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ABSTRACT 

The aim of thesis is the real-time detection of moving and unconstrained surveillance 

environments monitored with static cameras. This is achieved based on the results provided by 

background subtraction. For this task, Gaussian Mixture Models (GMMs) and Kernel density 

estimation (KDE) are used. A thorough review of state-of-the-art formulations for the use of 

GMMs and KDE in the task of background subtraction reveals some further development 

opportunities, which are tackled in a novel GMM-based approach incorporating a variance 

controlling scheme. The proposed approach method is for parametric and non-parametric and 

gives us the better method for background subtraction, with more accuracy and easier 

parametrization of the models, for different environments. It also converges to more accurate 

models of the scenes. 

 

The detection of moving objects is achieved by using the results of background subtraction. For 

the detection of new static objects, two background models, learning at different rates, are used. 

This allows for a multi-class pixel classification, which follows the temporality of the changes 

detected by means of background subtraction. 

 

In a first approach, the subtraction of background models is done for parametric model and their 

results are shown. The second approach is for non-parametric models, where background 

subtraction is done using KDE non-parametric model.  

 

Furthermore, we have done some video engineering, where the background subtraction 

algorithm was employed so that, the background from one video and the foreground from 

another video are merged to form a new video.  By doing this way, we can also do more complex 

video engineering with multiple videos. 

 

Finally, the results provided by region analysis can be used to improve the quality of the 

background models, therefore, considerably improving the detection results. 
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CHAPTER 1 

INTRODUCTION 

Computer vision, image processing and pattern recognition are vast fields of research concerning 

the automatic analysis of images and image sequences, with a broad spectrum of applications 

such as remote sensing, medical diagnosis, human-computer interaction or video compression, to 

mention only a few of them. Benefitting from the advances in those fields, robotized video-based 

reconnaissance has emerged as a claim inquire about point which has picked up a ton of 

consideration in the late years, because of the expanding dangers to the security openly places, 

for example, railroad stations or airplane terminals. The point is to help human administrators in 

checking Closed Circuit Television (CCTV) camera systems, by alarming them on deviation 

from the typical conduct saw in the region under observation. This gives the fundamental 

advantage that an administrator may screen a bigger measure of cameras by concentrating his 

regard for the basic focuses in space and time, while the framework expects the dreary 

undertaking of checking regions where non-intriguing occasions are going on. Moreover, the 

learning gained by method for programmed video investigation strategies can be utilized as a 

part of request to help video administrators and legitimate experts in the recovery of 

confirmation verifications from recorded video information, to regulate huge zone video arranges 

in assignments, for example, panning and zooming all through Pan-Tilt-Zoom (PTZ) cameras, 

and notwithstanding for less specialized issues as securing the protection of people in broad 

daylight places. 

 

Video surveillance systems have experienced a rapid development in the last decades, especially 

after the attacks on the 11th of September 2001 in New York, 11th of March 2004 in Madrid and 

7th and 21st of July 2005 in London, leading them to become a part of our daily life. But the use 

of video surveillance systems is not restricted to safety and security applications. Nowadays, 

video surveillance systems are also being deployed at department stores in order to provide 

advertising assessment and quality of service, on highways for traffic monitoring purposes, and 

even on houses for elderly people to assist them in a non-invasive manner. This success has been 

supported by the decaying prices in the sensor industry, which is able to provide higher quality 

cameras of ever smaller sizes at low prices. Moreover, the introduction of wireless networks has 
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connoted a drastic reduction in the deployment costs. With the transition to IP camera networks, 

large camera networks can be both local and remotely controlled. 

 

The quick development of video reconnaissance frameworks brings about an expanding number 

of video sustains which ought to be checked and put away in a control room. These outcomes in 

a constantly developing workload for CCTV administrators, who are overpowered by the 

gigantic arrangements of cameras. To ease this issue, programmed video examination procedures 

go for comprehension activities and human practices in video successions with a specific end 

goal to caution CCTV administrators upon the event of debilitating circumstances. This situation 

relates to the proactive side of wrongdoing anticipation. Besides that, video surveillance systems 

can also be used for crime investigation and offenders’ prosecution. Video indexing and 

summarization can be used in order to effectively accomplish this last task. Furthermore, 

automated video surveillance systems have given raise to the paradigm of bringing intelligence 

to the edge of the network. This allows for the design of distributed surveillance networks, which 

require a lower bandwidth for the transmission of the captured information. 

 

Nevertheless, as video surveillance systems have become ubiquitous, some aspects of the 

deployed systems have been questioned. One of the aspects is the effectiveness regarding crime 

prevention. Another is the need of protecting the privacy and security of personal information, 

which has gained increasing attention in the recent years. The Telegraph claimed that an 

individual will appear on average on 300 CCTV cameras during a day [Gray, 2008]. 

 

All of these aspects together have attracted the attention of both the academy and the industry, 

and is expected to continue growing in the next years. A recent report of Homeland Security 

Research Corporation [HSRC, 2013] estimates the revenue of the global Intelligent Video 

Surveillance (IVS) & Video Analytics (VA) industry as $13.5 billion in 2012, and predicts a 

rapid growth until 2020, where it is expected to reach $39 billion. 

 

The specialized origination and sending of mechanized video-based observation frameworks 

include various key issues to be tended to. The most minimal level of the framework 

configuration concerns equipment issues, including video gaining (cameras), stockpiling gadgets 
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and systems. At this level, choices are taken like system topology and correspondence 

conventions. Upon this level, the data accumulated by the cameras is investigated by method for 

picture and video handling systems, to separate valuable data out of the video successions. This 

is the level giving the semantic abilities of the framework. Finally, at the top level, the extracted 

information is presented to the user and eventually stored in a database for further usage. At this 

level, considerations on the ergonomics of the system as a whole and human-computer 

interaction should be taken into account. Obviously, decisions made at the different levels of 

design might affect the decisions to be made at the other levels; even more in the case of 

bringing intelligence to the network. The main focus of this thesis is set on the video processing 

and understanding chain. 

 

1.1 Video-Based Surveillance Systems  

 

   Automated video-based surveillance systems, in this thesis referred to as surveillance systems 

for brevity (otherwise explicitly indicated), rely on the automatic detection of events of interest 

by means of several analysis techniques mainly stemming from the fields of computer vision, 

image processing and pattern recognition. Detecting events of interest is an application 

dependent task and can be approached in very different manners. Nevertheless, there is a 

common number of steps that a general surveillance system usually goes through, namely, object 

detection, object association, commonly referred to as tracking, and scene understanding, often 

accomplished by the less ambitious task of event detection. In order to successfully accomplish 

these tasks, the cameras have to be calibrated with respect to an extrinsic Cartesian reference 

space, therefore allowing for a measurement of the size and position of the detected objects. 

These main building blocks of an automated video-based surveillance system are depicted in 

Figure 1.1 and briefly introduced in the following subsections. 
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Fig 1.1 General video-based surveillance system [7]. 

 

 

Fig 1.2 General video-based surveillance system with multiple cameras [7]. 

 

1.1.1 Object Detection and Classification  
 

Generic object recognition, also known as category-level object recognition, is considered to be 

one of the most challenging visual tasks in computer vision [91]. Given any instance of a 

particular general class as, e.g., ’person’, ’car’ or ’bicycle’, the task is to correctly localize and 

classify it by means of visual features. A thorough pursuit over all protest models and picture 

areas can be excessively tedious for some computer vision applications. To decrease the 

multifaceted nature of the issue, reconnaissance frameworks for the most part partition the issue 

into two stages: to start with, the objects of intrigue are recognized and, second, the distinguished 
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articles are ordered. Objects of intrigue are normally characterized as those articles presenting 

some sort of progress in the watched scene and are by and large related to moving items. 

