature extraction method implementing genetic algorithms

(GAs) and the Fisher linear discriminant (FLD) for face recognition, Chapter 5 derives four

convolution filters to extract discriminating features from both 2D and 3D imaging modal-

ities for face recognition, finally, Chapter 6 summarizes the research achievements and

contributions of this dissertation and depicts the future research directions. An overview of

Chapters 2, 3, 4, and 5 is given in the follows.

Chapter 2 presents a video-based frontal face detection method, the DBD-SVM

method, which integrates motion analysis, skin color segmentation, distribution-based dis-

tance (DBD), and Support Vector Machine (SVM). First, in each video frame, the regions

of Field Of Interests (FOI) are derived by means of temporal differencing and skin color

segmentation. The FOI regions are then examined using a sliding window technique. Fi-

nally, the DBD-SVM method statistically models the face class by applying the discrim-

inating feature vectors and defines three classification rules based on DBD and SVM to

separate faces and nonfaces. Experimental results using test images from the MIT-CMU

test sets and video streams show the feasibility of the DBD-SVM face detection method.

In particular, when using 92 images (containing 282 faces) from the MIT-CMU test sets,

the DBD-SVM method achieves 98.2% correct face detection accuracy with two false de-

tections, a performance comparable to the state-of-the-art face detection methods, such as

the Schneiderman-Kanade's method. When using video streams, the DBD-SVM method

detects faces reliably with computational efficiency at more than 20 frames per second.

Chapter 3 first presents extensive assessments of face recognition performance in dif-

ferent color spaces, and then defines a color feature extraction method to help improve the

baseline performance of the FRGC problems. The comparative assessments of face recog-
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nition performance are carried out in twelve color spaces (RGB, HSV, YUV, YCbCr ,

XY Z,Y IQ, L*a*b*,U*V*W*, L*u*v*, 1 1 12 13 , HSI, and rgb) by evaluating seven color

configurations for every color space. A color configuration is defined by an individual or

a combination of color component images. Experimental results using 600 FERET color

images corresponding to 200 subjects and 456 FRGC color images of 152 subjects show

that some color configurations, such as YV in the YUV color space and Y/ in the Y IQ

color space, help improve face recognition performance. Based on these results, a color

feature extraction method, which uses the color configurations defined by the color compo-

nent images across different color spaces, is implemented to improve the FRGC baseline

performance of the Biometric Experimentation Environment (BEE) algorithm. Experimen-

tal results using an FRGC verl.0 dataset containing 366 training images, 152 controlled

gallery images, and 608 uncontrolled probe images, show that the YQCT color config-

uration improves the rank-one face verification rate of the BEE baseline algorithm from

37% to 70%; when using an FRGC ver2.0 dataset including 6,660 training images, 16,028

controlled target images, and 8,014 uncontrolled query images, the YQCr color configura-

tion improves the face verification rate (at 0.1% false acceptance rate) of the BEE baseline

algorithm from 13% to 33%.

Chapter 4 presents a novel feature extraction method for face recognition implement-

ing genetic algorithms (GAs) and Fisher linear discriminant (FLD) to derive the optimal

discriminating features that lead to an effective image representation for face recognition.

A new color space, LC1 C2 , consisting of one luminance (L) channel and two chrominance

channels (C1 ,C2) is introduced as a linear transformation of the input RGB color space.

The specific transformation from the RGB color space to the LC1 C2 color space is op-

timized by GAs where a fitness function guides the evolution toward higher recognition

accuracy. After the color feature extraction the Fisher linear discriminant (FLD) method is

applied to further extract discriminating features, termed color Fisher features (CFFs). The

experimental results show that CFFs improve FRGC ver1.0 Experiment 4 rank-one recog-
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nition rate from 37% to 73%, and elevate FRGC ver2.0 Experiment 4 face verification rate

at 0.1% false acceptance rate (FAR) from 12% to 69%.

Chapter 5 presents a feature extraction method utilizing convolution filters for 2D

and 3D face recognition. Four convolution filters, Gaussian derivatives, Morlet, complex

Morlet, and complex frequency B-spline, are defined, and face recognition performance

derived using these four convolution filters are investigated. The experimental results ap-

plying FRGC ver2.0 Experiment 3 show that complex-valued and real-valued convolution

filters may have the potential to extract discriminating features from 2D and 3D imaging

modalities, respectively. Furthermore, the fusion of 2D and 3D similarity measures im-

proves FRGC ver2.0 Experiment 3 baseline performance from 67% to 82% (ROC I), from

61% to 78% (ROC II), and from 54% to 72% (ROC III).

Chapter 6 summarizes the research achievements and contributions of this disserta-

tion and depicts the future research direction.



CHAPTER 2

FACE DETECTION IN STILL IMAGES AND VIDEO STREAMS

Face detection methods learn the statistical models of face and non-face images, and apply

two-class classification rules to discriminate between face and non-face patterns. As a face

must be located and extracted before it can be verified or identified, face detection is the first

step towards building an automated facial analysis system. In this chapter, a video-based

frontal face detection method — the DBD-SVM method — is presented.

The DBD-SVM method integrates motion analysis and color information to derive

field of interests (FOI), and distribution-based distance (DBD) and support vector machine

(SVM) for classification. A motion FOI is first located by means of temporal differencing,

and then refined by skin color segmentation. Inside the FOI, where the faces reside, the face

detector searches for faces by applying three classification rules implementing DBD and

SVM. The three classification rules employ a coarse-to-fine classification strategy in the

sense that they are cascaded in the increasing order of detection accuracy and the decreasing

order of computational efficiency. Specifically, the first rule applies DBD to classify input

patterns into the face, the non-face, and the undecided clas ses; the second rule implements

an SVM classifier to detect some faces in the undecided class; and finally, the third rule

combines the classification power of both DBD and SVM to discriminate the remaining

patterns in the undecided class.

Experimental results derived using both still images and video streams show the fea-

sibility of the DBD-SVM method. In particular, when using 92 images (containing 282

faces) from the MIT-CMU test sets, the DBD-SVM method achieves 98.2% face detection

rate with two false detections, a performance comparable to the Schneiderman-Kanade's

method [84]. When experimenting with video streams, the DBD-SVM method detects

faces reliably and efficiently.

5
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This chapter is organized as follows. Section 2.1 briefly reviews previous research

on face detection. Section 2.2 describes the derivation of FOIs using motion analysis and

skin color segmentation. Section 2.3 details the DBD-SVM method including the feature

extraction for face detection and the three classification rules. Section 2.4 describes the

experimental procedures and presents face detection results using both still images and

video streams. Finally, Section 2.5 summarizes the research in face detection.

2.1 Background

Earlier efforts of face detection research have been focused on correlation or template

matching, matched filtering, sub-space methods, deformable templates, etc. [70], [116].

For comprehensive surveys of these early methods, see [93], [14], and [80]. Recent face

detection approaches, however, emphasize on statistical modeling and machine learning

techniques [37], [114]. Some representative methods are the probabilistic visual learning

method [63], the example-based learning method [94], the neural network-based learning

method [76], [77], the probabilistic modeling method [83], [84], the mixture of linear sub-

spaces method [113], the machine learning approach using a boosted cascade of simple

features [105], the statistical learning theory and SVM based methods [34], [64], [38], the

Markov random field based methods [17], [75], the color-based face detection method [40],

and the Bayesian discriminating feature (BDF) method [52].

Moghaddam and Pentland [63] applied unsupervised learning to estimate the density

in a high-dimensional eigenspace and derived a maximum likelihood method for single

face detection. Rather than using PCA for dimensionality reduction, they implemented

the eigenspace decomposition as an integral part of estimating the conditional PDF in the

original high-dimensional image space. Face detection is then performed by computing

multi-scale saliency maps based on the maximum likelihood formulation. Sung and Pog-

gio [94] presented an example-based learning method by means of modeling the distri-

butions of face and non-face patterns. To cope with the variability of face images, they
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empirically chose six Gaussian clusters to model the distributions for face and non-face

patterns, respectively. The density functions of the distributions are then fed to a multiple

layer perceptron for face detection. Rowley et al. [76] developed a neural network-based

upright, frontal face detection system, which applies a retinally connected neural network

to examine small windows of an image and decide whether each window contains a face.

The face detector, which was trained using a large number of face and non-face examples,

contains a set of neural network-based filters and an arbitrator which merges detections

from individual filters and eliminates overlapping detections. In order to detect faces at any

degree of rotation in the image plane, the system was extended to incorporate a separate

router network, which determines the orientation of the face pattern. The pattern is then

derotated back to the upright position, which can be processed by the early developed sys-

tem [77]. Schneiderman and Kanade [83] proposed a face detector based on the estimation

of the posterior probability function, which captures the joint statistics of local appearance

and position as well as the statistics of local appearance in the visual world. To detect

side views of a face, profile images are added to the training set to incorporate such statis-

tics [84]. Viola and Jones [105] presented a machine learning approach for face detection.

The novelty of their approach comes from the integration of a new image representation

(integral image), a learning algorithm (based on AdaBoost), and a method for combining

classifiers (cascade). Hsu et al. [40] developed a face detection method in color images by

detecting skin regions first, and then generating face candidates based on some constraints,

such as the spatial arrangement. The face candidates are further verified by constructing

eye, mouth, and boundary maps.

2.2 Field of Interests Derivation

In the DBD-SVM method, the first step is to locate the field of interests (FOI) in each video

frame by utilizing both temporal and color information. In particular, each individual frame

is transformed from the input RGB color space to the YCbC, color space, where the Y
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Figure 2.1 The derivation of motion FOI. The white pixels denote the motion pixels, and
black pixels are the non-motion pixels. (a) Four thresholds denoted by four yellow lines
cut off insignificant motion area. (b) The resulting motion FOI.

component is used to derive the motion FOI, and the Cb and the Cr components are used

for skin color segmentation, which refines the motion FOI. The motion analysis and the

skin color segmentation are detailed in the following subsections.

2.2.1 Motion Analysis

The motion analysis adopts the temporal differencing technique for the FOI derivation.

Temporal differencing first calculates the absolute difference between two consecutive

frames, and then applies a threshold, T, to classify each pixel to either motion or non-

motion. Let Y t (i, j) E Rm " and Yt+i (i, j) E R"' "n be two intensity images represent-

ing the Y components of the consecutive frames, the difference image after thresholding,

AY(i, j) E RR', is computed as follow [88]:
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Figure 2.2 Applying a 5 x 5 Gaussian smoothing filter eliminates undesirable false detec-
tions caused by dynamic environmental changes, such as illumination variation.

where -r is the threshold. Finally, horizontal and vertical profiles of AY(i, j) are computed

to define the motion FOI. Figure 2.1 (a) illustrates the derivation of horizontal and vertical

profiles of the differencing image. The white pixels denote the motion pixels, and black

pixels are the non-motion pixels. Four thresholds (corresponding to the four yellow lines)

are set to cut off insignificant motion area. The resulting motion FOI is shown in Figure 2.1

(b) by a yellow rectangle.

Temporal differencing, however, is sensitive to dynamic environmental changes, such

as illumination variation, and fails to locate a motion FOI when subject stops moving. Fig-
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ure 2.2 (a) shows four gray-scale video frames corresponding to the Y components in the

YCbCr color space. Figure 2.2 (b) displays the difference images after thresholding. Due to

unstable lightening, Figure 2.2 (b) shows many undesirable false detections caused by fac-

tors not related to motion. As a result, the motion FOI does not define a compact area, but

rather incorporate many background regions. To address this sensitivity issue, a Gaussian

smoothing filter is applied to each frame before calculating the difference image. Figure 2.2

(c) shows the corresponding video frames after applying a 5 x 5 Gaussian smoothing filter,

and Figure 2.2 (d) displays the difference images, where yellow rectangles denote motion

FOIs.

To detect a motion FOI when subject stops moving, a heuristic procedure is applied

to obtain the last-known motion FOI as the current motion FOI if no significant motion is

detected [88]:

where e is a threshold. As a result, when the subject stops moving or the motion is insignif-

icant, the last-known FOI is used.

2.2.2 Skin Color Segmentation

To further refine the motion FOI, a skin color segmentation procedure is applied to elimi-

nate non-skin areas. The skin color segmentation is implemented in the Cb — Cr subspace

of the YCbCr color space, which is chosen based on an experimental analysis. In partic-

ular, the distribution of skin color pixels in the subspaces of the RGB, the YCbCr , and

the L*a*b* color spaces is assessed. Ninety skin color pixels are collected from each of

600 color images in the FERET database Batch 15 [73]. Figure 2.3 shows example images

from the FERET database, where white strips indicate the skin color pixels acquired. Fig-

ures 2.4, 2.5, and 2.6 show three-dimensional clusters and two-dimensional projections of
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Figure 2.3 Example face images from the FERET database. The white strips indicate the
skin color pixels acquired. For each face image, ninety skin color pixels are collected.

5,400 skin color pixels in the RGB, the YCbCr, and the L*a*b* color spaces, respectively.

Clearly, among the nine subspaces (i.e., R— G, R— B, G — B, Y — Cb, Y Cr , Cb — Cr,

L* — a*, L* — b* , and a* — b*) assessed, the skin color pixels occupy the most compact

region in the Cb — Cr subspace. The skin color segmentation is thus implemented in this

subspace.

The skin color segmentation procedure consists of five steps: (i) skin color modeling,

(ii) skin-non-skin classification, (iii) region filling and labeling, (iv) rectangle bounding,

and (v) skin region rejection. First, an elliptic skin color model is defined due to the fact

that the projection of the skin color cluster onto the Cb — Cr subspace (see Figure 2.5)

approximates an ellipse. The model is then applied to distinguish foreground pixels (skin

pixels) from background pixels (non-skin pixels) according to whether their Cb — Cr co-

ordinates occur inside or outside the ellipse. After the segmentation, isolated background

regions are filled with the foreground color, and each connected foreground region is la-

beled by a different integer. The labeled regions are then tightly bounded by rectangles.

Finally, the FOIs are derived by rejecting rectangles not satisfying three geometric criteria:
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Figure 2.4 The cluster of 5,400 skin color pixels in the RGB color space, and the projec-
tions onto the R — G, the R — B, and the G — B subspaces.

(i) width > 12, (ii) height > 12, and (iii) 0.2 < height/width < 2. Figure 2.7 (b)

shows the final FOIs (in red rectangles) derived from both the motion analysis (in yellow

rectangles) and the skin color segmentation.

2.3 The DBD-SVM Face Detection Method

The DBD-SVM face detection method classifies face and non-face feature patterns by com-

bining three classification rules. Figure 2.8 shows the three classification rules (in black

diamond shapes) implementing distribution-based distance (DBD) and support vector ma-

chine (SVM). In particular, DBD is first applied to separate feature patterns into three

classes: the face class, the non-face class, and the undecided class. Then an SVM classi-
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Figure 2.5 The cluster of 5,400 skin color pixels in the YCbC, color space, and the pro-
jections onto the Y — Cb, the Y — Cr , and the Cb — Cr subspaces.

fier detects faces in the undecided class and passes the remaining patterns to the third rule,

the DBD-SVM classification rule, which further classifies them into either the face or the

non-face class. The feature extraction method, distribution-based distance, support vector

machine, and the three classification rules are detailed in Subsections 2.3.1, 2.3.2, 2.3.3,

and 2.3.4, respectively.

2.3.1 Feature Extraction for Face Detection

The discriminating features for face detection is defined by the input image, the horizontal /

vertical difference images, and the row / column amplitude projections. Let Y(i, j) E

represent an input image (e.g., training images for the face and the non-face classes, or
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Figure 2.6 The cluster of 5,400 skin color pixels in the L* a*b* color space, and the pro-
jections onto the L* — a*, the L* — b*, and the a* — b* subspaces.

subimages of FOI in video frames), the vertical difference image Yv (i, j) E r mx(n-1) and

the horizontal difference image Yh(i, j) E R(n1-1)" are defined by [52]:

The column amplitude projection x c E Rn and the row amplitude projection Xr E Rm are

defined by [52]:



Figure 2.7 (a) An elliptic skin color model. (b) Skin color segmentation in the motion
FOI.

The three matrices: Y(i, j),	 (i, j), Yh (i, j), and two vectors: xc , xr are then normal

ized to zero mean and unit variance, respectively. Finally, the normalized matrices and

vectors are concatenated to form anew feature vector y E RN, N = 3mn to define the

discriminating feature vector for face detection.

