99 research outputs found

    Design issues toward a cost effective physical layer for multiband OFDM (ECMA-368) in consumer products

    Get PDF
    The creation of Wireless Personal Area Networks (WPANs) offers the Consumer Electronics industry a mechanism to truly unwire consumer products, leading to portability and ease of installation as never seen before. WPAN's can offer data-rates exceeding those that are required to convey high quality broadcast video, thus users can easily connect to high quality video for multimedia presentations in education, libraries, advertising, or have a wireless connection at home. There have been many WPAN proposals, but this paper concentrates on ECMA-368 as this standard has the largest industrial and implementers' forum backing. With the aim to effective consumer electronic define and create cost equipment this paper discusses the technology behind ECMA-368 physical layer, the design freedom availabilities, the required processing, buffer memory requirements and implementation considerations while concentrating on supporting all the offered data-rates(1)

    Multiuser Service Differentiated Spectrum Allocation Scheme for High Rate UWB Systems

    Get PDF
    International audienceIn this paper, we propose a multiuser spectrum allocation scheme for high-rate UWB systems under QoS requirements. This scheme comes as a solution to the coexistence of multiple users sharing the three sub-bands of the same channel as defined in the WiMedia solution adopted for multiband UWB systems. Indeed, WiMedia solution does not allow more than three users to coexist in the same channel. Based on a constrained multiuser optimization problem, the proposed allocation algorithm allows multiple users to access the medium following a mixed sub-band assignment and priority-based scheduling approach in order to ensure an efficient differentiated spectrum sharing. The resulting time-frequency scheduling algorithm relies on the combination of two main metrics available at PHY and MAC levels: the channel quality of each user provided by the exploitation of the effective SINR method, and the QoS constraint represented by a simple weighting parameter that differentiates between two service classes. Simulation results show the efficiency of the proposed scheme and how it guarantees a good performance level for users having strict QoS requirements

    Distributed multi-hop reservation scheme for wireless personal area ultra-wideband networks

    Get PDF
    Ultra-wideband (UWB) technology is a promising technology for multimedia applications in wireless personal area networks (WPANs) that supports very high data rates with lower power transmission for short range communication. The limitation of coverage radius of UWB network necessitates for multihop transmissions. Unfortunately, as the number of hops increases, the quality of service (QoS) degrades rapidly in multihop network. The main goal of this research is to develop and enhance multihop transmission that ensures QoS of real time traffic through the proposed distributed multihop reservation (DMR) scheme. The DMR scheme consists of two modules; distributed multihop reservation protocol (DMRP) and path selection. DMRP incorporates resource reservation, routing and connection setup that are extended on the existing WiMedia Media Access Control protocol (MAC). On the other hand, the path selection determines the optimal path that makes up the multihop route. The path selection selects nodes based on the highest Signal to Interference and Noise Ratio (SINR). The performance of DMR scheme has been verified based on the performance of the video traffic transmission. The main metrics of QoS are measured in terms of Peak Signal- to- Noise ratio (PSNR), End-to-End (E2E) delay, and throughput. The results show that DMRP compared to Multiple Resources Reservation Scheme (MRRS) in six (6) hops transmission has enhanced the average PSNR by 16.5%, reduced the average E2E delay by 14.9% and has increased the throughput by 11.1%. The DMR scheme which is the inclusion of path selection in DMRP has been compared to Link Quality Multihop Relay (LQMR). DMR scheme has improved the video quality transmission by 17.5%, reduced the average E2E delay by 18.6% and enhanced the average throughput by 20.3%. The QoS of six (6) hops transmission employing DMR scheme is almost sustained compared to two hops transmission with the QoS experiencing only slight degradation of about 2.0%. This is a considerable achievement as it is well known that as the number of hops increases the QoS in multihop transmission degrades very rapidly. Thus DMR scheme has shown to significantly improve the performance of real time traffic on UWB multihop network. In general, DMR can be applied to any WPAN network that exploit multihop transmission