 

Object detection can be approached by means of three different techniques: temporal 

differencing, background subtraction, and optical flow. These three techniques give's a low-level 

pixel order. To assemble objects, pixels are then grouped taking care of this arrangement and 

their spatial setup. Worldly differencing depends on figuring the distinction of back to back 

video outlines at each pixel position and characterizing as changed pixels those which outright 

contrast surpasses a given limit. Brief differencing is exceedingly versatile to element situations 

and low requesting in computational terms, however it neglects to separate the entire 

arrangement of pixels comparing to the articles in movement. Early works based on temporal 

differencing can be found in [92] and references therein. Background subtraction is the most 

commonly used approach in setups with static cameras. It consist in using a model of the scene 

background in order to detect foreground objects by differencing incoming frames with the 

model. Background subtraction is mostly fast and has low computational demands. However, it 

can be sensitive to sudden illumination changes and small camera motions as, e.g., vibrations. A 

good introduction to background subtraction, including the main issues that a background 

subtraction approach has to deal with, can be found in [18]. Optical flow is an estimation used to 

determine corresponding points between two images. Optical flow based methods can be used to 

detect independently moving objects even in the presence of camera motion. Nevertheless, even 

in their most efficient implementations, they are highly demanding in computational terms. 

Furthermore, depending on the smoothness constraint, the corresponding points in the considered 

frames might not be allowed to be more than a few pixels away, therefore, being constrained the 

speed of movement of objects and camera. A good introduction to the topic of optical flow 

computation can be found in [12]. An overview of state-of-the-art approaches and their 

respective performance can be consulted on-line in the Middlebury dataset website2 [4]. 
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Fig 1.3: Temporal differencing. From left to right: first image of a pair containing one 

Moving person, second image of the same image pair, and difference mask. 

 

 

Fig 1.4: Background subtraction example for two frames of the sequence ’office’ 

Background of the scene, and ground-truth foreground mask (source, www.changedetection.net). 

 

 
1.1.2 Object Tracking/ motion tracking  

 

Object tracking is the task of setting up correspondences between the distinguished protests over 

the casings of a video sequence. With a specific end goal to achieve this undertaking, a model for 

the articles and the movement they display is utilized. Ordinary question models are focuses, 

primitive geometric shapes, as, e.g., ovals and rectangles, outlines, explained shape models and 

skeletons. Contingent upon the chose question show utilized, the movement model can be 

delimited. For example, if an object is represented by a point, then, only a translational model 

can be used, whereas in the case of more elaborated object models as, e.g., silhouettes, 

parametric and non-parametric motion models can be used. Depending on the application 

domain, assumptions are made in order to constrain the tracking problem. In the surveillance 

domain, point-based tracking models are a popular choice to solve the tracking problem. 

Thereby, Kalman [93] and Particle Filters [94] are commonly state estimation methods used for 

computing the cost of a given object association. An excellent introduction into the tracking 

topic and important related issues including the use of appropriate image features, selection of 

motion models, and detection of objects, can be found in [95]. 

 

http://www.changedetection.net/
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The object detection, can be done in many ways. How to do it depends on data available and 

whether the object is in motion or not. For objects at rest some prior knowledge regarding the 

type of objects must be known. This can be a single sample image of the object to track. 

Detecting moving objects in an image sequence does not need prior knowledge but needs 

multiple consecutive images. Two common methods for detecting moving objects are [8]: 

 

Background subtraction 

Background Subtraction is a widely-used approach for detecting moving objects from static 

cameras. The fundamental logic is detecting objects from a difference between the current frame 

and reference frame, called background image. The principle is that if a reference background 

image is known, that image can be compared with the frame in which objects are to be detected. 

The regions that are different contain moving objects. 

 

Optical flow 

 By calculating the flow field of pixels in successive frames it is possible to detect objects. 

Clusters of pixels moving together are likely to be part of the same object. 

 

When the location of the object to be tracked is known some features must be extracted and 

recorded to make it possible to find the same object in new frames. Good segmentation from the 

background ensures that only features that actually belong to the object of interest are recorded. 

The problem is thus, given an area containing an object, to determine which pixels belong to the 

object and which belong to the background. In some cases a pixel-wise segmentation is not 

needed, but if too much background gets incorporated in the object model the noise will make it 

very hard to keep track of the target. 

 

Objects can be represented in multiple ways, as a centroid point, multiple points, primitive 

geometric shapes or object contours and silhouettes. These can be combined to get a good 

representation of the object that is to be tracked. Good features to track are things that continue 

looking the same even if the scale changes or the object rotates out of plane. Examples of that 

kind of features are corners and edges. Another possible representation of the object is the color 

histogram of the object area. 
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1.1.3 Background subtraction 

 

 In the most fundamental sense background subtraction is just what the name concludes, the total 

contrast between a reference picture (the background) and a picture of interest. At picture 

positions where the distinction is more prominent than some edge the position is classified not 

having a place with the foundation, i.e. named a forefront pixel. Most present-day calculations 

for performing foundation subtraction are more mind boggling than this and can be partitioned 

into a few classifications. The principle contrast between most strategies is the means by which 

the foundation model is spoken to. From easy to more complex ones: 

 

Running Gaussian Average 

For every pixel, the background is demonstrated independently as a Gaussian probability density 

function. The Gaussian appropriation is fitted to the n most recent pixel values and a pixel is 

arranged by ascertaining the probability that the most recent pixel esteem depicts an 

indistinguishable question from the prior pixel values did. 

 

Mixture of Gaussians 

 Sometimes the part of an image that should be classified as background is not entirely static, 

some parts might move a little (due to wind, vibrations of the camera etc.) and should still be 

classified as background. To adapt to that sort of background a single valued background model 

is inadequate. The thought is to have distinctive Gaussian models for various conceivable 

background objects, if a pixel esteem is probably not going to originate from any of the diverse 

conveyances then it is named foreground. 

 

Kernel density estimation (KDE) 

 In this method a function is constructed that gives the probability that a given pixel belongs to 

the distribution of background pixels. For the Gaussian running average the previous known 

pixel values were fitted to a Gaussian to model the distribution, in the kernel density estimator 

the distribution is instead constructed from a sum of kernels. 
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1.2 Thesis Overview  
 

The focus of this thesis is the detection of objects in unrestricted environments monitored video 

cameras. The objects of intrigue are moving and in addition new static articles. The video 

investigation framework is not given any past information neither of the watched scene nor of 

the visual appearance of the articles to be recognized. The fundamental approach at the top of the 

priority list of the created algorithms is the location of abandoned objects out in the open spaces, 

which has picked up a critical consideration in the security area, since surrendered items may be 

regularly considered as a danger to the general population security. The final system has to 

provide on-line alerts to human operators. Furthermore, the detected moving objects should be 

provided to higher-level analysis tools in order to recognize further actions and behaviors of 

interest typical of surveillance systems for public spaces. 

Then the background subtraction will be done by the algorithms to track object. The methods 

using for background subtraction are: 

 An enhanced Gaussian Mixture Model (GMM) for video surveillance applications, which 

incorporates recent proposals for the improvement of the system performance and system 

convergence, and a novel heuristic for: 

–   Better initializing the parameters of new created modes, and 

–  Avoiding the emergence of over-dominating modes. 

 

 Kernel density estimation (KDE) method a function is constructed that gives the 

probability that a given pixel belongs to the distribution of background pixels. For the 

Gaussian running average the previous known pixel values were fitted to a Gaussian to 

model the distribution, in the kernel density estimator the distribution is instead 

constructed from a sum of kernels. 

 In a further video engineering is done, with background subtraction algorithm the 

background from one video and foreground from another video will be subtraction and 

we will merge them into one video.  In this way, we can also do more video engineering 

with different videos. 
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CHAPTER 2  

BACKGROUND SUBTRACTION 

 STATE OF ART 

 

2.1 Introduction  

 
The detection of change is a low-level vision task utilized as an initial phase in numerous 

computer vision applications, for example, video surveillance, low-rate video coding, human-

computer connection, augmented reality or medicinal finding to say just a couple of them. Given 

a picture grouping, the objective is to distinguish for every frame the arrangement of pixels that 

are fundamentally not quite the same as the past edges. Contingent upon the application, the 

necessities and imperatives of the discovery calculation are distinctive. Likewise, the meaning of 

what is essentially unique, may rely on upon the application domain. 