2.3.2 Distribution -Based Distance

Distribution-based distance is defined based on the statistical model of the face class, i.e.,

the probability density function (PDF) of the face class. It is reasonable to assume the PDF

to be a multivariate normal distribution when only the properly aligned upright frontal faces

are modeled [63], [52]. The PDF of the face class is, therefore, modeled as follows [52],

15



16

Figure 2.8 Three classification rules (in black diamond shapes) implementing
distribution-based distance and support vector machine.

where y E RN is the discriminating feature vector defined in Subsection 2.3.1, m E RN and

E E RN ' are the mean vector and the covariance matrix of the face class, respectively.

Taking the natural logarithm on both sides, Equation 2.5 becomes [52], [88]:
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The covariance matrix, E, can be factorized into the following form using principal com-

ponent analysis (PCA) [25]:

where 4) E RNxN  is an orthogonal eigenvector matrix, A E RNxN is a diagonal eigenvalue

matrix with diagonal elements (the eigenvalues) in decreasing order (A l > A2 >. • • > AN), and

IN E RN x N is an identity matrix. The principal components are defined by the following

vector, z E RN [521, [881:

where the Euclidean norm is preserved after the projection, i.e., 11z11 2 = 11Y m11 2 . It then

follows from Equations 2.6, 2.7, and 2.8 that [52], [88]:

Due to the optimal signal reconstruction property of PCA, only the first M (M < N) prin-

cipal components are used to estimate the probability density function. A model developed

by Moghaddam and Pentland [63] is further adopted to estimate the remaining N — M

eigenvalues, AM-F1, A/14+27 , AN, using the average of those values [63]:

(2.10)

Following from Equations 2.9 and 2.10, the probability density function is rewritten as

[52], [88]:

where zi 's are the elements of z defined by Equation 2.8.
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Note that in this parameterization, the last three terms, ln(rl im_ i Ai), (N — M)lnp,

and Nln(27), are constants for all patterns, and discarded in the experimental implemen-

tations. Equation 2.11 thus defines DBD using the first M principal components, the input

image, and the mean face.

2.3.3 Support Vector Machine

Support vector machine is a particular realization of the statistical learning theory, which

describes an approach known as structural risk minimization by minimizing the risk func-

tional in terms of both the empirical risk and the confidence interval [104]. The main idea

of SVM comes from (i) nonlinear mapping of the input space to a high dimensional feature

space, and (ii) optimal hyperplane design with maximal margin between the patterns of the

two classes in the feature space. SVM, which displays good generalization ability, has been

applied extensively for pattern classification, regression, and density estimation.

Let (x i , ai), (x2, a2), . . . , (xm, am), x i E RN , and a i E {+1, -1} be the training

data in the input space, where a i indicates the class membership of x i . Let (I) be a nonlinear

mapping between the input space (RN) and the feature space (F), 1 : RN F, i.e.,

x —> 43(x). The optimal hyperplane in the feature space is defined as follows [104]:

It can be proven [104] that the weight vector w is a linear combination of support vectors

that satisfy ai (w •(13(x i ) + b) = 1 [104]:

From Equations 2.12 and 2.13, a linear decision function in the feature space is defined

[104]:

supportxi E vectors
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where the coefficients, a = (a l , a2, . . . , a/4 Y, are determined by maximizing the follow-

ing functional [104]:

subject to the following constraints [104]:

Note that the decision function (see Equation 2.14) is defined on the dot products in

the high dimensional feature space, where computation might be prohibitively expensive.

SVM, however, manages to compute the dot products by means of kernel function [104]:

Three classes of kernel functions widely used in kernel classifiers, neural networks, and

support vector machines are polynomial kernels, Gaussian kernels, and sigmoid kernels

[104]:
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2.3.4 Classification Rules

The DBD-SVM face detection method first applies DBD to detect faces that are close to

the face class and exclude patterns that are far away from the face class. This classification

rule thus separates all the patterns in the FOIs into three classes: the face class, w f , the

non-face class, w„.„ and the undecided class, w it [88]:

where y is the discriminating feature vector derived from an input pattern, ln[p(y)] is the

distribution-based distance defined by Equation 2.11, and rf and -rn, are thresholds.

The DBD-SVM face detection method then applies an SVM classifier to detect faces

in the wu class [88]:

where f (y) is the decision function of the SVM classifier defined by Equation 2.14. The

experimental results, however, show that the SVM classifier alone can not detect all the

faces in the wu class, and some face patterns are misclassified to the con class.

To further improve the face detection performance, a new classification rule, the

DBD-SVM classification rule, is designed to check the patterns in the wu class [88]:

where c is a constant controlling parameter, Ts and Tt are thresholds, and g(y) is the decision

function of the SVM classifier without the sign function (see Equation 2.14) [88]:

(2.24)
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Note that Ts in Equation 2.23 is a negative constant, and the functionality of the first term,

g(y) > Ts , is to select face candidates misclassified to the w n class by the SVM classifier

(see Equation 2.22). The second term, ln[p(y)] + cg(y) > Tt , then further determines the

true faces from the face candidates by applying both classifiers.

The three classification rules detailed above actually apply a coarse-to-fine classi-

fication strategy in the sense that they are cascaded in an increasing order of detection

accuracy and decreasing order of computational efficiency. In terms of detection accuracy,

the third classification rule detects faces more accurately than the first two rules do because

it combines the classification power of the distribution-based distance and SVM. In terms

of computational efficiency, the first classification rule runs faster than the second and the

third ones due to the fact that the term ln[p(y)] is evaluated by estimating the first M prin-

cipal components (M << N) of the input vector y, while the term g(y) is obtained directly

in the original input space, RN .

2.4 Experiments

This section details the training of classifiers, the learning of thresholds, and the scanning

procedure, and presents the face detection results in both still images and video streams.

2.4.1 Training the Classifiers

The training of the DBD-SVM method includes three steps: (i) face class modeling, (ii)

non-face images deriving, and (iii) SVM learning. First, the DBD-SVM method models

the face class (w1) as a multivariate normal distribution and defines the distribution-based

distance (see Subsection 2.3.2) using 600 frontal face images from the FERET database

Batch 15 [73]. Note that the mirror images of the training data set are also included,

hence the total training images for the face class modeling is 1,200. Second, non-face

training images are derived by choosing subimages from 14 natural scene images that do

not contain any face at all. Those subimages that lie close to the face class are chosen as
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non-face training images [88]:

/n[p(y)] > Tn (2.25)

where ln[p(y)] is DBD defined by Equation 2.11 and -rn is the threshold in Equation 2.21. In

particular, 3,813 non-face training images are chosen from more than two million subim-

ages of the 14 natural scene images to form the training data set for the non-face class.

Note that both face and non-face images are normalized to a standard spatial resolution of

16 x 16. Figure 2.9 (a) shows example face training images that are normalized to 16 x 16,

and Figure 2.9 (b) shows example non-face training images derived from a natural scene

image. Note that the non-face images in Figure 2.9 (b) display different sizes, which corre-

spond to different scales of the original natural scene image when the non-face images are

derived. The spatial resolution of all the non-face images, however, is the same, 16 x 16.

Finally, the training data, 1,200 faces and 3,813 non-faces, are applied to train an SVM

classifier with a polynomial kernel of degree two for face detection.

Figure 2.10 shows the image representations of the mean feature vectors of the face

and the non-face classes. In particular, the first images in Figure 2.10 (a) and Figure 2.10

(b) are the mean face and the mean non-face, respectively. The second images are their

vertical difference images, the third images are their horizontal difference images, and the

last two bar graphs are column and row amplitude projections. Note that the images and

projections in Figure 2.10 (b) resemble their counterparts in Figure 2.10 (a) because the

3,813 non-face training images lie close to the face class.

2.4.2 Learning the Thresholds

Thresholds play important roles in the DBD-SVM face detection method as a change of a

single threshold may affect the detection performance significantly. This section describes

a general procedure to fine-tune the four thresholds, Tn, Tj , Ts, and Tt, defined in Section 2.3.
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Figure 2.9 Some examples of the training face and non-face images. (a) Examples of the
face training images. (b) Examples of the non-face training images.

The learning of thresholds starts with Trt (see Equation 2.25) as it directly determines

how many non-face training images will be derived from the 14 natural scene images using

distribution-based distance. Figure 2.11 (a) plots the relationship between the total number

of non-face subimages and the threshold Tri , where the horizontal axis indicates the value

of Tr, and the vertical axis is the total number of non-face subimages derived from all the 14

natural scene images used in the experiments. Note that in order to prevent one scene image

from unduly dominating the others in generating the non-face subimages, the number of
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Figure 2.10 Image representations of the mean feature vectors of the face and the non-
face classes. (a) The first image is the mean face, the second and the third images are its
vertical and horizontal difference images, and the last two bar graphs are its column and
row amplitude projections. (b) The first image is the mean non-face, the second and the
third images are its vertical and horizontal difference images, and the last two bar graphs
are its column and row amplitude projections.

non-face subimages for each scene is capped at 300. As a result, the maximum number of

non-face subimages derived from all the scene images should be 4,200, which is shown in

Figure 2.11 (a) by the flat curve segment. The choice of Tr, is thus close to the threshold

value that leads to this flat curve segment. In particular, the chosen threshold T n, generates

3,813 non-face subimages from the 14 natural scene images, and these subimages form the

non-face training set for the DBD-SVM face detection method.

After generating the non-face images, a reasonable choice of the threshold, Tf , is

the largest distribution-based distance of all these non-face images (see Figure 2.11 (b)).

However, Equation 2.21 is applied for coarse detection, whose purpose is to reliably clas-

sify face and non-face patterns while leaving difficult patterns in the undecided class. The

threshold is thus increased from Tf to T7 (see Figure 2.11 (b)) in order to reduce the number

of false detections.

The thresholds, Ts and Tt , in Equation 2.23 are used for the fine detection, whose

functionality is to classify the undecided patterns into either the face class or the non-face

class. The values of these two thresholds are determined through a numerical analysis. In
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Figure 2.11 The learning of thresholds, Tr, and Tf . (a) The relationship between the total
number of non-face subimages and the threshold Tn . (b) The threshold, Tf , is set to be the
largest distribution-based distance of all these non-face images. However, the threshold,
Tf , is applied for coarse detection, whose purpose is to reliably classify face and non-
face patterns while leaving difficult patterns in the undecided class. The threshold is thus
increased from Ty to -T-7 in order to reduce the number of false detections.

particular, let S be a set of values of Ts and T be a set of values of Tt, face detection per-

formance of each combination of S x T is evaluated using a subset (24 images containing

54 faces) of the MIT-CMU test sets. Note that the constant, c, defined in Equation 2.23 is

fixed at 0.05 throughout the experiments.
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Figure 2.12 The learning of thresholds, Ts and TI. (a) The number of missed faces in-
creases when either Ts or Tt increases. (b) The number of false detections decreases when
either 7-5 or 3--t increases. (c) The number of total errors (missed faces + false detections)
versus the thresholds (7, and Tt). The smallest total error occurs at {Ts, T t } = { —0.68,
—0.66}.

Figures 2.12 (a), (b), and (c) show the number of missed faces versus the thresholds

(Ts and TO, the number of false detections versus the thresholds, and the number of total

errors (missed faces + false detections) versus the thresholds, respectively. Figure 2.12 (a)

shows that the number of missed face increases when either Ts or Tt increases. Figure 2.12

(b), however, shows that the number of false detections decreases when either T s or rt
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increases. Finally, Figure 2.12 (c) shows that the smallest total error occurs at {Ts, Tt }

= { —0.68, —0.66}. The thresholds, Ts and Tt, are therefore set to be —0.68 and —0.66,

respectively.

2.4.3 Scanning Procedure

The basic search procedure of the DBD-SVM method is sliding a 16 x 16 detection window

across possible locations, scales, and orientations in a test image. The detection window is

shifted pixel-by-pixel and the incremental scale is a factor of 1.125. Note that because the

DBD-SVM method is trained using only upright frontal faces, the rotated faces are detected

by rotating test images to predefined degrees, such as ±5°, ±10°, ±15°, ±20°, and ±25°.

To ease the computational burden of the scanning procedure, a heuristic is defined

such that if a face is detected at a certain location, the region occupied by the face should

be eliminated from being searched again. Let the search order be top to bottom then left to

right, and the upper left pixel represent a 16 x 16 subimage. Figure 2.13 (a) shows the idea

of this heuristic. Suppose a face is detected at a point p, its 7 x 7 neighborhood is searched to

find a face that lies closest to the face class. Note that due to the predefined searching order,

half of these neighbors have already been visited, and the remaining unvisited neighbors

are the pixels inside the region A. Note that each of these twenty-four neighbors in region

A defines a 16 x 16 subimage, which could be a face. Suppose q defines a face that lies

closest to the face class, then the 542 pixels inside the region B should not be searched

because any face appears in this region will overlap the one found at q.

This heuristic also benefits face detection when the detector scans the image in mul-

tiple scales. Figure 2.13 (b) shows the idea of applying this heuristic to multi-scale detec-

tions. Suppose a face is detected at the scale a x a. When detecting faces in another scale

b x b, the region R should not be searched because any face appears in this region will

overlap the one found at the scale a x a. Note that the area R should be shrunk by one

or two pixels in order to detect closely adjacent or slightly overlapping faces as shown in
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Figure 2.19 (d). Also note that the multi-scale searching in the DBD-SVM method always

starts with the largest search scale and then goes toward smaller ones to eliminate as many

regions as possible.

To further improve the computational efficiency, several heuristics are applied to ex-

clude a non-face pattern in an early stage. Figure 2.14 shows a 16 x 16 subimage with five

labeled regions corresponding to the left eye area (A), the nose bridge area (B), the right eye

area (C), the nose-cheeks area (D), and the mouth area (E). The first criterion calculates the

variances in region D and E, respectively, and excludes the subimage as a face candidate if

either variance is smaller than its predefined threshold. If the subimage is not excluded so

far, the second criterion calculates the mean values in the region A, B, and C. Then two av-

erage values, mA and mc, are derived by averaging the intensity values of the pixels whose

intensity values are smaller than the mean values of the regions A and C, respectively; and

another average value, mB, is computed by taking the average of the intensity values of the

pixels whose intensity values are larger than the mean value of the region B. Finally, the

second criterion eliminates the subimage as a face candidate if mA < KmB or m c < km,B,

where is a control factor.

2.4.4 Face Detection in Still Images

The data used to test the DBD-SVM method for face detection comes from the MIT-CMU

test sets [76]. Specifically, the test set includes 92 images containing 282 faces' . As the

'The 92 images are listed as follows: aerosmith-double.gif, albert.gy; Argentina.gif, audreyl.gif,
audrey2.0; authybtl.gif, baseball.gif, bksomels.gif, blues-double.gif, brian.gif, bty301.gif;
bwolen.gif, cfb.gif; churchill-downs.gif; class57.gif; cluttered-tahoe.gif, cnn1085.gif, cnn1160.gif,
cnn1260.gif, cnn1630.gif; cnn1714.gif, cnn2020.gif; cnn2221.gif; cnn2600.gif, cpd.gif, crimson.gif;
ds9.gif; ew-courtney-david.gif; ew-friends.gif; jleetwood-mac.gif; frisbee.gif; Germany.gif, giant-
panda.gif, gigi.gif, wripe.gif, harvardgif, hendrix2.gif; hemy.gif, jackson.gif, john.coltrane.gif,
judybats.gif, kaari-stelgif, kaaril.gif, kaari2.gif, karen-and-rob.gif, knex0.gif, knex37.gif, kym-
berly.gif, lacrosse.gif, larroquette.gif, madaboutyou.gif; marriedgif, me.gif; mom-baby.gif, mona-
lisa.gif, music-groups-double.gif, nataliel.gif; nens.gif, newsradio.gif, oksanal.gif; originall.gif,
original2.gif, pittsburgh-park.gif; police.gif, sarah4.gif, saraldive2.gif, seinfeld.gif, shumeet.gif;
soccer.gif, speed.gif; tahoe-and-rich.gif, tammy.gif, tommyrw.gif; tori-crucgif, tori-entweekly.gif;
tori-live3.gif, torrance.gif, tp-reza-girosi.gif, tp.gif, tree-roots.gif, trek-trio.gif, trekcolrgif, tress-
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Figure 2.13 (a) A face detected at q eliminates the region B from being searched because
any face appears in this region will overlap the one found at q. (b) A face detected in the
scale of a x a excludes the region R when searching in the scale of b x b.

photo-2.gif, tress-photo.gif, u2-covergif, uprooted-tree.gif, voyager2.gif, wall.gif, window.gif,
wxm.gif, yellow-pages.gif, ysato.gif
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Figure 2.14 A 16 x 16 subimage with five labeled regions corresponding to the left eye
area (A), the nose bridge area (B), the right eye area (C), the nose-cheeks area (D), and the
mouth area (E).