    On Complexity, Energy- and Implementation-Efficiency of Channel Decoders

    Full text link
    Future wireless communication systems require efficient and flexible baseband receivers. Meaningful efficiency metrics are key for design space exploration to quantify the algorithmic and the implementation complexity of a receiver. Most of the current established efficiency metrics are based on counting operations, thus neglecting important issues like data and storage complexity. In this paper we introduce suitable energy and area efficiency metrics which resolve the afore-mentioned disadvantages. These are decoded information bit per energy and throughput per area unit. Efficiency metrics are assessed by various implementations of turbo decoders, LDPC decoders and convolutional decoders. New exploration methodologies are presented, which permit an appropriate benchmarking of implementation efficiency, communications performance, and flexibility trade-offs. These exploration methodologies are based on efficiency trajectories rather than a single snapshot metric as done in state-of-the-art approaches.Comment: Submitted to IEEE Transactions on Communication

    Cross-Layer Resource Allocation for MB-OFDM UWB Systems

    Get PDF
    ISBN 978-953-3076461-0International audienc

    Evaluation of the Wi-Fi technique for use in a navigated orthopedic surgery

    Get PDF
    Following text focuses on use of wireless technologies in OrthoPilot navigation system developed by B.Braun company. Description of OrthoPilot software is followed by overview of available wireless technologies highlighting their both advantages and disadvantages. Practical part consists of two main parts, mostly dealing with electronic circuits. First part describes development process of camera-wireless printed circuit board which substitutes currently used RS-422 cable connection between PC and stereo camera. Part of this chapter covers programming in C++ in order to make interface compatible with the rest of current OrthoPilot software. Second bigger part deals with remote controller development using prototyping board mikroMedia for XMEGA. Besides electrical circuits design, chapter describes also software part - microcontroller programming in C language. Thesis is concluded by discussing system limitations and ideas for future development.Following text focuses on use of wireless technologies in OrthoPilot navigation system developed by B.Braun company. Description of OrthoPilot software is followed by overview of available wireless technologies highlighting their both advantages and disadvantages. Practical part consists of two main parts, mostly dealing with electronic circuits. First part describes development process of camera-wireless printed circuit board which substitutes currently used RS-422 cable connection between PC and stereo camera. Part of this chapter covers programming in C++ in order to make interface compatible with the rest of current OrthoPilot software. Second bigger part deals with remote controller development using prototyping board mikroMedia for XMEGA. Besides electrical circuits design, chapter describes also software part - microcontroller programming in C language. Thesis is concluded by discussing system limitations and ideas for future development.