In the video surveillance domain, change detection has been regularly utilized as a part of request 

to foreground objects from the background. Foreground objects articles are the objects of 

automated surveillance system. The divided foreground objects are then related between frames 

with a specific end goal to play out a scene investigation and identify occasions of premium. In 

this manner, it is accepted that the background can be all around portrayed by method for a 

statistical model, the background model. In any case, there are some background characterstics 

as moving foliage or sudden brightening changes, which may make troublesome the errand of 

foundation displaying and upkeep. A comprehensive study of the main challenges and some 

principles that might be used to tackle them can be found in [18]. The segmentation of 

foreground objects by means of detecting the changes with reference to a background model is 

commonly known as background subtraction. Figure 2.1 depicts a basic schema of a general 

background subtraction system. The main challenges a background subtraction algorithm has to 

deal with are [18,19]: 

 Gradual illumination changes, which are mainly experienced in outdoor environments 

along the different times of the day and affect the appearance of the objects in the 

observed scene. 
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 Sudden illumination changes, which are mainly experienced in indoor environments by 

the switching on and off of artificial light sources, and in outdoor environments by 

unstable weather conditions when clouds suddenly hide the sun. 

 Shadows, which are mainly casted by moving objects and complicate the accurate 

segmentation of objects (static objects belonging to the background also cast shadows; 

nevertheless, these are not that problematic for the background subtraction process since 

they are always casted at the same position -or at slow moving positions in outdoor 

scenarios depending of the sun position- and can be more easily accommodated in the 

background model). 

  Dynamic background, which are those parts of the background exhibiting different 

appearances because of containing some kind of moving objects as waving trees, rippling 

water, escalators and so on, which are not of further interest for a scene interpretation. 

 Camouflage, produced by objects whose appearance is difficult to differentiate from the 

appearance of the background. 

  Bootstrapping, which is required because of the general unfeasibility of training a 

background model with a completely empty scene. 

 

Actually, in [18] the authors also pointed out some challenges which they claimed that a 

background maintenance system should be able to handle: 

 Moved objects, which refers to the detections corresponding to background objects that 

have been moved. 

  Sleeping person, which refers to foreground objects appearing in the scene and 

remaining motionless after a while. 

 Walking person, which refers to objects that have been learned as part of the background 

and at some point in time start moving and leave the scene. 

 

Nevertheless, these three difficulties have not been considered in this thesis as natural to the 

background subtraction issue, since these issues ought to be considered in agreement to the 

application at the top of the priority list. In fact, the point in time from which, e.g., a man 

nodding off is not fascinating any longer ought to be characterized by a given application and, in 

this way, ought not be considered as a general background upkeep issue. It is, additionally, 
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surprising that these three issues can be likewise considered as three singularities a decent 

bootstrapping technique ought to handle. Finally, the foreground area gap issue, likewise 

specified in [18], which comprises in the unfeasibility of recognizing inside question pixels on 

account of shading homogeneity, has not been considered in this work as a general change 

discovery issue, as for the most part concerns outline differencing based methodologies. 

 

 

Fig 2.1 General background subtraction system[86]. 

 

2.1.1 Taxonomy 

 
Background subtraction approaches can be divided into recursive and non-recursive. Such a 

taxonomy can be found in [5, 27]. Recursive approaches update the background model as new 

observations arrive, therefore consuming low resources in terms of computational and memory 

requirements. Examples of this kind of approaches can be found in [29, 28]. On the other hand, 

non-recursive approaches keep a buffer of the last incoming video frames to estimate the 

background. Therefore, non-recursive approaches have higher memory requirements. 

Nevertheless, since they have a copy of the most recent video frames, they can cope with some 

challenges as outlier rejection and fast convergence which cannot be easily handled with 

recursive techniques. Examples of this kind of approaches can be found in [25, 26]. 
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NON-RECURSIVE TECHNIQUES 

 

A Non-recursive approach utilizes sliding window idea for foundation subtraction. It 

cradles/buffers of pervious video casing and gauges the foundation in view of worldly variety of 

every pixel with in the support. For this situation, the capacity prerequisite is high, these 

procedures are very versatile. To fathom stockpiling issue, we can store outlines at moderate 

casing rate. A few strategies for the systems are portrayed underneath: 

 

FRAME DIFFERENCING  

Frame differencing uses the video frame at time, t-1, as the background model for the frame at 

time t, [20]. Since it uses only a single previous frame, frame differencing may not be able to 

identify the interior pixel of a large, uniformly colored moving object.  

 

MEDIAN FILTERING  

This is most widely used technique for background formation. The background estimate is 

defined to be the median at each pixel location of all he frames in the buffer, the assumption is 

that the pixel stays in the background for more than half of the frames in the buffer [21]. Median 

filtering has been extended to color by replacing the median with the Medio. 

 

LINEAR PREDICTIVE FILTER  

It computes the current background estimate by applying a linear predictive filter on the pixels in 

the buffer [20]. The filter coefficients are estimated at each frame time based on the sample co 

variances, making this technique difficult to apply in real-time. 

 

 RECURSIVE TECHNIQUE  

 

Recursive methods don't keep up a cushion for background subtraction. Rather, they recursively 

overhaul a solitary background demonstrate in view of every input frame. Therefore, input 

outlines from removed past could affect the present background display. On the off chance that 

we contrasted and non-recursive method, this system requires less capacity, however any error 

out of sight model can proceed for a drawn out stretch of time. A few strategies for the methods 

are described underneath: 
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APPROXIMATED FILTER METHOD  

This technique has been used in background modelling for urban traffic monitoring [22]. In this 

scheme, the running estimate of the median is incremented by one if the input pixel is larger than 

the estimate, and decreased by one if smaller. This estimate eventually converges to a value for 

which half of the input pixels are larger than and half are smaller than this value, that is, the 

median.  

 

MIXTURE OF GAUSSIANS (MoG)  

This method tracks multiple Gaussian distributions, MoG has enjoyed tremendous popularity 

since it was first proposed. This method maintains a density function for each pixel. Thus it is 

capable of handling multiple model background subtraction. 

 

2.2 Relevant Approaches 

2.2.1 Frame Differencing Method  

In this method the difference is calculated between two frames out of which one is the current 

frame while the other one is the background frame to detect the presence of any moving object in 

the video. The equation for this is  

                                   |frame 𝐼𝑐 – frame 𝐼𝑏|> T       [23]  

In this frame 𝐼𝑐 is the current frame, frame 𝐼𝑏 is the background frame and T is the threshold 

value.  

For this the Algorithm steps are as follows: [23]  

 Define the background frame and current frame from video stream.  

 Calculate the gray scale converted image of those frames.  

 Fix the frame dimension for further calculation of pixels.  

 Calculate the difference amid pixels of the two frames and match with a defined 

threshold value.  

 If the difference is above threshold value take it as foreground object otherwise as a 

background.  

 Update the threshold value according to the changes in the successive frames.  
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The benefits of using this method is that it is fast easier to apply and performs well for static 

background but it needs a background not having objects otherwise they can be taken as moving 

object by this method. 

Below are the set of research papers related to this technique:  

 An improved moving object detection algorithm based on frame differencing and edge detection: 

Zhan Chaohui [2007] state that the moving object detection and subtraction is difficult work to 

do. He presented an approach to detect a moving object and then subtracted it from the frame by 

using frame differencing method. First of all, it detects the edges of each two continuous frames 

and then get the difference between the two edges images. And, then it divides the edge 

difference image into several small blocks and decides if they are moving or steady by 

comparing the number of non-zero pixels 

The author refers to the related work of Wan Ying [2006], Ren Mingow, Jia Zhentang [2003]  

It was observed that the improved moving object detection and subtraction algorithim based on 

frame differencing has much greater recognition rate and higher detection speed than the several 

classical algorithms. This algorithm will appear individual false under more complicated 

background and there is still room for improvement.  

 

 Video objects extraction based on DFD between the frame and threshold segmentation: Jinwei 

Cui [2008] addresses the problem of complex motion and uncovered background in background 

segmentation, a new method was proposed based on DFD between the frames and threshold 

segmentation. In this method, filtering and obtained two consecutive difference between the 

frames and then amended the different images by “assimilation filled” to get the difference 

template and use the template buffer to maintain the integrity of iteration template. This 

algorithm doesn’t depend on a fixed background and can eliminate the uncovered background in 

the difference images.  

The author refers the related work of Zhang Yu-Jin [1999], Jia Zhen Tang [2002], An-Ping 

[2006]  

It was seen the result of video object extraction for single moving target video sequence is 

satisfactory. And it can effectively overcome the noise, the single objective of the complexity 
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movement and the impact of background exposure in separating video object with change 

detection.  

 Object tracking using frame differencing and template matching: N. Prabhakar [2012] this 

author presented the object tracking and extracting system using frame differencing and template 

matching. The frame differencing is used frame by frame to detect a moving object in an 

efficient manner. The template image is used for matching purpose and generated dynamically 

which ensure that the change in orientation and position of object does not affect the system.  