DBD-SVM method addresses detection of frontal and real human faces, those MIT-CMU

test images that contain large pose-angled face, line-drawn face, poker face, masked face,

or cartoon face are not included in this test set. Note that the test images used in the

experiments are from diverse image sources, while the training images are from only one

database, i.e., the frontal face images of the FERET Batch 15 [73]. The test data is thus

able to test the generalization performance of the DBD-SVM method.

Figure 2.15 (a) shows the detection results of searching from 12 x 12 to 120 x 120.

Note that even though all faces appear in Figure 2.15 (a) are smaller than 20 x 20, the

DBD-SVM method searches a wide spectrum of scales without leading to any false de-

tection. Similarly, Figure 2.15 (b) through (e) display some other examples of multiple

face detection in different scales. Note that Figures 2.15 (b), (c), and (e) show face detec-

tion performance of the DBD-SVM method in low contrast images, while Figure 2.15 (d)

shows face detection performance with some slightly pose-angled faces. All the faces in

Figure 2.15 are successfully detected by the DBD-SVM method.

Figure 2.16 shows some examples of detecting multiple frontal faces across different

rotation angles. All the faces in Figure 2.16 are correctly detected, but there is one false

detection in Figure 2.16 (a). The false detection occurs because the configuration of that
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Figure 2.15 Examples of detecting multiple faces using the DBD-SVM method.



Figure 2.16 Examples of detecting rotated faces using the DBD-SVM method.
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Figure 2.17 Examples of detecting faces that are either very large or very small using the
DBD-SVM method.
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pattern resembles a human face. Note that because the DBD-SVM face detection method

is trained using only upright frontal faces, the rotated faces are detected by rotating test

images to predefined degrees, such as ±5°, ±10°, ±15°, ±20°, and ±25°. For example,

in Figure 2.16 (a), the DBD-SVM face detection method searches from 21 x 21 through

210 x 210 with 15° and —25° rotation angles.

Figure 2.17 shows examples of detecting faces that are either very large or very small.

Figure 2.16 (a), for example, displays the detection of the largest face in the test set (360 x

360) and Figure 2.17 (b) shows the detection of the smallest face in the test set (13 x 13).

Faces in Figure 2.17 (c) through (f) are detected at 16 x 16, 16 x 16, 290 x 290, and

210 x 210, respectively.

Figure 2.18 shows examples of detecting faces in low quality images. Again, all

the faces are correctly detected by the DBD-SVM method. In particular, Figure 2.18 (a)

displays detection of faces with dark glasses; Figure 2.18 (b) through (e) show detection of

faces with blurred facial features due to the poor quality of the images.

Figure 2.19 shows examples of detecting faces with illumination and slight pose vari-

ations. Specifically, Figures 2.19 (a), (b), and (e) show images containing slightly pose-

angled faces, and the DBD-SVM method successfully detects all the faces in these images.

However, the DBD-SVM method can not detect faces with large pose variations, such as

the large pose-angled face in Figure 2.19 (d). The reason of such missed detection is that

the DBD-SVM method is trained only on upright frontal face images, i.e., 600 FERET

frontal face images, which do not include any pose-angled faces. Figure 2.19 (c) shows

an image with uneven lighting, and the face in this image displays one side brighter than

the other side. Still, the face is successfully detected by the DBD-SVM method. The ex-

perimental results shown in Figure 2.19 demonstrate that the DBD-SVM method, which is

trained on a simple image set yet works on much more complex images, displays robust

generalization performance.
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Figure 2.18 Examples of detecting faces in low quality images using the DBD-SVM
method.
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Figure 2.19 Examples of detecting faces with illumination and slight pose variations using
the DBD-SVM method.
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Table 2.1 Comparative Face Detection Performance of the Schneiderman-Kanade Method
and DBD-SVM

method faces detected false detections detection rate

Schneiderman-Kanade method (1.0, 1.0) 271 41 96.1%

Schneiderman-Kanade method (2.0, 2.0) 264 5 93.6%

Schneiderman-Kanade method (3.0, 3.0) 255 1 90.4%

the DBD-SVM method 277 2 98.2%

Among the state-of-the-art face detection methods, the Schneiderman-Kanade method

[84] is publicly available: http://vasc.ri.cmu.edu/cgi-bin/demos/findface.cgi . The detec-

tion performance of DBD-SVM is thus compared against this method. Note that the

Schneiderman-Kanade method has two thresholds, the frontal detection threshold and the

profile detection threshold, which control the number of faces detected and the number

of false detections. Table 2.1 shows the comparative face detection performance of the

Schneiderman-Kanade method and the DBD-SVM method. Note that the two numbers

in the parentheses correspond to the frontal detection threshold and the profile detection

threshold, respectively. Experimental results show chat the Schneiderman-Kanade method

achieves 96.1% face detection rate with 41 false detections when the thresholds are set

to be 1.0. Note that the number of false detections of the Schneiderman-Kanade method

counted here only refers to the frontal face false detections, and it does not include the

false detections caused by profile face detection. Also note the face detection rate of the

Schneiderman-Kanade method decreases when the thresholds get larger. The DBD-SVM

method, achieving 98.2% face detection rate with two false detections, thus compares fa-

vorably against the Schneiderman-Kanade method [84].
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2.4.5 Face Detection in Video Streams

The testing set for face detection in video contains video streams captured by a DFW-

VL500 digital camera, which uses IEEE 1394 interface and is capable of capturing full

motion images at 30 frames per second. To demonstrate the real-world application, the

DBD-SVM face detection method is implemented to search for faces in six predefined

scales: 75 x 75, 62 x 62, 50 x 50, 40 x 40, 30 x 30, and 25 x 25. The faces detected in one

scale are propagated to the successive search scales to eliminate the detected regions from

being searched again. The scanning procedure is detailed in Subsection 2.4.3.

Figures 2.20 and 2.21 show face detection results in a video stream. The upper half

of frames in Figure 2.20 show the original input stream, and the lower half of frames dis-

play the corresponding motion analysis results. Yellow rectangles denote motion FOIs

that bound motion pixels. Within the motion FOIs, skin color segmentation is applied to

eliminate non-skin color pixels and derives final FOIs. Figure 2.21 shows the skin seg-

mentation results in the upper half of frames where skin pixels are displayed in color while

non-skin pixels are in black. The final FOIs derived by both the motion analysis and the

skin color segmentation are displayed in red rectangles. Finally, the lower half of frames in

Figure 2.21 show face detection results. All faces whose sizes are within the search scales

are successfully detected.

Figures 2.22 and 2.23 show face detection results in a video stream with complex

background. Similarly, the upper half of frames in Figure 2.22 show the original input

stream, the lower half of frames in Figure 2.22 display the motion analysis results in yellow

rectangles, the upper half of frames in Figure 2.23 show the final FOI derived by both the

motion analysis and the skin color segmentation in red rectangles, and the lower half of

frames in Figure 2.23 show face detection results. Again, all faces whose sizes are among

the predefined search scales are successfully detected. Note that in this video stream, the

subjects wear clothes with more local structures (such as stripes) than the subjects appeared

in Figure 2.20. As a results, more motion pixels are detected here than in the previous
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Figure 2.20 Face detection in a video stream. The upper half of frames show the original
input stream, and the lower half of frames show the motion analysis results.
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Figure 2.21 Face detection in a video stream. The upper half of frames show the FOIs de-
rived from both motion analysis and skin color segmentation, and the lower half of frames
show the face detection results.
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video stream. Also note that the motion analysis eliminates small motion caused by people

standing far away from the camera.

Finally, Figures 2.24 and 2.25 display face detection results in a video stream with

illumination variation. The subjects far away from the camera are under very dim lighting

condition, and subsequently deteriorate the motion analysis and the skin color segmenta-

tion. When subjects approach the camera, however, the DBD-SVM face detection method

reliably detects all faces.

2.5 Conclusion

This chapter presents the DBD-SVM face detection method, whose novelty comes from

the integration of motion analysis, skin color segmentation, distribution-based distance,

and support vector machine. Experimental results using test images from the MIT-CMU

test sets and video streams show the feasibility of the DBD-SVM face detection method.

In particular, when using 92 images (containing 282 faces) from the MIT-CMU test sets,

the DBD-SVM method achieves 98.2% correct face detection rate with two false detec-

tions, a performance comparable to the Schneiderman-Kanade's method. When using

video streams, the DBD-SVM method detects faces reliably and efficiently.
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Figure 2.22 Face detection in a video stream with complex background. The upper half
of frames show the original input stream, and the lower half of frames show the motion
analysis results.
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Figure 2.23 Face detection in a video stream with complex background. The upper half
of frames show the FOIs derived from both motion analysis and skin color segmentation,
and the lower half of frames show the face detection results.
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Figure 2.24 Face detection in a video stream with illumination variation. The upper half
of frames show the original input stream, and the lower half of frames show the motion
analysis results.
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Figure 2.25 Face detection in a video stream with illumination variation. The upper half
of frames show the FOIs derived from both motion analysis and skin color segmentation,
and the lower half of frames show the face detection results.



CHAPTER 3

FACE RECOGNITION USING COLOR CONFIGURATIONS

Face recognition identifies individuals from a collection of face images based on the ge-

ometric or statistical features automatically derived from these images. An efficient algo-

rithm generally requires a robust feature extraction method that has the ability to derive dis-

criminating features to distinguish one face from another. Among a wide range of statistical

features, color is considered an effective descriptor that often simplifies object identifica-

tion [30]. Color spaces, defined by means of transformations from the original RGB color

space, thus display different color properties and provide useful information for different

visual tasks. The YCbCr, the Y IQ, and the YUV color spaces, for example, have wide

applications in color clustering and quantization of skin color regions [26], [111], [32]. The

HSV, the HSI, and the H LS color spaces, on the other hand, are often applied to locat-

ing and extracting facial features [92), [261 In the face recognition research field, however,

most models are implemented in the luminance domain. To improve existing face recog-

nition algorithms through the utilization of color information, this chapter first presents

extensive assessments of face recognition performance in different color spaces, and then

defines a color feature extraction method to help improve the baseline performance of the

Face Recognition Grand Challenge (FRGC) problems.

The comparative assessments of face recognition performance are implemented in

twelve color spaces (RGB, HSV,YUV,YCbC,., XY Z,Y IQ, L*a*b*,U*V*W*, L*u*v*,

11 1213 , HSI, and rgb) by evaluating seven color configurations for every color space. A

color configuration is defined by an individual or a combination of color component im-

ages. Take the RGB color space as an example, possible color configurations are R, G,

B, RG, RB, GB, and RGB. Experimental results using 600 FERET color images cor-

responding to 200 subjects and 456 FRGC color images of 152 subjects show that some

46
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color configurations, such as YV in the YUV color space and Y/ in the Y IQ color space,

help improve face recognition performance.

The color feature extraction method, which uses the color configurations defined by

the color component images across different color spaces, is implemented to improve the

FRGC baseline performance of the Biometric Experimentation Environment (BEE) algo-

rithm. The FRGC databases are designed to address "face recognition problems that are

harder, as defined by the image sets in the experiments and the performance by a control al-

gorithm [72]" The control algorithm of the FRGC databases is known as the BEE baseline

algorithm, which is a principal component analysis (PCA) algorithm optimized for large

scale problems [66]. The distance measure used in the nearest neighbor classifier of the

BEE baseline algorithm is whiten cosine [66]. Experimental results using an FRGC ver1.0

dataset containing 366 training images, 152 controlled gallery images, and 608 uncon-

trolled probe images, show that the YQCr color configuration improves the rank-one face

recognition rate of the BEE baseline algorithm from 37% to 70%; when using an FRGC

ver2.0 dataset including 6,660 training images, 16,028 controlled target images, and 8,014

uncontrolled query images, the YQCr color configuration improves the face verification

rate (at 0.1% false acceptance rate) of the BEE baseline algorithm from 13% to 33%.

The remainder of this chapter is organized as follows. Section 3.1 reviews various

computer vision applications implementing color information. Section 3.2 gives the defini-

tion of twelve color spaces in which face recognition performance is assessed. Section 3.3

details the comparative assessments of face recognition performance in twelve color spaces.

Section 3.4 presents the color feature extraction method for improving the FRGC baseline

performance. Finally, Section 3.5 summarizes the research in face recognition.
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3.1 Background

Face recognition is a very active research area as evidenced by the large number of pub-

lications in the journals and conferences of computer vision and pattern recognition [6],

[42], [54], [52], [72], [19]. Appearance-based approaches, such as eiganfaces [47], [102],

also know as principal component analysis (PCA), and Fisherfaces [22], [3], [118], also

know as Fisher Linear Discriminant (FLD) or Linear Discriminant Analysis (LDA), have

been proved to be effective in the face recognition tasks. Based on these algorithms, recent

research has focused on extracting discriminating features to enhance the classification

ability of PCA and FLD. These applications, such as [56], [57], have been shown to be

less sensitive to variations in illumination and viewpoint. A comprehensive survey of face

recognition can be found in [117].

Color provides useful information for object detection, indexing and retrieval [112],

[40]. Color histograms and color invariant moments provide robust object recognition

against image variations such as illumination [33], [23]. Swain and Ballard [89] devel-

oped a color indexing system which applies color histogram for image inquiry from a large

image database [95]. The system separates the chrominance from the luminance and the

color information derived is invariant to illumination variations.

In general, different color spaces, which are defined by means of transform' ations

from the original RGB (red, green, blue) color space, display different color properties.

The HSV (hue, saturation, value) color space and its variants, such as the HSI (hue, sat-

uration, intensity) color space and the HLS (hue, lightness, saturation) color space, are

often applied in locating and extracting facial features [92], [26]. The YCbCr (luminance,

chrominance-blue, chrominance-red) color space, the Y IQ (luminance, in-phase, quadra-

ture) color space, and the YUV color space have wide applications in color clustering

and quantization for skin color regions [26], [111], [78], [32]. The perceptually uniform

color spaces, such as the CIE-U*V*W* color space, the CIE-L*u*v* color space, and the

CIE-L*a*b* color space have general and ubiquitous applications [109], [118], [59], [99].
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The color information provided by the different color spaces has been applied to

different visual tasks. Skin color, for example, is used for face detection [40], [37], [99].

Yang et al. [112] suggested that the luminance account for most of the skin color variation

and showed that the color histogram based on normalized red and green color components

occupies a small cluster in the histogram. Sobottka et al. [92], on the other hand, showed

that The HSV color space and its variations have the advantages in providing large variance

among facial features and are suitable for locating and extracting facial features. Hsu et

al. [40] applied a nonlinear color transformation to detect skin patches in order to find

human faces in an image. Tones et al. [100], however, showed that color information does

not improve the face recognition performance in comparison with the intensity information.

3.2 Color Spaces

This section details twelve color spaces assessed: the RGB color space, the rgb color

space, the 11 12 13 (decorrelated RGB) color space, the CIE-XYZ color space, the human

perceptual color spaces: HSV and HSI, the video transmission efficiency color spaces:

Y IQ, YUV and YCbCr , and the CIE perceptually uniform color spaces: CIE-U*V*W*,

CIE-L*utv*, and CIE-L*a*b*.

The RGB images are sensitive to luminance, surface orientation, and other photo-

graphic conditions. To minimize such sensitivity, one can project the R, G, B values onto

the R = G = B = max{R, G, B} plane. The projection spans a normalized rgb chro-

maticity triangle. The transformation is defined as follows [95]:
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Another approach to stabilize RGB image is to decorrelate the RGB components.

The 11 12 13 color space proposed by Ohta et al. [69] applies a Karhunen-Loeve transfor-

mation to decorrelate the RGB components. The linear transformation based on Ohta's

experimental model is defined as follows [69]:

The definition of the HSV and the HSI color spaces are based by human vision

system in a sense that human describes color by means of hue, saturation, and brightness.

Hue and saturation define chrominance, while intensity or value specifies luminance [30].

The HSV color space is defined as follows [90]:



The HSI color space is specified as follows [30]:
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Note that in both Equation 3.3 and Equation 3.4, the R, G, B values are scaled to [0,1].