    Optical techniques for broadband in-building networks

    Get PDF
    Optical fibres, which can easily handle any bandwidth demand, have been rolled out to more than 32 million consumer’s homes and professional buildings worldwide up to 2010. The basic technological and economical challenges of fibre-to-the-home (FTTH) has been solved. The current FTTH technology can now providing baseband Gbit Ethernet and high definition TV services to the gates of homes. Thus, the bottleneck for delivery of broadband services to the end users is shifting from the access network to the in-building network. In the meantime, the need for high-capacity transmission between devices inside the building, e.g. between desktop PC and data services, are also rapidly increase. How to bring high bandwidth to the mobile terminals such as laptops, PDAs or cell phones as well as to the fixed terminals such as desktop PCs and HDTV equipment in an all-in-one network infrastructure is a challenge we are facing. Building on the flexibility of the wireless access networks and the latent vast bandwidth of a fibre infrastructure, radio-over-fibre (RoF) techniques have been proposed as a cost-effective solution to the future integrated broadband services in in-building networks. This thesis investigates techniques to deliver high data rate wireless services via in-building networks: high capacity RoF links employing optical frequency multiplication (OFM) and sub-carrier multiplexing (SCM) techniques, with single- or multi-carrier signal formats. The orthogonal frequency division multiplexing (OFDM) format is investigated for the RoF transmission system, particularly with regard to the optical system nonlinearity. For low-cost short-range optical backbone networks, RoF transmission over large-core diameter plastic optical fibre (POF) links has been studied, including the transmission of the WiMedia-compliant multiband OFDM UWB signal over bandwidth-limited large-core POF as well as a full-duplex bi-directional UWB transmission over POF. In order to improve the functionalities for delivery of wireless services of in-building networks, techniques to introduce flexibility into the network architecture and to create dynamic capacity allocation have been investigated. By employing optical switching techniques based on optical semiconductor amplifiers (SOA), an optically routed RoF system has been studied. The dynamic capacity allocation is addressed by investigating one-dimensional and two-dimensional routing using electrical SCM and optical wavelengths. In addition, next to RoF networking, this thesis explores techniques for wired delivery of baseband high capacity services over POF links by employing a multi-level signal modulation format, in particular discrete multi-tone (DMT) modulation. Transmission of 10 Gbit/s data over 1 mm core diameter PMMA POF links is demonstrated, as a competitor to more expensive fibre solutions such as silica single and multimode fibre. A record transmission rate of more than 40 Gbit/s is presented for POF whose core diameter is comparable with silica multimode fibre. Finally, from the network perspective, the convergence of wired and wireless multi-standard services into a single fibre-based infrastructure has been studied. Techniques have been designed and demonstrated for in-building networks, which can convey both high capacity baseband services and broadband radio frequency (RF) services over a POF backbone link. The multi-standard RoF signals carry different wireless services at different radio frequencies and with different bandwidths, including WiFi, WiMax, UMTS and UWB. System setups to carry them together over the same multimode optical fibre based network have been designed and experimentally shown. All the concepts, designs and system experiments presented in this thesis underline the strong potential of multimode (silica and plastic) optical fibre techniques for the delivery of broadband services to wired and wireless devices in in-building networks, in order to extend to the end user the benefits of the broadband FTTH networks which are being installed and deployed worldwide

    Location-aware and Cooperative Communication in an OFDM based Ultra-wideband Radio System