The author refers to the related work of Collins.R. [2001], V. Ramesh [2003], Yilmaz [2006]  

It was observed that this method was highly effective and can be used as a surveillance tool in 

various applications. This method also provides better results for object extraction, which can be 

easily applied to a number of fields. This method can also be used to extract an object which is at 

a distant point. In future to improve the effectiveness more work can be done on it.  

 

BSFD: Background Subtraction frame differencing algorithm for moving object detection and 

extraction: D. Stalin Alex [2014] presents the two common algorithms of moving object 

detection, background subtraction and frame differencing and also their comparison. The 

background image used to process the next frame image is generated through the super position 

of the current frame image. This algorithm makes the object that keep long standings, however 

not to be detected as a part of background.  

The author refers to the related work of A. Lipton [1998], D. Gutches [2001] and Wang Ying Li 

[2007]  

It was observed that the algorithm can detect moving object more effectively and precisely. It 

rectified the disadvantages of background subtraction method and frame difference method 

proposed a dynamic updating of background image by frame differencing method and utilises 

the power of the background subtraction method.  

 

Extraction of moving objects using frame differencing, Ghost and Shadow removal. Syaimaa 

Solehan Mohd. Radzi [2014] this presents a technique for extracting moving objects based on 

temporal differencing, ghost removal using NCC, while using a non-static pan tilt zoom camera. 

To detect moving object in current image, the previous image frame, ft-1, is compensated with 

respect to the current image. This proposes a technique to remove it by using the previous image 
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frame, ft-2. The output is then cleaned by using morphological opening operator, before shadow 

removal is done. Each pre-defined foreground pixels are categorized into shadow pixels or 

background pixels. This author refers to the work of S. Vohara [2012], D.P. Bertsekas [2004], 

Mc Kennel [2000]  

It was observed that this method shows that the moving objects are extracted without shadows. 

This method can be used in real time with high computation speed and its excellent performance 

in detecting moving object in every frame. There are many applications which use this system, 

such as surveillance system in housing area, people tracking and road traffic. Future work for this 

project is to further improve the shadow detection with fine shape off moving objects. 

 

Table 2.1: Summary of frame differencing  

 

Year  Author  Title  Description  

2007  Zhan Chaohui  An improved 

moving object 

detection  

algorithm based on 

frame differencing 

and edge detection.  

Detect the problem of background subtraction in 

frame differencing  

and give the improved method to solve the 

problem with high detection speed and solve  

complicated background problem.  

2008  Jinwei Cui  Video objects 

extraction based on  

DFD between the 

frame and threshold 

segmentation.  

In this method author eliminates the complex 

motion and uncovered background and proposed 

new DFD method.   

2012  N. Prabhakar  Object tracking 

using frame 

differencing and 

template matching.  

Frame differencing and template matching is 

used to detect object and extract it effectively. 

This  

method is highly cost effective and can be used 

as surveillance tool in various applications.  

2014  D. Stalin Alex  BSFD: Background 

subtraction frame 

differencing  

algorithm for 

moving object 

detection and 

extraction.  

In this author compares the two algorithms of 

object subtraction.  

Rectified their disadvantages and proposed 

dynamically updated method.  
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2.2.2 Gaussian Mixture Model (GMM) 

 

The Gaussian mixture model (GMM) algorithm is based on the assumption that background is 

more regularly visible than the foreground, and background variance is little. As a single 

Gaussian is not a decent model for outdoor scenes this method for background subtraction was 

proposed by Stauffer and Grimson [28] in which every pixel in the background is modelled as a 

mixture of Gaussian. Each and every pixel value is matched with current set of models to 

discover the match. If no match is found, the least model that is acquired is rejected and it is 

substituted by new Gaussian with initialization by the existing pixel value means the pixel value 

that don’t suit into the background are taken to be background. This method requires less 

memory to work and gives very accurate results as well as can deal with slow lighting variation 

although it cannot handle multimodal background and involves rigorous computation.  

 

Below are the set of researches related to this method:  

 

Understanding background mixture model for background subtraction: P. Wayne Power [2002] 

presented the basic theory for understanding the basic model and learning by implementing 

Stauffer-Grimson algorithm at different parameters. It basically shows what approximations to 

the theory were made and how to improve the standard algorithm by redefining those 

approximations.  

This author refers to the work of Bilmes J. [1998], Gutchess [2001], MC Ivor [2001]  

It listed all the essential model parameters and typically values as well as the extension that are 

necessary for practical use of the algorithm. This work was providing theoretical tool with which 

to modify or adapt the original algorithm for better performance, higher speed and providing 

information needed for rapid implementation.  

 

 A Bayesian framework for Gaussian mixture background modelling: Da-Shyang Lee [2003]  

It stated that background subtraction an important processing for many video applications. A 

Bayesian formulation of background segmentation based on Gaussian Mixture model. They 

show that the problem consists of two density estimation problem, one is application independent 

and other one is application dependent and a set of theoretically optimal solution can be derived 

for both. This work was tested on meeting videos and traffic videos.  
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This author refers to the work of A.Elgammal [2000], M. Harville [2002], C. Wren [1997]  

It was showed that a set of intuitive and theoretically sound solution could be formulated in 

terms of density estimation problem. With this proposed algorithm the solution to these 

problems, the framework was applied to meeting and traffic videos segmentation. The 

performance over existing method validates this theory.  

 

 Improved Adaptive Gaussian Mixture model for background subtraction: Zoran Zivkovic [2004] 

it stated that the background subtraction is the computer task of computer vision. It is the usual 

pixel-level approach. In this an effective adaptive algorithm using Gaussian mixture probability 

density was developed recursive equation were used constantly to update the parameters and also 

simultaneously select the appropriate number of components for each pixel.  

This author refers to the wok of C. Starffer [ 1999], P.J. Withagen [2002] , Z.Zivkovic [2004]  

It was presented an improved GMM background subtraction scheme. This new algorithm can 

automatically select the needed number of components per pixel and in this way fully adapt to 

the observed scene. In this the processing time get reduced and segmentation also got improved. 

  

 An Improved adaptive background modelling algorithm based on Gaussian Mixture Model: 

Peng Suo [2008] introduced one of the best model of GMM to subtract the background scene 

with repetitive motion. Numerous approaches have been proposed to this problem, which differ 

in the type of background model, but it was one of the best. However, the large amount of 

computation had limited its application. Moreover, it had difficulty in segmenting slow moving 

objects and objects that stop for a while during moving. Based on GMM (Gaussian Mixture 

Model), an adaptive method was used in the algorithm to decrease the amount of the 

computation and an adapting method with adapting learning rate is proposed to accurately 

segment the objects that move slow or stop for a while.  

This author refers to the work of Hou Z [2004], P. Kaer [2001] , C. Starffer [2000] 

It was noticed that the comparison between the proposed algorithm and the GMM method had 

many differences. The segmenting results show that the proposed method had better performance 

than the GMM method.  
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Adaptive GMM approach to background subtraction for application in real time surveillance: 

Subra Mukherjee et. Al [2013] In this new model for real time background subtraction using a 

GMM (Adaptive Gaussian Mixture Model) was proposed. This new method was robout and 

adaptable to dynamic background, fast illumination changes repetitive motion. This also had an 

incorporated method for detecting shadow using the horpresert color model. This method can be 

used for monitoring areas where movement entry is highly restricted. So on detection of any 

unexpected events in the scene an alarm can be triggered and hence we can achieve a real time 

surveillance even in the absence of constant human monitoring.  

This author refers to the frame work of W.K Wang [2009], Hao Zhou Xuejie Zhang Yun Gao 

Pengfei Yu [2010], Lucia Maddalena [2008]  

The results of this background subtraction (AGMM) is highly effective. This method could be 

used to detect abandoned luggage in airport and railway stations in any place where security is 

prime concern. This method can be implemented so that any movement in the area can be 

immediately detected and an alarm can be triggered.  

 

 

A novel motion object detection method based on improved frame difference and improved 

Gaussian Mixture Model: Yu Xiaoyang [2013] in the existing motion detection method which 

include background subtraction and frame difference. But it is prone to exist some holes with 

frame difference method and it is difficult to build a background model using background 

subtraction method. So previous algorithm did not achieve the ideal results. The main aim of the 

author is to combine frame difference method improve by motion history image with background 

subtraction method based on improved Gaussian mixture model to detect the motion object.  