The YUV and the YIQ color spaces are commonly used in video for transmission

efficiency. The YIQ color space is adopted by the NTSC (National Television System

Committee) video standard in reference to RGB NTSC, while the YUV color space is

used by PAL (Phase Alternation by Line) and SECAM (System Electronique Couleur Avec

Memoire). The YUV color space is specified as follows [9]:

Y 0.2990 0.5870 0.1140 R

U = —0.1471 —0.2888 0.4359 G (3.5)

V  0.6148 —0.5148 —0.1000  B

The I and Q components are derived from their counterparts, U and V, via a clock-

wise rotation (33°), and the YIQ color space is defined as follows [9]:

Y

I

_Q

=

_

0.2990

0.5957

0.2115
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—0.2745

—0.5226
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—0.3213

0.3111 _
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G

_ B

(3.6)
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The YCbCr color space is developed as a part of the ITU-R Recommendation B.T.

601 [9] for digital video standard and television transmissions. It is a scaled and offset

version of the YUV color space. In YCbCr , the RGB components are separated into

luminance (Y), chrominance blue (Cb) and chrominance red (Cr). The Y component has

220 levels ranging from 16 to 235, while the Cb, Cr components have 225 levels ranging

from 16 to 240 [9]:

Y 16 65.4810 	 128.5530 	 24.9660 R

Cb = 128 + —37.7745 	 —74.1592 	 111.9337 G (3.7)

Cr  128  111.9581 	 —93.7509 	 —18.2072  B

X 0.607 0.174 0.200 R

Y = 0.299 0.587 0.114 G (3.8)

Z ' 0.000 0.066 1.116 B

Note that the Y component defined here is consistent with the luminance defined in Equa-

tions 3.5, 3.6, 3.7. In addition, a chromaticity diagram can be derived via the chromaticity

coordinates x, y, which are specified by the X, Y, Z tristimulus. This CIE chromaticity

diagram, however, is not perceptually uniform [46], i.e., areas of the least perceptible

differences on the diagram are distorted to ellipses (known as MacAdam ellipse) rather

than circles. To overcome such a shortcoming, the CIE-uv chromaticity diagram was pro-

posed [46]:
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Based on this uniform chromaticity scale (UCS), a CIE uniform color space U* V* W*

was proposed. The W* component corresponds to luminance, while the U*, V* compo-

nents correspond to chrominance [46]:

where the uo and vo are derived from the reference white stimulus.

Although the CIE-uv diagram is perceptually uniform, it has its own deficiency in

representing yellow-red colors as the area of yellow-red in the diagram is relatively small

[11] . To improve this deficiency, a new uv diagram was proposed [11]:

Based on the iu'vi coordinate system, two CIE uniform color spaces were defined,

namely the CIE-L*u*v* color space and the CIE-L*a*b* color space [11]. The CIE-L*u*v*

color space is proposed to obsolete the U*V*W* color space [11]:

where the u'o and vo' components are derived from the reference white stimulus.
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The L*a*b* color space is one of the most commonly used color spaces and is mod-

eled based on human vision system. The L* component in the L*a*b* color space corre-

sponds to brightness ranging from 0 (black) to 100 (white), the a* component corresponds

to the measurement of redness (positive values) or greenness (negative values), and the

b* component corresponds to the measurement of yellowness (positive values) or blueness

(negative values). The L*a*b* color space is defined based on the XYZ tristimulus [11]:

3.3 Comparative Assessments of Face Recognition Performance

Color spaces are defined for special advantages related to devices that produce color (e.g.,

RGB for color monitors and color video cameras, CMY for color printing) or related

to human perception (e.g., HSV and HSI for human describing and interpreting color,

YUV/YCbCr for image/video compression in JPEG and MPEG). As a result, the appro-

priateness of color spaces for pattern classification is usually assessed by experimental

studies. For example, Geusebroek et al. [27] experimentally investigated the invariance

and discriminative power of the color invariants; Terrillon et al. [98] performed compar-

ative analysis of nine different color spaces for face detection; and based on this analysis

Hsu et al. [40] chose the YCbC, color space to develop their face detection algorithm.

This section first details the experimental procedure for empirical assessments of face

recognition performance in twelve different color spaces and then presents experimental re-
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sults derived using 600 FERET color images corresponding to 200 subjects and 456 FRGC

color images of 152 subjects. Specifically, the recognition performance of twelve color

spaces (RGB, HSV, YUV, XY Z, YIQ, L*a*b*, U*V*W*, L*u*v*, 111213,

HSI, and rgb) is assessed by evaluating seven color configurations for every single color

space. A color configuration is defined by an individual or a combination of color com-

ponent images. Take the RGB color space as an example, possible color configurations

are R, G, B, RG, RB, GB, and RGB. The experimental results show that some color

configurations, such as YV in the YUV color space and Y/ in the YIQ color space, help

improve face recognition performance.

3.3.1 Methodology

Principal component analysis (PCA) has been widely used to perform dimensionality re-

duction for face recognition and indexing. In particular, PCA is the method behind the

Eigenfaces coding scheme [102] whose primary goal is to project the similarity judgment

for face recognition into a low-dimensional space. This space defines a feature space, or a

"face space," which drastically reduces the dimensionality of the original space, and face

detection and identification are performed in this reduced face space.

Let x E N be a random vector representing S. color configuration, where N is the

dimensionality of the corresponding input space. The vector is formed by concatenating

the rows or the columns of the color component images which has been normalized to have

zero mean and unit variance. The covariance matrix of x is defined as follows [25]:

where E[.] is the expectation operator, t denotes the transpose operator, and E E RNxN is

the covariance matrix of x. The PCA procedure factorizes the covariance matrix E into the

following form [25]:
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where 4) = [co i co2 coN] E RNx N is an orthogonal eigenvector matrix and A diag{ Ai

A2 , . . , AN} E RNxN a diagonal eigenvalue matrix with diagonal elements in decreasing

order (A i >A2 >• • ->An) [25].

An important property of PCA is decorrelation, i.e., the components of the trans-

formed data, y = 43 tx, are decorrelated since the covariance matrix of y is diagonal,

Ey = A, and the diagonal elements are the variances of the corresponding components.

Another important property of PCA is its optimal signal reconstruction in the sense of min-

imum mean square error (MSE) when only a subset of principal components is used to

represent the original signal. Following this property, an immediate application of PCA is

the dimensionality reduction [54], [86]:

where P [(pi ço2 . . .	 m < N, and P e RNxm . The lower dimensional vector z E Rm

captures the most expressive features of the original data x.

After dimensionality reduction by Equation 3.16, feature vectors are compared and

classified by the nearest neighbor (to the mean) rule using a similarity (distance) measure

where z is a testing feature vector and mk , k = 1, 2, . . . , L is the mean of the training

samples for the class wk . The testing feature vector, z, is classified as belonging to the class

of the closest mean, m k , using the similarity measure 6.

The similarity measures used in the experiments to evaluate the efficiency of differ-

ent representation and recognition methods include the L 1 distance measure, 6L, 1 , the L2

distance measure, 6L2 , the Mahalanobis distance measure, Mahl and the cosine similarity

measure, Ocos 9 which are defined as follows [54], [86]:
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where E is the covariance matrix, and II • I denotes the norm operator. Note that the cosine

similarity measure includes a minus sign in Equation 3.21, because the nearest neighbor (to

the mean) rule of Equation 3.17 applies minimum (distance) measure rather than maximum

similarity measure [65], [54], [86].

3.3.2 Experiments

The experiments of the assessments of the face recognition in twelve color spaces is carried

out using 600 FERET color images corresponding to 200 subjects and 456 FRGC (Face

Recognition Grand Challenge) color images of 152 subjects. The 600 FERET images are

from the FERET database [73], which has become the de facto standard for evaluating face

recognition technologies. The images correspond to 200 subjects such that each subject

has three images. The 456 FRGC color images are from the FRGC database [6], and they

correspond to 152 subjects such that there are three images for each subject. Among the

three images, one is a controlled image with good image quality, and the remaining two are

uncontrolled images with challenging image quality in terms of illumination, resolution,

blurring, etc. [6].

The face images used in the experiments are normalized to extract facial regions

that contain only faces, so that the face recognition performance is not affected by the

factors not related to face, such as hair style. Specifically, the normalization consists of
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Figure 3.1 Color component images of twelve color spaces as defined in Section 3.2.
From left to right, top to bottom, the color spaces are the RGB color space, the HSV color
space, the YUV color space, the YCbCr color space, the XYZ color space, the Y IQ color
space, the L* a* b* color space, the U*V*W* color space, the L* u*v* color space, the 11 12 13

color space, the HSI color space, and the rgb color space.
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the following procedures: first, manual annotation detects the centers of the eyes; second,

rotation and scaling transformations align the centers of the eyes to the predefined locations

and fix the interocular distance; finally, a subimage procedure crops the face image to the

size of 128 x 128 to extract the facial region. Figure 3.1 shows some example images used

in the experiments that are already cropped to the size of 128 x 128. These images are

the individual color component images of twelve color spaces as defined in Section 3.2.

From left to right, top to bottom, the color spaces are the RGB color space, the HSV color

space, the YUV color space, the YCbCr color space, the XY Z color space, the Y IQ color

space, the L* a* b* color space, the U* V* W* color space, the L*u*v* color space, the /1 12 13

color space, the HSI color space, and the rgb color space. Note that both the FERET

and the FRGC images were acquired during different photo sessions, they display different

illumination characteristics and facial expressions. For the FERET images, as there are

three images for each subject, two of them are randomly chosen for training, while the

remaining one (unseen during training) is used for testing; similarly, for the FRGC images,

two images of each subject are randomly chosen for training, while the remaining one is

used for testing.

The face recognition performance of different color spaces is assessed by evaluating

seven color configurations for every single color space. A color configuration is defined by

an individual or a combination of color component images. Take the RGB color space as

an example, possible color configurations are R, G, B, RG, RB, GB, and RGB. Note

that when two or three color component images are used to define a color configuration,

each color component image is first normalized to zero mean and unit variance, and then

the normalized color component images are concatenated to form an augmented vector

representing the color configuration.

To provide a baseline performance for comparison, the first set of experiments applies

different similarity measures as defined in Subsection 3.3.1 on the intensity images derived

by averaging the R, G, B color component images. Figure 3.2 shows the face recognition
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Figure 3.2 The face recognition performance using the PCA method on the intensity im-
ages derived by averaging the R, C, B color components. The similarity measures applied
are the L 1 distance measure (L 1 ), the L2 distance measure (L 2 ), the Mahalanobis distance
measure (Mah), and the cosine similarity measure (cos).

performance using the PCA method. The horizontal axis indicates the number of features

used, and the vertical axis represents the rank-one face recognition rate, which is the accu-

racy rate for the top response being correct. Figure 3.2 shows that the Mahalanobis distance

measure performs the best, followed in order by the L 1 distance measure, the L2 distance

measure, and the cosine similarity measure. The experimental results provide a baseline

face recognition performance based on the intensity images, and suggest that one should

use the Mahalanobis distance measure for the comparative assessments in different color

spaces. Note that the Mahalanobis distance measure also performs the best in all twelve

color spaces detailed in Section 3.2.
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Figure 3.3 The face recognition performance of seven color configurations in the RGB
color space. Note that the performance curve of the intensity images (intensity) is also
included for comparison (same in the following figures).

The next set of experiments assesses the following color spaces: RGB, HSV, YUV,

YCbCr , XY Z, Y IQ, L*a*b*, U*V*W*, and L*u*v*. The face recognition performance

of seven color configurations in these color spaces is shown in Figure 3.3, Figure 3.4,

Figure 3.5, Figure 3.6, Figure 3.7, Figure 3.8, and Figure 3.9, respectively. Note that the

YUV and the YCb C, color spaces (as well as the U*V*W* and the L*u*v* color spaces)

have identical face recognition performance due to their definitions (see Section 3.2). The

color configurations, which perform better than the intensity images for face recognition

are summarized in Table 3.1. In particular, Figure 3.3 shows that the R and the RG color

configurations perform better than the intensity images. Figure 3.4 shows that the V color

configuration outperforms the intensity images. Figure 3.5 shows that the Y and YV color
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Figure 3.4 The face recognition performance of seven color configurations in the HSV
color space.

configurations in the YUV color space or the Y and VC, color configurations in the YCbCr

color space have better face recognition performance than the intensity images. Figure 3.6

shows the X, Y, and XY color configurations perform better than the intensity images.

Figure 3.7 shows that the Y and Y/ color configurations outperform the intensity images.

Figure 3.8 shows that the L*, L* a* , L*b* , and L* a* b* color configurations are better than

the intensity images for face recognition. Figure 3.9 shows that the W* and U*W* color

configurations in the U*V*W* color space or the L* and L*u* color configurations in the

L*u*v* color space perform better than the intensity images.

Figure 3.13 compares the best color configurations in the RCM, HSV,Y UV ,YGG,

XY Z,Y IQ, L*a*b*, U*V*W*, and L*u*v* color spaces. Note that those color configura-

tions with better face recognition performance shown in Figure 3.13 all share one common
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Figure 3.5 The face recognition performance of seven color configurations in the YUV
color space. Note that the face recognition results in the YCb C, color space are the same
when the Y, U, and V color components are replaced by their counterparts Y, Cb, and Cr,
respectively.

characteristic: they contain both chromatic and achromatic (intensity) components. The

pure chromatic color configurations, however, all display worse (than the intensity images)

face recognition performance. Specifically, these pure chromatic color configurations in-

clude the HS in Figure 3.4, the UV and the CbC, in Figure 3.5, the IQ in Figure 3.7,

the a*b* in Figure 3.8, and the U*V* and the u*v* in Figure 3.9. Note also that simply

applying all the color components does not necessarily achieve the best face recognition

performance. The experimental results derived using the / 1 /2 /3 , the HSI, and the rgb

color spaces, as shown in Figure 3.10, Figure 3.11, and Figure 3.12, respectively, suggest
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Figure 3.6 The face recognition performance of seven color configurations in the XYZ
color space.

that the color configurations in these color spaces do not improve face recognition perfor-

mance.

The robustness of the seven color configurations shown in Figure 3.13 is further

assessed using a new dataset from the Face Recognition Grand Challenge (FRGC) database

[71]. In particular, this new testing set includes 456 color images of 152 people, and two

thirds of the images are taken in uncontrolled environments with challenging image quality

in terms of illumination, resolution, blurring, etc. As three images are available for each

subject, two of them are randomly chosen for training, while the remaining one is used for

testing.

The face recognition performance of the seven color configurations is shown in Fig-

ure 3.14. Again, all these seven color configurations have better face recognition perfor-
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Figure 3.7 The face recognition performance of seven color configurations in the YIQ
color space.

mance than the intensity images, even though the overall face recognition rates are lower

than those shown in Figure 3.13. The reason for the lower recognition rates is mainly due to

the FRGC dataset, which contains two thirds of images taken in uncontrolled environments

with challenging image quality.

The last set of experiments assesses the face recognition performance with image

alignment variations in terms of varying the eye locations to assess the robustness of face

recognition performance using the color configurations shown in Figure 3.14 and Fig-

ure 3.13. The experimental results show that (i) small variations in eye locations, such

as in 5 x 5 pixel region, do not change the face recognition performance much; and (ii)

larger variations, such as 11 x 11 pixel region, can significantly deteriorate the face recog-
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Figure 3.8 The face recognition performance of seven color configurations in the L* a*b*
color space.

nition performance. Figure 3.15 shows the deteriorated face recognition performance when

the eye location variations occur in 11 x 11 pixel region using the FRGC dataset.

3.4 Feature Extraction Using Component Images Across Color Spaces

Face recognition has received significant attention during the past decade. Recently, Phillips

and Newton [72] suggest that researchers should concentrate on "face recognition problems

that are harder, as defined by the image sets in the experiments and the performance by a

control algorithm" rather than work on problems that have already been solved. To this

end, the Face Recognition Grand Challenge (FRGC) databases are designed, and a control

algorithm, known as the Biometric Experimentation Environment (BEE) baseline algo-
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Figure 3.9 The face recognition performance of seven color configurations in the
U*V*W* (or L*u*v*) color space.

rithm [66], is developed. Due to its large scale and standardized protocols, FRGC has been

considered the de facto benchmark to evaluate face recognition algorithms. This section

focuses on extending the color research to improve the BEE baseline performance.

Based on the experimental results presented in Subsection 3.3.2, the color configu-

rations defined by the pure achromatic component (such as Y) or the pure chromatic com-

ponents (such as I, Q, Cb, Cr, IQ, or CbCr) do not improve face recognition performance.