    Get PDF
    Die auf dem orthogonalen Frequenzmultiplex (OFDM, Orthogonal Frequency Division Multiplexing) basierende Ultra-Breitband-(UWB, Ultra-wideband) Technologie stellt eine verheißungsvolle Technologie dar, um hohe Datenübertragungsraten und Lokalisierungs- und deren Tracking-Anwendungen zu realisieren. Im Gegensatz zu anderen Systemen ist die Reichweite von OFDM UWB Systemen durch eine strenge Regulierung sehr stark begrenzt. Darüber hinaus ist die Lokalisierung nicht zufriedenstellend. Damit sind bereits die beiden größten Nachteile im Bezug auf bestehende OFDM UWB System benannt. Die Motivation und Hauptaufgabe dieser Arbeit ist damit die Lösung der eben genannten Nachteile. Es wird ein OFDM UWB System vorgestellt, das Space Frequency Block Coding (SFBC) und FFH OFDM miteinander verbindet. Dieses vereinte System wertet die räumliche und frequentielle Diversität eines OFDM-Symbols aus und zeigt dabei eine hohe Güte in der Punkt-zu-Punkt Kommunikation. Beim Design von kooperativen UWB-Systemen wird ein AF-(Amplify-and-Forward) basiertes echtzeitfähriges SFBC-TFC (Time Frequency Code) Protokoll vorgestellt. In Kombination mit den oben genannten Strategien, kann eine Erhöhung in den Reichweite von OFDM UWB Systemen erreicht werden. In den Ausführungen zur Ortung anhand von OFDM UWB Signalen wird ein Algorithmus entwickelt, der aufgrund einer Kanalschätzung eine Minimierung des Phasenversatzes zwischen geschätztem und realem Kanal im Frequenzbereich durchführt. Diese Minimierung erwirkt eine Unterdrückung der Energie am Ende der Kanalimpulsantwort (CIR, Channel Impulse Response) im Zeitbereich. Zum Zweck der einfachen Implementierbarkeit wird das RTT (Round-Trip-Time) Messprotokoll in WiMedia UWB Systemen dahingehend verändert, dass das mobile Gerät keine Minimierung vornimmt. Es leitet seine Informationen an das mit ihm Kommunizierende, stationäre Gerät weiter, das direkt den gesamten Zeitversatz innerhalb des RTT berechnet. Der vorgeschlagene Algorithmus und das vorgeschlagene Protokoll haben ein besseres Ortungsvermögen als bekannte UWB Lokalisierungsprozeduren und bedürfen nur etwas zusätzlicher Berechnungsleistung. Diese Arbeit zeigt, dass Systeme mit hohen Datenraten wie OFDM UWB auch eine gute Lokalisierungsgenauigkeit erreichen können. Zusätzlich ist die Schwachstelle einer limitierten Reichweite ebenso kompensiert worden. Diese Erweiterungen dienen der Entwicklung von nützlichen UWB-Applikationen und sichern den Anteil der OFDM UWB Technik im Markt der drahtlosen Kommunikationssysteme der Zukunft.The Orthogonal Frequency Division Multiplexing (OFDM) based Ultra-wideband (UWB) is one of the most promising technologies for high data rate transmission and localization and tracking applications. However, the restricted transmit power causes a shorter communication range compared to other indoor radio systems. In addition, the ranging functionality is still not well supported by the current OFDM based UWB technology. These two drawbacks are the main disadvantages existing in the current OFDM UWB systems. To get rid of the two drawbacks, is the motivation and main task of this thesis. Within the scope of this thesis, a joint design of Space Frequency Block Coding (SFBC) with Fast Frequency Hopping (FFH) OFDM scheme is investigated in a multiple antenna OFDM UWB system. The joint scheme is able to exploit spatial and frequency domain diversity within one OFDM symbol, and can improve the data transmission quality in point-to-point communication. To the cooperative communication in UWB systems, an Amplify-and-Forward (AF) based distributed SFBC-TFC (Time Frequency Code) protocol is designed. In combination with the aforementioned strategies an increase in the communication range is achieved. Within the scope of this thesis, accurate ranging schemes for the OFDM UWB systems are designed. Fine ToA detection method based on the estimated channel is developed. The fine ToA is estimated by minimizing the accumulated energy of the tail taps of the estimated Channel Impulse Response (CIR). For the purpose of a feasible implementation, the Round-Trip-Time (RTT) measurement protocol in [WiM09] is modified in a way that the complicated computational tasks are burden onto the powerful device. The proposed fine ToA detection method and modified RTT protocol provides an accurate ranging capability and ensures feasible implementation to the MB-OFDM UWB systems. In carrying out this scheme, only some computational tasks are needed, no extra hardware support is required. It is shown in this thesis, OFDM UWB systems with very high data rate transmission and good ranging capability could be achieved, and the weakness of limited communication range is also compensated. These improvements will cause the rise of more valuable UWB applications for customers and ensures a bright future for the OFDM UWB technique