This author refers to the frame work of Lin Kai Chen [2010], Chen Ming [2012], Li Wei [2013].  

It was observed that the improved frame difference was used to detect the motion object in the 

time domain and the improved background subtraction was used to detect the motion object in 

the space domain. Finally, to part were combined to obtain the complete motion object. This 

algorithm has processed many videos and obtain satisfactory results.  
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Table 2.2: Summary of Gaussian Mixture Model  

 

Year  Author  Title  Description  

2002  P. Wayne 

Power  

Understanding 

background mixture 

model for  

background subtraction.  

This method basically shows what 

approximations to the theory were made and 

how to improve the standard algorithm by 

redefining those approximations.  

2003  Dar-Shyang 

Lee  

A Bayesian framework 

for  

Gaussian Mixture 

Background Modelling.  

 

A Bayesian formulation of background 

segmentation based on Gaussian mixture 

model. This also shows that the problem 

consists of two density estimation problems,  

one is application independent and other one 

is dependent and solution can also be derived 

for both.   

2004  Zoran Zivkovic  Improved adaptive  

Gaussian mixture  

Model of Background 

subtraction.  

An effective adaptive algorithm using 

Gaussian mixture probability density 

developed. The processing time get reduced 

and segmentation also get improved.  

2008  Peng Suo  An improved adaptive 

background  

Modelling algorithm 

based on Gaussian 

Mixture Model.   

In this Gaussian Mixture Model to subtract 

the background scene with repetitive motion. 

An adaptive method was used to decrease the 

amount of computation and accurately 

segment the object that move slow or stop.  

  

2013  Subra  

Mukherjee*et  

al  

An adaptive GMM 

approach to background  

subtraction for  

application in real time 

surveillance.  

A new approach was proposed which is 

robust and adaptable to dynamic background, 

fast  

illumination changes, repetitive motion. This 

method can be implemented so that any 

movement in the area can be immediately 

detected and alarm can be triggered.  

  

2013  Yu Xiaoyang   A Novel motion object 

detection  

method based on 

improved frame  

difference and  

improved Gaussian 

mixture Model.  

The main aim in this is to combine frame 

difference method improved by motion 

image with background subtraction method 

based on  

improved Gaussian Mixture Model to detect 

the motion object. This algorithm has 

processed a lot videos and obtained 

satisfactory results.  
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2.2.3 Approximated Median Filter Method 

 

McFarlane and Schofield [30] had proposed a simple recursive filter to evaluate the median of an 

image pixel in which the running estimate of the median is augmented by one if the input pixel is 

greater than the estimate and so on decremented by one if the input pixel is lesser than the 

estimate. The estimate ultimately converges to a value for which half of the input pixel are 

bigger than and half pixels are lesser than this value that is this value is the median.  

In this process, the median filtering buffers the preceding N frames of the video stream. After 

this the background frame is computed from the median of the buffered frame and the 

background is subtracted from the current frame to give the foreground pixel.  

The drawbacks of this technique is that it does not offer smoother results in all circumstances as 

it is a recursive technique it does not keeps a buffer for background estimation in its place it 

regularly updates a single background frame thus any input frame from a very distant past could 

affect the current background model. Although it means it require less memory requirements as 

it doesn’t need to maintain a buffer.  

The research papers related to this technique:  

Moving vehicle segmentation in dynamic background using self-adaptive kalman background 

method: K.A. Ahmad [2011] this introduces the adaptive kalman filter to modeling dynamic 

background for background subtraction. Background subtraction method is used to identify 

object and famous used in moving object segmentation. This also investigate a comparision 

study on Gaussian subtraction method, frame differencing and approximate median method.  

This author refers to the framework of Ciaran O Conaire [2006], Attila Jozsef Kun [2009], H. 

Kim [2008], Ya-Li How [2011].  

It was observed that from kalman filter equation, we can achieve the detection of object 

accurately. Furthermore, the segment has been improving and the object detection more smooth. 

  

 Complex Wavelet based moving object segmentation using approximate median filter based 

method for video surveillance: Alok Kumar Singh Kushwahe [2014] this presented complex 

Wavelet based moving object segmentation using approximate median filter base method. This is 

capable to deal with the drawbacks such as ghosts, shadow and noise present in other spatial 

domain method. The performance of this method is evaluated and compared with other standard 
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spatial domain method. Comparison is done by using relative foreground area measure, Miss-

classification penalty, relative position based measure, normalized cross.  

This author refers to the frame work of Y.Zhang [2006], M-Y Liu [2005], A. Khare [2008].  

The obtained results and their qualitative and quantitative analysis, it can be seen that this 

method is performing better in comparison to other methods as well as it also capable of 

alleviating the problem associated with other spatial domain methods such as ghosts, clutters, 

noises etc. 

 

 

Table 2.3: Summary of Approximated Median Filter Method 

 

 

Year  Author  Title  Description  

2011  K.A. 

Ahmad  

Moving vehicle 

segmentation in  

dynamic 

background using 

self-adaptive  

kalman 

background 

method.  

This method is new for 

background subtraction and 

also with  

comparison with other 

segmentation methods, this 

improves object detection and 

smooth segmentation.  

2014  Alok   

Kumar 

Singh 

Kushwahe  

Complex Wavelet  

Based Moving 

object 

segmentation 

using  

approximate 

median  

filter based 

method for video 

surveillance.  

This introduces new method 

capable of dealing with 

ghosts,  

shadows and noise. This 

method is performing better in 

comparison to other methods 

as well as it also  

capable of alleviating the 

problem associated with other 

domain.  
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2.2.4 Non-parametric Model - Kernel Density Estimation 

 

In order to cope with high-frequency variations and arbitrary distributions, non-parametric 

background models can be used. The probability of observing a given pixel value Xt at time t 

using the kernel estimator K can be non-parametrically estimated based on the pixel sample X =

{X1, X2, … … … XN} as follows: 

𝑝(𝑋𝑡) = ∑ 𝑎𝑖 𝐾(𝑋𝑡

𝑁

𝑡=1

− 𝑋𝑖); 

 

where 𝛼𝑖 are weighting coefficients (usually chosen to be uniform, 𝛼𝑖 =
1

𝑁
). 

The probability in Equation can be efficiently computed by taking a Normal Function N (0, ∑) as 

kernel estimator, assuming independence between the different color channels, and using pre-

calculated lookup tables for the kernel function given the intensity value difference ( 𝑋𝑡 − 𝑋𝑖) 

and the bandwidth. 

 

The use of non-parametric background models was first proposed in [26] and [31]. In order to 

alleviate the high memory requirements imposed by the need of storing the whole sample set of 

frames considered for the density estimation, an estimation technique based on mean-shift mode 

finding is introduced in [32]. An approach using the balloon variable-size kernel approach, 

which avoids the estimation of the kernel size parameter, is proposed in [33]. 

 

However, Kernel Density Estimation (KDE)methods have a high computational cost. Moreover, 

in [33] it is shown that GMM seems to be a better model for simple scenes while providing a 

more compact representation which is suitable for further processing steps as e.g. shadow 

detection. 

 

2.3 Current Trends and Conclusions  
 

Due to its low computational load, background subtraction is presumably the most widely 

recognized initial phase so as to identify objects of enthusiasm for surveillance applications, 

particularly on account of utilizing static cameras, and has produced a broad writing. In the past 
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segments the primary systems used to fulfill this undertaking have been introduced. These 

techniques have likewise been utilized in numerous other determining approaches which go for 

better handling a portion of the difficulties postured to the background subtraction approach. 

This area gives a diagram of the primary patterns saw out of background subtraction writing. 

 

Obviously, depending on the application domain, including the characteristics of the observed 

scenes and computational constraints, the most suitable approach may vary. A study of various 

background subtraction algorithms in the context of urban traffic surveillance systems is 

presented in [66]. Special attention is paid to the trade-off between the obtained results and the 

computational complexity. The good compromise achieved by simple techniques such as 

adaptive median filtering for the considered domain is highlighted. 