This section thus concentrates on color configurations that comprise both achromatic and

chromatic component images. In particular, the face recognition performance is empiri-

cally assessed using the Y/, the YQ, the YIQ color configurations in the YIQ color space

and the YCb, the YCr , the YCbCr color configurations in the YCb C7, color space. The

color configurations defined by combining color component images across different color
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Figure 3.10 The face recognition performance of seven color configurations in the / 1 /2 /3

color space.

spaces are investigated as well. Specifically, the Y /C,., the Y /Cb , the YQC7., and the

YQCb color configurations defined by the color component images from both the Y IQ

and the YCb C, color spaces are assessed. The experimental results show that some color

configurations, such as the YQC, color configuration, achieves superior face recognition

performance. In particular, when using an FRGC ver1.0 dataset containing 366 training im-

ages, 152 controlled gallery images, and 608 uncontrolled probe images, the YQC, color

configuration improves the rank-one face recognition rate of the BEE baseline algorithm

from 37% to 70%; when using an FRGC ver2.0 dataset including 6,660 training images,

16,028 controlled target images, and 8,014 uncontrolled query images, the YQC,. color

configuration improves the face verification rate (at 0.1% false acceptance rate) of the BEE

baseline algorithm from 13% to 33%.
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Figure 3.11 The face recognition performance of seven color configurations in the HSI
color space.

3.4.1 Methodology

Face recognition challenge problems refer to the "face recognition problems that are harder,

as defined by the image sets in the experiments and the performance by a control algo-

rithm" [72]. Two versions of FRGC, namely the ver1.0 and the ver2.0, are distributed [71].

In particular, the ver1.0 is designed to introduce the FRGC challenge problem format and

the supporting infrastructure to the face recognition community, while the FRGC ver2.0

is designed to challenge researchers to meet the FRGC performance goal [71]. There are

7,544 and 50,000 recordings in the ver1.0 and the ver2.0, respectively, and each of them

is divided into three subsets: the training set, the target set, and the query set. The im-

ages from the training set are used to learn specific parameters or settings of a particular
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Figure 3.12 The face recognition performance of seven color configurations in the 7- gb
color space.

recognition algorithm, and the target and the query sets are applied to validate the trained

system.

The BEE baseline algorithm is a principal component analysis (PCA) algorithm,

which has been optimized for large scale problems [66]. Specifically, in the FRGC databases,

the eigenvectors are derived using the images from the training set following the procedure

described in Subsection 3.3.1. After the training, the target and the query sets are applied

to derive the face recognition performance using a nearest neighbor classifier. First, the

query feature set Q of size Q1 is obtained by projecting the query pattern vectors onto the

eigenvectors of PCA (see Equation 3.15). The target feature set 'T of size I is produced

in a similar manner. Then a similarity matrix S of size Q x 7" is derived by calculating a

similarity score between every query-target pair. Let q, represents a query feature vector in
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Figure 3.13 Comparative face recognition performance of the best color configurations
in the RGB color space, the HSV color space, the YUV/YCbCr color space, the XY Z
color space, the YIQ color space, the L*a*b* color space, and the U*V*W*IL*u*v* color
space.

Q and t3 a target feature vector in Y, similarity score S(i, j) between q, and t3 is calculated

using a whiten cosine similarity measure [7l]:

where A is defined in Equation 3.15, and 	 denotes the norm operator. Finally, the

similarity matrix S is analyzed by BEE to determine the recognition performance.

In the FRGC ver1.0, face recognition performance is derived using a gallery set and

a probe set, which are drawn from the target and the query sets, respectively. Due to the

fact that only one image is available for each subject in the gallery set, the recognition
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performance is characterized by the rank order statistics and graphically displayed as cu-

mulative match characteristic (CMC) curves, where rank r indicates the probability that the

gallery image from the correct individual is among the top r matches to a probe. Note that

a probe, p i , is compared against every gallery and is classified as belonging to the class of

the closest match by a nearest neighbor classifier [71]:

where gk , k = {1, 2, . , L} is the gallery feature vector for class wk, and (5(pogk) is a

whiten cosine similarity measure.

In the FRGC ver2.0, the target and the query sets are directly used to derive recogni-

tion performance. In particular, BEE analyzes the similarity matrix, S, and generates three

receiver operating characteristic (ROC) curves using three different subsets [71]: The first

subset, corresponding to the ROC I, contains the target and the query images that were

taken in the same year, and the query was taken seven or more days after the target. The
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Figure 3.14 Comparative face recognition performance of seven color configurations us-
ing 456 FRGC color images.

second subset, corresponding to the ROC II, consists of the target and the query images

where the query was taken 7 or more days after the target, regardless of year. The third

subset, corresponding to the ROC III, includes the target and the query images where the

query was taken in a later year than the target.

The BEE baseline performance, either in the FRGC ver1.0 or the FRGC ver2.0, is

derived by applying the intensity images defined by averaging the red, green, and blue

component images in the RGB color space. The BEE baseline algorithm is a PCA imple-

mentation with a specific configuration. In particular, the BEE baseline algorithm applies

146 PCA features to derive the FRGC ver1.0 baseline performance, and 1,024 PCA features

to derive the FRGC ver2.0 baseline performance.
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Figure 3.15 Comparative face recognition performance of seven color configurations us-
ing 456 FRGC color images with eye location variations occurred in 11 x 11 pixel region.

3.4.2 Experiments

The FRGC is designed to challenge researchers and advance the face recognition tech-

nologies by presenting a six-experiment challenge problem and data corpus of 50,000 im-

ages [71]. Among these six experiments, the BEE baseline algorithm reveals that Experi-

ment 4 designed to measure face recognition performance using uncontrolled frontal still

images is the most challenging one [71]. Experiment 4 is thus chosen to evaluate the fea-

sibility of the color feature extraction method. Specifically, 1,126 images (consisting of

366 training images, 152 controlled gallery images, and 608 uncontrolled probe images)

from the FRGC ver1.0, and 30,702 images (consisting of 6,660 training images, 16,028

controlled target images, and 8,014 uncontrolled query images) from the FRGC ver2.0 are

used. Note that the 6,660 training images are a subset of the large still training set [71],



75

from which 30 images for each subject are randomly chosen. The example target, query,

and training images are shown in Figure 3.16. The top image in either column one or col-

umn two is a target image, while the remaining two are query images. Images in the third

column are training images. Figure 3.16 shows that the controlled target images have bet-

ter image quality than the uncontrolled query images in terms of illumination, resolution,

blurring, etc.

The preprocessing procedure of this part of experiments normalizes the face images

to a spatial resolution of 64 x 64 to extract the facial regions that contain only the faces,

so that the performance of face recognition is not affected by the factors not related to

face, such as hair style. Figure 3.16(a) shows some example target, query, and training

images of the size of 64 x 64. Note that in either column one or column two, the top

image is a controlled target image, while the remaining two are uncontrolled query images.

The third column shows example training images. Figure 3.16 shows that the controlled

target images have better image quality than the uncontrolled query images in terms of

illumination, resolution, blurring, etc. Note that this preprocessing procedure simplifies

the one performed by the BEE baseline algorithm in two aspects: (i) BEE preprocessing

normalizes images to a larger resolution of 130 x 150, and (ii) BEE preprocessing applies

an oval mask to extract the facial region. Figure 3.16(b) shows a BEE intensity image

normalized to 130 x 150 with an oval mask.

The first set of the experiments assesses the face recognition performance of the BEE

baseline algorithm using an FRGC ver1.0 dataset that contains 366 training images, 152

gallery images, and 608 probe images. The training images are taken from subjects who

do not appear in either the gallery or the probe set. The gallery images are taken from 152

subjects in controlled environment with good illumination conditions. The probe images

are taken from the same 152 subjects in uncontrolled environment with challenging image

quality. Note that the number of probe images for each subject ranges from two to seven.



76

Figure 3.16 (a) Example target, query, and training images normalized to 64 x 64. The
top image in either column one or column two is a target image, while the remaining two
are query images. Images in the third column are training images. (b) A BEE intensity
image of the size 150 x 130 with an oval mask applied to extract the face region.
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Figure 3.17 Comparative face recognition performance using the YIQ color configura-
tion, the YCbCr color configuration, and the BEE intensity images. The horizontal axis
indicates the number of features used, and the vertical axis represents the rank-one face
recognition rate, which is the accuracy rate for the top response being correct.

Among seven color configurations, the experimental results presented in Subsec-

tion 3.3.2 show that the pure achromatic components, such as the Y component, or the

pure chromatic components, such as the I component, the Q component, or the IQ com-

ponent, do not improve face recognition performance. The experiments conducted here

thus only focus on color configurations that comprise both achromatic and chromatic com-

ponent images. Specifically, the face recognition performance of the Y/, the YQ, and the

YIQ color configurations in the YIQ color space, and the YCb , the YCr , and the YCbCr

color configurations in the YCbCr color space is assessed.
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Figure 3.17 shows comparative face recognition performance of the BEE baseline

algorithm using the YIQ color configuration, the YCbC,. color configuration, and the BEE

intensity images (see Equation 3.2). The horizontal axis indicates the number of features

used, and the vertical axis represents the rank-one face recognition rate, which is the accu-

racy rate for the top response being correct. The curves corresponding to the YIQ and the

YCbCr color configurations indicate that using more features generally leads to a higher

recognition accuracy. Note that the number of eigenvectors derived by the BEE baseline

algorithm using 366 training images is 365; hence the total number of features derived by

projecting a color configuration onto these eigenvectors is 365. The curve associated to the

BEE baseline, however, shows different tendency where the face recognition performance

peaks when a certain number of features (about 40% of the total features) are used. Note

that the face recognition performance of the Y/, the YQ, the YCb, and the YC, color con-

figurations is also assessed using different number of features, and the experimental results

all indicate that using more features results in higher recognition accuracy. The results thus

suggest that one should use 365 features for the color configurations and 146 features (ac-

counting for 40% of total features) for the BEE intensity images in order to conduct a fair

comparison.

Figure 3.18 and Figure 3.19 show the cumulative match characteristic (CMC) curves

derived using the color configurations defined in the YIQ and the YCbC,. color spaces, re-

spectively. The BEE baseline performance is also included for comparison. The horizontal

axis denotes the rank, where rank k indicates the probability that the gallery image from

the correct individual is among the top k matches to a probe, and the vertical axis repre-

sents the correct recognition rate. In particular, Figure 3.18 shows that in the Y IQ color

space, the YIQ color configuration performs the best, followed in order by the YQ color

configuration, and the Y/ color configuration; Figure 3.19 shows that in the YCbC,. color

space, the YCbC,. color configuration performs the best, followed in order by the YC, color

configuration, and the YCb color configuration. Note that the CMC curves corresponding



Figure 3.18 The CMC curves derived using the color configurations defined in the Y IQ
color space. The BEE baseline performance is also included for comparison. Note that
the curves corresponding to the color configurations and the BEE baseline performance are
derived using 365 and 146 features, respectively.

to the color configurations and the BEE baseline performance are derived using 365 and

146 features, respectively.

The second set of experiments explores the possibility of defining the color config-

urations using component images across different color spaces. This experiment applies

the FRGC ver1.0 dataset, and focus on the color configurations comprising both achro-

matic and chromatic components. Specifically, the face recognition performance of the

Y IC, the YICb, the YQC, and the YQCb color configurations is assessed. Figure 3.20

shows the CMC curves derived using these four color configurations. In particular, the top

curve in Figure 3.20 corresponding to the YQCT color configuration displays the best face



Figure 3.19 The CMC curves derived using the color configurations defined in the YC bCr

color space. The BEE baseline performance is also included for comparison. Note that the
curves corresponding to the color configurations and the BEE baseline performance are
derived using 365 and 146 features, respectively.

recognition performance followed in order by the YQCb, the YIG, and the Y/Cb color

configurations. The rank-one face recognition rate of the best color configuration is 70%

comparing to the BEE baseline rank-one rate of 37%.

The last set of experiments applies the best performing color configuration, YQCT ,

onto an FRGC ver2.0 dataset consisting of 12,776 training images, 16,028 controlled target

images, and 8,014 uncontrolled query images. Note that 12,776 training images are not all

used for training, but rather, 30 images for each subject are randomly chosen to form a

smaller training set. As there are 222 subjects available in the original training set, this

smaller training set thus contains 6,660 images. Again, the BEE baseline algorithm derives
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Figure 3.20 The CMC curves derived using the color configurations defined across differ-
ent color spaces. The BEE baseline performance is also included for comparison. Note that
the curves corresponding to the color configurations and the BEE baseline performance are
derived using 365 and 146 features, respectively.

at most (6660 — 1) eigenvectors, and the maximum dimensionality of the feature vectors is

6659.

In the FRGC ver2.0, as detailed in Subsection 3.4.1, BEE analyzes the similarity ma-

trix and generates three receiver operating characteristic (ROC) curves, namely the ROC

I, the ROC II, and the ROC III, corresponding to three different subsets. The ROC curves

show the false acceptance rate (FAR) on the horizontal axis and the probability of correct

verification (computed as 1—false rejection rate (FRR)) on the vertical axis. The face recog-

nition performance using the YQCr color configuration and the BEE intensity images is

shown in Figure 3.21. In particular, Figure 3.21 shows that the YQCr color configuration
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Figure 3.21 The ROC curves derived using the YQC T color configuration and the BEE
intensity images.

improves ROC I face verification rate (at 0.1% false acceptance rate) from 13% to 33%;

ROC II face verification rate from 13% to 31%; and ROC III face verification rate from

12% to 28%. Table 3.2 summarizes the face recognition performance of the YQCr color

configuration and the BEE baseline performance using the FRGC databases.

3.5 Conclusion

This chapter presents extensive assessments of face recognition performance in different

color spaces, and defines a color feature extraction method to help improve the baseline

performance of the FRGC problems. The comparative assessments of face recognition per-

formance are implemented in twelve color spaces by evaluating seven color configurations
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Table 3.2 Comparative Face Recognition Performance of the YQCr Color Configuration
and the BEE Intensity Images

BEE Baseline Y Q Cr

FRGC vl 37% 70%

FRGC v2 (ROC I) 13% 33%

FRGC v2 (ROC II) 13% 31%

FRGC v2 (ROC III) 12% 28%

for every color space. The experimental results show that some color configurations, such

as YV in the YUV color space and Y/ in the Y IQ color space, help improve face recog-

nition performance. In addition, a color feature extraction method, which uses the color

configurations defined by the color component images across different color spaces, is im-

plemented to improve the FRGC baseline performance. Experimental results using both

the FRGC ver1.0 and ver2.0 datasets demonstrate the proposed feature extraction method

helps improve face recognition performance. In particular, the best performing color con-

figuration, YQCr , achieves 70% rank-one face recognition rate comparing to the FRGC

ver1.0 baseline performance of 37%, and achieves 33% face verification rate (at 0.1% FAR)

comparing to the FRGC ver2.0 baseline performance of 13%.



CHAPTER 4

FACE RECOGNITION USING EVOLUTIONARY COLOR FISHER FEATURES

In the previous chapter, extensive assessments of face recognition performance in differ-

ent color spaces have been performed, and a color feature extraction method has been

designed to improve the baseline performance of the Face Recognition Grand Challenge

(FRGC) problems. The best performing color configuration, YQC,., defined in the Y IQ

and the YCbCr color spaces, achieves 33% verification rate (at 0.1% false acceptance rate)

comparing to the BEE baseline performance of 13% at the same false acceptance rate. Al-

though this research discovers a configuration that significantly improves upon the BEE

baseline performance, however, it limits the optimization within well-defined color spaces,

such as RGB, YCbCr , Y IQ, etc. To further elevate the FRGC performance, this chapter

presents a novel feature extraction method for face recognition implementing genetic al-

gorithms (GAs) and Fisher linear discriminant (FLD) to derive the optimal discriminating

features that lead to an effective image representation for face recognition.

The method works as follows. First, a new color space, LC1C2, consisting of one

luminance (L) channel 'and two chrominance channels (C1,C2) is introduced as a' linear

transformation of the input RGB color space. The specific transformation from the RGB

color space to the L Ci C2 color space is optimized by a GA where a fitness function guides

the evolution toward higher recognition accuracy. After the color feature extraction, i.e.,

transforming RGB color images to LC1 C2 color images, the FLD method is applied to

further extract discriminating features, termed color Fisher features (CFFs). Finally, CFFs

are applied to enhance FRGC baseline performance.

The feasibility of the proposed method is demonstrated using the FRGC databases.

Specifically, using an FRGC ver1.0 dataset containing 366 training images, 152 controlled

gallery images, and 608 uncontrolled probe images, the LC1C2 color features improve

84



85

the rank-one face recognition rate of the Biometric Experimentation Environment (BEE)

baseline performance from 37% to 75%, and CFFs achieve 73% rank-one rate using the

same dataset. When using an FRGC ver2.0 dataset consisting of 6,660 training images,

16,028 controlled target images, and 8,014 uncontrolled query images, the LC1 C2 color

features improve the face verification rate at 0.1% false acceptance rate (FAR) of the BEE

baseline performance from 12% to 32%, and CFFs achieve 69% verification rate at the

same fixed FAR of 0.1%.