    Design, Modeling, and Analysis for MAC Protocols in Ultra-wideband Networks

    Get PDF
    Ultra-wideband (UWB) is an appealing transmission technology for short-range, bandwidth demanded wireless communications. With the data rate of several hundred megabits per second, UWB demonstrates great potential in supporting multimedia streams such as high-definition television (HDTV), voice over Internet Protocol (VoIP), and console gaming in office or home networks, known as the wireless personal area network (WPAN). While vast research effort has been made on the physical layer issues of UWB, the corresponding medium access control (MAC) protocols that exploit UWB technology have not been well developed. Given an extremely wide bandwidth of UWB, a fundamental problem on how to manage multiple users to efficiently utilize the bandwidth is a MAC design issue. Without explicitly considering the physical properties of UWB, existing MAC protocols are not optimized for UWB-based networks. In addition, the limited processing capability of UWB devices poses challenges to the design of low-complexity MAC protocols. In this thesis, we comprehensively investigate the MAC protocols for UWB networks. The objective is to link the physical characteristics of UWB with the MAC protocols to fully exploit its advantage. We consider two themes: centralized and distributed UWB networks. For centralized networks, the most critical issue surrounding the MAC protocol is the resource allocation with fairness and quality of service (QoS) provisioning. We address this issue by breaking down into two scenarios: homogeneous and heterogeneous network configurations. In the homogeneous case, users have the same bandwidth requirement, and the objective of resource allocation is to maximize the network throughput. In the heterogeneous case, users have different bandwidth requirements, and the objective of resource allocation is to provide differentiated services. For both design objectives, the optimal scheduling problem is NP-hard. Our contributions lie in the development of low-complexity scheduling algorithms that fully exploit the characteristics of UWB. For distributed networks, the MAC becomes node-based problems, rather than link-based problems as in centralized networks. Each node either contends for channel access or reserves transmission opportunity through negotiation. We investigate two representative protocols that have been adopted in the WiMedia specification for future UWB-based WPANs. One is a contention-based protocol called prioritized channel access (PCA), which employs the same mechanisms as the enhanced distributed channel access (EDCA) in IEEE 802.11e for providing differentiated services. The other is a reservation-based protocol called distributed reservation protocol (DRP), which allows time slots to be reserved in a distributed manner. Our goal is to identify the capabilities of these two protocols in supporting multimedia applications for UWB networks. To achieve this, we develop analytical models and conduct detailed analysis for respective protocols. The proposed analytical models have several merits. They are accurate and provide close-form expressions with low computational effort. Through a cross-layer approach, our analytical models can capture the near-realistic protocol behaviors, thus useful insights into the protocol can be obtained to improve or fine-tune the protocol operations. The proposed models can also be readily extended to incorporate more sophisticated considerations, which should benefit future UWB network design

    Architectures and Novel Functionalities for Optical Access OFDM Networks "Arquitecturas y Nuevas Funcionalidades para Redes OFDM de Acceso Óptico"

    Full text link
    En los últimos años ha habido un gran aumento en el despliegue de redes de acceso ópticas de fibra hasta el hogar (FTTH, del inglés fibre-to-the home). FTTH es una solución flexible, una tecnología de acceso de futuro que permite proporcionar tasas de datos del orden de Gbit/s por ususario. Diversos estudios indican que FTTH se convertirá en la diferencia clave entre los operadores más importantes. Además, FTTH es la única tecnolotgía capaz de crear nuevas fuentes de ingresos de aplicaciones de alta velocidad, como por ejemple entretenimiento de alta definición (vído y juegos de alta definición...) Dede el punto de vista del operador, una de las vientajas importantes que proporciona FTTH es que permite una mayor eficiencia operativa en coparción con otras tecnologías de acceso, principalmente por la reducción de costes de mantenimiento y de operación. Además, FTTH reduce los requisitos de los equipos de las centrales. Esta tesis doctoral tiene como ojetivo extender estas ventajas más allá del concepto FTTH mediante la integración de la red óptica de distribución desplegada dentro del hogar así como el enlace radio final de corto o medio alcance inalámbrico. Esto proporciona una arquitctura de red FFTH integrada de extremo a extremo. De este modo, los beneficios de la reducción de costes operativos y mayor eficiencia se extienden hasta el usuario final de la red. En esta tesis doctoral, se propone una arqutectura de acceso integrada óptica-radio basada en la multiplexación por división ortogonal de fecuencia (OFDM, del inglés orthogonal frequency división multiplexing) para proporcionar diferentes servicios al usuario como Internet, teléfono/voz, televisión de lata definición, conexión inalámbrica y seguridad en el hogar. Las señales OFDM se utilizan en muchos estándares inalámbricos como las señales de banda ultraancha (UWB, del inglés ultra-wide band), WiMAX, LTE, WLAN, DVB-T o DAB. Estos formatos aprovechan las características intrínsecas de la modulación OFDM como su mayor inmunidad ante desvanecimiento multi-camino. Esta tesis incluye la propuesta y la demostración experimental de la transmisión simultánea y bi-direccional de señales OFDM multi-estándar en radio-sobre-fibra proporcionando servicios triple-play basados en OFDM como UWB para televisión de alta definición, WiMAX para datos de Internet, y LTE para el servicio telefónico.Morant Perez, M. (2012). Architectures and Novel Functionalities for Optical Access OFDM Networks "Arquitecturas y Nuevas Funcionalidades para Redes OFDM de Acceso Óptico" [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/15076Palanci
    corecore