 

In [76], a more general selection of different methods covering a wide range of underlying 

mathematical approaches is presented. A categorization of the presented approaches attending to 

their speed, memory requirements and segmentation results is provided, aiming at facilitating the 

design/selection of a background subtraction approach depending on specific system 

requirements and capabilities. It is highlighted the acceptable accuracy provided by simple 

methods such as the running Gaussian average and the median filter, the high model accuracy of 

Gaussian mixture models and the sequential kernel approximation at the cost of higher memory 

and computation requirements, and the challenge posed by practical implementations to methods 

addressing spatial correlations. 

 

2.3.1 Background Model Initialization 
 

The principal undertaking to be unraveled by a background subtraction framework is the 

instatement of the model, regularly referred to as bootstrapping. In controlled situations, this is 

every now and again accomplished by forcing a preparation period during which the unfilled 

scene is noticeable. In any case, this methodology is not appropriate to general surveillance 

situations. In this manner, the background display should be introduced within the sight of 

moving articles. Regardless of the possibility that the utilization of straightforward 

methodologies, for example, a pixel-wise calculation of the mean [75] or the middle [25] esteem 

may suffice for a few applications, there is likewise countless, particularly those including 
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swarms, where a more explained way to deal with foundation instatement is essential. To that 

point, generally some sort of spatial data is utilized. One of the most punctual methodologies in 

view of this guideline is displayed in [73], where the utilization of optical stream data is 

proposed. The primary thought is that utilizing the optical stream in the region of a pixel is 

conceivable to speculate if a background pixel is being impeded by a moving article (if the 

heading of the optical stream is towards that pixel) or if a blocked background pixel is being 

revealed (if the optical stream is coordinated far from that pixel). The strategy proposed in [72] 

comprise in processing the total of total contrasts of co-located picture block of the input frames 

so as to group them as moving, static closer view or static background; the background picture is 

figured by utilizing a worldly middle channel to join static background pieces. In [67] a strategy 

is proposed which comprises in isolating every information outline in patches that are bunched 

along the course of events keeping in mind the end goal to choose a little number of background 

applicants, which are then incrementally regarded to be background or not by picking at every 

progression the best continuation of the present foundation as indicated by visual gathering 

standards, subsequently considering the spatial relationships that exist inside little locales of the 

background picture. A later approach which likewise considers the connection of neighboring 

background pieces is displayed in [78], where the consolidated recurrence reaction of an 

applicant square and its neighborhood is the choice basis of the pieces considered as background. 

 

2.3.2 Illumination Changes and Shadows 

 

While steady enlightenment changes are effectively taken care of by the majority of the best in 

class versatile methodologies, sudden light changes and shadows threw by moving items are still 

a test for the majority of them. On account of worldwide illumination changes, surface and, all 

the more by and large, nearby based methodologies demonstrate a changeover pixel based 

methodologies gave that the surfaces in the watched scene are sufficiently discernable. For the 

instance of casted shadows, all background subtraction approaches indicate inadequacies which 

are typically corrected in a post-preparing step. 

Sudden worldwide enlightenment changes, are typically taken care of in a spatial setting. For 

example, the framework proposed in [18] holds an agent set of scene background models going 

to various lighting conditions (a negligible set would compare to lights on and off) and picks the 

model that creates the least number of foreground pixels. Clearly, such an approach requires a 
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past learning of the vacant scene under various brightening conditions. In light of the perception 

that illumination changes can be better taken care of considering spatial data, the framework 

proposed in [68] consolidates the outcomes furnished by a GMM with spatial data gave by a 

disconnected spatial division of the background in a Bayesian system. A general approach which 

additionally exploits spatial connections is introduced in [96], where the watched scene is 

remedied by method for a multi-determination light revision approach keeping in mind the end 

goal to convey the prepared video casings to a reference luminance level. An option approach is 

exhibited in [77], where the foundation model is characterized by a measurable model of the 

light impacts, rather than the pixel powers. Besides, the probability of pixel grouping 

additionally melds surface connection pieces of information by misusing surface histograms 

prepared disconnected. Although impressive results are presented, it is assumed that the 

background is static and can be trained beforehand, which is a requirement that can be easily 

fulfilled in the scenario for which the approach is designed for, augmented reality, but not in a 

common 

video surveillance scenario. 

 

A survey on shadow detection approaches is presented in [97], where the different contributions 

reported in the literature are classified in four classes: statistical parametric, statistical non-

parametric, deterministic model-based and deterministic non-model-based. Out of the evaluated 

approaches, the results provided by those presented in [74] and [69] are highlighted. The 

approach in[74] classifies pixels as foreground, background, shadowed background or 

highlighted background, depending on the chromaticity and brightness distortion measured by 

projecting the observed value into a line going through the origin of the RGB space and the 

expected value for every pixel position. The approach in [69] classifies pixels as foreground or 

background depending on the distance in the HSV color space of the observed to the expected 

values for every pixel position, thereby exploiting the different effect that illumination conditions 

have on the hue, saturation and value channels. 

 

 

 

 



28 
 

 

CHAPTER 3  

METHODOLGY  

This chapter serves to outline the work done during the thesis and describe how the results were 

obtained. The first step of the work was to get acquainted with computer vision as a field of 

research and the state-of-the-art in motion tracking. This was done by a literature review, 

especially was used to find suitable candidates for evaluation. From these two state-of-the-art 

trackers were chosen Gaussian Mixture model (GMM) [79] and Kernel Density estimation 

(KDE) [80]. In addition to these, Video engineering to be done, by background subtraction 

algorithm we subtract background and foreground from different videos and then we can change 

either background or foreground object with the new one. A system for performing the testing of 

algorithms was developed, written in C++ and making use of the library OpenCV for the image 

processing. The implementations of GMM and KDE are slight modifications of publicly 

available code. The code was modified to give a consistent interface for all the tracking 

algorithms and to make it possible to use them together with background subtraction. The results 

from the competition are available so it is possible to compare the results of the implementations 

from this thesis with that of the original algorithm authors.  

An algorithm for background subtraction was implemented based on the article by Hajer Fradi 

[79] and Jeisung Lee [80]. One implementation of the original algorithm is available as a part of 

the BGSLibrary3, the implementation used in the testing in this thesis is entirely based on the 

written article and modified to work with a moving camera. Not all features described in [79] 

and [80] were implemented. The two trackers GMM and KDE were evaluated to determine 

whether they benefit from background subtraction. The details of evaluation is provided in next 

chapter. 

 

3.1 Background subtraction 

 
 The resulting background mask from the background subtraction is used in different ways for 

the trackers. For GMM and KDE a new image is created from the original image by setting 

background pixels to black. The performance of the background subtraction is evaluated on 

different cases to see what impacts its performance. Two cases are constructed. 
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Fig 3.1 Background Subtraction Example [88] 

 

The first is a simple sequence, taking a single large image and creating a video by sweeping over 

it with a smaller window. In this case, all pixels should be classified as background since there 

are no moving objects in a static image. 

 

The second case is to evaluate the result of the subtraction when there is no error in the data for 

the camera movement. This was done by recording a sequence without moving the camera and 

then constructing a new video using small parts of the original sequence (moving a window over 

it, simulating a moving camera). By doing this we minimise vibrations and we get perfect 

knowledge of the per frame movement. 

 

Finally, the background subtraction is evaluated on sequences from the camera under the 

conditions: only pan motions, only tilt motions, and both pan and tilt motions. For this 

background model, small angle rotations are assumed and the camera movement is approximated 

as a translation. 
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3.1.1 Camera parameters 

 

 To perform background subtraction when the wellspring of the frames is moving, learning about 

the pixelwise balance between the frames is required. One approach to get that with no earlier 

learning about the development is by following focuses having a place with the background 

starting with one casing then onto the next, by utilizing optical flow.  

 

At the point when learning about the camera movement is accessible, some approach to relate 

changes in container and tilt angle to changes in pixel position in a picture is required. At the 

point when the adjustments in container and tilt are little, the adjustment in pixel position can be 

approximated to be relative to the change the position.  

∆𝑥 = 𝑐1 . ∆𝑝 

∆𝑦 = 𝑐2 . ∆𝑡 

 

The coefficients 𝑐1 and 𝑐2can be estimated by for example using optical flow to get an estimate 

for the pixel movement and compare that with the change in pan and tilt. They can also be found 

by manually matching images with known camera position and calculate the coefficients from 

that. Both methods are evaluated. 

 

3.1.2 Test procedures for evaluating the trackers with background subtraction 
 

 Test Case 1: Tracking with background subtraction. 