The remainder of this chapter is organized as follows. Section 4.1 briefly reviews

prior pattern recognition research implementing evolutionary computations. Section 4.2

defines the LC1 C2 color space in Subsection 4.2.1, details the evolutionary procedure that

optimizes the RGB to LC1 C2 transformation in Subsection 4.2.2, and presents CFF deriva-

tion in Subsection 4.2.3. Section 4.3 elaborates the experimental setup and reports the

experimental results. Finally, Section 4.4 summarizes this face recognition approach.

4.1 Background

Although color information has been widely applied to face detection [85], [40], [114],

more research is needed for applying color to face recognition. Torres et al. [100] showed

that color images do not significantly improve the face recognition performance in compari-

son with the intensity images. Yip and Sinha [115], on the other hand, suggested that color

information improve face recognition accuracy when low-resolution images are applied.

Recently, Shih and Liu assessed the performance of content-based face image retrieval us-

ing twelve color spaces. Their experimental results showed that some color configurations

help improve the face retrieval performance [86].

Genetic algorithms [39], [28], based on the Darwinian evolutionary theory, have

ubiquitous applications in solving optimization problems. Lee et al. [50] applied GA in a

handwritten numeral recognition system to avoid local minima in training a multilayer clus-

ter neural network. Sakano [79] utilized GA as a translator to translate high dimensional
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feature vectors into character images in optical character readers (OCRs). Bebis et al. [2]

presented a model-based approach that applied GAs for recognizing two-dimensional (2D)

or three-dimensional (3D) objects from 2D intensity images. Cho and Chi [15] recently

developed a structural pattern recognition method, which applies the genetic evolution to

tune the learning parameters and improve the classification accuracy.

In the context of face recognition [53], [54] or detection [85], [52], GAs are often

applied as feature extraction / selection techniques. Vafaie and De Jong [103] presented a

GA-based representation transformation to create transformed feature spaces. The appli-

cation of this transformation showed an improvement of classification performance. Jeon

et al. [44] proposed an evolutionary module by implementing parallel GAs to evolve filter

blocks. This evolutionary architecture is capable of recognizing faces in an environment

with illumination variations. Xu et al. [110] developed a face recognition system, which

adopted GAs to select optimal features derived from an independent component analysis

(ICA) implementation.

4.2 Methodology

= The proposed method integrates GAs and FLD to derive optimal discriminating features

for face recognition. In the following subsections, Subsection 4.2.1 defines the LC1C2

color space, Subsection 4.2.2 details the evolutionary procedure that optimizes the RGB

to LC1 C2 transformation, and Subsection 4.2.3 presents CFF derivation.

4.2.1 The L Ci C2 Color Space

To improve face recognition performance using unconventional color spaces, a new color

space, LC1 C2 , is introduced. The LCi C2 color space is defined by one luminance (L)

channel and two chrominance channels (C1 ,C2). The luminance channel, L, is designed to

capture intensity or luminance characteristics of an image, and the chrominance channels,

C1 and C2, are to extract color properties, such as hue and saturation. The transformation
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from the RGB color space to the LC i C2 color space is as follows [87]:

L al a2 a3 R

C1 = a4 a5 as G (4.1)

C2 a7 a8 a9 B

where the coefficients, a 1 , a2 , . , a9 , are not explicitly specified; but rather, they will be

optimized by GA where a fitness function guides the evolution toward higher recognition

accuracy.

The definition of the LC] . C2 color space is motivated by the research results presented

in Chapter 3 that assesses the face image retrieval performance in twelve conventional color

spaces [86]. The experimental results show that some color configurations in the linear

color spaces, such as Y IQ and YUV, help improve the face retrieval performance. To

incorporate the characteristics of these two color spaces, five constraints are imposed on

the coefficients a 1 , a2, , a9 [87]:

Note that the constraints specified in Equation 4.2 not only preserve the properties

of the YUV and the Y IQ color spaces but also significantly reduce the search space of

the coefficients. In particular, Figure 4.1(a) shows that the search space of a 1 , a2, a3 has

been reduced from a three-dimensional space to the shaded triangle area, and Figure 4.1(b)

shows that the search space of a4 , as, a6 (or a7, a8 , a9) has been reduced from a three-

dimensional space to the shaded hexagon area. Under these constraints, an instance of the
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Figure 4.1 (a) The search space of a l , a2 , a3 , and (b) the search space of a4 , a5 , a6 (or a7 ,
a8 , a9).

LC1C2 color space thus corresponds to one point in the shaded triangle area and two points

in the shaded hexagon area rather than three arbitrary points in a three-dimensional space

when no constraint is applied.

4.2.2 Evolutionary Computation for the Optimal LC1C2

The goal of Genetic Algorithms (GAs) is to seek the optimal color space transformation that

leads to an effective image representation for face recognition. In particular, a Genitor [107]

reproduction scheme is adopted for the evolutionary task. Figure 4.2 illustrates an overview

of the GA procedure. For each generation, a fixed number of individuals (Ns) are selected

by the selection operator from a population of size N to reproduce offspring through the

crossover and the mutation operators. The newly generated offspring are then placed back

to the current population to form a temporary population of size N + Ns , from which

the N, least fit individuals are removed to return the population to its original size. The

following subsections detail the chromosome representation, the fitness score derivation,

and the genetic operators.
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Figure 4.2 An overview of the GA procedure. For each generation, a fixed number of
individuals (Ns) are selected by the selection operator from a population of size N to re-
produce offspring through the crossover and the mutation operators. The newly generated
offspring are then placed back to the current population to form a temporary population of
size N + Ns , from which the Ns least fit individuals are removed to return the population
to its original size.
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Chromosome Representation The LC1 C2 color space, as discussed in Subsection 4.2.1,

is determined by the transformation matrix in Equation 4.1. Due to the constraints specified

in Equation 4.2, it is appropriate to use six real numbers to represent a chromosome. Let

c E R6 be a chromosome of length 6, the transformation from the RGB color space to the

LC1C2 color space can be expressed as [87]:

Fitness Scores The derivation of fitness scores consists of four steps. First, given a chro-

mosome, the input RGB color images are transformed into the LC 1 C2 color images as

defined by Equation 4.3. Second, the L, the C1 , and the C2 component images are his-

togram equalized, normalized to zero mean and unit variance, and concatenated by rows

(or by columns) to form a color feature vector. The normalization procedure is to prevent

the intensity values of one component image from unduly dominating the intensity values

of other component images in the concatenated vector. Third, the color feature vectors

apply the PCA method to derive rank-one face recognition rate as a raw score. Finally,

a sharing function modulates the raw score by an amount equal to the number of similar

individuals in the population to define the fitness score. The idea of sharing was first intro-

duced by Holland [39] and later improved by Goldberg [29]. The essence of the sharing

technique is to reduce the effect of genetic drift resulting from the selection operator. It
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maintains population diversity and prevents GA from being trapped in local optima of the

search space [82]. Let g i be a raw score of an individual i, the fitness score fi is defined as

follow [28]:

where N is the population size, 	 denotes a distance function representing the distance

between two individuals i and j, and Sh (•) is a sharing function. In particular, an L 1

distance measure is adopted, and the sharing function is defined as [28]:

where a is a constant equal to the maximum distance between i and j, and a is set to be 1.

Genetic Operators The reproduction of GA is governed by three genetic operators: se-

lection, crossover, and mutation. Specifically, during the course of reproducing two off-

spring, two parents are first drawn from the population by the selection operator. Then a

crossover operator recombines the parents to produce two temporary offspring. Finally, a

mutation operator is applied onto each temporary offspring to generate two final offspring.

In particular, a stochastic remainder sampling (SRS) selector, a component-wise crossover

operator, and a random number mutation operator are deployed.

Genetic Operator-I: Stochastic Remainder Sampling

The procedure of the SRS selector starts with calculating the probability of

selection, Pi , for each individual i [28]:
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Figure 4.3 The component-wise crossover operator. Two chromosomes of length six are
capable of producing three different kinds of offspring. The dashed lines indicate possible
crossover points.

where L is the fitness score as defined in Equation 4.5, and N is the population

size. Then the expected individual count ei is calculated for each individual

i [28]:

The value e i indicates the number of copies that the individual i is expected in

the next generation. The SRS selector thus allocates the number of individuals

according to the integral part of ei and then uses the fractional part of ei to

calculate weights in a roulette wheel selection to fill the remaining population

slots.

Genetic Operator-II: Component-Wise Crossover

The component-wise crossover operator is defined such that the crossover points

are always incident at the position of multiples of two, i.e., two alleles as-

sociated to the same luminance / chrominance component are never broken

up. The reason of such arrangement is twofold: First, the constraints listed in

Equation 4.4 will never be violated by the crossover operator. Second, a good

color component is preserved. Because it takes two alleles to define one com-

ponent, breaking up two alleles defining a particular component is essentially

deleting that component from the population. Figure 4.3 illustrates the idea of
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Figure 4.4 The mutation operator that guarantees the satisfaction of constraints in Equa-
tion 4.4.
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component-wise crossover where the dashed lines indicate possible crossover

points. Note that two chromosomes of length six are capable of producing

three different kinds of offspring.

Genetic Operator-III: Random Number Mutation

The mutation operator introduces new alleles into the population. As real num-

ber chromosomes are implemented in the experiments, this operator basically

changes an allele from one real number to another. However, an arbitrary

change of an allele might violate the constraints specified in Equation 4.4. To

prevent this from happening, the mutation operator considers together the asso-

ciated alleles. Figure 4.4 shows the definition of the mutation operator, which

guarantees the satisfaction of constraints in Equation 4.4. In particular, c(i)

represents the ith allele on a chromosome c, and rand(p, q) is a random num-

ber generator that generates a real number in the range of p and q (exclusive).

4.2.3 Color Fisher Features

After the transformation from RGB to LC1 C2, the Fisher linear discriminant (FLD) [96],

[22] method is applied to further extracts discriminating features, termed color Fisher fea-

tures (CFFs). FLD is a popular discriminant criterion for face recognition [3], [55]. Let x

be a random vector representing a face from the training set, w i , w2 , . , WL be class labels,

and N1, N2, . represent the number of images within each class. Let m 1 , n12 7 • • ML

and m be the means of the classes and the grand mean. The within- and between- class scat-

ter matrices E.., and Eb are defined as follows [25]:
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where P 0 is a priori probability and E • the expectation operator. The FLD procedure

maximizes the ratio,Ebwi rtiftEw,,w where the optimization matrix, W, consisting

of the eigenvectors of the matrix EV - E l) can be derived by [25]:

where A are the eigenvector and eigenvalue matrices of E„,-1 Eb.

After the training, the target and the query sets (or the gallery and the probe sets

in ver1.0) are applied to assess the face recognition performance using a nearest neighbor

classifier. Let Q be a query feature set of size QI obtained by projecting query pattern

vectors onto the eigenvectors derived from the training process (i.e., in Equation 4.11).

The target feature set T of size IT' is produced in a similar manner. Then a similarity

matrix S of size I QI x IT' is derived by computing a similarity score between every query-

target pair. Let q i represents a query feature vector in Q and ti a target feature vector in

T, when the PCA method is used, the similarity score S(i, j) between q i and ti is derived

using a cosine similarity measure [71]:

Finally, the similarity matrix S is analyzed by BEE to determine the recognition perfor-

mance as detailed in Section 3.4.1.

4.3 Experiments

The experiments are organized into three major sets. The first set of experiments applies

the 1,126 FRGC ver1.0 images to evolve the optimal color space transformation from the

RGB color space to the LCi C2 color space. The CMC performance of the FRGC ver1.0

Experiment 4 of both PCA and FLD is also reported in this set of experiments. After

determining the transformation matrix, the second set of experiments applies the 30,702
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Figure 4.5 Three component images in the LCi C2, the HSV, and the RGB color spaces,
respectively. The component images have a spatial resolution 64 x 64.

FRGC ver2.0 images in the LC1 C2 color space using the PCA method. Note that the

face verification performance in two conventional color spaces, RGB and HSV, are also

included for comparison. Finally, the last set of experiments applies the same 30,702 FRGC

ver2.0 images to the FLD method in the LC1 C2, the RGB, and the HSV color spaces. The

second and the third sets of experiments report the ROC performance of the FRGC ver2.0

Experiment 4.

The data preparation, as detailed in Section 3.4.2, normalizes the face images to a

spatial resolution of 64 x 64 to extract the facial region that contains only face. Figure 4.5

shows example color component images in the LC1 C2 , the RGB, and the HSV color

spaces. The displayed images have a smaller spatial resolution than the BEE intensity

images (see Figure 3.16(b))
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Figure 4.6 The course of evolution using the FRGC ver1.0 dataset. The horizontal axis
represents the generation, and the vertical axis denotes the rank-one face recognition accu-
racy derived by the best performing chromosome in each generation.

After the preprocessing, the pattern vector is defined by concatenating the three com-

ponent images in a color space. Specifically, each component image is first histogram

equalized to improve the image quality by increasing its dynamic range [30]. Then it is

normalized to zero mean and unit variance to reduce image variations, which in turn pre-

vents one component image from unduly dominating the others during the concatenation.

Finally, the three normalized component images are concatenated to form a pattern vector.

In the successive discussion, XBEE E 1R195°° represents the pattern vector defined by the BEE

intensity image, and x„,,„ x,G., xhsv E R12288 represent the pattern vectors in the LC1C2,

RGB, HSV color spaces, respectively.
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Figure 4.7 The rank-one face recognition rates of the PCA method using the X Lc1c2 and
the xi,„ representations.

Following the evolutionary procedure described in Subsection 4.2.2, the first set of

experiments evolves the transformation matrix from RGB to LC]. C2 using the 1,126 im-

ages from FRGC ver1.0. Figure 4.6 shows the course of evolution. The horizontal axis

represents generation, and the vertical axis denotes the rank-one face recognition accuracy

derived by the best performing chromosome in each generation. The termination criterion

has been set to be 1,200 generations. Note that during the evolution, the best performing

chromosome corresponds to the one with the highest fitness score, but not necessarily to

the one with the best recognition accuracy. As the rank-one recognition rates serve as raw

scores in GA whose values are modulated by the sharing function (see Equation 4.6), the

curve shown in Figure 4.6 does not monotonically increase. Note that when the GA con-
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Figure 4.8 The FRGC ver1.0 CMC performance of the x„,„ and the x),„ representations.
The PCA performance using the x„, representation is the BEE baseline performance.

verges, the best performing chromosome corresponds to both the highest fitness score and

the best recognition accuracy.

Figure 4.7 compares the rank-one face recognition rates of the PCA method using the

x,,,, and the xBEE representations. As the number of eigenvectors derived by PCA using

366 training images is 365 (i.e., 366 — 1), the total number of features derived by projecting

a pattern vector onto these eigenvectors is 365. Figure 4.7 shows that the face recognition

performance peaks when 365 and 143 PCA features are used for the x„ 1c2 and the xB„,

respectively. These results suggest that different PCA dimensionality should be used in

order to conduct a fair comparison between different representations.
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Table 4.1 The Rank-One Face Recognition Rates of the FRGC ver1.0 CMC Performance

Figure 4.9 The ROC I performance of FRGC ver2.0 Experiment 4 using the PCA method.
The curve corresponding to the x„„ representation is the BEE baseline performance.

Figure 4.8 shows the FRGC ver1.0 CMC performance of the x LC1C2 and the XBEE repre-

sentations. The PCA performance using the xBEE representation is the BEE baseline perfor-

mance. The horizontal axis denotes the rank r, and the vertical axis indicates the probability

that the correct match is included in the top r matches. Figure 4.8 shows that the LC1 C2

color features improve the BEE baseline performance by large margins. In particular, when
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Figure 4.10 The ROC II performance of FRGC ver2.0 Experiment 4 using the PCA
method. The curve corresponding to the x„, representation is the BEE baseline perfor-
mance.

. 	 ,
Table 4.2 Face Verification Rates (at 0.1% FAR) of FRGC ver2.0 Experiment 4 Using
PCA

ROCI ROCII ROC HI

x,,,,, 36.79% 34.31% 31.49%

XHS V 27.53% 25.21% 22.76%

XRGB 23.08% 21.55% 19.81%

XBEE 13.36%t 12.67%t 11.87%t
t the BEE baseline performance
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Figure 4.11 The ROC III performance of FRGC ver2.0 Experiment 4 using the PCA
method. The curve corresponding to the x,,„ representation is the BEE baseline perfor-
mance.

the PCA method is used, the rank-one recognition rate is improved by 38% (from 37% to

75%), and when the FLD method is applied, the rank-one rate is improved by 30% (from

43% to 73%). Note that in the FRGC ver1.0, the number of training images per subject is

limited. As a result, FLD does not improve much upon the PCA method. The rank-one

face recognition rates of the FRGC ver1.0 CMC performance are summarized in Table 4.1.

The second set of experiments assesses the face verification performance of the PCA

method using the 30,702 images from the FRGC ver2.0. As there are 6,660 training images

available in the training set (see Section 3.4.1), PCA derives at most 6,659 (i.e., 6660 — 1)

features, and the maximum dimensionality of the PCA space is thus 6,659. Note that in

this set of experiments, 1,000 PCA features are empirically chosen for face verification
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Figure 4.12 The FLD performance using the xLc1c2 and the XBEE representations in different
PCA spaces.

(i.e., using 1,000 PCA features to derive the similarity matrix in Equation 3.21). Fig-

ures 4.9, 4.10,and 4.11 show the ROC I, the ROC II, and the ROC III performance of the

FRGC ver2.0 Experiment 4. The curves corresponding to the x„„ representation are the

BEE baseline performance. The horizontal axis indicates the false acceptance rate (FAR),

and the vertical axis is the verification rate. These three figures indicate that the x w1c2 rep-

resentation achieves the best verification performance, followed in order by XHSV, XRGB, and

XBEE • The face verification rates at 0.1% FAR of these four representations are summarized

in Table 4.2.

The next set of experiments applies the xLc1c2 and the XBEE representations to the FLD

method. Note that the dimensionality of xwic, is 12,288 while there are only 6,660 training

images available. To avoid the within-class scatter matrix Eu, (see Equation 4.9) from being
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Figure 4.13 The ROC I performance of FRGC ver2.0 Experiment 4 using the FLD
method.

Table 4.3 Face Verification Rates (at 0.1% FAR) of FRGC ver2.0 Experiment 4 Using
FLD

ROCI ROCII ROC III PCA Space FLD Space

XLCi C2 66.45% 67.50% 68.53% 800 221

XHSV 58.01% 59.21% 60.69% 800 221

XRGB 50.82% 52.34% 55.01% 800 221

XBEE 39.06% 39.79% 40.89% 2,000 221
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Figure 4.14 The ROC II performance of FRGC ver2.0 Experiment 4 using the FLD
method.

singular, a PCA procedure is applied prior to the FLD method to reduce the dimensionality

of the input space [3]. Note that the trailing eigenvalues from the PCA procedure tend to

capture noise, and cause the whitening step of FLD to fit for misleading variations [55].

This in turn deteriorates the generalization performance of the FLD method. Therefore, the

FLD method is implemented using different number of PCA features to empirically deter-

mine the optimal PCA dimensionality. Figure 4.12 shows the FLD performance using the

XLC1C2 and the xBEE representations in different PCA spaces. The horizontal axis represents

the PCA dimensionality in which FLD performs, and the vertical axis indicates the verifi-

cation rate at 0.1% FAR. Note that since there are 222 subjects in the FRGC ver2.0 training

set, the FLD method derives at most 221 (i.e., 222 — 1) FLD features, and the maximum
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Figure 4.15 The ROC III performance of FRGC ver2.0 Experiment 4 using the FLD
method.

dimensionality of the FLD space is 221. The curves displayed in Figure 4.12 are derived

using 221 FLD features.

The results in Figure 4.12 show that the dimensionality of the PCA space noticeably

affects the verification performance. Specifically, the xLcic, and the XBEE representations

achieve the best performance in an 800 and a 2,000 PCA spaces, respectively. Note that

the verification performance using different number of FLD features is also investigated.

The experimental results, however, show that using more FLD features generally leads to

a higher verification accuracy. Therefore, when the x L,1c2 representation is used, FLD is

performed in an 800 PCA space, and 221 FLD features are used for verification (i.e., using

221 FLD features to derive the similarity matrix in Equation 4.12).
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Figures 4.13, 4.14, and 4.15 show the ROC I, the ROC II, and the ROC III perfor-

mance of FRGC ver2.0 Experiment 4 using the the FLD method, i.e., applying the CFF

features. The curves corresponding to the x„ 1c2 , the xi,„, and the xRGB representations are

derived in an 800 PCA space using 221 FLD features. The curves corresponding to the

xBEE representation are obtained in a 2,000 PCA space with 221 FLD features. Again, the

xLc1c2 representation achieves the best verification performance, followed in order by XHSV,

XRGB, and x„,E . The face verification rates at 0.1% FAR using these four representations are

summarized in Table 4.3.

4.4 Conclusion

This chapter presents a novel color feature extraction method using evolutionary computa-

tion. Experimental results using 1,126 images from the FRGC ver1.0 and 30,702 images

from the FRGC ver2.0 show that the new color feature extraction method improves the face

recognition performance for both the PCA and the FLD methods. In particular, for FRGC

ver1.0 Experiment 4, the evolved color features improve the rank-one face recognition rate

from 37% to 75% using the PCA method and achieve 73% using the FLD method. For

FRGC ver2.0 Experiment 4, the evolved color features improve the face verification rate

at 0.1% FAR from 12% to 32% using the PCA method and achieve 69% using the FLD

method.



CHAPTER 5

2D AND 3D FACE RECOGNITION USING CONVOLUTION FILTERS

In Chapters 3 and 4, numerous feature extraction methods utilizing color information are

studied. Face recognition accuracy in general or the Face Recognition Grand Challenge

(FRGC) Experiment 4 baseline performance in particular has been noticeably improved,

e.g., from 12% to 69% using the LC1 C2 color configuration and FLD. These research,

however, focuses mainly on two-dimensional (2D) imaging modality and color representa-

tions while leaving three-dimensional (3D) imaging modality and other feature extraction

techniques undiscovered. To explore these new research areas, this chapter presents an ap-

proach to apply convolution filters to extract discriminating features from both 2D and 3D

modalities for face recognition.

The major challenges faced by 2D face recognition come from the illumination, pose

and expression variations that introduce statistical differences to facial images. To over-

come these difficulties, recent developments [36], [61] have been focused on exploring

new facial modalities, such as 3D range data, that eliminate these factors not related to

subjects' identities. Although 3D face recognition has its own drawbacks, such as high

cost and decreased ease-of-use of data acquisition equipments, integrating 2D and 3D face

recognition systems can have the potential to complement each other and lead to a better

biometric authentication system.

The 2D and 3D imaging modalities adopted by this research are both 2D images,

which significantly reduce the high computational complexity generally required by 3D-

based face recognition systems. Although both modalities are represented by 2D images,

they display very distinct properties. In particular, 2D modality displays intensity texture,

while 3D modality shows curvature shape, of which pixels in the neighborhood have much

smaller variation than intensity texture. Because of this fundamental difference, specific
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feature extraction methods may be required to derive discriminating features for 2D and

3D modalities, respectively.

To investigate the possibility of using convolution filters for feature extraction, four

filters are defined based on wavelet functions: Gaussian derivative [18], [58], [35], Morlet

[18], complex Morlet [97], and complex frequency B-spline [97]. The filters are then

applied to convolve with 2D or 3D modality to output convolution features. Finally, the

convolution features are used to compute two separate similarity measures for 2D and 3D

modalities, which are then linearly fused to calculate a final similarity measure.

The feasibility of the proposed method is demonstrated using the Face Recognition

Grand Challenge (FRGC) ver2.0 Experiment 3 containing 4,950 2D color images (943

controlled and 4,007 uncontrolled) and 4,950 3D recordings. The experimental results

show that the Gaussian derivative convolution filter extracts the most discriminating fea-

tures from 3D modality among the four filters, and the complex frequency B-spline convo-

lution filter outperforms other filters when 2D modality is applied. Furthermore, the fusion

of 2D and 3D similarity measures improves FRGC ver2.0 Experiment 3 baseline perfor-

mance from 67% to 82% (ROC I), from 61% to 78% (ROC II), and from 54% to 72%

(ROC III).

The remainder of this chapter is organized as follows. Section 5.1 reviews prior

research and current study on 3D face recognition. Section 5.2 reviews four well-defined

wavelet functions and defines four convolution filters. Section 5.3 detailed the derivation

of convolution features and the fusion of similarity measures. Section 5.4 presents the

experimental results on FRGC ver2.0 Experiment 3, and finally, Section 5.5 summarizes

the research on 2D and 3D face recognition.
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5.1 Background

Research in 3D face recognition can be categorized into two major groups: 2D+3D and

3D [13]. The 2D+3D face recognition generally refers to the use of multiple imaging

modalities, such as 2D images and 3D range data. Beumier et al. proposed a face recog-

nition system [4] that evaluated "3D central and lateral profiles" and "gray level central

and lateral profiles" separately, and then fused them with the Fishers linear discriminant

method. Wang et al. [106] used the point signature [16] and the stacked Gabor filter re-

sponses [108] to identify 3D and 2D features. Bronstein et al. [7] developed a 3D face

recognition algorithm based on geometric invariants [21] that allowed mapping 2D facial

texture images onto.3D special geometry. Recently, Tsalakanidou et al. [101] introduced a

face authentication system integrating 2D intensity and 3D range data based on a low-cost

real-time structured light sensor. This method employed a hidden markov model (HMM)

for face authentication.

The 3D face recognition systems, on the other hand, are concerned with approaches

that only apply 3D modality. Gordon et al. [31] proposed a curvature-based method for

face recognition from 3D data stored in a cylindrical coordinate system. Lao et al. [49]

proposed a 3D facial model consisting of a sparse depth map constructed from stereo im-

ages using isoluminance lines for the stereo matching. By searching for arcs whose radius

are of certain ranges, the candidate irises can be located efficiently. Lee et al. [51] de-

signed a feature extraction method calculating mean and variance of depth from windows

around the nose and applying a nearest neighbor classifier for face recognition. Moreno

et al. [67] extracted a number of features from 3D data, and found that curvature and line

features perform better than area features. Hesher et al. [36] developed an ICA based face

recognition algorithm utilizing 3D range data. Medioni et al. [62] applied a normalized

cross-correlation algorithm to compute a distance map, whose statistics are then used for

similarity measurement.
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5.2 Convolution Filters

This section first reviews the four wavelet functions: Gaussian derivative [18], [58], [35],

Morlet [18], complex Morlet [97], and complex frequency B-spline [97], and then derives

the convolution filters based on these wavelet functions.

5.2.1 Gaussian Derivative Filter

The Gaussian derivative is defined by taking the pth derivative of a Gaussian function

where — (2/0) 7 -1/4 is a normalization constant [18]. Note that the standard deviation

of Gaussian in Equation 5.1 is assumed to be one. To perform a general derivation with the

standard deviation being a, Equation 5.1 can be rewritten as:

where C1 and C2 are positive normalization constants. Based on this formulation, the

Gaussian derivative filter xlf (x, y) is defined by:

where v = (x y) t , and Cg is a positive constant, E the covariance matrix, and V 2 the

Laplacian operator. To simplify this formulation, the covariance matrix E is assumed to be

diagonal, i.e., x and y are uncorrelated, so the inverse of E is:
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By substituting Equation 5.4 to Equation 5.3, the convolution filter becomes [30], [60]:

The derivatives with respect to x and y can be further expressed as [30], [60]:

Following Equations 5.6 and 5.7, Equation 5.5 is rewritten as:

Note that the filter defined by Equation 5.8 is anisotropic if o-x 	o-y . To translate and

rotate this filter in a two-dimensional space, one can introduce a translation vector b and a

rotation matrix R to Equation 5.8, such that:
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Figure 5.1 (a) An example 1D second derivative of Gaussian wavelet. (b) An example
2D Gaussian derivative convolution filter applying the parameters: o-x = 16, ay = 32,

b = (0 O) t and 6) = 30°.
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Figure 5.1(a) shows an example 1D second derivative of Gaussian wavelet. Fig-

ure 5.1(b) shows an example 2D Gaussian derivative convolution filter applying the param-

5.2.2 Morlet Filter

Morlet wavelet is defined by a cosine function modulated by a Gaussian envelop. The 1D

Morlet wavelet is defined as follows [18]:

where Cm is a constant. To extend this definition to 2D, one has to map both the linear

term, x, and quadratic term, x2 , to two-dimensional. In particular, the quadratic term can

be mapped to utu such that:

where u = (u 1 u2 )t = A112 (R [v — b]), and v = (x y)t. Note that the definitions of A,

R, and b are identical to the ones defined by Equation 5.10.

The mapping of the linear term follows the derivation proposed by Akansu et al. [1]

that projects u onto al parameter vector k = (k 0) t [1], [45], [68]:

where (•) is the inner product operator. Therefore, following Equations 5.13 and 5.14, 2D

Morlet convolution filter is defined by:

where Cn is a constant. Note that unlike the 2D Gaussian derivative filter whose anisotropic

characteristic relies on A (see Equation 5.10), the 2D Morlet filter is anisotropic regardless

of A (see Equation 5.10). Therefore, to simplify Equation 5.15, (T x = = o can be
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Figure 5.2 (a) An example 1D Morlet wavelet. (b) An example 2D Morlet convolution
filter applying the parameters: a = 16, 0 = 0, and k = 1.
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applied to A, and b can be assumed to be (0 0)t. The definition of u is thus:

Finally, following Equations 5.15 and 5.16, the Morlet convolution filter is defined by:

Figure 5.2(a) shows an example 1D Morlet wavelet. Figure 5.2(b) shows an example

2D Morlet convolution filter applying the parameters: a = 16, 0 = 0, and k = 1.

5.2.3 Complex Morlet Filter

Complex Morlet is defined by a complex exponential modulated by a Gaussian envelop.

The 1D complex Morlet is defined as follows [97]:

where fb is a bandwidth parameter, and L is a wavelet center frequency. To extend this

definition to two-dimensional, one can apply Equation 5.14 and Equation 5.13 to map the

linear (x) and the quadratic (x2) terms, respectively:
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Figure 5.3 An example 1D complex Morlet wavelet applying the parameters: fb = 2 and
fc = 0.8. The real and the imaginary parts are represented by two separate curves.

where Cx is a constant that enforces the admissibility condition of the wavelet [1]. Note

that 2D complex Morlet convolution filter is also anisotropic regardless of A. Therefore,

Equation 5.16 can be applied to simplify Equation 5.21 such that:

where G is negligible and can be dropped in implementation when 27f,k/o - > 5.6 [1],

[20].

Figure 5.3 shows an example 1D complex Morlet wavelet applying the parameters:

fb = 2 and ft = 0.8. Note that the real and the imaginary parts are represented by two sep-

arate curves. Figure 5.4 shows an example 2D complex Morlet convolution filter applying

the parameters: fb = 2, ft = 0.8, a = 16, = 0, and k = 1. The real and the imaginary

parts are displayed in Figure 5.4 (a) and Figure 5.4 (b), respectively.
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Figure 5.4 An example 2D complex Morlet convolution filter applying the parameters:

fa = 2, h = 0.8, a = 16, 0 = 0, and k = 1. The real and the imaginary parts are displayed

in (a) and (b), respectively.
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Figure 5.5 an example 1D complex frequency B-spline wavelet applying the parameters:
fb = 2, = 0.8, and m = 1. The real and the imaginary parts are represented by two
separate curves.

5.2.4 Complex Frequency B-Spline Filter

The 1D complex frequency B-spline wavelet is defined as follows [97]:

where A is a bandwidth parameter, fe is a wavelet center frequency, and 771 is an integer

order parameter (7T1 > 0). To extend this definition to 2D, one can follow Equation 5.14

such that:

Then u is substituted by Equation 5.16, and the parameter vector k is also assumed to be

(k 0) t . The 2D complex frequency B-spline convolution filter thus can be defined by:
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Figure 5.6 An example 2D complex frequency B-spline convolution filter applying the
parameters: lb = 2, L = 0.6, k = 1, m = 1, i = 20, and 0 = 0. The real and the
imaginary parts are displayed in (a) and (b), respectively.
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However, with this parameterization, the filter only shows variances in one direction

mainly due to the sinc function. To overcome this problem, this research adopts a derivation

proposed by Foufoula et al. [24] that replaces u • k with utu in the sinc function:

where u = (u 1 u2 ) t . Figure 5.5 shows an example 1D complex frequency B-spline

wavelet applying the parameters: fb = 2, h = 0.8, and m, = 1. The 1D complex fre-

quency B-spline wavelet with m = 1 is also referred as "Shannon wavelet." Note that the

real and the imaginary parts are represented by two separate curves in Figure 5.5. Fig-

ure 5.6 shows an example 2D complex frequency B-spline convolution filter applying the

parameters: fb = 2, f = 0.6, k = 1, m = 1, a = 20, and 0 = 0. The real and the

imaginary parts are displayed in Figure 5.6 (a) and Figure 5.6 (b), respectively.