An arrangement of frames is gathered from a static camera. In the series, there is no less than one 

moving object. A moving camera is represented by building another grouping of frames where 

every frame is a settled size area from the relating static camera outline. The pixel position of the 

extricated locale is logged to simulate interpretation data from the robot. Then for each tracker: 

 Initiate a bounding box on the object to be tracked. 

 Track with and without background subtraction. 

 If the tracking is lost, reinitialise by giving a new bounding box around the object. 

 Count the number of times the tracking is lost and how many frames processed per 

second. 
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 Test Case 2: Simple tracking with background subtraction and robot. Sequences of 

frames are collected from the camera, in the sequence there is a moving unicoloured 

circle in front of a simple background. Pan and tilt positions are logged to make it 

possible to align the frames. Sequences: 

 The camera is only panned right and left. 

 The camera is only tilted up and down. 

 The camera is panned and tilted in an irregular pattern. 

 The moving object is moved around in an irregular pattern, the camera is manually 

controlled to keep the object centred in the image (as the tracker would control it). 

 

For each tracker: 

 Initiate a bounding box on the object to be tracked. 

 Track with and without background subtraction. 

  If the tracking is lost, reinitialise by giving a new bounding box around the object. 

  Count the number of times the tracking is lost and how many frames processed per 

second. 

 

 Test Case 3: Tracking with background subtraction and robot 

 Same procedure as scenario 2 but with a more complicated background with clutter. 

 

3.2 Gaussian Mixture Model Algorithm 

To account for complex backgrounds containing more than one Gaussian distribution, [28] 

models each pixel as a mixture of K Gaussians corresponding to either background or 

foreground. The probability of the occurrence of a current pixel is [28]: 

 

𝑃(𝐼𝑝,𝑡) = ∑ 𝑤𝑖,𝑝,𝑡

𝐾

𝑖=1

∗ η(𝐼𝑝,𝑡 ;  𝜇𝑖,𝑝,𝑡) 
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where η( 𝜇𝑖,𝑝,𝑡, ∑𝑖,𝑝,𝑡) is the 𝑖𝑡ℎ background Gaussian model and 𝜔𝑖,𝑝,𝑡 its weight. Pixel values 

that do not fit the background distributions are considered as foreground until there is sufficient 

and consistent evidence to initiate a new Gaussian to support them. The background Gaussians 

can be determined in terms of its persistence and the variance which can be measured by ω/σ. 

This value increases both as a distribution gains more confidence and more persistent. After 

ordering the Gaussians by ω/σ, the first B distributions are chosen as the background model, 

where [28] 

 

𝐵𝑝,𝑡 = arg min
𝑏

(∑ 𝜔𝑖,𝑝,𝑡

𝑏

𝑖=1

> 𝑇) 

where T is a measure of the minimum portion of the data that should belong to background. Thus 

𝐼𝑝,𝑡 is labeled as background if it is standard deviation of a background Gaussian model. GMM 

has gained vast popularity [83, 85, 82, 84]. Yet [81] points out that it fails to achieve sensitive 

detection in the case where the background has very high frequency variations such as waving 

water or shaking tree leaves, i.e., background having fast variations cannot be accurately 

modelled with just a few Gaussians. Another important point is its ability to adapt to sudden 

change in the background which depends on the learning rate. Low learning rate is suitable for 

long-term change but it has a poor adaptivity to sudden change. High learning rate can adapt to 

changes quickly, but slowly moving objects can be easily incorporated into background. 

 

 

Fig 3.2 Example of Gaussian mixture Model [89] 
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3.3 Kernel Density Estimation Algorithm 

The kernel density estimation (KDE) method, a non-parametric approach that can effectively 

adapt to a dynamic background. In each pixel, the KDE is calculated by the following equation at 

time index t [80]: 

𝑝(𝑥) =
1

𝑛
∑ 𝐾(𝑥 − 𝑥𝑡)

𝑛

𝑖=1

 

where n is the number of total observed frames and 𝑥𝑡 is the observed value at time index t. p(x) 

is an average of normal densities centered at the sample x. The kernel function K(x) should 

satisfy the following conditions:∫ 𝐾(𝑥)𝑑𝑥 = 1,   ∫ 𝑥𝐾(𝑥)𝑑𝑥 = 0, 𝑎𝑛𝑑 𝐾(𝑥) > 0. Typically, the 

normal distribution N (0,1) is used as the kernel function. In research conducted by Park et al., 

many frames were collected before estimating the Gaussian background model and thus, a large 

amount of memory space was required. To overcome this drawback, we modify the original 

KDE method and propose a scheme that uses the first frame to initialize the KDE background 

model. In the first frame, most of the pixels represent background, and there are foregrounds in 

some other pixels. Even if we used the first frame to initialize background model, foreground 

information will be reduced and remain only background information by updating process 

because background values are more frequent than foreground values at the pixel level. The 

KDE Gaussian model is subsequently updated at every frame by controlling the learning rate 

according to the situation. The probability 𝑝𝑡(𝑥) is based on each pixel and may be expressed as 

[80]: 

 

𝑝𝑡(𝑥) =  �̂�𝑡−1(𝑥) +
1

𝐺𝑡√2𝜋𝜎2
exp [

1

2
(

𝑥 − 𝑥𝑡

𝜎
)

2

] 

 

Each pixel has a probability model. The probability obtained by the KDE method is added to the 

prior probability density at every frame. In second equation, 𝐺𝑡 is used as the learning rate at 

time t and can be changed depending on factors such as time and illumination changes. Since the 

probability should satisfy ∫ 𝑝𝑡(𝑥)𝑑𝑥 = 1, 𝑝𝑡(𝑥) is normalized as follows [80]: 
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�̂�𝑡(𝑥) = 𝑝𝑡(𝑥) / ∑ 𝑝𝑡

𝑁

𝑥=0

(𝑥) 

 

where 𝑝𝑡(𝑥) is a normal density at the sample x and at time index t. �̂�𝑡(𝑥) is a normalized normal 

density and N is the total number of samples. A new probability background model is obtained 

through the above process. This updating method improves memory effectiveness because it 

does not require many images to be saved to initialize the probability background model. The 

updating method automatically reduces the probability of unimportant backgrounds that do not 

appear over a long period by adding an additional probability and performing a normalization 

step. For example, when a car parked for a long period moves or disappears, the proposed 

method continually updates the environment. Consequently, new background information 

appears and the prior unimportant background probability associated with the car is 

automatically lowered by updating the background model. We used 𝐺𝑡 as a parameter to control 

the learning rate. If 𝐺𝑡 is increased, new information is slowly learned and prior information 

slowly disappears. If 𝐺𝑡 is decreased, the algorithm quickly adapts to the environment and 

quickly deletes old information. In the initial stage, the background model should quickly adapt 

to the new environment and, as time elapses, the background should have a stable updating 

process. For this reason, 𝐺𝑡 was used as a sigmoid function which can expressed as follows [80]: 

 

𝐺𝑡 = 𝐺𝑎𝑖𝑛 ∗
2

1 + exp (−(𝑐𝑛𝑡 − 𝛽)/𝜆
 

 

A few of the problems associated with the non-parametric kernel density estimation approach are 

the undesirably long processing time and the large memory requirement. We can reduce the 

complexity and memory requirement using histogram approximation. The Gaussian probability 

and an example of histogram approximation. 𝐵𝑑 is the width of the histograms along dimension 

d, 𝐶𝑘 is the center of each histogram, and k is the histogram number? The parameter 𝐵𝑑can be 

calculated according to the following equation [80]: 

𝐵𝑑 =
max(𝑥𝑑) − min (𝑥𝑑)

𝑁𝑑
                          𝑑 = 1,2,3 
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where Nd represents the number of bins for each dimension d and xd is the value of a pixel in 

the d dimension. 