5.3 Convolution Features and Decision Fusion

Convolution features are defined by the convolution outputs of an image and a 2D convolu-

tion filters derived in Section 5.2. Let I be a gray-scale 2D image representing either a 2D

or a 3D imaging modality, the convolution features of the image I is defined as follows:

where ® denotes the convolution operator, and (0, s) defines (orientation, scale) of a convo-

lution filter. In particular, for each convolution filter, eight orientations (8, 2.-f , it, . . . , ID

and four scales are applied to derive convolution features, i.e., for each image I, 32 con-

volutions are computed and 32 output images V 0 ,3 are derived. Note that for the complex

filters, such as complex Morlet or complex frequency B-spline, the convolution results con-

tain both real and imaginary parts. In such cases, the magnitudes of the results are used to

represent V0 ,3 . Figures 5.7, 5.8, 5.9 and 5.10 display Gaussian derivative, Morlet, complex
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Figure 5.7 The Gaussian derivative convolution filters in eight orientations and four

scales.

Figure 5.8 The Morlet convolution filters in eight orientations and four scales.

Morlet, and complex frequency B-spline convolution filters, respectively. In each figure,

32 filters are displayed corresponding to eight orientations and four scales. Note that for

complex convolution filters, the real parts are shown in (a) and the imaginary parts are in

(b).

After the convolution, all the output images are individually normalized to zero mean

and unit variance, and then the normalized images are concatenated to form a convolution

feature vector representing the original image I. The feature vectors of 2D and 3D modali-
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Figure 5.9 The complex Morlet convolution filters in eight orientations and four scales.
(a) The real parts. (b) The imaginary parts.

ties are then applied to BEE baseline algorithm (see Section 3.4.1) to derive two similarity

matrices, S2D and S3D. Finally, the similarity matrix, S, is computed by a linear combina-

tion of S2D and S3D:

where a is a positive fractional constant.
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Figure 5.10 The complex frequency B-spline convolution filters in eight orientations and
four scales. (a) The real parts. (b) The imaginary parts.

5.4 Experiments

The experiments are organized into three major sets. The first set of experiments applies

the four convolution filters to 2D imaging modality to evaluate the discriminating power of

the filters. Similarly, the second set of experiments applies the four filters to 3D imaging

modality to evaluate the discriminating power of the filters. For the first two sets of ex-

periments, similarity matrices are created, and FRGC ROC performances are generated to

assess face recognition performance. Finally, the last set of experiments seeks the optimal
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Figure 5.11 (a) Example controlled 2D training images and their corresponding 31)
recordings. (b) Example uncontrolled 2D target images and their corresponding 3D record-
ings.

fusion parameter, a (see Equation 5.28), to combine S2/) and S31), and derives the FRGC

ver2.0 Experiment 3 performance.

The experiments presented in this chapter are focused on the FRGC ver2.0 Experi-

ment 3. Unlike the Experiment 4 (see Chapters 3 and 4), where the dataset is divided into

three subsets: training, target, and query, the FRGC ver2.0 Experiment 3 is divided into

two subsets: the training set and the target / query set, where the target and the query sets

share the same images. For simplicity, in the following discussion, the term "target set"
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Figure 5.12 Comparative performance of 2D modalities applying the four convolution
filters. Face verification rate at 0.1% FAR using gray-scale images, Gaussian derivative
convolution features (gazes), Morlet convolution features (mor), complex Morlet convolu-
tion features (cmor), and complex frequency B-spline convolution features (bspl). For the
complex frequency B-spline, four wavelets are defined corresponding to m = 1, 771 = 2,
m = 3, and m = 4, where 771 is the order parameter.

is used to refer to this subset. The FRGC ver2.0 Experiment 3 training set contains 943

controlled 2D color images and 943 3D recordings, and the target set consists of 4,007

uncontrolled 2D color images and 4,007 3D recordings. The subjects in the training and

the target sets are disjointed.

The image modalities used in the experiments are normalized to extract facial regions

that contain only faces, so that the face recognition performance is not affected by the

factors not related to face, such as hair style. Specifically, for 2D modality, the centers of

the eyes are aligned to the predefined locations, and the interocular distances are fix. For
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3D modality, the normalization procedure follows the one proposed in [12], [13]. Finally,

for both 2D and 3D modalities, subimages of the size 128 x 128 are extracted to locate

the facial region. Figures 5.11 (a) and (b), respectively shows example training and target

images normalized to the size of 128 x 128. Note that the controlled 2D color images

in the training set have better image quality than the uncontrolled ones in the target set

in terms of illumination, resolution, blurring, etc. Also note that due to the difference of

image acquisition equipments, the 2D color images in the training set display very distinct

color tone than the ones in the target set. Because this variation is not related to subject

identities, in the experimental implementation, color images are converted to gray-scale

images to reduce the statistical differences caused by image acquisition devices.

The first set of experiments applies the four convolution filters to 2D modalities (i.e.,

943 controlled 2D color training images and 4,007 uncontrolled 2D color target images)

to extract discriminating convolution features. In particular, the training feature vectors

are used to derive the projection basis (see Equation 3.15), and the target feature vectors

are used to compute the similarity matrix S2D (see Equation 3.22). Note that in FRGC

ver2.0 Experiment 3, the target and the query are the same, i.e., S2D records similarity

scores between every two target feature vectors. As a result, the similarity matrix S2D is

symmetric and of size 4, 007 x 4, 007. Finally, S2D is analyzed by BEE to create three ROC

performance (see Section 3.4.1 for detailed discussion).

Figure 5.12 shows the face verification rate at 0.1% false acceptance rate (FAR) of

ROCI, ROCII, ROCIII performance using gray-scale images, Gaussian derivative convolu-

tion features (gazes), Morlet convolution features (mor), complex Morlet convolution fea-

tures (cmor), and complex frequency B-spline convolution features (bspl). Note that for

the complex frequency B-spline, four filters are defined corresponding to m = 1, m = 2,

m = 3, and m = 4 where m is the order parameter defined by 5.26. The results displayed

in Figure 5.12 show that complex convolution features (cmor, bspll, bspl2, bspl3, bspl4)

generally contribute to better face recognition performance than real-value convolution fea-
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Figure 5.13 Comparative performance of 3D modalities applying the four convolution
filters. Face verification rate at 0.1% FAR using gray-scale images, Gaussian derivative
convolution features (gaus), Morlet convolution features (mor), complex Morlet convolu-
tion features (cmor), and complex frequency B-spline convolution features (bspl). For the
complex frequency B-spline, four wavelets are defined corresponding to m = 1, m = 2,
m = 3, and m = 4, where in is the order parameter.

tures (gaus, mor) or gray-scale images, and suggest that complex convolution filters have

the potential to extract discriminating features in 2D modality.

The second set of experiments applies the four convolution filters to 3D modalities

(i.e., 943 3D training recordings and 4,007 3D target recordings) to extract discriminating

convolution features. This set of experiments shares the same experimental configuration

with the first set and generates a square symmetric similarity matrix S3D. Figure 5.13 shows

the face verification rate at 0.1% FAR of ROCI, ROCII, ROCIII performance using gray-

scale images, Gaussian derivative convolution features (gaus), Morlet convolution features
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Figure 5.14 FRGC ver2.0 Experiment 3 performance using different a.

(mor), complex Monet convolution features (cmor), and complex frequency B-spline con-

volution features (bspl). Again, for the complex frequency B-spline, four filters are defined

corresponding to m = 1, m = 2, m = 3, and m = 4. The results displayed in Fig-

ure 5.13 show that Gaussian derivative convolution feature achieves the best performance

while complex convolution features perform comparably to each other. The results suggest

that real-value convolution filters may have the potential to extract discriminating features

in 3D modality.

Based on the experimental results reported in the first two sets of experiments, the

last set of experiments empirically determines the optimal parameter, a (see Equation 5.28),

for fusing the best performing S2D (bspl4) and the best performing S3D (galls), and derives

FRGC ver2.0 Experiment 3 ROC performance. Figure 5.14 shows the face verification
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Figure 5.15 FRGC ver2.0 Experiment 3 performance using convolution features and sim-
ilarity fusion. BEE baseline performance is also included for comparison.

rate at 0.1% FAR using different a. In particular, the performance peaks when S2D and

S3D are fused with a = 0.6. Using this parameter, Figure 5.15 displays the FRGC ver2.0

Experiment 3 ROC performance derived by convolution features and similarity fusion. The

BEE baseline performance is also included for comparison. Specifically, ROC I has been

improved from 67% to 82%, ROC II has been improved from 61% to 78%, and ROC III

has been improved from 54% to 72%.
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5.5 Conclusion

This chapter presents a feature extraction method utilizing convolution filters for 2D and 3D

face recognition. Four convolution filters, Gaussian derivatives, Morlet, complex Morlet,

and complex frequency B-spline, are defined, and face recognition performance derived

using these four convolution filters are investigated. The experimental results applying

FRGC ver2.0 Experiment 3 show that complex-valued and real-valued convolution filters

may have the potential to extract discriminating features from 2D and 3D imaging modal-

ities, respectively. Furthermore, the fusion of 2D and 3D similarity measures improves

FRGC ver2.0 Experiment 3 baseline performance from 67% to 82% (ROC I), from 61% to

78% (ROC II), and from 54% to 72% (ROC III).



CHAPTER 6

SUMMARY AND FUTURE RESEARCH

This dissertation focuses on facial analysis and addresses various aspects concerning face

detection and recognition. In the following sections, the research achievements and contri-

butions of this dissertation are summarized in Section 6.1, and the future research directions

are proposed in Section 6.2.

6.1 Achievements and Contributions

The specific accomplishments of this dissertation is outlined in the following:

1. Face detection

(a) Enhance Temporal Differencing for Better FOI Derivation
The temporal differencing is sensitive to dynamic environmental changes, such
as illumination variation, and fails to locate a motion FOI when subject stops
moving. To address this sensitivity issue, a Gaussian smoothing filter is ap-
plied to each frame before calculating the difference image. To detect a motion
FOI when subject stops moving, a heuristic procedure is applied to obtain the
last-known motion FOI as the current motion FOI if no significant motion is
detected. This part of research is detailed in Subsection 2.2.1 on page 8.

(b) Employ Skin Color Segmentation for FOI Refinement
The skin color segmentation procedure consists of five stages and is imple-
mented in the Cb — Cr subspace of the YCbCr color space. It consists of five
steps: (i) skin color modeling, (ii) skin-non-skin classification, (iii) region fill-
ing and labeling, (iv) rectangle bounding, and (v) skin region rejection. This
part of research is detailed in Subsection 2.2.2 on page 10.

(c) Design Face and Non-Face Classification Rules Using DBD and SVM
Distribution-based distance (DBD) is defined based on the statistical model of
the face class estimated by the first M principal components, the input image,
and the mean face. DBD, together with SVM, are implemented in three classifi-
cation rules to discriminate between face and non-face patterns. The definition

132
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of DBD is derived in Subsection 2.3.2 on page 15, and the classification rules
are detailed in Subsection 2.3.4 on page 20.

2. Face Recognition

(a) Assess Face Recognition Performance in Twelve Color Spaces 
To improve existing face recognition algorithms through the utilization of color
information, face recognition performance is comparatively assessed in twelve
color spaces (RGB, HSV, YUV, YCbCr, XY Z, YIQ, L*a*b*, U*V*W*,
L*u*v*, '1 12 13 , HSI, and rgb) by evaluating seven color configurations for
every color space. Experimental results using 600 FERET color images cor-
responding to 200 subjects and 456 FRGC color images of 152 subjects show
that some color configurations, such as YV in the YUV color space and Y/ in
the Y IQ color space, help improve face recognition performance. This part of
research is detailed in Section 3.3 on page 54.

(b) Evaluate Face Recognition Performance with Image Alignment Variations
The experimental results show that (i) small variations in eye locations, such as
in 5 x 5 pixel region, do not change the face recognition performance much;
and (ii) larger variations, such as 11 x 11 pixel region, can significantly dete-
riorate the face recognition performance. This part of research is detailed in
Subsection 3.3.2 on page 65.

(c) Develop Color Feature Extraction Method Across Different Color Spaces 
The color configurations consisting of color component images across different
color spaces are investigated. Specifically, the YIC,, the Y/Cb, the YQCr , and
the YQCb color configurations defined by the color component images from
both the YIQ and the YCbC, color spaces are applied to improve the base-
line performance of the Face Recognition Grand Challenge (FRGC) problems.
When using an FRGC ver1.0 dataset containing 1,126 images, the YQCr color
configuration improves the rank-one face recognition rate of the BEE baseline
algorithm from 37% to 70%. When using an FRGC ver2.0 dataset including
30,702 images, the YQCr color configuration improves the face verification
rate of the BEE baseline algorithm from 13% to 33%. This part of research is
detailed in Section 3.4 on page 66.

(d) Evolve the Optimal Color Space (LC i C2) for Face Recognition
A new color space, LC1C2, consisting of one luminance (L) channel and two
chrominance channels (C1,C2) is introduced as a linear transformation of the in-
put RGB color space. The specific transformation from the RGB color space
to the L Ci C2 color space is optimized by genetic algorithms (GAs) where a
fitness function guides the evolution toward higher recognition accuracy. Af-
ter the color feature extraction, i.e., transforming RGB color images to LC1 C2
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color images, the Fisher linear discriminant (FLD) method is applied to fur-
ther extract discriminating features, termed color Fisher features (CFFs). The
experimental results show that CFFs improve FRGC ver1.0 Experiment 4 rank-
one recognition rate from 37% to 73%, and elevate FRGC ver2.0 Experiment
4 face verification rate from 12% to 69%. This part of research is detailed in
Section 4.2 on page 86.

(e) Utilize Convolution Filters for 2D and 3D Face Recognition
A feature extraction method utilizing convolution filters for 2D and 3D face
recognition is developed. Four convolution filters, Gaussian derivatives, Mor-
let, complex Morlet, and complex frequency B-spline, are defined, and face
recognition performance derived using these four convolution filters are inves-
tigated. The experimental results applying FRGC ver2.0 Experiment 3 show
that complex-valued and real-valued convolution filters may have the potential
to extract discriminating features from 2D and 3D imaging modalities, respec-
tively. Furthermore, the fusion of 2D and 3D similarity measures improves
FRGC ver2.0 Experiment 3 baseline performance from 67% to 82% (ROC I),
from 61% to 78% (ROC II), and from 54% to 72% (ROC III). The derivation
of convolution filters is detailed in Section 5.2 on page 111.

6.2 Future Research

Regarding face detection, future research will consider to extend the current system to de-

tect faces in different viewpoints or partially occluded faces. One possibility is to expend

the training set to incorporate more facial variations and pose-angled images. The optimal

combination of DBD and the SVM output values will also be investigated. One possibil-

ity is to apply stochastic search algorithms, such as genetic algorithms, to search for the

optimal combination.

Concerning face recognition, the current research has shown that color features and

wavelet features are effective for improving face recognition performance and evolutionary

computations can help finding the optimal coefficients for feature extraction. Based on

these findings, future research may consider to evolve discriminating wavelet features or

exploring the feasibility of combining color features and wavelet features to further elevate

recognition accuracy.
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In addition to independently extending research in both directions, i.e., detection and

recognition, the integration of the current face detection system and the feature extrac-

tion methods for face recognition will also be studied toward building an automated facial

analysis application. As many face recognition applications, such as airport screening and

security checkpoint rely on real-time processing, the major challenge of this work will be

the processing speed. Although both the DBD-SVM face detection system and color-based

feature extraction methods are computational efficient, due to the fact that recognition gen-

erally costs considerably more computational resources than detection does, simply com-

bining them together cannot achieve the real-time goal. One way to cope with this difficulty

is to employ distributed or parallel computing architecture, where detection and recognition

can be handled on two different computers. A good starting point of this approach would

be constructing a prototype system that adopts a hand-held computer, e.g., PDA with a

camera and Wi-Fi connection, to perform face detection and then submit the detected faces

to back-end computers for recognition.
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