 

 

Fig 3.3 Example of KDE [90] 

 

3.3.1 Shadow Detection 

To remove the shadows of moving objects, we applied a moving cast shadow detection 

algorithm [70] that proved to be quite accurate and suitable for eliminating shadows. The basic 

idea is that a cast shadow darkens the background, while the color of the background itself is not 

changed. Using this principle, we can express the removing shadow algorithm as follows [80]: 

[𝜌 ≤
𝑥𝑣

𝐵𝑔𝑣 ≤ 𝛿] ∧ (|𝑥𝑠 − 𝐵𝑔𝑠| ≤ 𝜏𝑠) ∧ (|𝑥ℎ − 𝐵𝑔ℎ| ≤ 𝜏ℎ) 

where Bgh, Bgs, and Bgv represent the hue, saturation, and illumination components, respectively, 

of the background pixels with background values that are closest to the input image among 

background histogram models. xv, xs, and xh represent the hue, saturation, and illumination 

components of the input video pixels. 
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3.3.2. Adaptation for a Sudden Illumination Change 

If the background itself is significantly changed (e.g., suddenly brightened or darkened), fast 

adaptation is required. We can obtain this effect by initializing the cnt value. If the value of cnt is 

initialized, Gt is also initialized and the speed of adaptation for the background increases [80]: 

 

{
𝑀𝑣𝑡 = (𝐺𝑡 − 1 ∗

𝑀𝑣𝑡−1

𝐺𝑡
+ 𝑚𝑒𝑎𝑛∀𝑖,𝑗

(𝐷𝑖𝑠𝑡𝑣(𝑖, 𝑗))/𝐺𝑡

𝑖𝑓 (|𝑚𝑒𝑎𝑛∀𝑖,𝑗
(𝐷𝑖𝑠𝑡𝑣(𝑖, 𝑗)) − 𝑀𝑣𝑡| > 𝑇𝑣)  𝑡ℎ𝑒𝑛, 𝑐𝑛𝑡 =

𝛽
2⁄

} 

 

Tv is a threshold to initialize cnt; it is set to 30 in our experiments. Distv(i, j) is a illumination 

value of current input image at the (i, j) pixel. Mvt is an moving average value of mean∀i,j(Distv(i, 

j)).S 
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CHAPTER 4 

EXPERIMENTAL RESULTS 

AND DISCUSSION 

 
In this chapter, we conduct a set of experiments. We use GMM and KDE to model the 

background, for the subtraction [79,80] and for video engineering, for updating background 

[25,75,73,72]or foreground object.  Yet as we discussed in chapter 2 and 3 through a state-of-art 

and detailed algorithms. 

Different competing video sequences with resolution of 240 × 320 at 30 frames per second were 

used to analyze the performance of the background subtraction approaches in different 

environments.  

The detection results are presented qualitatively and quantitatively. The parameters for each 

algorithm were determined experimentally. For each sequence, several representative frames, the 

ground truth and detection results produced by each algorithm are presented. The detection 

results are shown as black and white images where white pixels represent foreground objects 

while black pixels represent background. The performance of each approach is also evaluated 

quantitatively using a) the traditional pixel wise evaluation metrics (precision, recall, F-measure) 

which are used commonly in evaluating background subtraction approaches and b) the 

component-based evaluation metrics which are designed from the perspective of object 

detection, here we use the correct detection rate, miss detection rate and false alarm rate defined 

in [87]. 

 

4.1 Evaluation Metrics 

 
In this thesis, we use two types of measurements to evaluate the performance of different 

approaches, one defined in pixel-level, the other in component-level. 

The first type of evaluation metrics defined in pixel level is the most direct measure which is 

often used often to evaluate the performance of background subtraction approaches, including 

precision, recall and F-measure. They are defined as follows: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
#𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

#𝑡𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + #𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒𝑠
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𝑅𝑒𝑐𝑎𝑙𝑙 =
#𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒𝑠

#𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + #𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 .
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 . 𝑟𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

These evaluation metrics measure the accuracy of the approach at the pixel level, however, in 

some cases, people are not interested in the detection of point targets but object regions instead. 

Thus, we also use the object-based evaluation metrics proposed in [87]. 

To be more specific, we consider three cases mentioned in [87] which are shown as follows: 

• Correct Detection (CD) or 1-1 match: the detected region corresponds to one and 

only one ground truth region. 

• False Alarm (FA): the detected region has no correspondence in the ground truth. 

• Detection Failure (DF): the ground truth region is not detected. 

According to the definitions, we need to determine the correspondence of the foreground region 

in the detection result and in the ground truth, i.e., whether the foreground region in the ground 

truth is matched with the segmentation. Based on the correspondences, we can evaluate a 

selected approach in terms of the correct detection rate, the false alarm rate and the detection 

failure rate. 

 

4.2 Experimental Results 

 
In this chapter, experimental results comparing different approaches of background subtraction 

algorithms are presented. Experiments are conducted on different sequences, which demonstrate 

that our approach outperforms among these algorithms and it is robust to the outliers from 

inaccurate motion estimates, and pixel misalignment when registering consecutive images. The 

result of comparing the appearance-based approaches with that of incorporating motion and 

appearance demonstrates that, motion can provide higher discriminative power than using 

appearance cue alone, which can improve the robustness to the outliers from image registration, 

yet modelling motion and appearance cues jointly is vulnerable towards these outliers from 

either cue, since these outliers may be introduced into the joint kernel function, which will 
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deteriorate its accuracy. Evaluating marginal probabilities is useful to deal with the outliers and 

provides higher precision, yet the recall may be much lower since it may be overly conservative.  

 

4.2.1Background Subtraction results 

 

 

Table 4.1: Qualitative comparison of video Sequence 1 

 

    

 

𝒊𝒕𝒉 𝟏𝟓𝟓𝒔𝒕 𝟐𝟐𝟏𝒔𝒕 𝟓𝟗𝟏𝒔𝒕 𝟖𝟏𝟏𝒔𝒕 

IMG 

    
GMM  

 
 

 

 

 

 

 

 

 KDE  
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Table 4.2: Qualitative comparison of video sequence 2 
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Table 4.3: Qualitative comparison on indoor sequence 3. 
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Table 4.4: Qualitative comparison on indoor sequence 4 
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4.2.2 Video Engineering Results  

 

      
(a)                                              (b)                                            (c) 

 
Fig4.1 (a) Containing foreground object as input (b) representing the stationary or background of 

scene (c) representing output with the new foreground object. 

 

 

 
 

 

Fig 4.2 Result for background updating 
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4.3 Discussion:  

 
In this chapter, experimental results comparing two approaches of background extraction are 

presented. Experiments are conducted on different video sequences, which demonstrate that 

GMM approach outperforms the other algorithm and is robust to outliers coming from inaccurate 

motion estimation and pixel misalignment, when registering consecutive images. The result of 

comparing the appearance-based approaches with that of incorporating motion and appearance 

demonstrates that, motion can provide higher discriminative power than using appearance cue 

alone, which can improve the robustness to the outliers from the image registration, yet 

modelling motion and appearance cues jointly is vulnerable towards these outliers from either 

cue, since these outliers may be introduced into the joint kernel function, which will deteriorate 

its accuracy.  

Moreover, results of video engineering is also shown in which we did video editing, for instance 

we have two videos with which we changed background of one video with other video and in 

one video we changed the foreground objects with the new objects with same background. Video 

engineering was mostly done by manual method but in our case, we did it automatically. We fed 

the videos to the algorithm and it automatically replaces the objects. This method could be useful 

to the movie industry and also helpful in video surveillance. 
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CHAPTER  5 

CONCLUSION 

 

This thesis deals with the detection of objects of arbitrary visual appearance in surveillance video 

data. In particular, the objects of interest were of two different natures: moving objects, which 

pass by through the observed scene, and static objects, which are added or removed from the 

scene. Moving objects should be provided to higher-level analysis layers for action and behavior 

recognition. Static objects should provide on-line alerts to human operators in real-time. 

The absence of appearance models (and the unfeasibility to build them) and the immobility of 

the static objects has led to the use of background subtraction as the low-level processing tool. A 

thorough review of state-of-the-art background subtraction methods has been provided, thereby 

highlighting the main problems faced by this technique and how these problems have been 

approached in the extensive literature. 

 

Gaussian Mixture Models (GMM) and Kernel Density model have been chosen as the 

underlying background models. In this thesis, background subtraction was done by both methods 

and we have found that the GMM is the better approach for background subtraction and with its 

help, we were able to perform some video engineering as well. We replaced the foreground 

object of a video with another object, extracted from another video. 

 

Video engineering is usually a manual process, but with the help of this method it was possible 

to do it automatically. The only manual part in our approach is to provide the input videos to the 

method. Video engineering could also be useful for video editing, like making changes to videos.   
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